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Abstract. The eastern Hawaii coast in the United States is characterized by considerable wind resource fuelled by persistent 10 

trade winds, making it an important area for wind energy research. The need is strong for reanalyses, higher-resolution 

regional simulations, and purpose-built wind datasets in locations where observations have been historically limited, such as 

Hawaii’s offshore environments. However, studies using offshore observations in other parts of the world have shown that 

significant errors can occur in reanalyses and wind datasets, which can lead to inaccurate estimates of wind energy 

generation, payback periods, and extreme weather risks at project locations. The degree of such errors is influenced by a 15 

number of factors, including spatial resolution and the handling of processes within the planetary boundary layer (PBL). In 

this work, we provide a wind resource characterization from year-long lidar buoy measurements off the eastern coast of 

Oahu, Hawaii, an environment previously unobserved at the rotor level, and use it to establish the performance of four 

simulation datasets with distinct spatial resolutions and PBL representations. The Oahu deployment location is 

meteorologically unique and less complex compared with previous offshore wind performance study locations, being 20 

strongly characterized by the trade winds with minimal land-atmosphere interaction influences. Despite the unique and 

consistent conditions, we hypothesize that distinct simulation datasets will exhibit diverse ranges of errors similar to what 

has been seen for other offshore locations. We find the European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis version 5 (ERA5) to strongly underestimate observed wind speeds at the Oahu location (bias = -1.53 m s-1 at a 

hub height of 140 m), while a regional Weather Research and Forecasting (WRF) Model simulation produced by the 25 

University of Hawaii (UH-WRF) provides a significantly smaller wind speed bias (-0.25 m s-1), highlighting the value of 

running regional, higher-resolution simulations. Despite not temporally overlapping with the Oahu deployment, the long-

term annual average 140 m wind speeds from the 2023 National Offshore Wind dataset (NOW-23) and Global Wind Atlas 

version 3 (GWA3) produce smaller magnitude biases (+0.39 m s-1 and -0.10 m s-1, respectively) than ERA5. The large bias 

noted for ERA5 is driven by significant underestimation of fast wind speeds, which the study site is largely characterized by, 30 

along with discontinuities in the ERA5 diurnal cycle. We also speculate that the relative sparsity of observations for data 

assimilation in this remote part of the world could influence the performance of ERA5. 
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1 Introduction 

Simulated wind data, including long-term reanalysis models and higher-resolution wind datasets, are essential for assessing 

the offshore wind resource near Hawaii and locations around the world due to the scarcity of wind observational coverage 35 

over the water. Many recent studies have assessed offshore wind energy potential using reanalysis models, in particular, 

ERA5 (Hersbach et al., 2020) and the Modern-Era Retrospective analysis for Research and Applications version 2 

(MERRA-2) (Gelaro et al., 2017), given their advantageous temporal and geographical coverages and their ease of data 

accessibility versus observational campaigns in challenging marine environments (Soares et al., 2020; Hayes et al., 2021; 

Nehzad et al., 2021; Soukissian et al., 2021; Cowin et al., 2023). At locations where offshore hub height wind measurements 40 

do exist, wind researchers can follow the methodology of the land-based wind industry in using measure-correlate-predict 

techniques, which are extensively reviewed by Carta et al. (2013), to extend the temporal coverage of the observations with 

reference reanalysis data. Reanalysis models also serve as the forcings for higher-resolution datasets developed to serve the 

wind energy community, such as Global Wind Atlas version 3 (GWA3) (Davis et al., 2023) and the 2023 National Offshore 

Wind dataset (NOW-23) (Bodini et al., 2024a). 45 

     Despite the wide applicability and need for simulated wind datasets, such products contain inaccuracies with respect to 

observations that can lead to significant errors in parameters relevant to wind energy researchers and developers, such as the 

annual and long-term average wind speed, seasonal and diurnal trends in wind speed, and occurrences of weather-driven 

events like wind ramps. Therefore, assessing and disseminating the performance of simulated datasets in previously 

unstudied locations is necessary for understanding the risks of wind resource estimation and enabling the adjustment of 50 

estimates as a means of improving accuracy. Due to the difficulty of collecting wind measurements over open water, 

validations of reanalysis models and wind resource datasets are limited for offshore environments, particularly at heights 

relevant to offshore wind turbine rotor layers, which on average covered heights between 32 m and 216 m for turbines 

installed globally in 2023 (McCoy et al., 2024). However, floating lidar technology and tall meteorological towers deployed 

on offshore platforms have increased opportunities to validate models and datasets in areas of offshore wind development 55 

interest.  

     With the increasing availability (though still a relatively small sample) of offshore rotor level observations, studies have 

emerged over recent years comparing the performance of multiple simulation datasets at turbine rotor heights in offshore 

locations with the aims of aiding analysts in selecting the optimal datasets for resource assessments and highlighting areas 

for accuracy improvement for dataset developers. These studies have shown significant differences in performance across 60 

simulations being validated at a single offshore location, and in some cases one simulation product can be the best performer 

for one error metric (bias, correlation, mean absolute error, etc) and the worst performer for another metric. For observed 

wind profiles over the North Sea, Kalverla et al. (2020) found the Dutch Offshore Wind Atlas to have near zero bias, while 

ERA5 underestimated the observed wind speed by approximately 0.5 m s-1 regardless of height. At lidar buoy deployment 

sites off the coasts of Virginia and New Jersey, United States, Sheridan et al. (2020) noted that ERA5, MERRA-2, the Rapid 65 
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Refresh (RAP) analysis, and the North American Regional Reanalysis tended to underestimate observed wind speeds, with 

MERRA-2 providing the smallest magnitude biases and RAP producing the largest magnitude biases at both sites when 

using a dynamic power law to adjust the model heights to the lidar height of 90 m. From a different lidar buoy off the coast 

of New Jersey, United States, Pronk et al. (2022) determined that ERA5 yielded a significant negative wind speed bias 

(around -1 m s-1), while the higher-resolution Wind Integration National Dataset Toolkit Long-term Ensemble Dataset 70 

(WTK-LED) had a reduced bias near -0.5 m s-1. However, Pronk et al. (2022) found that ERA5 outperformed WTK-LED in 

terms of centered root-mean-square error (CRMSE) at the same site. Using observations from the same floating lidar as 

Pronk et al. (2022), Fragano and Colle (2025) established that NOW-23 significantly outperforms ERA5 in terms of wind 

speed bias, especially during the spring when they found biases ranging from -0.35 m s-1 at 40 m to -0.90 m s-1 at 140 m for 

ERA5 and +0.25 m s-1 at 40 m to -0.30 m s-1 at 200 m for the regional offshore wind dataset NOW-23. Despite NOW-23 75 

showing significantly lower wind speed biases than ERA5 off the coast of New Jersey, Fragano and Colle (2025) found that 

NOW-23 had notably larger wind speed mean absolute errors than ERA5 in all seasons except spring. Based on lidar buoy 

data off the California, United States coast, Sheridan et al. (2022) validated five models and found that MERRA-2 produced 

the smallest wind speed bias (near zero) at a site off northern California but the largest magnitude bias (-1.6 m s-1) at a site 

off central California, while RAP provided the highest correlations for both sites (0.88 and 0.94).  80 

     Variations across wind simulations for performance metrics like bias and correlation occur for a number of reasons. In 

their evaluation of reanalysis products, Ramon et al. (2019) found that the lowest correlations for wind speeds compared 

with global tall tower observations corresponded to the coarsest resolution grids. Similarly, Kalverla et al. (2020) attributed 

ERA5’s horizontal resolution to underestimation of observed offshore wind ramps due to limitations in the model 

representation of the small-scale structures responsible for ramps. Sheridan et al. (2022) noted that the high correlation of 85 

RAP with offshore California observations was at least partly due to model’s higher resolution and therefore better ability at 

resolving coastal features and phenomena that coarser models miss. Pronk et al. (2022) determined that the preliminary WRF 

simulations for WTK-LED outperformed ERA5 in terms of bias at an onshore site and an offshore site in the United States 

but found the opposite trend for CRMSE. Pronk et al. (2022) suspected that the underperformance of WTK-LED for 

CRMSE is due to WTK-LED’s exaggeration of the diurnal cycle of wind speeds at both study sites, especially the onshore 90 

location. Bodini et al. (2024b) tested two PBL schemes in simulations off the coast of California using lidar buoy 

observations and established that using MYNN overestimated stability compared with observations and the YSU-based 

simulations, resulting in overestimation of offshore hub height wind speeds in the region using MYNN and the selection of 

YSU as the PBL scheme for the NOW-23 South Pacific region. Nunalee and Basu (2014) tested six PBL schemes within 

WRF to replicate low-level jet (LLJ) events off the United States Northeastern Seaboard, which are impactful on the 95 

available wind resource for turbine production, and found that all of them underestimated jet core intensity and struggled to 

represent a weak LLJ but accurately simulated the timing and termination of jet development and termination. Nunalee and 

Basu (2014) noted inconsistencies among the PBL schemes for replicating LLJs, such as the Mellor-Yamada-Janjic and 
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Quasi Normal Scale Elimination parameterizations performing the worst and subsequently the best for two LLJ events 

separated by 1.5 days. 100 

     To address the need for wind resource characterization and model validation in offshore environments, the U.S. 

