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Abstract. We present the Deep Wind methodology, a physics-informed neural network (PINN) formulation for reconstruct-
ing three-dimensional wind fields from incomplete and noisy data. The approach embeds mass conservation and boundary
conditions directly into the loss function, enabling physically consistent and stable reconstructions without mesh-based dis-
cretization. A series of synthetic benchmarks and real observations from Super Typhoon Kong-Rey (2024) demonstrate the
robustness of the method compared to classical variational approaches. We show that Deep Wind consistently maintains stabil-
ity and accuracy under sparse, irregular, or noisy observations. Overall, the results suggest that physics-informed deep learning

is a promising framework for wind field recovery and data assimilation, particularly in meteorology and wind energy.

1 Introduction

Deep learning has opened new directions for solving variational problems constrained by partial differential equations (PDEs).
Methods such as the Deep Galerkin Method (DGM) by Sirignano and Spiliopoulos Sirignano and Spiliopoulos (2018) and
the Deep Ritz Method (DRM) by E and Yu E and Yu (2018) reformulate PDEs as loss functions minimized over neural
network representations. These approaches are mesh-free, inherently parallelizable, and capable of scaling to high-dimensional
problems.

In this work, we address a classical inverse problem: the reconstruction of three-dimensional wind vector fields from incom-
plete observations. This problem is fundamental in meteorology and environmental fluid dynamics, particularly when only
the horizontal wind components are observed through satellite imagery or surface-based instruments. Traditional methods
formulate this task as a variational problem, minimizing a misfit functional under physical constraints.

A foundational approach to the stationary reconstruction was originally introduced by Sasaki Sasaki (1958), where the adjusted
wind field is obtained by minimizing a cost functional subject to mass conservation. Benbourhim and Bouhamidi Benbourhim
and Bouhamidi (2008) developed a smoothing algorithm using polyharmonic splines for prescribed data in both two- and three-
dimensional settings, and provided a complete convergence analysis. More recently, Khayretdinova and Gout Khayretdinova
and Gout (2024) proposed a finite element method for wind field reconstruction based on the minimization of an energy

functional, explicitly incorporating topographic effects and offering a visualization framework.
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Recent advances in Physics-Informed Machine Learning (PIML) have introduced neural network-based formulations for wind
field reconstruction, where the unknown flow is parameterized by a deep model and physical consistency is embedded directly
into the loss function. Zhang and Zhao Zhang and Zhao (2021) proposed a physics-informed deep learning framework to
reconstruct spatiotemporal wind fields from Lidar data, incorporating the Navier—Stokes equations as explicit constraints. In
the stationary setting, where the adjusted wind field is obtained by minimizing a cost functional subject to mass conservation,
Brune and Keller Brune and Keller (2022) refined Sasaki’s variational solution using neural networks to achieve improved
statistical consistency. These contributions illustrate how PIML methods complement classical approaches by integrating do-
main knowledge with modern machine learning techniques, enhancing their robustness when observations are sparse, noisy, or
incomplete.

While powerful, these classical methods face difficulties when applied to scattered or incomplete data, complex geometries, or
irregular terrain. To overcome these limitations, we introduce mass consistency as a physical constraint in a neural network-
based variational formulation. Specifically, we employ the Deep Ritz Method, which directly minimizes the energy functional
using stochastic gradient descent over randomly sampled collocation points.

In contrast to classical schemes, our approach leverages the flexibility of deep neural networks to incorporate boundary con-
ditions and physical constraints directly into the training objective. Topographic effects are accounted for by enforcing a
no-penetration condition at the lower boundary which captures the essential influence of terrain without requiring explicit
geometric modeling. This simplification not only streamlines implementation but also enhances generalizability. Our method
unifies and extends classical frameworks such as Sasaki’s by embedding them into a more general, data-driven, and scalable
learning-based paradigm. A key contribution of this work is demonstrating that our Physics-Informed Neural Network (PINN)
formulation offers improved robustness and flexibility when applied to real-world wind data. Boundary conditions and physical
laws are integrated naturally, without relying on mesh-based discretizations.

This contribution aligns with the broader trend of Physics-Informed Machine Learning (PIML), which has shown promise
across a wide range of applications. However, its use as a substitute for classical techniques remains under scrutiny; for a
recent review, see Latrach et al. Latrach et al. (2024). We argue that PIML is a welcome alternative for scenarios where
classical methods fall short, as in the presence of sparse data, complex terrain, incomplete information, or when the underlying
model structure is difficult to specify explicitly.

