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Abstract. As wind energy continues to expand in Canada, it is increasingly important to balance power generation with wildlife

conservation. For migratory bat species, the risk of interactions with wind turbines varies throughout the year. In response to

environmental conditions, curtailing turbine operation during periods of higher risk has been shown to reduce bat fatalities.

This study models seasonal turbine curtailment scenarios across wind farms in the Canadian province of Alberta to estimate the

resulting energy and economic impacts. High-resolution weather data were used to reconstruct complete wind speed records5

and simulate turbine output. The modeled power output was closely aligned with real production data reported by the province's

energy operator. Results indicate that curtailment outcomes vary significantly depending on wind speed thresholds, seasonal

wind conditions, and curtailment duration. Across all scenarios, smart curtailment reduced energy and financial losses by 20–

40% compared to blanket curtailment, highlighting the benefits of using meteorological and behavioral triggers. These findings

provide practical insights for minimizing energy loss while supporting conservation goals.10

1 Introduction

As nations work toward net-zero emissions, renewable energy expansion is crucial. According to the International Energy

Agency, global renewable electricity capacity is expected to grow by 5,500 GW by 2030, reaching nearly 940 GW of new

additions annually – 70% more than the current record. Solar and wind are projected to account for 95% of this growth due

to their increasing cost-competitiveness (International Energy Agency, 2024). However, the expansion of wind turbines poses15

ecological risks, particularly to migratory bat populations, which are vulnerable to collisions with turbine blades that interfere

with their flight paths. In addition to turbine-related fatalities, migratory bat populations are already declining due to habitat

loss and white-nose syndrome (Frick et al., 2023).

This study models the impact of curtailment scenarios on wind power generation and revenue loss for Alberta, which had the

largest installed wind capacity of any province in Canada by the end of 2024 (approximately 5.7 GW), contributing to Canada’s20

total energy capacity (wind, solar, and storage) of about 24 GW (International Energy Agency, 2024; Canadian Renewable

Energy Association, 2024). Using high-resolution weather data and turbine-specific characteristics, CanmetEnergy-Ottawa

(CE-O) simulated wind power output at several wind farms and compared modeled results to observed production data. CE-O
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then evaluated energy and financial losses under multiple curtailment strategies, including variations in cut-in wind speed and

curtailment duration, to assess trade-offs between energy efficiency and bat conservation outcomes.25

2 Background

The growing scale of wind energy presents increasing risks to migratory bat populations, which are already in decline due to

multiple stressors including habitat loss, white-nose syndrome, and turbine collisions. As of January 2024, several species such

as the Eastern Red Bat, Hoary Bat, and Silver-haired Bat have been classified as endangered in Ontario (Ontario Ministry of

the Environment, Conservation and Parks, 2025). These species have now been added to the list of at-risk bats, which already30

includes the Little Brown Myotis, Northern Myotis, and Tricolored Bat (Ontario Ministry of the Environment, Conservation

and Parks, 2024). As wind energy continues to expand globally, its ecological impacts, particularly on wildlife, have become a

growing focus among policymakers and researchers (Frick et al., 2023; Maclaurin et al., 2022).

One commonly used mitigation approach involves increasing the turbine cut-in wind speed during periods of high bat

activity to reduce collision risk. In Ontario, the Ministry of Natural Resources (MNRF) requires wind farms that exceed ten35

bat fatalities per turbine annually to increase the turbine cut-in wind speed to 5.5 m/s from sunset to sunrise between July

15 and September 30 for the life of the project (Ontario Ministry of Natural Resources and Forestry, 2011). An alternative

method of curtailment called smart curtailment uses meteorological-based triggers for targeted turbine shutdowns, reducing

energy losses while still mitigating bat fatalities (Maclaurin et al., 2022). These triggers are typically based on atmospheric

conditions such as wind speed, temperature, and precipitation. In this study, CE-O implemented a curtailment framework that40

increased the turbine cut-in wind speed in 0.5 m/s increments from 5.5 m/s to 8.0 m/s, and only activated curtailment when

the temperature exceeded 9.5 °C and there was no rainfall, as bats have been observed to be significantly less active in colder

or rainy conditions (Maclaurin et al., 2022). However, different versions of smart curtailment exist and may incorporate other

environmental criteria such as humidity, cloud cover, or species-specific activity patterns, to tailor curtailment more precisely

to local conditions.45

Previous efforts by CE-O assessed the economic impacts of the blanket curtailment regime, applying a 5.5 m/s cut-in wind

speed from July 15 to September 30, across all wind farms operating in Ontario (Thurber et al., 2023).

