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Abstract. This work investigates the influence of aeroelastic modeling fidelity on design optimization of floating offshore wind

turbines. To this end, the QBlade simulation environment was coupled to the Wind Energy with Integrated Servo-control wind

turbine design and optimization framework. QBlade offers aerodynamic and structural models with varying levels of aeroe-

lastic fidelity within a computationally efficient implementation. This enables time-domain optimization studies with levels of

aeroelastic fidelity that are currently often deemed unfeasible for such purposes due to the computational expense involved.5

Five fidelity combinations are considered, ranging from blade element momentum aerodynamics with torsion-constrained Eu-

ler–Bernoulli beams to lifting-line free vortex wake aerodynamics with fully populated Timoshenko beams. To assess how

aerodynamic and structural modeling fidelity influences optimization outcomes, the parameters of the floating wind turbine

controller are co-designed together with the floating substructure, a system typically considered less sensitive to aeroelastic

fidelity. The results show that controller tuning, structural load predictions and final design outcomes are all affected by the10

chosen fidelity level. Higher fidelity models broaden the design space through less conservative load estimates and variation

in rotor operation, which in turn lead to more efficient platform designs. Increasing aeroelastic fidelity therefore improved the

quality of the optimization results, albeit at the expense of higher computational cost.

1 Introduction

Floating offshore wind turbines (FOWTs) enable renewable energy generation in deeper waters where the installation of fixed-15

bottom systems is not feasible. Even though these systems have received significant attention in recent years, their complexity

and cost continue to pose significant barriers to their widespread deployment. A comparison of capital expenditures (CapEx)

between FOWTs and their fixed-bottom counterparts reveals that the floating substructure represents a major cost driver (Ghigo

et al., 2020). This economic challenge must be addressed to enable broad deployment of floating wind and requires optimization

across all system components. Traditional sequential optimization strategies, in which each subsystem is optimized in isolation20

while others remain fixed, build in conservative assumptions at each design step, this can result in less efficient designs for

highly coupled systems like FOWTs (Garcia-Sanz, 2019). In response, multidisciplinary design analysis and optimization

(MDAO) has gained traction within the research community. A recent review by Ojo et al. (2022) summarizes the current state

of MDAO in the context of FOWTs, outlines the key frameworks, trends as well as the remaining challenges in this field. MDAO
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enables the simultaneous variation of design variables across interacting subsystems and thus accounts for coupled physical25

phenomena and potentially new, cost-effective design solutions (Martins and Ning, 2022). A sub-branch of MDAO is the idea of

control co-design (CCD), where both the physical system and its controller are optimized and tuned simultaneously. CCD has

shown significant potential to improve performance, reduce structural loads and lower total system cost by leveraging dynamic

interactions between system and controller for complex systems (Garcia-Sanz, 2019). However, the benefits of CCD rely on the

accuracy of the underlying models, particularly for interactions between aeroelastic and control interactions. As turbine sizes30

increase, the structural flexibility becomes more pronounced. Hence, increasing the aeroelastic fidelity to accurately capture

the complex interactions between aerodynamics and structural dynamics could proof essential (Veers et al., 2022).

Current industry-standard simulation tools rely on low- to mid-fidelity models, such as the blade element momentum (BEM)

method for aerodynamics and simplified beam theories to represent the blade structure. The latter do not fully account for cou-

pled interaction between the degrees of freedom of a beam element for structural dynamics. While computational efficiency is35

a key enabler of the BEM method, it requires numerous empirical corrections and can introduce significant uncertainty (Perez-

Becker et al., 2020; Boorsma et al., 2020), especially in some of the dynamic conditions that large floating offshore turbines

may encounter (Ramos-García et al., 2022; Schulz et al., 2025). As demonstrated in recent studies, employing lifting-line free

vortex wake (LLFVW) methodologies (Behrens de Luna et al., 2024; Papi et al., 2024; Schulz et al., 2025) or advanced beam

models that resolve coupled structural dynamics (Papi et al., 2025) offers a pathway to more precise aeroelastic modeling,40

albeit at an elevated computational expense.

Recent CCD studies for FOWTs used the Wind Energy with Integrated Servo-control (WEIS) framework and showed that

simultaneous optimization of physical and control parameters can reduce structural mass, cost, or loads. For example, Zalkind

et al. (2022) optimized controller parameters for the IEA 15 MW turbine on multiple floating platforms. Zalkind and Bortolotti

(2024) found a 2% lighter platform mass configuration for the IEA 22 MW VolturnUS-S when using simultaneous instead45

of sequential CCD. Abbas et al. (2024) found a levelized cost of energy (LCOE) reduction up to 4% when co-optimizing

platform and controller. In the above-mentioned studies, OpenFAST was employed as the simulation tool, which was set up to

use the BEM method aerodynamics and the ElastoDyn (NREL, 2025b) module for structural dynamics, which omits the blade

torsional degrees of freedom. Outside of WEIS, frameworks such as (Yu et al., 2024) and (Bayat et al., 2025) have applied

CCD to FOWTs, but typically use reduced-order aeroelastic models to limit computational cost. The influence of increased50

aeroelastic fidelity on design outcomes, particularly in the context of control co-design, remains largely unexplored.

To address this gap, this work builds upon the WEIS framework. Recent developments under the FLOATFARM (FLOAT-

FARM, 2025) project have enabled the integration of the QBlade simulation code into WEIS. QBlade offers BEM and lifting-

line free vortex wake aerodynamic models, as well as a structural solver that allows to select either Euler-Bernoulli, Timo-

shenko or Timoshenko fully populated matrix (FPM) beams, enabling fidelity variation within a unified workflow. The use55

of QBlade has been instrumental in maintaining the overall computational cost reasonable. The Timoshenko-FPM approach

comes with very little overhead compared to simpler approaches. Moreover, while the lifting-line solver adds significant com-

putational cost, QBlade allows for it’s impact to be significantly reduced by exploiting Graphics Processing Units (GPUs). The

contribution of this work to the literature is two-fold. First, the development and introduction of an optimization framework,
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called QBtoWEIS, that builds on the capabilities of WEIS but allows direct comparison of model fidelity levels included in60

QBlade within CCD optimization problems. The second is the application and demonstration of this new tool to a modern and

highly flexible reference turbine, such as the IEA 22 MW. This turbine was explicitly designed with passive load mitigation

via bend–twist coupling in mind (Zahle et al., 2024a) and thus allows for a realistic assessment of aeroelastic fidelity effects

on a on a complex system. In doing so, new insights into the trade-offs between aeroelastic model fidelity, computational cost

and final optimum are provided. This work specifically addresses a gap that was recently outlined by a pool of experts in the65

wind energy community (Veers et al., 2022), which is the integration of advanced aeroelastic simulation tools into the design

process and usage of increased fidelity models within optimization workflows.