To validate our approach, we compare it against the classical variational method of Sasaki Sasaki (1958), which serves as a
foundational framework for stationary wind field reconstruction. In particular, we employ the extension proposed by Cervantes
et al. Cervantes et al. (2018), who introduced a line search algorithm based on radial basis functions (RBFs). This method
constructs descent directions in a functional space and solves elliptic problems to iteratively enforce mass consistency, thereby
generalizing Sasaki’s formulation and enabling the treatment of boundary conditions within a mathematically rigorous frame-
work. We evaluate both approaches using synthetic and real-world wind data, including observations from Super Typhoon
Kong-Rey (2024), also known as Leon, which affected Taiwan, the Philippines, eastern China, and South Korea. Our numeri-
cal results confirm that while both methods perform well in idealized cases, the PINN-based approach demonstrates superior

robustness in the presence of real, incomplete, and noisy data. Moreover, we experimentally verify that in certain scenarios,
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Sasaki’s classical method fails to provide an accurate approximation due to insufficient information about the underlying wind
field.

The remainder of this paper is structured as follows. Section 2 describes the methodology, including the formulation of
the reconstruction problem, the line search approach, and Sasaki’s classical variational formulation. The proposed Deep Wind
methodology is detailed in Subsection 2.3, covering the optimization problem, network architecture, and computational im-
plementation. Section 3 presents the numerical experiments, including synthetic benchmarks, real wind data from Typhoon
Kong-Rey, and further applications. Finally, Section 4 summarizes the main findings, discusses their implications for wind

field reconstruction, and outlines directions for future research.

2 Materials and Methods
2.1 The problem of reconstructing wind vector fields

In many atmospheric and geophysical applications, it is crucial to reconstruct the full three-dimensional wind velocity field
u(r) = (u1(x),uz(x),us(x)) over a domain 2 C R, based on partial and incomplete observational data. Accurate recovery
of the full field enables better estimation of vertical transport, convective processes, pollutant dispersion, and energy exchange.
These vector fields must not only fit the available data but also satisfy physical constraints derived from governing laws such
as conservation of mass (V - u = 0), irrotationality (V X u = 0), or others depending on the specific system.

Let us assume that the first two components of the vector field are known at /N nonuniform points, that is,
U?:(ul(xi),UQ(xi))GQCR3, 1=1,2,...,N.

Problem: Reconstruct the full vector field u(z) = (uy(x),uz(z),us(x)) over the domain €2, assuming that the discrete mea-
surements { UV} are given, and that the reconstructed field satisfies the physical constraint of mass conservation, expressed

as the continuity equation:
V- u(z) =0.

To this end, the reconstruction problem can be formulated as a constrained optimization problem: find a velocity field u that

minimizes the misfit functional

T =3 [Mu-0|,

subject to the divergence-free constraint V -u = 0. Here, M denotes an observation or projection operator that extracts the first
two components of the vector field at the sampled points, and U° € R? represents the set of known observations.
This inverse problem is inherently underdetermined due to the missing vertical component and requires incorporating phys-

ical constraints and regularity assumptions to obtain a meaningful and unique reconstruction.
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2.2 The adjusted field by line search in E(£2)

In Cervantes et al. (2018), the reconstruction is formulated as a constrained minimization problem in the Hilbert space
E@Q) ={uec (L*(2)*|V-ueL*Q)},

endowed with the inner product

(0,v)g) = (0,v)r2(0) +(V-u,V-v)1200).

Let M : (L?(2))% — (L?(£2))? the observation operator defined as M(u) = (ug,us), and let S € R?*? be a symmetric

positive definite matrix. The cost functional is given by:

I = 5 [ (M) - 0T S(M(w) - V)
Q

and the search is restricted to the divergence-free subspace:
Ey(Q)={uecEQ) |V -u=0}.

2.2.1 Line Search and Adjusted Field Construction

Given a base field u. € Ey(€2), a line search is performed along u(t) = u. + tp, where p € Ey(2). The directional form of

the functional is

t2
f@®) =J(.) +t{p, M*S(Mu, — UO) — V)\)L(Q)z + 5<MP,SMP>L2(Q), €))

where, M* is the adjoint operator from M and A\ € H?(Q) is a Lagrange multiplier introduced to ensure mass consistency,

solving the elliptic problem:

AN=V - (M*S(Mu,.—TU%), (2)

subject to appropriate boundary conditions, which ensure that the boundary term

/)\p~1/dU:0 3)
o0

vanishes.