To analyze the potential impacts of bat mitigation measures on Alberta wind farms, CE-O modeled two curtailment strate-

gies: blanket curtailment and smart curtailment. Additionally, CE-O considered two seasonal windows that reflect different

levels of bat activity: a longer curtailment period from July 15 to September 30, and a shorter period covering peak activity50

from August 1 to September 10 (Alberta Environment and Sustainable Resource Development, 2013). These combinations

resulted in four distinct scenarios: Full Season – Blanket, Full Season – Smart, Peak Season – Blanket, and Peak Season –

Smart, as shown in Table 1. “Full Season – Blanket” refers to blanket curtailment applied from July 15 to September 30,

while “Full Season – Smart” indicates smart curtailment applied over the same period. Similarly, “Peak Season – Blanket”

applies blanket curtailment during a shorter window from August 1 to September 10, and “Peak Season – Smart” refers to55

smart curtailment during that same shortened period. This structure allowed for evaluation of different curtailment strategies,
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curtailment periods, and turbine cut-in wind speed thresholds on wind energy production and economic performance during

the bat migration season.

Table 1. Scenarios with seasonal, temporal, and meteorological constraints.

Scenario category Full season blanket Full season smart Peak season blanket Peak season smart

Seasonal window 15 July–30 September 15 July–30 September 1 August–10 September 1 August–10 September

Temporal window 1 h before sunset to 1 h af-

ter sunrise

1 h before sunset to 1 h af-

ter sunrise

Sunset to sunrise Sunset to sunrise

Cut-in speed 5.5–8 m s−1 5.5–8 m s−1 5.5–8 m s−1 5.5–8 m s−1

Temperature filter — > 9.5◦C — > 9.5◦C

Precipitation filter — < 1 mm h−1 — < 1 mm h−1

3 Methodology

For this analysis, CE-O selected 13 wind farms across Alberta based on the availability of consistent, high-quality meteoro-60

logical and production data. All selected sites were fully operational before 2020, ensuring that the dataset represented stable,

long-term performance. Importantly, complete information was available for each wind farm, including the turbine model,

number of installed turbines, total capacity, hub height, and the manufacturer’s power curves. Table 2 summarizes the selected

wind farms and their respective information.
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Table 2. Wind farms selected for the analysis.

No. Farm name Latitude Longitude Turbine model No. of tur-

bines

Total capacity

(MW)

Hub height

(m)

1 Ardenville 49.55 -113.43 V90 3000 23 69 80

2 ARM2262 Castle River 49.50 -114.05 V47 660 60 39 50

3 Blackspring Ridge 50.12 -112.89 V100 1800 166 299 80

4 Blue Trail Wind 49.67 -113.49 V90 3000 22 66 80

5 Enel Alberta Castle Rock 49.58 -114.00 E70 2300 33 77 65

6 Enmax Taber 49.74 -111.97 E70 2300 37 81 85

7 Ghost Pine 51.90 -113.36 GE1.5 SLE 51 81.6 80

8 Halkirk Wind Power Facility 52.26 -112.06 V90 1800 83 150 80

9 Kettles Hill Wind 49.51 -113.81 V80 1800 35 63 80

10 Magrath 49.39 -112.95 GE1.5 SLE 20 30 105

11 Oldman 2 Wind Farm 49.57 -113.85 SWT23 101 20 46 80

12 Suncor Chin Chute 49.68 -112.32 GE1.5 SLE 20 30 105

13 Summerview 1 49.61 -113.78 V80 1800 38 66 70

3.1 Selecting a data source65

To identify the locations of wind farms across Alberta, CE-O used Natural Resources Canada’s Canadian Wind Turbine

Database (CWTDB), a comprehensive and up-to-date resource for tracking wind turbine installations (Natural Resources

Canada, 2024). For weather data, CE-O selected datasets from Environment and Climate Change Canada (ECCC), which

provides high-resolution, measured hourly meteorological observations (Environment and Climate Change Canada, 2024).