Department of Energy (DOE) has collaborated with the Bureau of Ocean Energy Management (BOEM) to deploy multiple 

buoy-mounted research lidars in locations that hitherto have not been explored in an observational manner at relevant turbine 

heights. In late 2022, one of the lidar buoys was deployed off the eastern shore of Oahu to gather metocean observations in 

support of future offshore wind development. While the first offshore wind call areas in Hawaii were located northwest and 105 

southwest of Oahu (McCoy et al., 2024), the eastern side of the island has optimal exposure to the northeast trade winds that 

dominate the region and the deployment offers the first observation-based understanding of the rotor-level wind resource in 

the area. The Oahu lidar buoy deployment lasted a period of one year, which captured a full seasonal cycle of offshore wind 

observations. In addition to the onboard lidar, the buoy was equipped with a suite of surface meteorological and oceanic 

instruments to produce a more complete analysis of metocean impacts on the wind resource. 110 

     With the knowledge in mind that no simulated dataset will perfectly replicate wind observations, we conjecture that some 

datasets will perform better than others in representing the wind resource at the previously unstudied buoy deployment 

location off Oahu, leading to recommended use cases of these products for analysts in the wind energy community. In 

particular, we hypothesize that ERA5 will exhibit a low wind speed bias at our study site akin to previous offshore 

evaluations and that higher-resolution datasets will find greater success at representing the observations. While many of the 115 

previous offshore wind validations have occurred in locations regularly influenced by nearby land-atmosphere interactions, 

like sea breezes and low-level jets, this study presents a unique look into model performance at the rotor level in a trade wind 

dominant environment. Our analysis evaluates the successes and challenges of four diverse datasets, ranging from a 

geographically coarse reanalysis product (ERA5) to a high-resolution climatology dataset (GWA3), in representing the 

observed winds from the Hawaii lidar buoy deployment. To set the stage for the validation, we begin in Section 2 with a 120 

discussion of the observed meteorological findings from the lidar buoy and then describe each wind dataset and the methods 

for evaluation. Section 3 provides the assessment of the two datasets that temporally overlap with the lidar buoy deployment:  

the reanalysis ERA5 and a regional WRF simulation produced by the University of Hawaii, UH-WRF. Due to the 

concurrency of the observations and estimates, this section goes into detail on the dataset performance according to factors 

like stability, wind speed class, and various meteorological phenomena that occurred during the deployment. Section 4 125 

explores the similarities and differences between the lidar buoy observations and the two datasets that are not concurrent: 

NOW-23 and GWA3. We keep this evaluation a high-level comparison to determine whether the observed wind speeds and 

trends are represented in the ranges of simulated long-term wind speeds, as we acknowledge that the significant limitation of 

temporally misaligned datasets does not allow for a comprehensive validation. Finally, Section 5 ties the results from the 

wind speed evaluations to impacts on wind energy estimation and concludes with recommendations for improving offshore 130 

wind resource assessment based on this and other analyses. The manuscript also provides Appendix A, which reports on the 

recovery, quality, and processing of the data from the Hawaii deployment. 
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2 Data and methodology 

DOE owns multiple AXYS WindSentinelTM buoys, including the buoy deployed for resource assessment off the coast of 

Oahu which is outfitted with a Leosphere Windcube v2 lidar system and surface meteorological and oceanographic 135 

instruments (Figure 1). Prior to deployment off of Oahu, the lidar buoy underwent validation at Woods Hole Oceanographic 

Institution’s Martha’s Vineyard Coastal Observatory from January to June 2020 and was subsequently deployed off the 

Humboldt County, California coast from October 2020 to December 2021. The validation at Martha’s Vineyard utilised an 

International Electrotechnical Commission-certified reference lidar atop an offshore platform approximately 250 m from the 

lidar buoy. The validation produced wind speed coefficients of determination (R2) exceeding 0.98 and wind direction R2 140 

values exceeding 0.97 up to 200 m above sea level (a.s.l.) (Gorton and Shaw, 2020). 

 

 

Figure 1. (a) Map of location of the Hawaii DOE lidar buoy deployment (indicated by the star). (b) Photo of one of the DOE lidar buoys 
by Ocean Tech Services, LLC and Pacific Northwest National Laboratory. 145 

2.1 Buoy observations 

While the DOE buoy observations during the Hawaii deployment are discussed extensively in Appendix A, we provide the 

key characteristics of the lidar wind measurements to set a baseline for comparison with the wind datasets. Many of the 

observed characteristics are also found throughout the results to provide context for the evaluations of wind dataset 

performance. The DOE buoy was deployed approximately 25 km off the coast of Oahu between 1 December 2022 and 15 150 

December 2023 (DOE, 2025). The lidar aboard the buoy outputs wind data every 20 m between 40 m and 240 m. However, 

early in the deployment it was noted that the 40 m wind output appeared corrupt, therefore this range gate was adjusted 

higher in the atmosphere on 12 May 2023 with a new output height of 49 m. Following the quality control performed as 
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discussed in Appendix A, lidar data recovery for the deployment period is 98% or higher for all heights between 60 m and 

240 m and greater than 99% for data at 49 m between 12 May 2023 and 15 December 2023. 155 

     For the buoy deployment period, annual average wind speeds range from 8.92 m s-1 at 60 m to 9.41 m s-1 at 240 m with 

very little shear across the profile (Figure 2a). The observed winds predominantly source from the east-northeast with very 

little veer across the profile (Figure 2b). Conversely to seasonal wind patterns determined over a long period of time, which 

tend to smoothly transition from one month to the next, the average wind speeds during the year-long Hawaii buoy 

deployment are extremely inconsistent from one month to the next in the winter and fall (Figure 5). Using the 140 m output 160 

height as an example based on announced future offshore wind hub heights (McCoy et al., 2024), the monthly average wind 

speeds for the first four months of the deployment (December 2022 – March 2023) are consecutively 8.60 m s-1, 6.30 m s-1, 

11.96 m s-1, and 8.23 m s-1. Following steadier transitions in the monthly average wind speeds throughout the spring and 

summer, the deployment concludes with another highly oscillatory period between September and November 2023 when the 

monthly average 140 m wind speeds are consecutively 9.91 m s-1, 5.97 m s-1, and 9.78 m s-1. The standard deviation of the 165 

140 m monthly average wind speeds over the Hawaii deployment is 1.69 m s-1. Conversely, the observed wind speeds 

transition steadily across the diurnal cycle, with the fastest wind speeds occurring during the evening and at night and the 

slowest wind speeds occurring during the day (Figure 6). The standard deviation of the 140 m hourly average wind speeds is 

0.27 m s-1. 
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 170 

Figure 2. Observed (a) wind speed and (b) wind direction by height a.s.l. from the Hawaii lidar buoy during 1 December 

2022 – 15 December 2023. 

2.2 Models and datasets 

Reanalysis models support wind energy analysis in a variety of ways, including providing wind resource assessments and 

serving as the boundary conditions for higher-resolution modelling efforts. The global geographic coverage and long-term 175 

continuously updating temporal coverage of ERA5 allows for widespread use and validation (Table 1). ERA5 is developed 

by EMCWF and the hourly data on the lowest 9 of 137 model levels are used in this study (CDS, 2025). Data assimilation is 

performed using a 12-hour 4D-Var ensemble (Hersbach et al., 2020). 