The steepest descent direction is then given by:

p=—(M*S(Mu,—U%-V)),
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and the optimal step size is
to= <p7P>L2(Q) )

(Mp, SMp) L2

Finally, the updated, adjusted field is given by,
ut =u,+t.p.
2.2.2 Sasaki’s Approach

In the classical variational formulation Sasaki (1958), the following cost functional is introduced for the correction of an initial
wind field:

J(u):/// [a% (ul—u?)2+a§ (uQ—ug)Q—Fa%(ug—ug)Q} dv,
Q

where u = (uy,uz,u3) is the corrected velocity field, and u® = (u{,u3,u3) denotes the initial or background velocity field.
The parameters o, ¢ = 1,2,3, are known as the Gauss precision moduli, which control the relative weight of the corrections
applied to each velocity component.

In this framework, the initial vertical velocity component is commonly assumed to be negligible, i.e.,

0
3

us =0,

reflecting the lack of reliable direct measurements for this quantity in most meteorological datasets. The minimization of J(u)
is subject to physical constraints, such as mass conservation, and leads to an adjusted velocity field that optimally balances
fidelity to the initial guess with adherence to the governing equations.

For this case, we assume that a complete initial field
w e (12(@)°

is given, and that the operator M(u) : E(Q)? — E(Q)3 is the identity, that is,

M(u) = M(ulau27u3) = (u17u2au3)7

from which it follows that M*(u) = M(u).
In this case, the quadratic functional (1) takes the form
2

_ t
f(t)=J(ue) +t(Sp,uc—u’ = STV ) + §<SP7 P)r2(Q)-
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Taking again —V .J(u.) as the descent direction, we obtain
p=-— (uC —u’ - S*1V)\) .
The adjusted field is therefore
ut =u, ft(uc —u’— S*1V)\) ,
and f(t), can be expressed as
2
F(t) = J(uc) =t(Sp,p)12(0) + 5 (5P, P)L2()-
From (4), the optimal step is given by
t.=1.
Thus, from the above, the Sasaki solution Sasaki (1958) follows:
ut=u’4+ 571V
According to equations (2) and (3), the scalar field A satisfies the following boundary value problem (BVP):
V- (S7IVvAN) =V-u’, inQ,
()
BA=g, onT,

where the boundary operator I3 can be inferred from the fact that this equality holds when A\=0 or p-v =0 on I' := 91.

Accordingly, the following cases can be distinguished:
— Open boundary:

A=0. ©)

— Dirichlet-type condition: p - v = 0. In this case, since the descent direction p is expressed in terms of u., it is possible
to impose the condition directly on this field.
Moreover, note that
pr=0 < S 'Viv=—(u-u) v
Thus, if ur denotes the velocity field prescribed on the boundary I', we can write:
Closed boundary: 0,
U. - ¥V = ¢ Vertical condition: u.-v=u-v, (7
Top or bottom condition: ur

,°V Of Urg-V.
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2.3 The Deep Wind Method
The Deep Wind method is a physics-informed neural network (PINN) formulation, defined as
U(X7 9) = (Ul (Xa 9)7 U2 (X7 0)7 us (X7 9)) ) Xe€ Rdv d= 2) 37

designed to reconstruct three-dimensional wind vector fields from partial observational data while enforcing fundamental
physical constraints. In particular, mass conservation is imposed through the divergence-free condition (V - u = 0), and diverse
boundary conditions are incorporated, such as Dirichlet-type constraints (prescribed values), vanishing vertical velocity at the
ground level, or other physical information derived from observations. These conditions are not enforced as hard constraints but
are encoded in the loss function, yielding solutions that are both data-consistent and physically plausible across the domain.
More generally, the framework allows the inclusion of additional physical constraints—such as momentum conservation,
realistic surface and boundary conditions, and assimilation of observational data (e.g., wind magnitudes, directions, or pressure
fields from SAR, lidar, or Copernicus reanalysis)—ensuring that the reconstructed fields remain faithful to both fundamental

physics and the available measurements.
2.3.1 The Optimization Problem

To approximate the complete vector field in a physically consistent way, Deep Wind minimizes a composite loss functional

that includes both data fidelity and physically motivated regularization terms:

"1 2 2
Zi [ u1(x4;0) — UY (xi))" + (uz(xi;0) ng(xi)) ]

i=1

+61 [ (V-u(x;0)*dx
/

s / (u(x:0) - g(x))dS, ®)

Iy

where:

— The first term penalizes discrepancies between the predicted and observed horizontal wind components at measurement
points {x;}" ; C Q C R3, ensuring consistency with available data. In the presence of noise, the influence of this term

can be modulated using a smoothing approach Wahba (1990), allowing a balance between data fidelity and regularity.