These data, collected from ECCC-operated weather stations, offer reliable insights into local atmospheric conditions relevant70

for wind energy analysis.

ECCC data demonstrated strong alignment with operational wind power output data from the Alberta Electric System Op-

erator (AESO), making it a suitable choice for estimating site-specific meteorological conditions (Alberta Electric System

Operator, 2024). For this analysis, CE-O used data from the nearest ECCC weather stations to each Alberta wind farm, includ-

ing wind speed, temperature, and precipitation records for the years 2020 to 2023. These years were selected to capture recent75

wind patterns and ensure consistency across all wind farms in the study.

3.2 Filling data gaps

While the ECCC data provided high-resolution and accurate measurements, some weather station records were incomplete,

with gaps totaling up to 570 hours per year at certain locations. To address this, CE-O first identified the three closest ECCC
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weather stations to each wind farm and selected the one with the most complete dataset as the primary station. Then data80

gaps were filled in the primary station using corresponding records from the other two nearby stations, see Table A1. If

gaps remained, typically theses were no more than 10 consecutive hours, our team applied linear interpolation to estimate

the missing values. This multi-step approach resulted in complete, gap-free meteorological datasets for each of the 13 wind

farms. Ensuring data continuity at this stage was essential for enhancing the accuracy and reliability of subsequent modeling

calculations, including wind speed adjustment, power output estimation, and curtailment impact analysis.85

3.3 Wind farm performance calculation

To utilize the power curves (UL Solutions, 2024) of each turbine, the wind speeds from the completed datasets were adjusted

to the hub heights of the turbines using a logarithmic wind profile equation (International Electrotechnical Commission, 2022),

ensuring alignment with real operating conditions. The wind speed at hub height Whub was calculated as Eq. (1):

Whub = Wref
ln(hhub/z0)
ln(href/z0)

(1)90

where: href is the height at which wind speed measurements are originally recorded (10 m), Wref is the measured wind

speed at the reference height href , hhub is the turbine hub height, z0 is the surface roughness length

Following this, CE-O calculated power output for each turbine by interpolating wind speeds along the turbine power curve.

The power output at hub height was computed (International Electrotechnical Commission, 2022) as Eq. (2):

P =
(
P (Whub)× (ρsite/ρstd)

1/3
)
× (1− losses) (2)95

where: P is the estimated power output, P (Whub) is the turbine power curve function, ρsite is the site-specific air density,

ρstd is the standard air density, losses represent reductions in energy output due to turbine wake effects and general system

inefficiencies.

In this study, the losses parameter in the Eq. (2), typically used to account for wake losses and system inefficiencies, was set

to zero. This simplification was made to isolate the impact of curtailment strategies on energy production without introducing100

additional uncertainties from estimated system losses.

To obtain the final power output values, wind speeds at hub height were first adjusted for air density variations (Burton

et al., 2021). The power curve function was then used to interpolate power output for each timestep using a linear interpolation

method. This approach ensured that power output estimations reflected real-world operational conditions, including variations

in air density and site-specific wind profiles (Burton et al., 2021).105

Surface roughness values were determined using a land classification–based methodology. First, the distribution of land

cover types within a 3 km radius of each wind turbine was assessed using the 2020 Land Cover of Canada dataset (Natural