     The University of Hawaii produced a year-long (2023) WRF v4.6.0 simulation (UH-WRF) with the innermost domain 

covering the islands of Maui, Lanai, Molokai, and Oahu (Table 1). The key configurations include the WRF Single-Moment 180 

6-class Microphysics scheme for representing the cloud microphysical processes, the Betts-Miller-Janjic cumulus 

parameterization for convective processes, the Rapid Radiative Transfer Model for Global Circulation Models for longwave 
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and shortwave radiation, the Noah land-surface model, and the Yonsei University (YSU) planetary boundary layer (PBL) 

scheme (Hsiao et al., 2021). The lowest 6 of 51 model levels from UH-WRF are evaluated in this study at hourly resolution. 

UH-WRF was initialized daily using ERA5 data beginning at 0 UTC each day with simulation hours t = 0-35. The land 185 

surface data, including terrain, soil type, ground vegetation cover, and soil moisture were updated following the procedures 

described by Zhang et al. (2005) and Hsiao et al. (2020). The model spin up time occurred between t = 0-11. For this 

analysis, we build the UH-WRF timeseries using forecast hours t = 12-35. 

     In addition to ERA5 and UH-WRF, which provide wind information along with a variety of other earth and atmospheric 

variables, specific datasets have been developed for wind energy research and development. NOW-23, developed by the 190 

National Renewable Energy Laboratory (NREL), the University of Colorado, and Veer Renewables to support offshore wind 

research, consists of eight regional WRF model simulations: three for the Atlantic Ocean, two for the Pacific Ocean, one for 

the Great Lakes, one for the Gulf region, and one for Hawaii (Bodini et al., 2024a). The model parameters are custom to 

each regional simulation to account for geographically unique wind resource phenomena. The NOW-23 Hawaii simulation 

uses ERA5 to provide the boundary conditions, the Mellor-Yamada-Nakanishi-Niino (MYNN) scheme for the PBL and 195 

surface layer schemes, the Noah land-surface model, and the Operational Sea Surface Temperature and Ice Analysis 

(OSTIA) for the sea surface temperature (Bodini et al., 2024a). Wind data are output at 18 heights between 10 m and 500 m 

at 5-min resolution (Table 1). Wind analysts can access NOW-23 and other wind datasets through the Wind Resource 

Database (NREL, 2025). 

     GWA3, developed by the Technical University of Denmark (DTU) and World Bank Group, utilises the WRF model with 200 

the Mellor-Yamada-Janjić (MYJ) PBL scheme and ERA5 as input and boundary conditions to produce simulated wind data 

with a 3-km horizontal resolution (Davis et al., 2023). From there, microscale modelling using the Wind Atlas Analysis and 

Application Program (WAsP) model is performed to achieve an output grid spacing of 250 m. GWA3 provides global 

coverage for land-based wind estimates and offshore wind estimates within 200 km of shorelines. Wind data are output at 

five heights between 10 m and 200 m at annual, monthly, and diurnal temporal resolutions (Table 1). Users can access 205 

GWA3 through its web application (DTU, 2025). 

 

Table 1. Characteristics of wind assessment products evaluated in this analysis. 

Product ERA5 UH-WRF NOW-23 GWA3 

Type Reanalysis Meteorological dataset Wind assessment dataset Wind assessment dataset 

Developers ECMWF University of Hawaii NREL, University of 

Colorado, Veer Renewables 

DTU, World Bank Group 

Temporal coverage 1950 – present  2023 2000 – 2019a 2008 – 2017  

Temporal resolution 1-hr 1-hr 5-min Annual, seasonal, diurnal 

Spatial coverage Global Hawaii U.S. marine regions Global 

Spatial resolution 31-km 1.5-km 2-km 0.25-km 
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PBL handling Data assimilation YSU scheme MYNN scheme MYJ scheme 

Wind output heights 

used in this study 

Lowest 9 model 

heights 

Lowest 6 model heights 10 m, every 20 m between 

20 m and 240 m 

10 m, 50 m, 100 m, 150 

m, 200 m 

a Depending on the region, the temporal extent varies between 2019 and 2022. For Hawaii, the temporal extent of NOW-23 is 2019. 

2.3 Validation methodology 210 

For the two models that temporally overlap with the Hawaii buoy deployment, ERA5 and UH-WRF, the bias (Eq. 1), 

correlation (Eq. 2), and CRMSE (Eq. 3) are determined for the N timestamps that the observed wind speeds (Uobs) and 

simulated wind speeds (Usim) are available. The variables 𝑈𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  and 𝑈𝑠𝑖𝑚

̅̅ ̅̅ ̅̅  are the average observed and simulated wind 

speeds, respectively, over the period N. The wind speed bias provides a gauge of whether the models tend to overestimate 

(positive bias), underestimate (negative bias), or accurately represent (zero bias) the observed wind speeds. The Pearson 215 

correlation coefficient explains the degree to which the simulated and observed wind speeds are linearly related, with values 

near 1 indicative of a high degree of correlation. The CRMSE portrays the degree of variation in error between the simulated 

and observed wind speeds, with larger values indicating larger errors. 

 

𝑏𝑖𝑎𝑠 =  
1

𝑁
∑(𝑈𝑠𝑖𝑚,𝑖 −  𝑈𝑜𝑏𝑠,𝑖)

𝑁

𝑖=1

 
(1) 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑ (𝑈𝑠𝑖𝑚,𝑖 − 𝑈𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ )(𝑈𝑜𝑏𝑠,𝑖 − 𝑈𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑈𝑠𝑖𝑚,𝑖 − 𝑈𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1

√∑ (𝑈𝑜𝑏𝑠,𝑖 − 𝑈𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

2𝑁
𝑖=1

 
(2) 

𝐶𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ ((𝑈𝑠𝑖𝑚,𝑖 − 𝑈𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ ) − (𝑈𝑜𝑏𝑠,𝑖 − 𝑈𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ ))

2𝑁

𝑖=1
 

(3) 

 220 

     Analysis of the performance of NOW-23 and GWA3 off the coast of Oahu is significantly limited by the temporal 

misalignment between the dataset coverage periods (2000 – 2019 and 2008 – 2017, respectively) and the lidar buoy 

observation period (1 December 2022 – 15 December 2023). Therefore, we utilise the entire temporal coverage periods of 

NOW-23 and GWA3 to establish whether the observed wind speeds and the observed seasonal and diurnal wind speed 

trends are represented in the ranges of the simulated long-term wind speeds. 225 

3 Year-long model validation 

The following studies compare the performance of ERA5 and UH-WRF in representing key characteristics of the offshore 

wind resource at the location of the Hawaii lidar buoy deployment. For ERA5 and UH-WRF, the model level wind speeds 

are adjusted to the observed near surface (4 m) and lidar output heights (every 20 m between 60 m and 240 m) z using the 
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power law (Eq. 5) with the wind shear exponent α (Eq. 4) calculated at every timestamp using the surrounding model heights 230 

zlo and zhi and the associated wind speeds ulo and uhi. The performance analysis of ERA5 and UH-WRF considers the entire 

wind profile up to 240 m (the limit of the lidar observations) along with a focused investigation at a single height, 140 m 

a.s.l., based on the announced hub heights for upcoming offshore wind projects (McCoy et al., 2024). Comparisons are 

performed using only hours when both the buoy observations and model estimates are available. 

 235 

𝛼 =  
ln(𝑢ℎ𝑖 𝑢𝑙𝑜⁄ )

ln(𝑧ℎ𝑖 𝑧𝑙𝑜⁄ )
 

(4) 

  

𝑢 =  𝑢𝑙𝑜 (
𝑧

𝑧𝑙𝑜

)
𝛼

 
(5) 

3.1 Annual, seasonal, and diurnal performance 

During the year-long buoy deployment period, ERA5 strongly underestimates the observed wind speeds across the profile 

with average biases ranging from -1.53 m s-1 to -1.62 m s-1 (-1.53 m s-1 at 140 m). UH-WRF underestimates the observed 

wind speeds across the profile as well, but to a lesser degree, with average biases ranging from -0.24 m s-1 to -0.29 m s-1 (-

0.25 m s-1 at 140 m). The correlations for both ERA5 (0.89-0.90) and UH-WRF (0.84-0.85) suggest successful representation 240 

of the hourly fluctuations in the observed wind speeds (Figure 3). Previous DOE lidar buoy deployments off the northern and 

central coasts of California revealed similar correlations for ERA5 (0.88) (Sheridan et al., 2022). The CRMSEs during the 

Hawaii buoy deployment (ERA5 = 1.58-1.60 m s-1, UH-WRF = 1.96-2.02 m s-1) (Figure 3) are notably lower than the 

ERA5-based CRMSEs found during the California deployments, which ranged between 2.3 m s-1 and 2.4 m s-1. 