— The second term promotes approximate mass conservation by minimizing the divergence of the velocity field throughout
the domain. More generally, the framework allows for the inclusion of additional physical constraints—such as vorticity
control, alignment with known flow directions, or energy conservation—through appropriate penalty terms added to the

loss function.
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— The third term enables the incorporation of general boundary conditions on the lower boundary I', C 0f2, based on
available physical or observational information. A typical example is enforcing that the vertical velocity vanishes at

ground level, or that it matches a known value derived from surface topography.

The parameters 31 and (5 regulate the influence of the divergence and boundary penalties, respectively. This formulation
enables the model to infer the unobserved vertical wind component u3 indirectly, as a consequence of satisfying physical
constraints rather than relying on direct supervision. In our experiments, however, setting 3; = 2 = 1 was sufficient to obtain
good results and an adequate balance between the physical constraint and the boundary condition.

An important advantage of this framework is its flexibility: different physical properties or constraints can be easily incor-
porated into the loss functional. For instance, by adding penalties on the curl of the vector field, one can enforce irrotationality;
or by including elastic potential energy terms, the method can be adapted to model mechanical deformation governed by linear

or nonlinear elasticity. This makes the approach broadly applicable to a variety of physical systems.

2.3.2 Network Architecture

‘S
f1 @(Wm - @(Wiys + biy) + b1a) + D

S

A
fg @(Wm - @(Wa1s + bar) + b22) +D

S

Tt Q(U'Deprh 2 Q(Wpepth 15+ Bpeptn 1) + Bpepen 2) +D

Figure 1. Deep Ritz net architecture.

Our formulation leverages the residual neural architecture introduced in the Deep Ritz method E and Yu (2018), owing to
its effectiveness in training deep variational models. By improving gradient flow and incorporating identity mappings via skip
connections, residual blocks mitigate the vanishing gradient problem and stabilize convergence, thereby enabling the training
of deeper networks capable of capturing complex, multi-scale flow structures.

A fully connected residual neural network can be expressed as
u(x;0) =a-zg(x) + b,

where x € R%, ¢ e R™*" and b € R® n =2,3.

The transformation x — 2¢(x) € R™ is obtained by composing a sequence of residual mappings ,

26(X) = fDepth © fDepth—10--- 0 f1(X),
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where Depth € Z5; denotes the total number of layers in the residual architecture.

Each mapping f; is given by
fi(s) =o(Wi20(Wi15+b;i1)+bi2)+s,

with ¢ denoting the nonlinear activation function (see figure 1). The weights W; 1, W; o € R™>*™, and bias b; 1,b; 2 € R™
are the trainable parameters of block i = 1,...,Depth. Here, m specifies the Width of the hidden layers, and 6 denotes the
collection of all such parameters.

The input x for the first block lies in R?, not in R™. To address this dimensional discrepancy, we set

X
, d<m,
0
S =
X, d=m,
Tx, d>m,

where T' € R™*? is a linear transformation projecting x from R? to R™.
2.3.3 Computational Implementation and Training Procedure

To reconstruct a three-dimensional wind velocity field under physical constraints, the Deep Wind approach was implemented
in PyTorch. The neural network is trained to minimize a composite loss functional that balances fidelity to the observed data,
mass conservation, and enforcement of boundary conditions.

The spatial domain 2 C R? is discretized into three types of training points:
— Observation points {z;} |, where the horizontal wind components (u1,uz) are specified;
— Interior points {z;}].; C (2, where the divergence-free condition is penalized;

- Boundary points {z;}}_, C I',, where the vertical component u3 is forced either to vanish—reflecting ground-level

impermeability— or to match prescribed boundary values when available.

The network adopts a residual architecture (Section 2.3.2) with the hyperbolic tangent (t anh) activation function. Parame-
ters are initialized with the Xavier scheme to improve convergence stability, and training is performed with the Adam optimizer.
For simplicity in our experiments, the observation and interior points were chosen to coincide. The loss functional was then

approximated by numerical quadrature as follows:
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L(0) zz % [(ul(:ﬂi;e) — UP(%)) + (UQ(%;@) - US(%)) ]
=1
+61) (V-u(z;30))* Az
j=1
+ 02> |[ula;0) — glaw)||* AS. 9)
k=1

where Az and AS denote the elementary integration measures, corresponding to volume elements in the interior, surface

elements on boundaries, or line elements on edges, depending on the discretization context. The complete training process is

summarized in Algorithm 1.