Resources Canada, 2020). The distributions from each wind turbine were then aggregated to form a distribution representative

of the wind farm. Only the dominant land classification at each wind farm was selected to be used for calculations. Only

two classification types covered the majority of the 13 analyzed wind farms, see Table A2, and were linked to their closest110

equivalents in the National Land Cover Database (NLCD), enabling the use of standardized seasonal roughness length values

referenced in the U.S. Environmental Protection Agency’s AERSURFACE tool (U.S. Environmental Protection Agency, 2020).
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Figure 1 compares the total monthly power output of all turbines during July to September for the years 2020–2023, using

AESO data as a reference alongside both the initial and the gap-filled modeled estimates. The results show that after applying

the gap-filling process to the meteorological input data, the modeled outputs consistently aligned more closely with the AESO115

values.

Figure 1. Annual power output comparison between observed (AESO), modeled, and initial estimates across all wind farms (2020–2023)

during curtailed months.

3.4 Model validation

3.4.1 Quantitative Validation of Modeled Power Output

To validate our modeling results, CE-O compared the modeled power output with real generation data from the AESO, which

served as a benchmark for evaluating the accuracy of our simulations. The comparison revealed a consistent improvement120

in model fidelity following the application of gap-filling techniques to the meteorological input data. In 2023, for example,
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the difference between the initial modeled output and AESO data was 25.01%, which was reduced to 19.36% after gap filling.

Similar improvements were observed across the other years, with differences decreasing from 17.93% to 17.71% in 2020, from

17.73% to 17.69% in 2021, and from 16.60% to 14.53% in 2022. While the magnitude of improvement varied, the direction

was consistent: gap-filled models more closely aligned with actual AESO power data in every year.125

To assess the validity of the modeling approach and quantify its accuracy, CE-O compared the modeled wind power output

to AESO’s actual generation data using Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE),

following standard definitions (Montgomery et al., 2015), as shown in Eq. (3) and Eq. (4).

MAPE =
100
n

n∑

i=1

∣∣∣∣
Forecasti −Actuali

Actuali

∣∣∣∣ (3)

130

RMSE =

√√√√ 1
n

n∑

i=1

(Forecasti −Actuali)
2 (4)

where: i is the hourly time step, Forecasti is the modeled power output at each time step, Actuali is the real power output at

each time step, n is the number of non-null observations.

The results indicate a modest improvement in model accuracy across all years, see Table A3. The Mean Absolute Percentage

Error (MAPE) between modeled and observed AESO data was reduced from approximately 20.03% – 28.28% in the initial135

dataset to 18.41% – 24.06% after adjustments. Similarly, the Root Mean Square Error (RMSE) decreased from over 53,746 MW

– 74,812 MW in the initial dataset to 47,965 MW – 62,320 MW in the final model — representing up to a 130% reduction in

error, depending on the year. These results confirm that the applied gap-filling and calibration methods substantially increased

the reliability of the modeled power output. The consistent improvements across all metrics and years highlight the importance

of robust data correction and calibration practices to ensure that modeled datasets accurately reflect real-world wind power140

generation. These results highlight the importance of data corrections and calibration adjustments, ensuring that the final

modeled dataset provides a more reliable representation of actual wind power generation.

3.4.2 Wind Speed Validation Using Backward Calculations

To independently validate the modeled hub-height wind speeds, the team performed a backward calculation using actual wind

farm power output obtained from AESO and turbine-specific power curves. This process estimates the wind speed that would145

be required to produce the observed power generation.

First, turbine-level power output was derived by dividing the total farm-level output by the number of turbines at the site, as

shown in Eq. (5):

PT =
PF

TNum
(5)

where: PT is power output per turbine, PF is power output per farm, TNum is number of turbines.150
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Wind speed was inferred using Eq. (6), where the turbine-level power output was adjusted for the site-specific air density,

following the relationship:

PT (Whub) =
PT

1− losses
×

(
ρstd

ρsite

) 1
3

(6)

In this study losses were set to zero.