In Section 2 we provide an overview of QBtoWEIS along with some theoretical background about the methods relevant for

the optimizations carried out in this work. Section 3 is focused on the definition of the optimization problem and modeling

considerations. In Section 4, the results are present and discussed.70

2 Optimization Framework and Methods

2.1 Control Co-Design

Control Co-Design has recently drawn increased attention in the context of floating offshore wind turbines. The reason is that

FOWT are highly coupled, nonlinear systems that consist of several sub-systems. The main ones being the wind turbine itself,

the floating sub-structure, the mooring system and the servo control system. These sub-systems comprise multiple sub-systems75

in their own right. The wind turbine for instance is composed by the rotor-nacelle-assembly (RNA), the generator and the tower.

Modifying only one of these components can have significant impact on the overall system behavior of the floating offshore

wind turbine. If for instance the tower is to be optimized with the aim to reduce it’s weight (and thereby cost), it is crucial to

consider the rotor (1P) and blade-passing (3P) frequencies, to ensure that resonant frequencies to not coincide with operational

conditions. Yet, not all interactions are as obvious as the tower-blade interaction and in order to avoid negative interactions80

between sub-systems, it is important to take a multidisciplinary design approach. CCD is a sub-category of MDAO, where

the design or tuning of a controller takes place at the same time at which the physical system is designed or optimized. It

represents a contrast to the sequential design approach, in which usually the controller is the final part of the design iteration.

As is pointed out by Garcia-Sanz (2019), the CCD approach not only enhances the design process but also leads to improved

system dynamics and controllability, ultimately resulting in lower costs and increased reliability.85

2.2 QBlade in the WEIS Framework

WEIS (NREL, 2025f), short for Wind Energy with Integrated Servo-control, is a design framework developed by the National

Renewable Energy Laboratory (NREL) for co-design of floating offshore wind turbines and their control systems. The frame-

work integrates existing tools such as WISDEM (NREL, 2025g), OpenFAST (NREL, 2025c), ROSCO (NREL, 2025d) and

pyHAMS (NREL, 2025i) into a unified workflow. Any wind turbine definition in the windIO (Bortolotti et al., 2025) format90
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can be used as a starting point for an analysis or optimization. The framework is built on the OpenMDAO python library

(Gray et al., 2019) and most of the tools are integrated as explicit components. This implementation enables efficient

connection of corresponding inputs and outputs between tools in a python class that is often referred to as the glue code.

The widely distributed QBlade simulation tool (QBlade, 2025) was expanded by a hydrodynamic module, which makes the

tool suitable to model floating offshore wind turbines. It has been validated and benchmarked against numerous other tools in95

varying conditions (Behrens de Luna et al., 2022; Behrens de Luna et al., 2024; Papi et al., 2024; Collier et al., 2024). Recent

advancements in the FLOATFARM project (FLOATFARM, 2025) have now led to the integration of the multi-fidelity code

QBlade into the WEIS framework. This coupling is henceforth referred to as QBtoWEIS (Behrens de Luna, 2025). Similarly to

OpenFAST, QBlade runs non-linear time-domain simulations. In contrast, WEIS includes a reduced order frequency-domain

approach called RAFT. The aim of integrating QBlade in the WEIS framework is to expand the set of tools available for aero-100

servo-hydro-elastic analysis and to offer design engineers an alternative to OpenFAST and RAFT. This alternative enables

increased-fidelity methods within design and optimization studies through its highly efficient implementation of the lifting-line

method and Timoshenko-FPM beam elements. As shown in Fig. 1, an OpenMDAO component was created and embedded

in the glue code of WEIS to efficiently manage the exchange of inputs and outputs between QBlade and the other WEIS

and WISDEM components, such as structural properties of the tower, floating platform natural frequencies, or pitch control105

tuning parameters, etc. An overview of the capabilities of WEIS, a discussion of available optimizers and related case studies

can be found in (Zalkind et al., 2022; Zalkind and Bortolotti, 2024; WEIS Documentation, 2025). A more detailed analysis

of the modeling approaches that are implemented in QBlade and their potential impact on design is provided in the following

sections.

SONATA

Figure 1. Tool stack of the QBtoWEIS framework. Newly integrated tools QBlade and SONATA (dark blue boxes) provide an alternative

option for aero-servo-hydro-elastic modeling. QBtoWEIS extends the WEIS workflow (Zalkind et al., 2022). Figure adapted from (Zalkind

and Bortolotti, 2024). Blade vortex lattice and beam sketch adapted from (Marten, 2020).

In order to obtain the equivalent beam parameters required for the Timoshenko-FPM beam model (i.e. the off-diagonal110

stiffness and inertia values), the Structural Optimization and Aeroelastic Analysis (SONATA) code was integrated into WEIS
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as an additional OpenMDAO-component (Fig. 1). This step is necessary because PreComp, the current cross-sectional analysis

tool available in WEIS, does not provide off-diagonal stiffness or inertia terms, nor the flapwise and edgewise shear stiffness

(GA). SONATA is a cross-sectional analysis tool capable of deriving equivalent structural properties in the form of full 6× 6

stiffness and inertia matrices for composite structures (Feil et al., 2020). SONATA was originally developed at the Institute for115

Rotorcraft and Vertical Flight, formerly Helicopter Technology Institute of the Technical University of Munich (RVF, 2025) and

later adapted for wind turbine blade applications by NREL (NREL, 2025e). The tool builds on the open-source Python-based

code for anisotropic beam analysis ANBA v4.0 (Morandini et al., 2010). The integration of SONATA into QBtoWEIS enables

co-design of problems that include blade-related design variables, such as chord length, twist angle, or spar cap thickness,

with the structural blade modeled with Timoshenko-FPM beams. This capability of QBtoWEIS has already been used in a120

publication currently under review to investigate the influence of varying cross-sectional analysis capabilities on the blade

design of a low-specific-power, 15 MW rotor (Papi et al., 2025).