 245 

Figure 3. ERA5 (140 m, 1 December 2022 – 15 December 2023) and UH-WRF (140 m, 1 January 2023 – 15 December 2023) wind speed 
(a) correlations, standard deviations, and CRMSEs, and (b), (c), (d) distributions at the Hawaii buoy location. 

     The model wind speed biases during the Hawaii buoy deployment differ significantly depending on the magnitude of the 

observed wind speed. We use the NREL 15 MW offshore wind reference power curve (Musial et al., 2019) to categorize the 
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observed 140 m wind speeds according to pre-cut-in wind speeds (≤ 3 m s-1), wind speeds along the steep portion of the 250 

power curve (> 3 m s-1 and < 11 m s-1), and wind speeds corresponding to maximum power production (≥ 11 m s-1). During 

the full-year deployment period, 5.8%, 65.2%, and 29.0% of the lidar 140 m wind speeds fall into the pre-cut-in, steep 

portion, and maximum power categories, respectively. No observed or modelled wind speeds at any height between the 

surface and 240 m a.s.l. during the Hawaii buoy deployment exceeded the cut-out wind speed denoted by the reference 

power curve (25 m s-1), so biases during wind speed cut-out or derate periods are not able to be determined.  255 

     ERA5 and UH-WRF follow similar trends in bias according to the observed wind speed (Figure 4). In representing the 

observed pre-cut-in wind speeds at 140 m, ERA5 exhibits little bias (median = 0.09 m s-1) while UH-WRF significantly 

overestimates (median bias = 0.83 m s-1). For observed wind speeds on the steep portion of the power curve, ERA5 and UH-

WRF underestimate with median biases of -1.49 m s-1 and -0.25 m s-1. The greatest ERA5 errors are determined for observed 

wind speeds corresponding to maximum turbine generation, at the top of the power curve. For these faster observed wind 260 

speeds, ERA5 displays significant underestimation, with a median bias of -1.71 m s-1, while UH-WRF produces a median 

bias of -0.30 m s-1. 

 

Figure 4. ERA5 and UH-WRF wind speed bias according to observed wind speed during the Hawaii buoy deployment. 

     The seasonal wind cycle during the lidar buoy deployment is characterized by immense variability in the fall and winter 265 

and more static conditions in the spring and summer (Figure 5). The observed monthly 140 m wind speed standard deviation 

is 2.30 m s-1 for fall and winter months (September – February) and 0.79 m s-1 for spring and summer months (March – 
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August). Especially notable is the steep observed monthly 100 m wind speed increase of 5.66 m s-1 between January and 

February 2023 (Figure 5a).  

     Both ERA5 and UH-WRF perform well in capturing the observed monthly wind speed trends at the Hawaii buoy 270 

location. When comparing the observed and modelled normalized monthly wind speeds, ERA5 and UH-WRF produce 

correlations of 0.98 and 0.99, respectively (Figure 5b). The standard deviation of the observed normalized monthly wind 

speeds is 0.18 m s-1, while the standard deviations from the models are slightly larger at 0.21 m s-1 for ERA5 and 0.22 m s-1 

for UH-WRF. 

     The reanalysis bias varies throughout the year, with ERA5 exhibiting the largest biases in the spring (March – May 2023, 275 

average = -1.91 m s-1), followed by the winter (December 2022 – February 2023, average = -1.50 m s-1), the fall (September 

– November 2023, average = -1.43 m s-1), and the smallest biases in the summer (June – August 2023, average = -1.34 m s-

1). UH-WRF follows a similar seasonal error pattern as ERA5, with the largest to smallest biases found in spring (-0.39 m s-

1), winter (-0.26 m s-1 for January – February 2023), summer (-0.16 m s-1), and fall (-0.13 m s-1). 
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 280 

Figure 5. (a) Monthly average and (b) normalized monthly average wind speeds from the Hawaii lidar observations, ERA5 and UH-WRF. 
Average observed and modelled wind speeds for December 2023 reflect only the first half of the month, corresponding to the buoy 
deployment period. 

     The observed wind speeds transition gently across the diurnal cycle, with a standard deviation of the 140 m hourly 

average wind speeds of 0.27 m s-1. The fastest speeds occur during the evening and at night, while the slowest speeds are 285 

present during the day (Figure 6a,c). The UH-WRF diurnal cycle follows that of the observations, with nearly zero bias 

occurring for hours between 0 and 11 UTC and underestimation occurring between 12 and 23 UTC (average hourly bias = -

0.35 m s-1). Contrary to ERA5’s accurate representation of the observed seasonal wind speed cycle, the reanalysis struggles 

to capture the observed diurnal cycle. Trends in the ERA5 wind speeds and associated wind speed biases are tied to the start 

of the 12-hour reanalysis assimilation windows of 9 and 21 UTC (Hersbach et al., 2020) as shown by the sharp peaks at 290 

these hours in Figure 6. Such discontinuities in the ERA5 diurnal wind speed cycle are also noted by Kalverla et al. (2019) 

https://doi.org/10.5194/wes-2025-167
Preprint. Discussion started: 23 September 2025
c© Author(s) 2025. CC BY 4.0 License.



14 
 

over the North Sea. When comparing the observed and modelled normalized hourly wind speeds, ERA5 and UH-WRF 

produce correlations of 0.93 and 0.96, respectively (Figure 6c).  

 

 295 

Figure 6. (a) Hourly average wind speeds, (b) hourly wind speed bias, and (c) normalized hourly average wind speeds from the Hawaii 
lidar observations, ERA5 and UH-WRF. 
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     The wind resource in Hawaii is dominated by persistent northeast trade winds, with rare occurrences of wind sourcing 

from the south at Oahu (Argüeso and Businger, 2018). ERA5 underestimates the observed frequency of winds occurring 

between 60° and 90° (60%) at 55% (Figure 7). During the overlapping period of the buoy observations and the UH-WRF 300 

simulation coverage, the percentage of winds occurring between 60° and 90° are very similar between the two datasets at 

61% from UH-WRF versus 62% observed.  

     A small south-southwesterly component of the wind is identified in the lidar buoy observations, with 5% of the wind 

directions at 140 m occurring between 180° and 210°. While ERA5 captures a south-southwesterly wind component to 

similar degree, at 4% of the observation period, the reanalysis slightly overrepresents the amount of wind sourcing from the 305 

southwest (between 210° and 240°), which includes the southern tip of Oahu (Figure 1a). ERA5 attributes the origin of 3% 

of the winds to the southwest as compared with less than 2% of the observed winds. During 2023, UH-WRF captures the 

south-southwesterly frequency (4% observed and simulated) and slightly overrepresents the southwest frequencies (2% 

versus 1% observed). 

 310 

Figure 7. Observed wind direction distributions coloured by the ratios of (a) ERA5 and (b) UH-WRF directional frequencies to observed 

directional frequency by sector. 

3.2 Performance according to atmospheric stability 

The near surface atmospheric conditions over the Hawaii buoy deployment period are predominantly unstable, with 97% of 

the period exhibiting cooler air temperatures and warmer sea surface temperatures (Figure 8a). No significant differences in 315 

the ERA5 and UH-WRF wind speed biases are noted for distinct atmospheric conditions. Underestimation of the observed 

wind speeds occurs during unstable and stable conditions, with median ERA5 wind speed biases near -1.50 m s-1 regardless 

of whether the air-sea temperature differential is negative or positive (Figure 8b). For UH-WRF, the median wind speed 

biases are -0.27 m s-1 for unstable conditions and -0.32 m s-1 for stable conditions. 
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 320 

Figure 8. (a) Distribution of the air-sea temperature differential during the Hawaii lidar buoy deployment. (b) ERA5 and UH-WRF 140 m 
wind speed bias according to unstable (ΔT < 0°) and stable conditions (ΔT > 0°). 