The wind speed at hub-height Whub was then obtained by inverting the turbine-specific power curves shown in Eq. (7):155

PT = PT (Whub) => Whub = PT
−1(PT ) (7)

To minimize numerical instability and reduce the influence of flat or discontinuous regions of the power curve, the analysis

was limited to wind speeds between 4 and 11 m/s, which correspond to the most sensitive portion of the turbine power curve

with respect to the application of curtailment to reduce harm to bats. Values outside this range often produce unstable or flat

regions, complicating back-calculations.160

This method was applied across all turbines in the dataset, generating a time series of back-calculated wind speeds. These

were then compared to the modeled wind speeds using distributional metrics. Figure 2 presents an example for a single wind

farm, selected at random from the 13 sites in the study group, to illustrate the kernel density estimation comparison between

modeled and back-calculated wind speeds.
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Figure 2. Example of kernel density estimation (KDE) of hub-height wind speed distributions for modeled versus back-calculated data across

the period July 15 – September 30, for years 2020–2023.

To quantify how representative each weather station was for the wind conditions at its corresponding wind energy site, CE-O165

team compared the modeled wind-speed distributions to those derived from the backward-calculated approach. For each turbine

and hub-height, wind speeds were binned into 4 – 11 m/s intervals, and the distributions from modeled and back-calculated

data were normalized and compared using the root mean square error (RMSE). Then the RMSE was aggregated across years

for each turbine and plotted against the distance from the associated ECCC weather station as shown on Figure 3. The resulting

trend shows that while RMSE generally increases with distance, this relationship is not strictly linear. Notably, some sites at170

intermediate distances (20–30 km) exhibited higher RMSE than those located farther away, suggesting that proximity alone

is not sufficient to ensure meteorological interrelation. These results underscore the importance of evaluating both spatial and

climatic alignment when selecting reference stations for wind modeling.
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Figure 3. RMSE vs. Distance: Wind-speed Distribution Similarity (July 15 – Sep 30).

3.5 Estimating Financial Losses

To estimate the economic impact of curtailment strategies, hourly modeled energy losses (in MWh) were multiplied by the175

corresponding average pool price — the hourly market rate at which electricity is traded on Alberta’s power grid. These prices

were obtained from the AESO Annual Market Statistics Reports for the relevant years (Alberta Electric System Operator,

2024).

For each turbine and each curtailment scenario, the amount of curtailed energy was calculated at an hourly resolution

during the specified curtailment windows. The resulting energy losses were then converted to revenue losses using the hourly180

average electricity price. This method provides a standardized estimate of financial impact that reflects Alberta’s specific market

conditions, with all values expressed in Canadian dollars (CAD).

In cases where hourly pool price data were missing, the gaps were filled with a value of zero. This conservative approach

avoids artificially inflating loss estimates but may slightly underestimate total financial impacts if missing data coincided with

periods of high electricity prices.185

It is important to note that the economic loss estimates presented here account only for lost energy revenues and do not

include the potential costs associated with implementing smart curtailment systems, such as meteorological sensors, control

system integration, or ongoing maintenance.

4 Results

This section presents the key findings of the study, focusing on the impact of curtailment strategies on energy production and the190

associated economic losses. CE-O analyzed the differences in energy and financial losses under various curtailment scenarios,
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discussed interannual variations in losses, assessed the effect of increasing cut-in wind speeds, and examined interannual

variations in outcomes.

Production, energy and economic losses were quantified for both blanket and smart curtailment strategies using wind speeds,

power outputs and pool prices.195

Energy losses were calculated using Eq. (8), which sums the difference between the power output Pt and the curtailed power

output Pcurtailet,t at each time step:

Lenergy =
∑

t

(Pt −Pcurtailed,t) (8)

Economic losses were calculated using Eq. (9) by multiplying the curtailed energy at each time step by the corresponding pool

price, PoolPricet, and summing over the analysis period:200

Leconomic =
∑

t

(Pt −Pcurtailed,t)×PoolPricet (9)

Finally, production losses in percentage terms were calculated using Eq. (10) as the ratio of total curtailed energy to total

potential production (Pannual):

Lproduction = (
Lenergy

Pannual
)× 100 (10)

Standard box-and-whisker plots were used to visualize the distribution of production and economic losses across all wind205

farms in the study group. Each box represents the interquartile range (IQR), spanning from the 25th percentile (Q1) to the 75th

percentile (Q3) of the dataset. The line inside each box corresponds to the median (50th percentile), calculated using linear

interpolation between the closest ranks (NumPy’s Type 7 method), with quartiles defined in the same way (Hyndman and Fan,

1996).