Algorithm 1 Training Algorithm for Physically-Constrained Wind Field Reconstruction

Require: Observation points {x;, U}, interior points {x;} C €2, boundary points {x;} C I,
Require: Neural network u(x;6), learning rate ), epochs T, weights 31, B2
1: Initialize 6 (Xavier); set Adam(7n)
2: forepoch=1,...,T do
3:  Predict u(x) at all training points
& Compute losses: Lauy = X2, [|Mu(x;) = UV, Lay = ¥,(V-u(x,)% Luc = ¥y ulx) — g(x)|?
5. Total loss: L = Lga + 81 Laiy + B2 Lue
6: Update § 6 —nVyL
7: end for

8: return Trained model u(x;6*)

2.3.4 Hardware.

All experiments were run in PyTorch on a laptop with an NVIDIA GeForce GTX 1050 Ti Mobile GPU (4 GB memory), using
driver version 575.64.03 and CUDA 12.9. The GPU was recognized by PyTorch and used to speed up gradient calculations
and make training times reasonable.

3 Results and Discussions

Example 1. First, let us consider a simple two-dimensional vector field f : Q — R? defined over the square domain 2 =

[—2,2] x [-2,2], given by
f(z,y) = (z,—y) and u’(z,y) = (z,0),

for which the incompressibility condition holds exactly, i.e., V- f = 0.

10
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Using Sasaki’s classical formulation in two dimensions with Dirichlet boundary conditions at the top and bottom and along
the vertical (lateral) sides (see Eq. 7), the reconstruction achieves a nearly divergence-free solution with (|V-u|) = 7.91x10~7
(where (|V -u|) represents the average value of the divergence) and a mean squared error (MSE) of 5.82 x 10712 . These values
confirm that Sasaki’s approach is capable of reproducing the exact field to high precision under this configuration.

On the other hand, the performance of the proposed Deep Wind model is reported in Table 2. The table summarizes the pre-
diction results obtained for different network architectures and training configurations, highlighting the progressive reduction

in both divergence and MSE as model complexity and the number of training epochs increase.

Table 1. Prediction performance of the DeepWind method for different hyperparameter configurations in the approximation of the vector

field f(z,y) = (x, —y), with interior points batch size = 512, and boundary points batch size = 256.

Epoch Batch Width Depth (|V-ul) MSE

100 5 15 2 3.99-03 1.23e-03
500 10 30 5 1.08e-03  5.14e-04
500 10 50 10 4.52e-04  2.26e-04

500 10 100 10 8.21e-05 2.17e-04
1000 10 100 15 6.46e-06  5.65e-05

From the numerical results, the exact and approximated fields are found to be very similar. Consequently, Sasaki’s method

and Deep Wind have the same visual output, which is illustrated in Figure 2.

000000 T T T VNV VNN e
////////Ii“\\\\\éi“‘i‘_’
st LSSV VNV NYNNNNN
S0 0TV VNV NNNNNN
N LTV VNN
LS VNN NN
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NNKNKNNN\\\N\N Vv Y2 AT
A SNNXNNNN\N\\\ VvV 1)1
SNNXN\N\\\\\\\Vt 1127200/ 777
NNXN\X\\\\\\Vv1v 11227
W77
. \\\‘\\\\\‘\Hf‘ff//////

Figure 2. Exact and approximated solutions for the vector field u(z,y) = (z, —y).

11
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Example 2. Second, we consider a two-dimensional vector field f :  — R? defined over the square domain Q = [—2,2] x

[—2,2], given by

f(x’y) = (_yv JZ‘) and uo(xay) = (—y,O),

which corresponds to a uniform rotational flow. In this case, the incompressibility condition holds exactly, i.e., V- f = 0.

When applying Sasaki’s classical formulation in two dimensions with Dirichlet boundary conditions at the top and bottom
and along the vertical (lateral) sides (see Eq. 7), the method fails to adequately recover the field. The numerical results illustrate
this behavior: we obtained (|V-u|) = 8.7305 x 10~ ¢, indicating that the divergence values are essentially negligible. However,
the mean squared error remains large, with MSE = 1.8233 x 10°. This can be explained by the fact that the initial field already
satisfies the divergence-free condition, i.e., V-u’ = 0. Consequently, the recovery of a non-trivial Lagrange multiplier A
becomes difficult (see Eq. 5), which in turn hinders the correction of the velocity field through Sasaki’s variational formulation.
These results highlight the inherent instability of Sasaki’s method under such conditions.