2.3 Aerodynamic Wake Methods in QBlade

QBlade encompasses a traditional unsteady blade element momentum and a lifting-line free vortex wake method. According

to Perez-Becker et al. (2020), who systematically compared both wake methods in realistic conditions, the fatigue loads at125

various design relevant channels of an onshore turbine are overpredicted by the BEM method. Although the BEM method

used for the comparison did not include dynamic inflow correction and a qualitative comparison with a BEM method that

included this correction appeared to reduce the discrepancy between the models. In (Papi et al., 2024), the authors confirmed

similar findings when the comparison was performed under floating offshore conditions. Based on these findings, a reasonable

assumption would be that including a lifting-line free vortex model in the design phase could allow for less conservative and130

more efficient design solutions. Boorsma et al. (2016) compared momentum-based and vortex-based methods, validating them

with the New Mexico (Boorsma and Schepers, 2014) campaign. They observed better agreement between the higher fidelity

method and the experiment in dynamic conditions, leading them to a similar conclusion concerning improved designs and

reduced uncertainty if vortex methods are used. Schulz et al. (2025) systematically analyzed load amplitudes of the rotor thrust

force during fore-aft oscillation scenarios and considered frequency ranges that are typical for large FOWTS. They found that135

the dynamic wake effect, returning wake and unsteady airfoil effects result in discrepancies between the BEM and LLFVW

methods in unsteady scenarios. All of the aforementioned phenomena are captured by the LLVW method, while the BEM

method employs an empirical model to simulate dynamic wake and unsteady airfoil effects. However, the BEM method is

incapable of capturing the returning wake event. Among these three unsteady effects, the dynamic wake effect is the most

prevalent, even in scenarios involving very slow fore-aft oscillation of the rotor. Even though the choice of aerodynamic140

method has implications for disciplines that do not focus on loads (e.g., wake propagation, wake breakdown, turbine-to-turbine

interaction) as well, the focus of this work lies solely on loads. In this context the wake method largely differs in the way of

how the wake-induced velocities are calculated.
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2.3.1 Blade Element Momentum Theory

The blade element momentum theory has been the industry standard to simulate loads on a wind turbine for several decades.145

Its fundamental algorithm is detailed in widely used textbooks (Hansen, 2008; Burton et al., 2001). Essentially, as the name

implies, the theory combines momentum and blade element theories to find two expression of the aerodynamic thrust and two

expressions of the aerodynamic torque, which are iterated to solve for the axial induction factor a and the tangential induction

factor a′. By finding consistent values of a and a′ from both theories, an equilibrium state is established. Over the years, many

engineering models have been applied to the BEM algorithm to address certain shortcomings that are related to assumptions150

that are made by the BEM method (Branlard et al., 2022; Madsen et al., 2020; Snel and Schepers, 1995; Buhl, 2005). The

implementation in QBlade closely follows the unsteady polar BEM method as described by Madsen et al. (2020).

2.3.2 Lifting-Line Free Vortex Wake

The LLFVW wake method relies on the the basic lifting-line theory developed by Prandtl and Lanchester. The bound vorticity

of the blade is found by iteratively solving the Kutta-Joukowski theorem using estimates from 2D airfoil theory, typically155

derived from tabulated polar data.

L = ρvtot×Γ and L = Cl(α)
1
2
ρ ∗ v2

totc (1)

L is the lift force per blade section, Γ the corresponding circulation, ρ the density, vtot the total velocity and Cl the lift

coefficient that depends on the angle of attack α . The total velocity is composed by

vtot = v∞+ vmot + vΓ (2)160

with v∞ being the free stream velocity, vmot the motion velocity of the blade and vΓ the induced velocity by the wake. The

latter velocity component can be calculated via the Biot-Savart law that evaluates the contribution of all surrounding vortex

lattices on to the evaluation point (van Garrel, 2003; Perez-Becker et al., 2020; Marten, 2020).

vΓ =− 1
4π

∫
Γ(xp−x)× dl

|xp−x|3 (3)

In Eq. (3), xp is the location where the induced velocity is being evaluated, x the position vector of any given vortex element and165

dl the vectorized length of a vortex element. Solving the Biot–Savart law makes this method more computationally demanding

than the BEM method because the full wake is taken into account when evaluating the induced velocity at a given position.

Thus, to evaluate the induced velocity at a blade section, the contribution of each wake element must be calculated explicitly.

Furthermore, to convect the wake, the local induced velocity at each element is calculated to determine the convection velocity.

This treatment allows the wake to develop freely. Problems like these are referred to as O(N2) problems. In QBlade, an170

OpenCL-based GPU parallelization of the Biot–Savart evaluations enables a considerable decrease in computation time. Each

vortex element is encoded into OpenCL vector primitives and distributed across a large number of GPU cores Marten (2020).

As shown in benchmark tests in Fig. 2, the GPU implementation is about two orders of magnitude faster compared to a

single-core CPU evaluation, making it viable for load simulations and design studies.
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Figure 2. Scaling of LLFVW implementation in QBlade when GPU acceleration is used, from (Marten, 2020).

2.4 Structural Model in QBlade175

With the ever increasing sizes of wind turbines, the method to capture the structural dynamics of a wind turbine and in particu-

lar the blades is critical for accurately predicting aeroelastic loads. In floating offshore wind in particular, the coupling between

aerodynamic forces and the flexible structural response is amplified by platform motions and low-frequency excitations. The

latest generation of open-source research wind turbines (the IEA Wind-22 Megawatt Offshore Reference Wind Turbine) un-

derlines the importance of the structural model, since during its design, a link between the flapwise-bend and torsional degrees180

of freedom, often referred to as bend-twist or shear-twist coupling, was considered to passively reduce the loads in high thrust

operation conditions (Zahle et al., 2024a). In order to accurately capture this effect, the structural model of a simulation tool

should ideally resolve the coupled dynamics between bending, shear and torsion along the blade span (Papi et al., 2025).

The current state-of-the-art to model a structural wind turbine is to assemble it in a multi-body formulation in which the

tower and the three blades (in some codes also the drive train) are are connected via joints and constraints, (Guo et al., 2024).185

While outlining the development of yet another multi body framework, Guo et al. (2024) gives a good overview of available

structural solvers in wind turbine simulation tools and their assumptions. One distinction between all the FEA models is the

beam model in the multi-body formulation. OpenFAST can either rely on the ElastoDyn(NREL, 2025b) or BeamDyn (NREL,

2025a) modules. The former evokes Euler-Bernoulli beams but assumes a set of prescribed degrees-of-freedom through a

modal reduction approach (Branlard and Geisler, 2022) and, critically, neglects the torsional degree of freedom. BeamDyn on190

the other hand uses geometrically exact beam theory (Hodges, 2006). However, its computational speed makes it currently

unfeasible for optimization or design tasks.