3.3 Wind shear analysis 

The quantity of power that a wind turbine can produce is influenced by the amount of wind shear across the turbine rotor 

plane (Wharton and Lundquist, 2012). The Hawaii buoy deployment period is characterized by very little shear across the 325 

wind profile. Using the wind shear exponent α (Eq. 4) calculated with the lidar wind speeds ulo and uhi at the output heights 

of zlo = 60 m and zhi = 240 m as our metric, we find that 78% of the wind shear exponents during the Hawaii deployment fall 

within ±0.05, compared with 43% of the central California and only 16% of the northern California deployments. ERA5 and 

UH-WRF, which similarly provide wind speed data at zlo = 60 m and zhi = 240 m, estimate even less wind shear across the 

profile. ERA5 predicts 86% of the wind shear exponents during the Hawaii deployment to fall within ±0.05. During 2023, 330 

UH-WRF also predicts 88% of the wind shear exponents to fall within ±0.05, compared with 79% based on the lidar 

observations (Figure 9a,b). The ERA5 and UH-WRF wind speed biases tend to be negative during periods of observed 

negative and near-zero wind shear and become increasingly positive with larger shear exponents (Figure 9c). 
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Figure 9. Distribution of observed and (a) ERA5 and (b) UH-WRF wind shear between 60 m and 240 m during the Hawaii lidar buoy 335 
deployment. (c) ERA5 and UH-WRF wind speed bias according to observed wind shear exponent. 

3.4 August 2023 Hawaii wind event 

On 8 August 2023, stronger than normal northeast trade winds impacted the Hawaiian Islands and were a contributing factor 

in the fires that devastated the city of Lahaina on Maui (Mass and Ovens, 2024). On the same date, Hurricane Dora passed to 

the south of the islands (Bucci, 2024). To the east of the islands at the lidar buoy location, the observed and modelled winds 340 

shift further east-southeast from around 60° to 80° on 6 August (Figure 10b). Beginning on 7 August at 15 UTC, the buoy 

measurements capture a ramp event when the 140 m wind speed increases by 6.63 m s-1 over the course of 5 hours (Figure 

10a). ERA5 produces an increase in the 140 m wind speed beginning 1 hour later with a smaller magnitude ramp (4.42 m s-

1). The UH-WRF simulation shows an increase of 3.42 m s-1 over 4 hours beginning at 15 UTC, followed by a stronger up 
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ramp a few hours later. ERA5 and UH-WRF have similar and lower correlations, respectively, during the event (0.89 and 345 

0.81) versus the entire deployment (0.89 and 0.85). The ERA5 and UH-WRF wind speed biases at 140 m are smaller during 

the event relative to the entire deployment (-1.36 m s-1 versus -1.53 m s-1 for ERA5 and 0.03 m s-1 versus -0.25 m s-1 for UH-

WRF).  

 

Figure 10. Observed and modelled (a) wind speeds and (b) wind directions at the lidar buoy location during the August 2023 Hawaii wind 350 
event. 

4 Long-term model evaluation 

This study proceeds to analyse the performance of two additional wind resource datasets off the coast of Oahu, NOW-23 and 

GWA3, while acknowledging the significant limitation that these datasets do not temporally coincide with the lidar buoy 
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observation period (1 December 2022 – 15 December 2023). Therefore, we utilise the entire temporal coverage periods of 355 

NOW-23 (2000 – 2019) and GWA3 (2008 – 2017) to determine whether the observed wind speeds and the seasonal and 

diurnal wind speed trends are represented in the ranges of simulated long-term wind speeds. Given the higher temporal 

resolution of NOW-23, we additionally explore whether the occurrences of LLJs and ramp events are captured in the ranges 

of simulated long-term wind speeds for this dataset. The year-long period of 1 December 2022 – 30 November 2023 is used 

for the observational point of comparison in the following analyses. As for the temporally concurrent assessments of ERA5 360 

and UH-WRF, the analysis of NOW-23 and GWA3 considers the wind profile up to 240 m plus a focused investigation at 

140 m.  GWA3 wind speed estimates are adjusted to 140 m following Eq. 4 and 5. 

4.1 Annual, seasonal, and diurnal representation 

Across the wind profile between 60 m and 240 m, the observed annual average wind speeds during the year-long Hawaii 

deployment fall within the 25th and 75th percentiles of the annual average wind speeds simulated by NOW-23 and GWA3, 365 

though at distinct percentiles within that range (Figure 11). At 140 m a.s.l., the observed annual average wind speed during 

the period of December 2022 – November 2023 (9.12 m s-1) is aligned with the 28th percentile annual average wind speed 

from NOW-23 over the full dataset period of 2000 – 2019. The median and average 140 m NOW-23 annual average wind 

speed estimates over the full dataset period are 9.43 m s-1 and 9.52 m s-1, respectively. The observed annual average wind 

speed at 140 m coincides with the 57th percentile annual average wind speed for GWA3 during its coverage period of 2008 – 370 

2017 (Figure 11b). The median and average 140 m GWA3 annual average wind speed estimates over the dataset coverage 

period are 9.06 m s-1 and 9.02 m s-1. Using the long-term annual average 140 m wind speed from NOW-23 produces a 

smaller magnitude bias (+0.39 m s-1) than using ERA5 (-1.53 m s-1), while GWA3 produces a smaller magnitude bias (-0.10 

m s-1)  than both ERA5 and UH-WRF (-0.25 m s-1), despite the temporal concurrency with the observations of the latter two 

products. 375 
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Figure 11. (a) NOW-23 (2000 – 2019) and (b) GWA3 (2008 – 2017) annual average wind speeds with observed annual average wind 
speeds (1 December 2022 – 30 November 2023). 

     The month-to-month variability in the observed 140 m wind speeds during the deployment year are not well captured by 

the monthly wind speed indices provided by GWA3 or the median monthly 140 m wind speeds from NOW-23, with 380 

correlations of 0.40 and 0.29, respectively (Figure 12). GWA3 and NOW-23 are generally in agreement (correlation of 0.72 

between the two datasets) that the slowest wind speeds east of Oahu occur in the winter and the fastest wind speeds occur in 

the summer, but the average observed winds during the year of deployment exhibit several significant inconsistencies 

between months, particularly during the periods December 2022 through April 2023 and September through November 2023 

(Figure 12).  385 
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     The range of the normalized observed wind speeds during the deployment year (0.65 in October 2023 to 1.31 in February 

2023) exceeds those from GWA3 (0.83 in January to 1.10 in June) and the median of the 20-year NOW-23 dataset (0.89 in 

January to 1.11 in July). However, when considering all 20 years in the NOW-23 Hawaii dataset, normalized wind speeds at 

the location of the DOE buoy are estimated to reach extents of 0.50 and 1.45, with the upper estimate occurring the same 

month as the fastest observed wind speeds, February (Figure 12). Performing a Student’s t-test with a 5% significance level 390 

finds that December 2022, March and April 2023, June and July 2023, and November 2023 are within the variability of the 

NOW-23 climatologies. 

 

Figure 12. Normalized monthly wind speeds from the Hawaii deployment lidar (December 2022 – November 2023), GWA3 (2008 – 
2017), and NOW-23 (2000 – 2019). 395 

     Conversely to the misalignment between the observed and simulated seasonal trends in the 140 m wind speed at the 

Hawaii buoy deployment location, the observations, NOW-23, and GWA3 agree that the fastest wind speeds occur during 

the evening and night and the slowest wind speeds occur during the daytime (Figure 13). The hourly wind speeds from 

NOW-23 and GWA3 achieve correlations of 0.94 and 0.89 with the observed hourly wind speeds, respectively. The range of 

normalized wind speeds from the observations (0.96 to 1.05) is slightly greater than that of GWA3 and the median of the 20-400 

year NOW-23 period (0.97 to 1.04 for both datasets). Disagreement between the observations and the datasets is greatest 
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between the hours 14 and 17 UTC, the morning transition when the air-sea temperature differential is at its greatest 

magnitude and begins approaching its smallest magnitude (Figure 13b). 

 

 405 

Figure 13. (a) Normalized hourly wind speeds from the Hawaii deployment lidar (December 2022 – November 2023), GWA3 (2008 – 
2017), and NOW-23 (2000 – 2019). (b) Diurnal distribution of the air-sea temperature differential during December 2022 – November 
2023. 
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4.2 NOW-23 representation of ramp events 

Observed wind ramp events are present at the Hawaii buoy deployment location, though not plentiful. Following the study of 410 

Bianco et al. (2025), we determine the amplitude of the change in the wind energy capacity factor, ΔCF, using the rotor 

equivalent wind speeds as defined by Wagner et al. (2014) from the lidar and NOW-23 with the NREL 15 MW offshore 

wind reference power curve (Musial et al., 2019), over a duration Δt. For this study, we consider ΔCF ≥ 0.4 over Δt = 10 

minutes through the analysis period December 2022 – November 2023. The year-long observations produce slightly more up 

ramps (56) than down ramps (42), for a total of 98 ramps. The annual ramp estimates from NOW-23 are very similar to the 415 

observed at a median of 102 total ramps, though the median annual amount of up (down) ramps is slightly higher (lower) at 

64 (38) (Figure 14). 