The whiskers extend from the box to the most extreme values that lie within 1.5 × IQR from the lower and upper quartiles,210

respectively. Data points falling outside this range are considered statistical outliers and are plotted individually as separate

markers. Outlier detection follows the Tukey rule, applied independently to each combination of season, year, cut-in speed,

and curtailment strategy.

By structuring the plots this way, the figures convey both the central tendency and spread of the losses, while also highlighting

atypical sites whose performance differs substantially from the broader group. From this point forward, when ranges are215

reported in the results, they represent the span from the lower to the upper whisker, exclude statistical outliers, and cover the

entire four-year analysis period.

Figure 4 presents the annual production losses under different curtailment scenarios as a percentage of non-curtailed gen-

eration. Over all four years analyzed, smart curtailment reliably outperformed blanket curtailment in minimizing production

losses. At a 5.5 m/s cut-in speed, blanket curtailment led to production losses ranging from 0.09% – 1.03%, while smart cur-220

tailment reduced losses to 0.05% – 0.63% depending on the year and curtailment scenario. At the highest cut-in speed of 8 m/s,

production losses under blanket curtailment rose to 0.45% – 3.36%, while smart curtailment maintained lower losses between

0.42% and 2.40%.
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Figure 4. Annual production losses under different curtailment strategies (blanket vs. smart) and seasonal scenarios (full and peak seasons)

for all wind farms (2020–2023).

Figure 5 presents the annual production losses derived from the backward-calculated hub-height wind speeds under different

curtailment scenarios. Across all years, smart curtailment consistently resulted in lower production losses than blanket curtail-225

ment, mirroring the modeled calculation trends. At a 5.5 m/s cut-in speed, blanket curtailment led to production losses ranging

from 0.05% to 0.5%, while smart curtailment reduced losses to 0.03% to 0.4%, depending on the year and curtailment scenario.

At the highest analyzed cut-in speed of 8 m/s, production losses under blanket curtailment ranged from 0.2% to 3.8%, whereas

smart curtailment maintained lower losses between 0.2% and 2.1%. These values are broadly consistent with the modeled

results, reinforcing that the modeled and back-calculated wind speed datasets yield comparable curtailment impact estimates.230

12

https://doi.org/10.5194/wes-2025-164
Preprint. Discussion started: 29 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Annual production losses under blanket and smart curtailment strategies, derived from backward-calculated hub-height wind

speeds, for full and peak seasons (2020–2023).

Figure 6 presents the annual normalized energy losses per megawatt of installed capacity under blanket and smart curtailment

strategies for both the full and peak operational seasons from 2020 to 2023.
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Figure 6. Annual power losses under different curtailment strategies (blanket vs. smart) and seasonal scenarios (full and peak seasons) for

all wind farms (2020–2023).

Across all years, smart curtailment consistently reduced losses compared to blanket curtailment. At the lower cut-in threshold

of 5.5 m/s, full-season losses ranged from 2.96 – 30.63 MWh/MW for blanket curtailment, compared to 2.24 – 19.37 MWh/MW

for smart curtailment. In the peak season, losses at 5.5 m/s were lower overall, ranging from 1.27 – 10.85 MWh/MW for blanket235

curtailment and 0.89 – 9.82 MWh/MW for smart curtailment.

At the higher cut-in threshold of 8.0 m/s, losses increased sharply for both strategies. Full Season blanket curtailment caused

losses of 15.03 – 89.34 MWh/MW, compared to 14.52 – 60.86 MWh/MW with smart curtailment. In the Peak Season, the

range narrowed to 7.28 – 39.96 MWh/MW for blanket curtailment and 6.77 – 28.04 MWh/MW for smart curtailment.