2.4.1 Multi-Body representation in QBlade

QBlade, like OpenFAST, models the turbine structure as a multi-body system. In order to do so, the open-source multi-physics

engine Project::Chrono (Tasora et al., 2016) is integrated with the code. Each blade is discretized using a series of one-195

dimensional beam elements arranged in a co-rotational formulation, enabling the accurate capture of large displacements and

nonlinear geometric effects (Marten, 2020). Unlike in ElastoDyn, the torsional degree of freedom is available. To resolve the

influence of shear and anisotropic composite behavior, QBlade accommodates multiple beam models, namely Euler-Bernoulli,
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Timoshenko or Timoshenko-FPM. The Timoshenko-FPM beam resolves all six degrees of freedom with full cross-couplings

in the mass and stiffness matrices. This enables the representation of complex structural behaviors, such as shear-twist and200

shear-twist coupling. The computational overhead of using Timoshenko-FPM beams in QBlade is modest, making it suitable

for computationally intensive tasks such as optimization and design studies. A recent comparison by (Papi et al., 2025) em-

ployed the QBtoWEIS framework, leveraging the integration of SONATA, to assess the influence of different beam modeling

approaches on the aeroelastic response of long and flexible turbine blades and their influence on blade optimization. The study

highlights how variations in structural fidelity between Euler-Bernoulli and Timoshenko-FPM beam formulations can lead to205

notable differences in load prediction, deformation and design outcome.

3 Optimization Problem, Modeling Considerations and Computation

3.1 Optimization Problem

To assess the impact of aeroelastic modeling fidelity on CCD and MDAO, an optimization problem for the IEA Wind-22

MW Offshore RWT mounted atop the semi-submersible floating structure that builds on the architecture of the VolturnUS-S210

platform (Zahle et al., 2024a) is formulated. As shown in Fig. 3, the platform consists of a center column that connects to the

tower and three further outer columns, all connected via cylindrical members.

column spacing

outer column

   diameter

(c)(b)(a)

d
ra

ft

Figure 3. IEA 22 MW RWT baseline configuration, rendered in QBlade. (a) front view, (b) side view, (c) design variables of the floating

substructure.

The optimization problem is inspired by the problem defined by Zalkind and Bortolotti (2024) and aims to minimize damage

equivalent loads at the tower base by varying geometric parameters of the floating substructure and tuning parameters of the
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Table 1. Main system properties of the IEA 22 MW RWT, see Zahle et al. (2024a) for a complete definition.

Property Unit Value

Turbine Rating MW 22

Wind Class - 1B

Rotor Diameter m 284

Hub height m 170

Blade prebend m 8.4

Hub system mass t 120

Tower mass t 1.574

Blade mass t 82.301

Rated Wind Speed m
s

11

Rated RPM 1
min

7.061

Tip Speed Ratio - 9.5

turbine controller, under a set of constraints. This design problem was selected as a representative multidisciplinary case. Wind215

turbine rotor and substructure are often designed in isolation from one-another, frequently by different companies relying on

separate tool chains. In practice, the exchange of information between these tools is limited to high-level data. Thereby, the

impact of rotor aeroelastic modeling fidelity in substructure design is often disregarded. For this reason, this work aims to

investigate how different levels of rotor aeroelastic fidelity influences the overall design optimization of floating offshore wind

turbines, with particular attention to the coupled rotor–substructure dynamics. Controller tuning is included in the design space220

since the baseline controller settings may not remain stable when the platform geometry changes. Inappropriate tuning could

cause or amplify resonance effects and ultimately increase tower base DELs, even if the substructure geometry is improved.

In addition, including the controller enables exploration of design configurations that might otherwise be infeasible or sub-

optimal if the control system remained fixed. More specifically, as shown in Table 2, the optimizer can vary the platform draft,

outer column diameter and column spacing. The remaining design variables belong to the pitch control subsystem of the servo225

controller. These include the floating feedback gain, kfloat and the low-pass filter cut-off frequency ωfloat which are primarily

tuned to mitigate the negative aerodynamic damping problem (Skaare et al., 2007; Jonkman, 2010; Larsen and Hanson, 2007)

through the parallel compensation logic (van der Veen et al., 2012; Abbas et al., 2022). To briefly summarize the logic, the

tower-top acceleration is low-pass filtered and integrated to generate a noise-reduced estimate of the tower-top velocity. This

signal is then scaled by the gain kfloat and fed back to the pitch controller. Also part of the optimization are the closed-loop230

bandwidth of the pitch controller ωpc, which determines how quickly the controller responds to disturbances and the damping

ratio ζpc, which characterizes how oscillations in the closed-loop system decay. Both ωpc and ζpc have three control points at

wind speeds 12, 17 and 23 m/s, allowing the pitch controller’s behavior to vary across the region III.
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The multidisciplinary workflow used to evaluate each design is summarized in the extended design structure matrix (XDSM)

diagram of Fig. 4. Because varying the aeroelastic fidelity required only modifications to the QBlade turbine definition, the235

workflow remains identical across cases except for changes to either the structural beam model ('BEAMTYPE') or the aerody-

namic wake model ('WAKETYPE') under the QBlade object within in the modeling options of the WEIS problem definition.

This setup allows a controlled comparison of the influence of aeroelastic fidelity on the optimization results, with all other

components of the loop unchanged. In this way, any differences in the optimal solutions can be attributed to the fidelity level

of the aeroelastic model.240

Table 2. Design Variables and Constraints

(a) Design Variables

Design Variables Lower Bound Upper Bound

Draft 35 m 20 m

Outer column diameter 10 m 16 m

Column spacing 60 m 67.5 m

PC natural frequency (ωpc) 0.025 rad/s 0.5 rad/s

PC damping ratio (ζpc) 0.5 rad/s 2.5 rad/s

Fl. feedback gain (kfloat) 8 s 20 s

Fl. feedback cut-off freq. (ωfloat) 0.00001 rad/s 0.5 rad/s

(b) Constraints

Constraints Lower Bound Upper Bound

Max. platform mass - initial mass

Min. AEP initial AEP -

Max. platform pitch - 6.5 m

Max. nacelle acceleration - 2.85 m

Max. generator overspeed - 28.5%

Max. avg. pitch travel - 0.085 deg/s

floater heave period 14 s 18 s

floater pitch period 20 s 22 s

As shown in Fig. 4, the constraint optimization by linear approximation (COBYLA) (Powell, 1994)) is used1. The optimizer

updates the design variables and starts an analysis chain. The platform geometry is assembled, component properties (e.g.,

blade structure, platform mass) are derived and steady-state Cp-Ct surfaces are generated in WISDEM and SONATA. The

controller is tuned in ROSCO and the aero-servo-hydro-elastic simulation in QBlade is run using either BEM or LLFVW

wake models and Euler–Bernoulli or Timoshenko-FPM beam representations . The resulting time series are post-processed in245

pCrunch (NREL, 2025h) to compute tower-base DELs and evaluate constraints (e.g., platform pitch, annual energy production

(AEP), heave or pitch periods), which are returned to the optimizer to close the loop.

3.2 Modeling Considerations

The QBlade models used in all five optimizations were identical, only chosen wake and beam models differed between them.