 

Figure 14. Annual frequency of observed and NOW-23 100 m wind ramps defined by a change in capacity factors of at least ±0.4 over 10 
minutes. 420 

5 Conclusions and implications for wind energy 

In this study, we questioned and established the accuracy of reanalysis models, regional models, and purpose-built wind 

datasets in representation of the observed offshore wind resource in a previously unstudied location off the coast of Oahu, 

Hawaii. At a location of future offshore wind development interest due to vast wind resource availability and potential 

economic impact, the year-long DOE lidar buoy deployment off the coast of Oahu highlights the successes and challenges of 425 
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a widely employed reanalysis and more recent datasets developed to support wind resource characterization. The wind speed 

biases quantified in this validation provide important baselines for researchers and energy developers deciding which models 

and datasets to use and how much to adjust their expectations when estimating the long-term offshore wind resource in the 

Hawaiian region. Given the consistency of the trade wind trends east of Hawaii, we recommend that offshore wind farm 

planners in this area leverage the datasets found to be successful in this work and adjust their expectations when using 430 

datasets that did not perform as well according to their attributes of interest, such as wind speed bias and seasonal and 

diurnal wind variations.  

     In particular, the results of this investigation near Hawaii add another geographic data point to the trend of ERA5 

underestimation of observed offshore wind speeds as documented by Kalverla et al. (2020) over the North Sea, Sheridan et 

al. (2020) off the coasts of New Jersey and Virginia, United States, Pronk et al. (2022) and Fragano and Colle (2025) off the 435 

coast of New Jersey, United States, and Sheridan et al. (2022) off the coast of central California, United States. Given the 

consistent trade winds at the Oahu deployment site, we do not attribute the large ERA5 wind speed bias (-1.53 m s-1) to the 

coarseness of the grid leading to mischaracterization of meteorological phenomena such as wind ramps or LLJs, simply 

because the observations yielded so few of these events, though such errors have shown to be significant at other offshore 

sites where they are more prevalent (Kalverla et al., 2020; Sheridan et al., 2024). Similarly, we do not identify any 440 

performance trends according to atmospheric stability (Figure 8) such as are seen in the work of Pronk et al. (2022), who 

note the best ERA5 performance across multiple metrics occurring for unstable cases, followed by neutral conditions, and 

last, stable cases at their offshore study location. Rather, we note that ERA5 significantly underestimates fast wind speeds 

(Figure 4), which our study site is strongly characterized by (Figure 2). Gandoin and Garza (2024) provide evidence of 

ERA5’s underestimation of fast wind speeds and link the trend to ERA5’s representation of the Charnock parameter. We 445 

also speculate that the relative sparsity of observations for data assimilation in this remote part of the world could influence 

the ERA5 error metrics, along with the discontinuities in the diurnal cycle noted in this work (Figure 6) and that of Kalverla 

et al. (2019). We recommend that users of ERA5 in the vicinity of the Oahu buoy deployment adjust the initial wind speed 

and energy generation expectations higher through bias correction (Wilczak et al., 2024) and welcome the use of our 

publicly available buoy observations (DOE, 2025).  450 

     When financial and computational resources are available, the validation of the UH-WRF simulation in this work 

showcases the value of running higher-resolution regional simulations to improve accuracy in wind resource assessments. 

UH-WRF exhibits a significantly smaller bias (-0.25 m s-1) than ERA5 and a correlation (0.85) not far behind that of ERA5 

(0.90) at the Oahu site, supporting the selection of YSU as the PBL scheme in an additional offshore location (Bodini et al., 

2024b). While both ERA5 and UH-WRF successfully capture the observed seasonal wind speed cycle at the deployment 455 

location, UH-WRF is superior in capturing the diurnal cycle (Figure 6). While such regional simulations as UH-WRF can be 

temporally limited due to computational expense, researchers have an opportunity to develop long-term estimates by bias-

correcting datasets with longer durations with high quality datasets of shorter duration (Buster et al., 2024).  
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     Finally, we found it interesting that two datasets that lacked temporal overlap with the Oahu buoy deployment, NOW-23 

and GWA3, outperformed ERA5 in terms of bias when simply using their respective long-term annual average wind speeds. 460 

However, challenges arise when taking the comparisons to a more granular level, for example, the monthly pattern in the 

wind observations did not align with the long-term seasonal trends estimated by NOW-23 and GWA3. Additionally, users of 

GWA3 should be aware that the diurnal wind speed trend is currently available only for 100 m a.s.l. Based on our 

evaluations and previous offshore wind validations, we recommend performing wind resource assessments using multiple 

datasets to garner a range of expectations rather than selecting just one product that may result in significant error.  465 

     To conclude our study and highlight the results in a wind energy context, we translate the wind speed errors for each 

simulation product to energy errors to assess what their impacts could be for an operating offshore wind farm. Following the 

form of Wagner et al. (2014), we calculate the rotor equivalent wind speeds for concurrent timestamps across the lidar 

observations, ERA5, and UH-WRF, assuming a hub height of 140 m. Applying the NREL 15 MW offshore wind reference 

power curve (Musial et al., 2019) to the lidar-based rotor equivalent wind speeds from the year-long Oahu deployment 470 

produces an estimated gross capacity factor of 59.8%. To explore the impacts of the wind speed biases noted for ERA5 (-

1.53 m s-1 to -1.62 m s-1) and UH-WRF (-0.24 m s-1 to -0.29 m s-1) (Section 3.1) across the rotor layer, we apply the same 

power curve to the ERA5 and UH-WRF rotor equivalent wind speeds, which over the same time period results in estimated 

gross capacity factors of 42.2% and 56.0%, 18 and 4 percentage points lower than the estimate using the observations, 

respectively. On average over their respective temporal coverage periods, GWA3 and NOW-23 produce estimated capacity 475 

factors closer to the capacity factor based on observations than does ERA5: 52.7% (GWA3) and 63.5% (NOW-23) using the 

15 MW reference power curve. 

     Onsite measurements spanning wind turbine rotor diameters are critical to understanding the accuracy of the models and 

datasets that drive the offshore wind industry through resource assessment, wind trend characterization, and downscaling. 

Studies like this one highlight the wealth of information that can be obtained for establishing observation-based wind 480 

characterizations, simulation accuracies, and simulation correction possibilities and encourage further offshore wind 

observational campaigns in unstudied locations. 

Appendix A: Summary of Hawaii buoy observations and post-processing 

A1 Instrumentation 

Pacific Northwest National Laboratory (PNNL) operates lidar buoys that are owned by the U.S. Department of Energy to 485 

collect offshore wind resource information in areas of potential commercial development. The buoys have previously 

collected measurements off the coast of Virginia, New Jersey, and California (Shaw et al., 2020; Krishnamurthy et al, 2023). 

The buoy (Figure A1) is equipped with a wind-profiling lidar capable of measuring wind speed up to 250 m above the 

instrument, surface meteorological measurements, oceanographic measurements, wave spectrum, and ocean current profile 

were collected from the instruments installed on the buoy (Table A1). 490 
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Figure A1. US Department of Energy Lidar Buoy schematic showing all meteorological and oceanographic observations. 

 

Table A1. Sensor description. 495 

Reference Number Sensor Type Make/Model Measurements 

12 Wind profiling lidar Leosphere/Windcube 866 Vertical profile of wind speed and 

direction, wind dispersion, and 

spectral width 

13 Ultrasonic anemometer (2) Gill/WindSonic 2D wind velocity and direction, 

near surface 

14 Pyranometer Licor/LI-200 Global solar radiation 

15 Temperature, relative humidity Rotronic/MP101A Air temperature, relative humidity 

16 Barometer RM Young/61302V Atmospheric pressure 

17 Acoustic Doppler current 

profiler (ADCP) 

Nortek/Signature 250 Ocean velocity and direction from 

sea surface to 200 m water depth 

18 Conductivity temperature depth 

(CTD) 

Seabird/SBE 37SMP-1j-2-

3c 

Conductivity, sea surface 

temperature 

19 Directional wave sensor AXYS/TRIAXYS NW II Directional wave spectra, wave 

height, wave time period 

20 Water temperature AXYS /YSI Sea surface temperature 

N/A Inertial measurement unit MicroStrain/3DM GX5 45 Yaw, pitch, roll, linear velocity, 
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(underneath the Doppler lidar) global position, magnetometer, 

gyroscope 

A2 Field deployment summary 

A 12-month measurement campaign of atmospheric and oceanographic conditions using an AXYS WindSentinel buoy was 

conducted off the eastern coast of Oahu, Hawaii, (Figure A2) from December 2022 through December 2023 (Table A2). 