Overall, smart curtailment reduced energy losses by approximately 3 – 37% depending on season and cut-in speed, with240

the largest savings observed at 5.5 m/s during the full season (24 – 37% reduction) and the smallest at 8.0 m/s during the full

season (3%).

In addition to energy losses, corresponding financial impacts were estimated for both blanket and smart curtailment strate-

gies. At a 5.5 m/s cut-in speed in the full season, annual financial losses ranged from $125 – $4,000 CAD/installed MW under

blanket curtailment but were reduced to $100 – $3,000 CAD/installed MW under smart curtailment. At the higher 8.0 m/s245

cut-in speed, losses increased substantially, reaching $685 – $11,760 CAD/installed MW for blanket curtailment compared to

$596 – $10,130 CAD/installed MW for smart curtailment.
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In the peak season, financial losses were generally lower than in the full season but still showed clear savings from smart cur-

tailment. At a 5.5 m/s cut-in speed, blanket curtailment led to annual financial losses ranging from $50 – $2,366 CAD/installed

MW, while smart curtailment reduced this range to $35 – $2,000 CAD/installed MW.250

At the higher cut-in threshold of 8.0 m/s, losses increased to $293 – $5,152 CAD/installed MW under blanket curtailment,

compared to $222 – $4,800 CAD/installed MW with smart curtailment.

These differences illustrate that even during the peak season, when bat activity and curtailment measures are concentrated,

smart curtailment can substantially reduce financial impacts compared to a blanket approach.

Figure 7 illustrates the relationship between production losses and cut-in wind speed under different curtailment strategies255

across all wind farms in the study group. For each cut-in speed and curtailment strategy, losses were aggregated by summing

the total curtailed production (in MWh) across all sites and dividing by the total non-curtailed production across the same sites

and period, yielding a fleet-wide percentage loss. The results show that production losses increase significantly with higher

cut-in speeds, with blanket curtailment showing the highest losses in all scenarios. Smart curtailment consistently results in 27

– 36% lower production losses in the full season and 20 – 33% lower losses in the peak season compared to blanket curtailment,260

highlighting its effectiveness in minimizing energy losses.

Figure 7. Percentage increase in production losses when increasing cut-in wind speed from 5.5 m/s to 8.0 m/s, across all years, scenarios,

and curtailment strategies.
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5 Conclusions

Overall, this study highlights the critical role of curtailment strategies in shaping wind energy production and associated

economic outcomes. The accuracy of our modeled wind power data played a crucial role in these findings. The improvements in

model precision, achieved through gap-filling, enhanced the alignment between modeled and real power output. The reduction265

in MAPE and RMSE values confirms a closer alignment between the modeled and observed data, improving confidence in the

dataset’s suitability for evaluating curtailment scenarios.

Across all years and cut-in thresholds, smart curtailment consistently reduced energy and economic losses by 3 – 36%

compared to blanket curtailment. Shortening the curtailment window from July 15 – September 30 to August 1 – September

10 resulted in 7 – 30% lower annual losses, depending on the year and wind speed threshold. Interannual variation was also270

significant: 2022, a high-wind year, had the highest overall curtailment losses. However, the percentage difference between

5.5 m/s and 8.0 m/s cut-in thresholds was greatest in 2020, a low-wind year, where using the lower threshold reduced losses by

up to 80%. These trends demonstrate how seasonal wind conditions strongly influence curtailment impacts. While this study did

not assess bat mortality directly, prior research has shown that shorter curtailment periods may increase risk to bats depending

on migration timing (e.g., Arnett et al., 2016). Further ecological modeling would be needed to evaluate the trade-offs between275

energy conservation and species protection.

The results allow us to approximate potential power and financial losses under different curtailment scenarios and operational

strategies. The increase in losses associated with higher cut-in wind speeds underscores the importance of carefully evaluating

operational decisions. These findings offer valuable insights for policymakers and industry stakeholders aiming to balance

energy efficiency with environmental considerations.280
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Table A1: List of the three nearest meteorological stations to each wind farm site, including their distances used for data gap

filling.