The floating substructure model was derived from the windIO definition provided by Zahle et al. (2024b) and was assumed to be250

rigid. Furthermore, the strip-theory approach described in Zahle et al. (2024a) was applied and the hydrodynamic coefficients

(Ca, Cd and Cp) were set accordingly. In order to verify the natural frequencies of the assembled FOWT and its dynamic

response to wave excitation, Figure 36 of (Zahle et al., 2024a) was used. The response amplitude operators (RAOs) were
1Specifically, the implementation in of (Johnson, 2007)
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Figure 4. XDSM diagram of the core optimization problem.

derived from QBlade simulations using white-noise waves, following the procedure described by Ramachandran et al. (2013).

QBlade-specific parameters were defined in the modeling_options.yaml file. To reduce the influence of transients, the255

initial conditions were set to an 11 m surge displacement and a 1◦ platform pitch angle. Initial rotational speed and blade

pitch are wind speed specific and provided by the WISDEM module RotorSE. The OYE dynamic stall model was activated

with a time constant of τ = 8. Regarding hydrodynamics, distributed buoyancy was enabled, the MacCamy–Fuchs correction

was applied and Wheeler stretching was selected. The wave field was discretized into 500 linear wave components with

equal frequency spacing. Design load case (DLC) 1.1, which is based on the IEC standards (International Electrotechnical260

Commission, 2019), was used for a class IB turbine. The metocean conditions corresponding to an offshore location west of

the Isle of Barra in Scotland (Papi et al., 2022), which are particularly rough offshore conditions, were used to define the sea

state under normal conditions. The operating range of the wind turbine was covered with 10 wind speed bins2 and for each wind

speed 6 seeds were simulated, resulting in 60 simulations per iteration. To reduce the influence of transients, a 250 s transient

time was defined. The analysis time for each simulation was 600 s resulting in 850 s total simulated time per simulation. All265

results shown in this work used QBladeEE v2.0.9 and QBtoWEIS v1.1.0.

3.3 Computational Considerations and used Infrastructure

Since QBtoWEIS is parallelized, the number of simulations per iteration can be set without significantly impacting the overall

runtime, as long as sufficient Central Processing Unit (CPU) cores and GPUs are available. This is particularly the case for

BEM simulations, which only evaluate on the CPUs. In contrast, LLFVW simulations rely on GPUs and oversubscribing a270

single device can increase computational time significantly. Hence, for this work, a limit of 60 simulations per iteration was

applied to limit overall runtime. BEM simulations were executed on the CPU CLX partition at the national high performance

25, 7, 9, 11, 13, 15, 17, 20, 23 and 25 m/s
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computing center at the Zuse Institute Berlin (NHR@ZIB). Each compute node is equipped with two Intel Xeon Cascade Lake

Platinum 9242 processors, with 96 compute cores and 384 GB RAM. LLFVW simulations were run on the GPU A100 partition

at NHR@ZIB, which consists of nodes with two Intel Xeon Ice Lake Platinum 8360Y processors (72 cores total), 1 TB RAM275

and four NVIDIA A100 GPUs (80 GB HBM2 each). The physical time per iteration as well as charged core hours per node

can be found in Table 3.

Table 3. Required duration and cost per iteration on the NHR@ZIB HPC.

Aero model Struct model Duration Core hours

BEM GJ (10x) 20 min 32

BEM Euler–Bernoulli 20 min 32

BEM Timoshenko–FPM 24 min 38

LLFVW Euler–Bernoulli 40 min 400

LLFVW Timoshenko–FPM 40 min 400

4 Results and Analysis

This section presents and analyzes the results of the main optimization problem, which is aimed at reducing the damage

equivalent loads at the tower base3. The problem is run with five different aeroelastic model fidelity combinations (see Table 4)280

to assess their influence on optimization outcomes. The first combination, which constrains the torsional degree of freedom,

represents the fidelity level provided by OpenFAST combined with ElastoDyn — the current state of the art in WEIS. This

analysis is followed by a discussion in Subsection 4.3, which introduces a variation of the optimization problem with the

levelized cost of energy as a merit figure. This alternative formulation was motivated by initial findings, which suggested it

could provide additional value to this work.285

Table 4. Levels of aeroelastic fidelity compared in this study, ordered from low to high fidelity (in relative terms).

Aerodynamic model Structural model Abbreviation Fidelity level

Blade Element Momentum Euler–Bernoulli, GJ×10 BEM GJ10 Low

Blade Element Momentum Euler–Bernoulli BEM EB Low–Medium

Blade Element Momentum Timoshenko–FPM BEM FPM Medium

Lifting-Line Free Vortex Wake Euler–Bernoulli LLFVW EB Medium–High

Lifting-Line Free Vortex Wake Timoshenko–FPM LLFVW FPM High

3The load channel is defined by default in WEIS as the Frobenius norm (based on NumPy’s numpy.linalg.norm() function (Harris et al., 2020)) of

the tower base moments in fore-aft, side-side and torsion. The fore-aft moment is the primary contributor to the metric.
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4.1 Baseline Comparison

Before the optimization results are analyzed, a statistical comparison of the results from the baseline (iteration 0) is provided

in the following two subsections to highlight differences caused by the varying levels of aeroelastic model fidelity on the same

FOWT.

4.1.1 Statistical Comparison290

Figure 5 displays statistical metrics across different levels of aeroelastic fidelity for the baseline iteration. Each color represents

a distinct fidelity level. The horizontal bars indicate mean values, vertical lines the standard deviation and the upward and

downward triangles reflect the maximum and minimum values observed across all six seeds for a given wind speed bin. The

low-speed shaft force in downwind direction (a), which serves as a measure of total rotor thrust, reveals clear discrepancies

between the fidelity levels, which can be traced back to modeling fidelity. Several tendencies are consistent within regions II295

and III of the power curve:

(i) Cases with torsion-constrained or full Euler-Bernoulli beam models (*EB and GJ10) consistently show higher mean

thrust levels compared to those with a Timoshenko-FPM beam.

(ii) Cases using the LLFVW wake model show reduced variation (i.e., smaller standard deviations and min-max ranges)

(iii) Cases using the LLFVW wake model show higher thrust levels relative to BEM simulations using equivalent beam300

models.

(iv) In region III, results across all fidelity levels align more closely.