In contrast, the proposed Deep Wind model achieves a satisfactory reconstruction of the vector field. As shown in Table 2, the
model exhibits progressive improvements in the inference as the network depth and the number of training epochs increase. In
the best configuration, Deep Wind attains (|V-u|) = 6.46 x 10~ and MSE = 5.65 x 10~°, successfully capturing the structure
of the original field.

Table 2. Prediction performance of the DeepWind method for different hyperparameter configurations in the approximation of the vector

field f(z,y) = (—y, ), with interior points batch size = 512, and boundary points batch size = 256.

Epoch Batch Width Depth (|V-ul) MSE

100 5 15 2 3.99-03 1.23e-03
500 10 30 5 1.08e-03  5.14e-04
500 10 50 10 4.52e-04  2.26e-04

500 10 100 10 8.21e-05 2.17e-04
1000 10 100 15 6.46e-06  5.65e-05

As illustrated in Figure 3, Deep Wind is able to recover the vector field consistently and with high fidelity, in contrast with
Sasaki’s approach, which does not succeed in capturing the correct structure of the solution.
Example 3. As third example, we consider a 3D vortex type vector field f : Q — R3 with Q = [-7,7] x [-7,7] x [-7,7],

defined in Cervantes et. al. Cervantes et al. (2018),

—(?4y?+2?) Tz (2242 vz 22
f(z,y) = <2ye 19 —5?,—2:36 @y 42 T2 e

2772
where V- = 0.
Thanking

12
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Figure 3. Visualization of the vector field f(z,y) = (—y, ) and its approximation obtained with the DeepWind method.

270 In this case, for Sasaki’s formulation, the boundary conditions are prescribed as follows: open boundaries at the top (see
Eq. 6), Dirichlet (closed) conditions at the base, and vertical Dirichlet conditions along the lateral sides (see Eq. 7). We obtain
(|V-u|) = 1.2557 x 10~% and MSE = 8.30 x 10~%, from which we can conclude that the method achieved good accuracy,
with both divergence and approximation error remaining at satisfactorily low levels.

Table 3 reports the outcomes obtained with the DeepWind approach, where the prediction errors are evaluated under different

275

network architectures and numbers of training epochs. These results provide a broader perspective on the performance of
the method, illustrating how variations in model depth and width affect both the divergence and the mean squared error. In
particular, the experiments demonstrate that properly tuning the network architecture leads to more accurate predictions and
improved stability across epochs. Taken together, these findings indicate that, for this case, both the DeepWind strategy and

Sasaki’s formulation perform well, achieving good accuracy and producing reliable approximations under the tested conditions.

Table 3. Prediction performance of the DeepWind method for different hyperparameter configurations in the approximation of the vector

field f(x,y) = 2ye% —e%, —2ge~ @+ =) _ e, é‘é , with interior points batch size = 512, and boundary points batch
size = 256.

Epoch Batch Width Depth  (|V-ul) MSE

1000 25 10 1 9.4692e-05  3.7935e-05

1000 25 20 1 1.2375e-06  9.3154¢-06

1000 25 40 3 3.9260-04  3.7615e-06

1000 25 80 5 5.0146e-05  2.6314e-06

1000 25 64 4 3.8703e-05  2.2330e-06
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Figure 4. Left: Ribbon visualization of the vector field f(z,y) = ( 2ye 9 —e5, —2xe v —e%,e5 ), withe =0.1.

Right: Exact and approximated solutions for the vector field f(z,y).

The numerical results show that the exact and approximated fields are very close to each other. Thus, both Sasaki’s method
and Deep Wind yield essentially identical reconstructions, and the output is shown in Figure 4.

Example 4. As a final synthetic example, we consider the three—~dimensional vector field f :  — R? with Q = [-1,1] x
[—1,1] x [-1,1], defined as

£(2,9,2) = (—p22 022 S50 ) and w(@,y,2) = (—y2%, 22,0),

for which V-f = 0. This case is employed as a 3D benchmark to illustrate the limitations of Sasaki’s model when approximating
vector fields whose initial condition u" is already divergence—free. Under a configuration of Dirichlet boundary conditions
applied at the bottom, top, and lateral boundaries (see Eq. 7), the method produced a divergence of (|V -ul|) = 1.6703 x 101
and a mean squared error of M SE = 1.7537 x 10~ !. These comparatively large values emphasize the inherent difficulty of
Sasaki’s variational formulation in recovering a meaningful correction when the initial field already satisfies V- u® = 0 (see
Eq. 5).