Asset name Nearby station Distance (km)

Ardenville Blood Tribe AGDM 27

Ardenville Fort Macleod AGCM 27

Ardenville Glenwood 25

Blackspring Ridge Barons AGCM 26

Blackspring Ridge Iron Springs AGDM 27

Blackspring Ridge Travers AGCM 20

Blue Trail Wind Cardston 54

Blue Trail Wind Fort Macleod AGCM 16

Blue Trail Wind Waterton Park Gate 64

ARM2262 Castle River Beaver Mines 10

ARM2262 Castle River Glenwood 43

ARM2262 Castle River Stavely AAFC 76

Enel Alberta Castle Rock Beaver Mines 18

Enel Alberta Castle Rock Glenwood 45

Enel Alberta Castle Rock Stavely AAFC 67

Magrath Blood Tribe AGDM 22

Magrath Raymond AGDM 22

Magrath St. Mary Reservoir 12

Halkirk Wind Power Facility Alliance AGCM 20

Halkirk Wind Power Facility Forestburg AGCM 32

Halkirk Wind Power Facility Halkirk AGCM 18

Summerview 1 Beaver Mines 33

Summerview 1 Glenwood 36

Summerview 1 Stavely AAFC 64

Kettles Hill Wind Beaver Mines 27

Kettles Hill Wind Glenwood 29

Kettles Hill Wind Stavely AAFC 74

Oldman 2 Wind Farm Beaver Mines 26

Oldman 2 Wind Farm Glenwood 36

Oldman 2 Wind Farm Stavely AAFC 67

Suncor Chin Chute Barnwell AGDM 13

Suncor Chin Chute Raymond AGDM 35

Suncor Chin Chute Wrentham AGDM 25
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Table A1: List of the three nearest meteorological stations (continued)

Asset name Nearby station Distance (km)

Enmax Taber Fincastle AGDM 8

Enmax Taber Foremost AGDM 45

Enmax Taber Wrentham AGDM 29

Ghost Pine Delburne AGCM 33

Ghost Pine Three Hills 18

Ghost Pine Wimborne AGCM 16
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Table A2. Land classification values and descriptions for each wind farm.

Wind farm CLC value CLC description NLCD value NLCD description

Ardenville 10 Temperate or sub-polar grassland 71 Grasslands/Herbaceous

ARM2262 Castle River 15 Cropland 82 Row Crops

Blackspring Ridge 15 Cropland 82 Row Crops

Blue Trail Wind 10 Temperate or sub-polar grassland 71 Grasslands/Herbaceous

Enel Alberta Castle Rock 15 Cropland 82 Row Crops

Enmax Taber 15 Cropland 82 Row Crops

Ghost Pine 15 Cropland 82 Row Crops

Halkirk Wind Power Facility 15 Cropland 82 Row Crops

Kettles Hill Wind 15 Cropland 82 Row Crops

Magrath 15 Cropland 82 Row Crops

Oldman 2 Wind Farm 10 Temperate or sub-polar grassland 71 Grasslands/Herbaceous

Summerview 1 15 Cropland 82 Row Crops

Suncor Chin Chute 15 Cropland 82 Row Crops

CLC = Canada Land Cover; NLCD = National Land Cover Database.
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Table A3. MAPE and RMSE values for both the modeled and initial datasets compared to AESO across the years.

Year Comparison MAPE (%) RMSE (MW)

2020 Modeled vs AESO 19.78 62 320.38

2020 Initial vs AESO 20.03 62 538.97

2021 Modeled vs AESO 19.47 61 099.09

2021 Initial vs AESO 19.53 61 191.02

2022 Modeled vs AESO 18.41 47 964.50

2022 Initial vs AESO 19.74 53 746.22

2023 Modeled vs AESO 24.06 56 062.98

2023 Initial vs AESO 28.28 74 811.76
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