The cause for (i) can be traced back to blade twist behavior, as shown in subfigure (b). The tip of the blade for the GJ10 model

undergoes almost no twist. In contrast, the Euler-Bernoulli beam models show a steady increase in twist (towards feather) up

to rated wind speed at a mean value of around 3.5 degrees. Since cross-coupling terms are not included in this model, the305

rotation results from aerodynamically induced torsion only. The FPM-based models show a larger tip rotation of up to 5.5

deg, before decreasing back to approximatly 3.5 degrees in region III. This increased rotation around rated wind speed can be

attributed to shear-twist coupling, caused by the interaction between torsional and flapwise-shear degrees of freedom captured

in the Timoshenko-FPM beam representation. As a consequence of varying spanwise twist between the levels of fidelity, the

local angle of attack is larger in models with reduced twist. A higher angle of attack in turn, leads to larger aerodynamic310

forces in both the tangential and normal directions, which results in increased thrust and torque. Furthermore, the behavior of

reduced variation and increased thrust in LLFVW cases can be explained with several differences in wake modeling. First, the

LLFVW model captures dynamic events (e.g., gusts, floater motion) and their influence on the wake explicitly through the shed

vorticity. The BEM models in contrast require the dynamic inflow corrections (Mancini et al., 2023). Second, LLFVW tracks

induction locally along the blade. In contrast, classical BEM assumes uniform induction within each annulus. Even though the315

polar grid BEM extension allows for azimuthal variation, this treatment remains sectional and does not provide the fully local
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Figure 5. Comparison of statistical metrics for the baseline configuration (iteration 0) of each fidelity level. (a) low-speed shaft force in

downwind direction [kN], (b) rotation of blade tip [deg], (c) pitch angle of the platform [deg], (d) rotational speed [1/min], (e) blade pitch

angle [deg], (f) tower base fore-aft moment [kNm]. For the sake of readability, the maximum values for subplot (b) are not shown.

resolution of induction that is obtained with LLFVW. As a result, the inflow is less accurately represented, typically yielding

more fluctuating angle-of-attack values, as discussed by Boorsma et al. (2016). Concerning (iii), the LLFVW methods tends to

predict lower overall rotor induction compared to BEM, leading to higher axial wind velocities in the rotor plane. As a result,

the controller’s wind speed estimator drives the system toward a higher rotational speed in order to maintain an optimal angle320

of attack. This in turn leads to increased aerodynamic loading and hence larger thrust forces. Finally, the reduced difference

between models in region III is due to pitch controller activation above rated windspeed. Here, the controller prevents the

rotational speed to overshoot the rated speed and reduces the aerodynamic force by pitching towards feather. As shown in

subfigure e, the torsion-constrained BEM GJ10 model requires the highest blade pitch angles, followed by the Euler-Bernoulli

beam models and finally the ones with Timoshenko-FPM beams. For a an equivalent beam model, the LLFVW cases require325

more pitch actuation than their BEM counterparts, again reflecting the higher aerodynamic loading described earlier. However,

pitch standard deviation is lower in LLFVW simulations. Platform pitch and tower base fore-aft moment (subfigures c and f)

are strongly correlated with rotor thrust and, above region III, blade pitch.
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4.1.2 Time Domain Analysis

Figure 6 presents a selection of channels from a full run of a single seed at an 11 m/s average wind speed. This operating point330

is well suited to compare the different cases, as the wind speed frequently crosses the rated threshold, triggering transitions

between torque and pitch control. Within the shown time window, the wind velocity dips noticeably below rated on three

occasions (around 400 s, 550 s and 700 s), each time causing the generator torque (subplot e) to drop from its rated value. Two

trends emerge:
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Figure 6. Comparison of baseline timeseries for a case with 11 m/s of each fidelity level. (a) wave elevation at reference point [m], (b) wind

velocity at hub height [m/s], (c) rotational speed [1/min], (d) blade pitch angle [deg], (e) generator torque [kNm], (f) low-speed shaft force

in downwind direction [kN], (g) rotation of blade tip [deg], (h) pitch angle of platform [deg].

(i) simulations using the BEM wake model exhibit a stronger torque reduction compared to the LLFVW cases and require335

more time to recover to rated torque;

(ii) with the aerodynamic wake method equal, the FPM-based structural models generally produce lower torque than their

EB counterparts.
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The first trend is consistent with the differences in axial induction predicted by the two wake methods, as discussed in

Section 4.1.1. The second is due to blade twist behavior (subplot g), where the respective beam model affects the torsion at340

the blade tip. The blade pitch time series (subplot d) shows actuation whenever wind speed exceeds rated. As expected, the

LLFVW cases initiate pitching slightly earlier, in line with their earlier recovery of generator torque to rated levels. Further,

a small offset is visible between the LLFVW and BEM cases, which persists even during periods where blade pitch nears its

saturation angle (e.g., around 700 s). Finally, the thrust and platform pitch responses (subplots f and h) reflect the aeroelastic

fidelity effects identified previously:345

(i) LLFVW models predict higher thrust than BEM;

(ii) EB models predict higher thrust than FPM;

(iii) the torsion-constrained GJ10 case yields the highest thrust among all.

4.2 Convergence Trends

This section presents the convergence trends of the optimization process, focusing on the merit figure (damage equivalent loads350

at the tower base), the constraints and the design variables.

4.2.1 Merit Figure
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Figure 7. Convergence of the tower base bending moment DEL. (a) shows the absolute DEL values and (b) the relative change of each fidelity

level with respect to its initial iteration. The maximum iteration limit was set to 120, where all optimizations appear to have converged.

All fidelity levels achieve a substantial reduction in DEL at the tower base over the optimization process, though the final

achieved optima vary. The BEM GJ10 model converges to the least favorable solution in terms of percentage point reduction,

while the BEM EB model settles slightly lower. The remaining three configurations (BEM FPM, LLFVW EB and LLFVW FPM)355

achieve the largest relative reductions of approximately 12.5–13.1%. This trend suggests that increasing aeroelastic fidelity

improves not only the accuracy of load prediction but also enables more effective optimization.
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4.2.2 Design Variables
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Figure 8. Convergence trends of design variables impacting the parallel compensation logic of the pitch controller to avoid negative damping

(a, b), the pitch control tuning parameters (c, d) and the resulting proportional and integral gains (e, f).

Figure 8 displays the convergence trend of the feedback gain and low pass filter frequency of the parallel compensation logic

(a-b), the value of the three control points for the pitch controller bandwidth ωpc and damping ratio ζpc (c-d) at the optimal360

iteration, as well as the optimized gain schedules for the proportional kp,pc and integral terms ki,pc of the collective pitch

controller across the wind speed range (e-f). Generally, higher natural frequencies ωpc reduce the rotor’s response time, while

larger damping ratios ζpc reduce the number of oscillations during the response (Abbas et al., 2022). The proportional gain

schedule, which depends on both ωpc and ζpc, stands out for the BEM GJ10 case with larger absolute gains compared to the

other fidelity levels, which otherwise converge to a relatively close solution. The integral gain schedule, depending solely on365

ωpc, reveals a difference at high wind speeds, where the BEM GJ10 case shows a notable increase for above rated wind speeds,

while the remaining fidelity levels maintain a flatter profile. As detailed by Abbas et al. (2024), high damping ratios allow for

higher proportional gains and can help satisfy the overspeed constraint. Since all controllers were tuned with the same objective

of minimizing tower base DEL, the resulting control parameters represent the optimal solution for a given platform, simulated

with the given aero-elastic fidelity level. Similar to the conclusion drawn by Zalkind et al. (2022) for platform-to-platform370

comparisons and the influence on a given platform type on the design of a tower, this approach enables a fair assessment of

how modeling fidelity affects the platform–controller design process. Therefore, differences in the converged solution of the
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physical system (aka the floater), as presented in the following, can be attributed primarily to the influence of the aeroelastic

fidelity on the optimization.
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Figure 9. Convergence trends of design variables impacting the physical dimensions of the floating substructure and the resulting platform

mass.