Instruments on the buoy were operational throughout the field campaign, with the exception of those mentioned below. After 

the initial deployment the wave sensor was observed to be not operational; a service visit was completed on 16 March 2023, 500 

at 1:20 pm (HST) to repair the sensor. In addition, the lowest measurement height (40 m) of the Doppler lidar was adjusted 

to 50 m on 28 April 2023 due to the anomalous behaviour that was observed at 40 m range-gate.  Post-deployment a 

thorough servicing of the lidar unit was conducted by the manufacturer, and it was determined that only the measurements 

from 40 m to 49 m were impacted due to an issue with the lidar’s master oscillator power amplifier.  Therefore, we 

recommend that data only above 50 m be used for any future analysis. Later in the spring of 2023, the air temperature sensor 505 

was producing occasional faulty measurements; once the weather allowed, a second service visit was completed to replace 

the air temperature and relative humidity sensor on 5 September 2023, at 10:00 am (HST). On 14 December 2023, 14:00 

(HST), the sensors were powered down to conserve energy after receiving a low fuel warning. The wave sensor and surface 

wind anemometer along with the safety and navigation equipment remained powered on to track the buoy location and 

monitor weather conditions to find a suitable recovery window. On 15 January 2024, at 8:30 am (HST), the buoy mooring 510 

was recovered, and the buoy was towed back to shore. 
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Figure A2. Buoy deployment location. 

Table A2. Deployment parameters. 515 

Deployment location 21.42605°N, 157.46678°W 

Water depth Approximately 815 m 

Mooring exclusion radius 894 m 

Deployment start date 1 December 2022 13:20 (HST) 

Service visit #1 16 March 2023 13:20 (HST) 

Service visit #2 5 September 2023 10:00 (HST) 

Sensors powered down 14 December 2023 14:00 (HST) 

Deployment recovery 15 January 2024 08:30 (HST) 

 

A3 Data quality control 

Throughout the field campaign, measurements collected from the buoy were transmitted via satellite communication to the 

DOE Wind Data Hub (http://a2e.energy.gov/project/buoy/data). Measurements from the wind profiling lidar are contained in 

buoy/lidar.z07.* files; measurements from the other instruments are contained in the buoy/buoy.z07.* files; images from the 520 

onboard cameras are contained in the buoy/camera.z07.00 files. Datasets appended with *.00 are for raw data; datasets 

appended with *.a0 are for data processed based on automated quality control scripts. This section described the production 
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of the *.b0 dataset, which performs a quality control on the measurements based on post-processing and evaluation of 

instrument function and realistic physical phenomena. The data quality control for this field campaign was very similar to 

previous buoy deployments, details provided in Krishnamurthy et al., 2023. 525 

 

A3.1 Surface meteorology on the buoy 

Each surface meteorological measurement (wind speed, wind direction, air pressure, air temperature, and relative humidity) 

was subjected to the quality control methodology of Krishnamurthy et al. (2023). At each 10-minute timestamp, the surface 

measurements were evaluated and determined to be of good quality, missing (due to a power outage, communication issue, 530 

or instrument availability issue), or suspect or incorrect based on typical and physical expectations (Figure A3). 

     During the Hawaii deployment, 5% of the surface measurements (all variables) were missing due to communication 

issues. At no time periods were the surface measurements deemed suspect or missing due to a buoy power outage. The 

portside and starboard wind speeds, portside and starboard wind directions, relative humidity, and pressure were missing due 

to instrument availability for less than 2% of the deployment. No instances of incorrect data were noted for the portside and 535 

starboard wind speeds, portside and starboard wind directions, and pressure, and only three instances of incorrect data 

(0.01%) were determined for the relative humidity, leaving 93% - 94% of good data availability for these surface variables 

(Figure A3). 

     Between 13 March 2023 and 6 September 2023, much of the air temperature data were deemed unphysical, with reported 

temperatures ranging between -36°C and 60°C. Due to this data quality issue, 42% of the air temperature measurements 540 

gathered during the Hawaii deployment were classified as incorrect. An additional 5% of the air temperature measurements 

were missing due to instrument availability, leaving 47% of the data designated with good quality and availability (Figure 

A3). 

 

Figure A3. Surface meteorological data availability and quality. 545 
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     In terms of capturing the temporal variability of the near surface wind speeds, the port and starboard wind speed 

instruments aboard the buoys were in near-perfect agreement during the Hawaii deployment, with a Pearson’s correlation 

coefficient of 0.9993. However, a small bias (0.05 m s-1) exists between the two instruments during the period of overlapping 

data availability, with the port wind speed measurements being slightly faster. Similarly, the portside wind directions are on 550 

average 3° greater than the starboard wind directions. 

A3.2 Buoy Doppler lidar 

Height-resolved measurements of wind speed, wind direction, and turbulent intensity were provided by a Windcube v2 

Doppler lidar, as shown in Figure A1. This buoy and lidar had previously been deployed off the California coast near 

Humboldt Bay. For the Hawaii deployment, the Windcube was initially configured in the same manner, with 12 555 

measurement heights ranging every 20 m from 40 to 240 m (Krishnamurthy et al., 2023). The lowest measurement height 

was adjusted up to 49 m on 28 April 2023 due to suspected bias in the results at 40 m AGL, as mentioned previously. The 

heights of the other 11 measurement heights remained unchanged throughout the deployment. 

     The raw 1-Hz wind profiles measured by the Windcube were corrected for platform motion. For the current deployment, 

we use the same motion-correction procedure that was applied during a previous deployment near Humboldt Bay, California 560 

(Krishnamurthy et al., 2023). This procedure uses input from an externally mounted backup inertial measurement unit (IMU) 

to essentially bypass the lidar’s internal IMU which had malfunctioned. Further details about the motion-correction process 

are provided by Krishnamurthy et al. (2023). 

     Motion-corrected 1-Hz data are used to compute ten-minute averages of wind speed, wind speed variance, wind direction, 

wind direction variance, as well as velocity variances and covariances. Prior to averaging, the 1-Hz data were filtered to 565 

remove poor quality samples with carrier-to-noise-ratios (CNR) below –23 dB. Velocity variances were computed by first 

linearly detrending the 1-Hz data (Krishnamurthy et al., 2023). The data availability was also computed as the percentage of 

1-second samples above the CNR threshold (-23 dB). We note, however, that there was a small amount of deadtime 

associated with the IMU data. Raw 10-Hz IMU were stored in half-hourly files, which were not temporally contiguous. 

There was about a 30-second gap at the beginning and end of each raw IMU file. This resulted in a 1-minute gap every 30-570 

minutes. As a result, the data availability is ultimately limited by these short gaps in the raw IMU data.   

     Figure A4 shows the profile of lidar data availability (DA) during the Hawaii deployment. The data availability represents 

the percentage of time that valid 1-Hz measurements are available within each 10-minute averaging period. It is important to 

note that the DA is computed over the time for which valid data exist. As a result, the DA for the two lowest measurement 

heights were computed over shorter time periods than the other heights. The data availability generally degrades with 575 

altitude, particularly above about 150 m AGL. The height-averaged DAs was 98%. As noted above, the DA is ultimately 

limited by the dead time in the raw 10Hz IMU data. 
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Figure A4. Data availability for the lidar winds during the Hawaii deployment. The data availability for the lowest measurement height 
(40 m) was computed over the period from 1 December 2022 to 28 April 2023, post which the measurement at this height was not 580 
recorded anymore due to an issue observed at this height. The data availability at 50 m was computed over the period from 29 April to 14 
December 2023. The data availability at 60 m and above was computed over the period from 1 December 2022 to 14 December 2023. 
 

