

The authors revised their manuscript and implemented helpful changes to improve the manuscripts quality. Below some further comments on the revised version of the manuscript are collected. To proceed I would recommend the paper to be accepted, subject to minor revisions.

1. L.9: There seems to be a typo: "scehme" instead of "scheme"
2. L.131: Thank you for clarifying the used LLJ detection algorithm. In my opinion, it would be helpful to the reader to also directly describe the used definition, since it — as described in Debnath et al. (2021) — uses a combination of shear and fall-off criteria. This might be useful information for the reader down the line, when you analyse the low-level shear between different simulation set-ups.
3. Similarly, it would be helpful, to see what values for shear and fall-off were detected in this specific event (e.g. in L. 216ff)
4. Fig. 7 / Fig.8: From the time series data in Fig. 7 and the profiles in Fig. 8, it is seen that the low-level shear, as well as the fall-off is considerably smaller for the mesoscale domains. Could you elaborate on whether the LLJ definition you applied, detects the LLJ throughout all domains and all different set-ups.
5. L.285/Fig. 9: For both hub height wind speed and REWS, EMEs larger than 1 ms^{-1} occur at times. Given that you already calculated the REWS, would it be possible to elaborate on how these differences in wind speed translate to differences in possible power production, as power changes with the cube of the velocity. I see, that your specific case shows wind speeds that are probably above rated wind speed for the turbine sizes you assume. This actually makes it a two-part comment: a) How do the EMEs and Spreads translate to lower wind speeds and b) how large is their effect on an exemplary turbine's power production?