Figure 9 shows the evolution of the design variables related to the physical dimensions of the floating substructure (a-c) and375

the resulting platform mass (d). The platform mass of the initial iteration was set as a constraint. As a result, any increase in one

geometric design variable must be offset by a decrease in others in order to comply within this constraint. Across all fidelity

levels, the optimizer significantly reduced the outer column diameter (subplot a). This trend can be explained by hydrodynamic

considerations, where decreasing the waterplane area reduces wave excitation and leads to lower dynamic loading. The BEM

GJ10 model converged to the largest final diameter, approximately 40 cm above the others. The remaining models are closely380

matched, with both FPM-based models converging to slightly smaller diameters than their Euler-Bernoulli counterparts. In

contrast, column spacing (subplot b) was increased in all cases, reaching the upper bound for all models except for LLFVW FPM,

which converged to a value approximately 1 meter below that limit. Increasing the column spacing increases the hydrostatic

restoring moment. This compensates for the reduction of the restoring moment caused by reducing the outer column diameter.

No consistent trend is observed in the draft evolution (subplot c). It is worth stating that all configurations satisfied the platform385

mass constraint. The FPM-based models converged to lower mass levels than the EB-based ones. Interestingly, the LLFVW

FPM configuration resulted in the lowest final platform mass, implying that a more efficient structural layout is enabled by the

higher-fidelity aerodynamic representation.

Figure 10 presents a selected subset of the constraints that were set for the optimization problem. The AEP is plotted in

relative terms (subplot e), as each model starts from a different initial value. This respective initial AEP was imposed as a390

minimum constraint in each case to not allow the optimizer to trade a reduction in loads for a reduction in AEP. Subplot (f)
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shows the blade root flapwise bending moment DEL, which was not explicitly included in the optimization problem, but is

shown to illustrate that the found solutions did not lead to an increase in blade loading. The generator overspeed (subplot b) and

the maximum platform pitch angle (subplot d) constraints are active across all fidelity levels and, in the case of BEM FPM, the

overspeed constraint is not satisfied within 120 iterations, rendering the solution infeasible. The average pitch travel constraint395

(subplot c) is active only for the torsion-constraint case (BEM GJ10). Here, the absence of twist-to-feather load alleviation

(aerodynamic and structural) in this case leads to increased pitch actuation, making this constraint more design-driving in

comparison to the other levels of fidelity. The maximum platform pitch constraint is primarily driven by the reduction in

outer column diameter. While increasing column spacing (as discussed in Figure 9) can offset the loss of hydrostatic restoring

moment from smaller columns, the effect of aeroelastic fidelity becomes evident, since platform pitch is directly driven by400

rotor thrust and differences in predicted thrust between fidelity levels lead to different allowable column diameters.
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Figure 10. Convergence trends of the most relevant constraints, along with the flapwise DELs at the blade root. Although the blade root

DELs were not part of the optimization problem, they confirm that none of the five cases resulted in increased load levels for the blades.

4.2.3 Frequency Domain Analysis

Figure 11 shows the power spectral densities (PSDs) for selected channels for the baseline (left column) and final iterations

(right column) at an average wind speed of 13 m/s. The power spectrum of the tower base fore-aft bending moment (subplots

a and b) is quite revealing concerning the energy at certain frequencies which were reduced by the optimizer. Focusing on the405

spectrum of tower base fore-aft moment for the baseline (subplot a), four distinct frequencies can be identified. The first one
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Figure 11. Power spectral densities of selected channels for the baseline and final iterations. The left column corresponds to the baseline and

the right column to the final iteration for each method. The spectra are obtained from concatenated time series across all six seeds at a wind

speed of 13 m/s. The dot-hatched areas represent the wind and wave spectra (scaled for visibility). The former is best seen between 0 and

0.05 Hz and the later between 0.05 and 0.2 Hz.

(from low to high frequencies) is present at the floater’s natural pitch frequency ( 0.033 Hz). The next two frequency peaks lie

within the linear wave frequency range and correspond to the excitation of the surge and pitch degrees of freedom by the linear

waves. As these modes are phase-shifted and partially cancel each other out, resulting in the two-peak shape. The last one sits

around the 3P-frequency of the rotor. In subplot b, the corresponding spectra to the final iterations, it can be observed that the410

peak at the natural floater pitch frequency is completely eliminated. This is achieved mainly through the tuning of the floater

bandwidth (ωpc), were a reduced bandwidth at corresponding wind speeds seems beneficial. The corresponding PSD’s of the

blade pitch actuation (c-d) reveal no actuation within the natural floater pitching frequency in the optimized solution, which is

in contrast to the baseline. Further, the energy within the first peak within the linear wave frequency range (0.05–0.1 Hz), is

reduced by roughly half, while the second peak (0.11–0.16 Hz) remains largely unaffected. Given the multi-dimensional and415

nonlinear nature of the design space, it is difficult to draw definitive causal conclusions. However, the results indicate that this

reduction is primarily achieved through a decrease in the waterplane area. Hence, one can observe that the solution with the

largest outer column diameter (BEM GJ10) undergoes higher excitation in this frequency. A further reduction, albeit a smaller
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gain compared to the reduction of waterplane area, within this frequency range can be explained by the blade pitch actuation

(subplots c–d). Within the 0.05–0.1 Hz frequency range, slightly increased energy of blade pitch actuation is present in the420

final iteration - a result of the increased low-pass filter frequency (see Fig 8b). This leads to part of the wave excitation being

dampened through the parallel compensation logic. This comes at a cost of increased platform pitching motion. Subfigures

e-h are closely related to the blade pitch actuation, hence the peaks at platform natural frequency as well as the higher linear

frequency range is reduced. Finally, the 3P excitation is also largely unaffected.