In contrast, the Deep Wind model demonstrates a markedly superior performance. For the same test case, it produced a
divergence of (|V-ul) =5.7220 x 107° and M SE =5.0739 x 10~7, showing consistency with the previous examples and
confirming the robustness of the approach. Table 4 reports the evaluations obtained for different network architectures, while

Figure 5 illustrates the comparison between the best-performing case and the exact function.
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Table 4. Prediction performance of the DeepWind method for different hyperparameter configurations in the approximation of the vector

field f(x,y) = (fyZQ,a:za #), with interior points batch size = 512, and boundary points batch size = 256.

Epoch Batch Width Depth  {|V-u|) MSE

500 15 15 2 1.9574e-02  1.0102e-05
500 15 30 2 4.4973e-03  2.8810e-06
1000 45 30 2 8.7061e-04  1.0656e-06
1000 60 30 2 2.3990e-04  7.2551e-07
1000 60 50 2 5.7220e-05  5.0739e-07

EXaCt e
Prediction

Figure 5. Visualization of the vector field f(z,y) = (7y22, zz?, ”2;”’2 ) and its approximation obtained with the DeepWind method.

3.1 Real Wind Data Approximation

In this section, we describe the application of our approach using a dataset obtained for Typhoon Kong-rey (also referred to as
Super Typhoon Leon), a powerful and large tropical cyclone that impacted Taiwan and the Philippines, and later eastern China
and South Korea, during October and early November 2024 (see Figure 6). The dataset was retrieved from the freely accessible
NASA POWER Data Access Viewer National Aeronautics and Space Administration (NASA) (2024) on October 30, 2024,
at 10:00 local time, and covers wind elevations ranging from 10 m to 300 m above the surface within the region bounded by
latitudes 18.5° N to 22.0° N and longitudes 122.0° E to 125.5° E. The extracted parameters include WD10M (wind direction
at 10 m above the surface), WS10M (wind speed at 10 m above the surface), WSC (MERRA-2 corrected wind speed, adjusted
for elevation, in m/s), and PS (surface pressure). A Python application was developed to automate the pointwise download of

these data within the specified quadrant using the request s library. These parameters are illustrated in Figure 6.
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Figure 6. Visualization of Typhoon Kong-Rey (29 October 2024): (a, left) Satellite image obtained from the Japan Meteorological Agency
(via Wikimedia Commons), licensed under CC BY 4.0; (b, right) Georeferenced wind fields at 10 m above ground level, generated from
NASA POWER data using wind speed and direction variables; (c, bottom) Vertical wind field data from the NASA POWER Data Access
Viewer National Aeronautics and Space Administration (NASA) (2024), covering levels from 10 to 300 m.

305 3.1.1 Data preprocessing
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Figure 7. Results of the data preprocessing stage. The figures illustrate the normalized spatial coordinates and interpolated velocity fields
obtained before training.
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Because the NASA dataset is georeferenced, we first map the physical coordinates to a computational domain. In line with
common practice in machine learning, the three spatial coordinates (z,v, z) are affinely transformed to the unit cube [0, 1]3,
and the horizontal velocity components u and v are normalized to place them on comparable scales and improve the numerical
stability of the subsequent approximation. We then interpolate v and v at each vertical level of the field using Wahba’s thin-plate
smoothing spline Wahba (1990), which is well suited to reconstruct smooth fields from scattered or noisy observations.

Wahba’s formulation estimates a smooth function f from data {(z;, z;)}7_, with z; € R% by minimizing a trade-off between

data fidelity and curvature,

min ~ 3 (5= £20)% + Mam(f),

n
f i=1

where Jg ., (f) penalizes m-th order partial derivatives. In the classical thin-plate case (d = 2,m = 2),

J2,2(f) = //( a?lxl +2fw21w2 +fa?za:2>dm1 dl’g.

The smoothing parameter A > 0 governs the bias—variance trade-off: smaller values favor fidelity to the data (approaching
interpolation), whereas larger values promote a smoother reconstructed field.

Finally, to refine the vertical structure of the wind field, we apply a linear interpolation on a slightly finer vertical grid,
yielding a denser sampling in height. The overall preprocessing pipeline is summarized in Algorithm 2, and the results of the

data preprocessing stage are shown in Figure 7.

Algorithm 2 Data preprocessing algorithm

1: Input: { (s, 9, 2i,u:,v:) }ey, levels {Cx} C [10,300] m, A, refinements L.