     The wind speed profiles shown in Figure A5a exhibit very little shear above the 50 m. At 100 m AGL the median wind 

speeds range from about 8.5 to 9.5 m s-1, depending on the averaging period. This is significantly smaller than the wind 585 

resources observed by this same lidar off the California coast (Krishnamurthy et al., 2023). Also shown in Figure 5a are 

profiles of the median wind speed during periods with positive and negative air-sea temperature differences. Here the air-sea 

temperature is used to indicate stable versus unstable conditions. The air-sea temperature difference was obtained from 

difference between air temperature sensor at ~3 m, and the CTD water temperature sensor at a water depth of ~1 m. We 

found that the air-sea temperature differences to be negative (unstable) 64% of the time during the deployment period. 590 

     Shown in Figure A5c are profiles of the difference between the motion-corrected and uncorrected wind speed and wind 

direction.  The wind speed differences are quite small, with the motion-corrected wind speeds only about 2 mm s-1 faster 

than the uncorrected winds. By contrast, motion-correction had a significant effect on the wind direction, as one would 

expect. The lidar wind direction profiles shown in Figure A5 indicate a strong preference for easterly flow, and no 

significant rotation with height within the first 250 m above the sea surface. 595 
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Figure A5. Results from the Windcube v2 averaged from 29 April 2023 to 14 December 2023 showing (a) the median corrected wind 
speed profile (black), b) the corrected wind direction distribution profile, and (c) the difference between the motion-corrected and 
uncorrected wind speed and wind direction. Also shown in (a) are the median wind speed profiles for periods with positive (blue) and 

negative (red) air-sea temperature differences. Error bars show the 25th to 75th percentile range. 600 
 

A3.3 Buoy oceanographic measurements 

Surface gravity wave (i.e., wave) data were measured with the TRIAXYS sensor at a 20-minute sampling interval, the 

typical standard for wave measurements in the United States (NDBC, 1996). Wave measurements began on 16 March 2023, 

following the first service visit and ended with the deployment recovery on 15 January 2024. Initial quality control checks 605 

(i.e., included in *.a0 files on the Wind Data Hub) follow AXYS specifications and remove erroneous data by comparing 

individual measurements to temporally adjacent ones and removing all data when significant wave height reads larger than 

40 m (AXYS, 2012). All data measured by the TRIAXYS wave sensor are given in Table A3. The mean wave period is 

calculated from the zeroth and first spectral moments of the wave spectra, differing from average wave period, Tavg, which is 

a mean of the time series. Peak wave period and peak wave direction are also calculated from the wave spectrum and not 610 

directly measured. AXYS post-processing software (version 5.01) is used to calculate the wave spectrum, which applies the 

maximum entropy method (Nwogu, 1989). 

     A nearby National Data Buoy Center (NDBC) buoy (#51202: Mokapu Point) was used to cross-check the lidar buoy 

wave measurements. Station 51202 is 21 km from and ~700 m shallower (depth = 86 m) than the Oahu lidar buoy location. 

The shallower depth allows some wave frequencies to transition from deep-water (i.e., D > L/2, where D is depth and L is 615 

wavelength) to transitional waves (i.e., L/20 < D < L/2). A comparison of significant wave heights between locations outlines 

largely similar wave climates, though the lidar buoy recorded wave heights slightly larger offshore than at 51202 (Figure 

A6). Multiple factors could create this variability: deep water – transitional wave transformation, as well as variability in 
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local bathymetry and wind fields; highlighting the importance of local measurements for wave applications. The minimum 

significant wave height measured at 51202 for the deployment period was 0.6 m, so significant waves heights less than 0.25 620 

m at the lidar buoy were flagged as bad. If significant wave heights were marked bad for exceeding 40 m or failing to 

surpass 0.25 m, the remaining variables were also marked bad, as they are derived from the same sensor. 

     An additional quality check was applied to identify possible rogue waves. A ratio of maximum wave height to significant 

wave height (Hmax/Hsig) greater than 2 is typically considered indicative of a rogue wave (e.g., Müller et al., 2005; Nikolkina 

& Didenkulova, 2011). Data points where rogue waves are possible would be marked as questionable, but we found no data 625 

in this deployment to exceed that criterion. Table A3 outlines the total number of good, questionable, and bad data for each 

measurement during the 16 March 2023, to 15 January 2024, wave sampling period. Other gaps in the wave and ocean 

observations were potentially due to a sensor failure and were not post-processed. 

 

Table A3: TRIAXYS wave sensor measurements and number data marked good, questionable, or bad. Variables short names are provided 630 
to match those in *.b0 files, if applicable. 

Wave measurement Good Questionable Bad 

Number zero crossings, ZCN 21,823 0 16 

Average wave height, Havg 21,817 0 22 

Average wave period, Tavg 21,817 0 22 

Maximum wave height, Hmax 21,815 0 24 

10th percentile wave height, H10 21,817 0 22 

10th percentile wave period, T10 21,817 0 22 

Significant wave height, Hsig 21,823 0 16 

Significant wave period, Tsig 21,817 0 22 

Mean wave direction 21,817 0 22 

Mean wave spread 21,817 0 22 

Mean wave period 21,817 0 22 

Peak wave direction 0 0 21,839 

Peak wave period 21,817 0 22 
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Figure A6: (a) Significant wave heights measured at the lidar buoy (red) and NDBC station 51202 (blue) from 16 March 2023 to 31 
December 2023. (b) Scatter comparison of significant wave heights from each station at each time step. A linear regression best fit is also 635 
shown. 
 

     Ocean currents were measured with the Nortek Signature 250 acoustic doppler current profiler (ADCP) using 10-minute 

ensemble averaging. The ADCP recorded measurements from the deployment start on 1 December 2022, through sensor 

power-down on 14 December 2023. Specifically, velocity magnitude and direction were measured at 50 depth bins, 640 

vertically spaced 4 m apart. Current magnitudes and direction were marked bad if: data was missing, spikes in current 

magnitude occurred that were spatially and temporally uncorrelated over a 10 min. duration, and/or a measurement was 

isolated in time (i.e., at least two successful measurements before and after did not occur). Current data were marked 

questionable if vertical shear in current speed was larger than 0.2 m s-1 and/or a vertical measurement was isolated in space 

(i.e., at least two successful measurements above and below did not occur). The ADCP sampling range typically reached 100 645 

to 120 m in depth, with the deepest measurements at 141 m. Measurements below the sampling range are considered missing 

data and therefore marked as bad. In total, 999,158 current measurements were marked good, 80,261 were marked 

questionable, and 1,511,731 were marked bad. 

     Conductivity was measured with the Sea-Bird CTD and sea surface temperature (SST) from both the Sea-Bird CTD and 

YSI thermistor every 10 minutes over the same duration as the ADCP (1 December 2022 to 14 December 2023). CTD data 650 

were marked bad for either instrument if a spike in either SST or conductivity occurred which was temporally uncorrelated 

to surrounding data points. No “questionable” checks were applied to the CTD measurements. In total, the Sea-Bird CTD 

recorded 22,018 good and 29,805 bad conductivity and SST measurements. The YSI thermistor recorded 44,305 good and 

7,518 bad SST measurements. 

 655 
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A3.4 Buoy pyranometer 

In Krishnamurthy et al., (2023), we discussed the acquiring of coastal cloud properties obtained from broadband global solar 

radiation (GSR) data using the pyranometers (PYRs) deployed on the buoy. The difference between the measured surface 

irradiance and its estimated clear-sky counterpart (Figure A7a) serves as the foundation for determining cloud optical 

thickness (COT, Figure A7b) and generating the corresponding cloud mask (Figure A7c). The COT characterizes the total 660 

reduction of downwelling solar radiation due to cloud droplets and/or ice crystals, and a dense cloud with a significant COT 

has a visually "dark" appearance to an observer on the surface. Thus, a large difference between the measured and clear-sky 

irradiances typically indicates the presence of a dense cloud above a pyranometer. Conversely, small differences suggest the 

chance of optically thin clouds. It is noteworthy that small differences may also be attributed to dense aerosol plumes 

originated by various sources, such as the somewhat unique Hawaiian feature of vog, or also by fogs. Generally, optical 665 

thickness values for both aerosol plumes and fogs remain below 4. Consequently, the calculated COT values exceeding 4 

provide greater confidence of cloud presence above the pyranometer, while lower values suggest otherwise (Figure A7b). In 

other words, the COT can be viewed as a form of quality assurance (QA) for assessing cloud properties, such as a binary 

cloud mask (Figure A7c).  We also perform supplementary QA checks to identify days where the PYR-measured GSR data 

exhibit incomplete daytime coverage, featuring extended gaps lasting up to several hours. Cloud properties are not provided 670 

for these identified days. 
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Figure A7: (a) The GSR measured (OBS) for a given day (18 July 2023) and location (Hawaii) and its estimated (or model) clear-sky 
(MOD) counterpart; (b) calculated COT and (c) estimated cloud mask.   

 675 
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