2: Normalize:

=; —min(x) yi—min(y)

r_ z; —min(z)
max(z)—min(z)’ Yi = max(y)—min(y)’

max(z)—min(z)’

— _(uivg)
(o) = Sy

3: Wahba per level: for each (i, fit Fi, = argming 3, o, [1F(2},5) — (u;,v;)Hé —l—l)\HFH?.(.
J

4: Vertical interpolation: ¢, =7 /L, C(rr=(1—1t+)Ck +trCht1, Frr = (1 —tr)Fi+trFry.

/ /
xT; = zZ; =

5: Olltpllt: (I,7y/7ck,r7 Uk,r(l',,y/)7 Uk,’“(l‘,ay/)v 0)

Since in this case it is not possible to compute the mean squared error (MSE), an alternative way to establish a metric for
assessing the recovery of the third component is to monitor physical consistency during the reconstruction. In particular, this
involves verifying that the divergence of the vector field vanishes, i.e., {|V - u|) = 0, and that the third component satisfies the
boundary condition u3|gn = 0. Ensuring that both the convergence value of the divergence and the boundary behavior of the
vertical component remain close to zero provides a robust criterion for evaluating the quality and stability of the approximation
in the absence of ground truth data.

The outcomes of Sasaki’s methodology with boundary conditions set to zero at the bottom (sea level) and open at the top
and along the vertical sides, are (|V - u|) = 7.6203e — 01 and (|wpay|) = 4.6872¢ — 04.
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For the DeepWind approach, Table 5 summarizes the evolution of the metrics over 100 training epochs. The network was
configured with a depth of two layers and a width of 80 neurons per layer, trained with a batch size of 45 that included 1024

interior points and 512 boundary points per batch.

Table 5. Evolution of the training loss, average divergence, and bottom boundary condition error over the epochs, using NASA Typhoon

Kong-Rey data. Network configuration: depth = 2, width = 80, 1024 interior points, and 512 boundary points.

Epoch  cost (IV-ul)  (Jweayl)
0 3.25e-02 3.35e-02 2.32e-02
10 8.47e-04 7.12e-03  1.10e-03
20  7.77e-04 4.70e-03  8.11e-04
30 7.99e-04 3.86e-03 4.14e-03
40 7.37e-04 3.13e-03 8.91e-04
50  7.29e-04 2.13e-03  9.54e-04
60 7.19e-04 1.86e-03  7.80e-04
70 7.15e-04 1.37e-03  7.66e-04
80 7.47e-04 1.19e-03 3.59e-03
90 6.99¢-04 1.11e-03 7.42e-04
100  7.02e-04 9.10e-04  6.33e-04

The results show a consistent reduction in both the average divergence and the third component at the boundary, demonstrat-
ing the model’s ability to impose the physical and boundary conditions underlying the typhoon phenomenon. Figure 8 presents
the prediction of the third component field over a uniform dataset in the domain, where a clear downward tendency toward the

ocean surface can be observed.

4 Conclusions

We have developed the Deep Wind methodology to reconstruct three-dimensional wind fields from incomplete information.
The approach proved more robust than Sasaki’s classical variational framework and its extensions, particularly in scenarios
with sparse or noisy observations. By embedding mass conservation and boundary conditions into the loss function, Deep
Wind produces stable and physically plausible reconstructions across synthetic and real cases.

For synthetic examples, Deep Wind achieves superior performance compared to Sasaki’s method under specific conditions,
particularly when the initial field is already divergence-free and the classical variational correction becomes ineffective. In the
case of real observational data from Super Typhoon Kong-Rey (2024), the validation of the training process through divergence
and boundary-condition metrics demonstrates that Deep Wind yields more consistent and reliable reconstructions. These results

indicate that the methodology can serve as a flexible and scalable framework for wind field recovery and data assimilation.
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Figure 8. Figure 8: In the top-left panel, the prediction of the third component field over a uniform dataset in the domain is shown. The
three panels in the remaining quadrant (top-right and bottom row), present different perspectives of the same DeepWind reconstruction
using ribbon visualizations. Results correspond to the third velocity component reconstructed from NASA Typhoon Kong-Rey data, a clear

downward tendency toward the ocean surface can be observed.

For future extensions, the proposed framework naturally allows the incorporation of additional physical information into the
variational formulation. Beyond enforcing the divergence-free condition, extra penalty terms could be introduced to account
for other relevant processes, such as pressure gradients, temperature fields, or energy-related constraints, depending on the
specific atmospheric or environmental setting. This flexibility highlights the potential of the Deep Wind approach as a general

350 data assimilation tool capable of integrating multiple sources of physical knowledge and observational data, thereby enabling

more realistic and comprehensive reconstructions of geophysical flows.
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