4.3 LCOE Optimization425

From the analysis so far, there seem to be advantages related to increasing the level of aeroelastic fidelity in the design stage. In

the previous optimization setup, however, where tower base loads were chosen as the merit figure and both AEP and platform

mass were only treated as constraints, further reductions in mass or gains in AEP were not rewarded as long as the constraints

were satisfied. As shown in Fig. 9, the LLFVW FPM case not only achieved a sizable reduction in loads but also lowered platform

mass more than the other cases. For this reason, the optimization problem was reformulated with LCOE as the merit figure. In430

this setup, no constraints on mass, loads, or AEP were applied. Hence, the optimizer could search for the most cost-effective

trade-offs between platform cost and AEP. The convergence trends of LCOE and its main contributors are shown in Fig. 12. All

cases increased AEP and reduced platform cost. As already discussed, the same initial design (iteration 0), leads to variations in

predicted AEP between different fidelity levels (Fig. 12c). The main trends are that LLFVW methods predict a larger AEP than

BEM methods. As previously mentioned, this is a result of a chain of events that can be traced back to the induced velocities.435

LLFVW estimates smaller inductions than BEM. This increases the wind velocity in the rotor plane, leading the controller to

increase the rotational speed in order to operate at an optimal tip speed. Ultimately, this results in an increase in mean thrust and,

critically for AEP, torque (see Figs.5 and 6). Furthermore, as was discussed in Section 4.1.1, passive load alleviation (achieved

through shear-twist coupling), which is only captured with the Timoshenko-FPM beams, affects AEP prediction and causes

the observed differences in this metric. This carries through to the baseline LCOE values (Fig. 12a), which makes it difficult440

to draw a fair comparisons between the five cases. A regression analysis of sensitivities of LCOE with respect to AEP and

platform cost reveals that for a 1% increase in AEP, the LCOE decreases almost 14 times more compared to a 1% decrease in

cost. Consequently, even slight discrepancies in AEP prediction have the potential to significantly influence the LCOE outcome

and mask reductions in platform mass (see Appendix A). Platform cost, in contrast to AEP, is not influenced by aeroelastic

fidelity in the baseline design. Here, the three BEM-based optimizations demonstrate larger reductions in platform cost as the445

fidelity of the beam type increases (5.4% for GJ10, 6.0% for Euler–Bernoulli and 6.8% for FPM). The LLFVW-based cases

achieved further reductions of 7% and 8.3% in platform cost respectively, also improving the result with increasing fidelity

level of the beam type.

From Table 5, it is evident that all optimized cases reduced both the draft and the outer column diameter compared to the

initial design. In contrast, column spacing varies between cases, which in turn drives the differences in platform mass. A key450

limiting factor was the heave period constraint (Fig. 13a), whose lower bound was active in all optimizations. This constraint

was imposed to prevent the platform natural heave frequency to shift towards the linear wave frequency range.
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Figure 12. Convergence trends of absolute and relative levelized cost of energy (a) and (b), annual energy production (c) and (d) and platform

cost (e) and (f). For the BEM-GJ10 configuration, the iteration limit was increased to 150, as convergence was not achieved within the initial

limit of 120 iterations.

Table 5. Initial and final design variable values defining the dimensions of the floating substructure.

Aerodynamic model Beam model draft [m] outer column diam. [m] column spacing [m] platform mass [t]

initial initial 25.0 12.5 65.00 2.1235e03

BEM GJ (10x) 21.1 12.21 65.87 1.9160e03

BEM Euler–Bernoulli 20.0 12.11 67.49 1.8943e03

BEM FPM 20.0 12.0 66.92 1.8681e03

LLFVW Euler–Bernoulli 20.0 11.72 66.76 1.8593e03

LLFVW FPM 20.1 11.81 65.35 1.8119e03

Table 6 lists the final design variables related to controller tuning. Across all cases, the floating feedback gain is reduced close

to its lower bound (–8 s), while the low-pass filter frequency (ωfloat) shows more variation between models. The bandwidth

at wind speed control points 12 and 17 m/s, consistently is reduced to lower values, while it is elevated at 23 m/s. This mirrors455

the trends seen earlier in Fig. 8c, with the difference that this time BEM EB along with BEM GJ10 and LLFVW EB to a lesser

extend, pushes the bandwidth higher compared to the remaining cases. The presumable cause for reducing bandwidth at 12 and

22

https://doi.org/10.5194/wes-2025-174
Preprint. Discussion started: 25 September 2025
c© Author(s) 2025. CC BY 4.0 License.



17 m/s is that the pitch controller reacts more slowly to above rated rotational speed and thereby favors AEP, while increasing

bandwidth at 23 m/s is a requirement to comply with the generator overspeed, which is a constraint that is active across all

cases (Fig. 13b).460

Table 6. Initial and final value of design variables influencing the behavior of the servo controller.

Aerodynamic model Beam model kfloat [s] ωfloat [rad/s] ωpc [rad/s] ζpc [-]

initial initial 10 0.27 [0.15|0.15|0.15] [1.90|1.90|1.90]

BEM GJ (10x) −8.20 0.24 [0.085|0.043|0.25] [1.63|2.50|1.33]

BEM Euler–Bernoulli −8.11 0.16 [0.065|0.043|0.26] [1.40|2.50|2.49]

BEM FPM −8.00 0.32 [0.049|0.030|0.12] [1.63|2.50|2.35]

LLFVW Euler–Bernoulli −8.30 0.32 [0.054|0.047|0.17] [1.82|2.50|2.17]

LLFVW FPM −8.19 0.22 [0.047|0.036|0.12] [1.64|2.37|1.90]
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Figure 13. Active constraints during the optimization with merit figure LCOE along with damage equivalent loads of the tower base and

blade root bending moment DELs.

The overspeed constraint appears to be particularly limiting in cases involving beam models that cannot capture the effect

of structural shear-twist coupling (GJ10 and EB) and less so for the cases with Timoshenko-FPM beams. One possible reason

for this is that, during unsteady events such as gusts, the increased blade loading causes a blade modeled with Timoshenko-

FPM beams to twist toward feather due to shear–torsion coupling. This eases the load, which reduces the requirement on the

pitch controller to respond rapidly and enables and operation with lower bandwidth, benefiting AEP. In contrast,GJ10 and EB465

models do not resolve this mechanism, resulting in higher required controller bandwidth. Interestingly, the bandwidth tuning
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for the LLFVW EB case falls between the FPM and EB models at the control point of 23 m/s. This suggests that the choice

of aerodynamic model also mitigates the overspeed constraint. Although it is somewhat surprising that the limited amount of

wake-induced velocity influences controller tuning in these low tip speed ratio conditions, it is worth noting that the oscillation

occurs within a reduced frequency range of 1-24. As laid out by Schulz et al. (2025), unsteady events in this reduced frequency470

range are primarily the dynamic wake effect and cause differences in rotor thrust amplitudes between BEM and LLFVW

methods, with the latter predicting considerably smaller amplitudes. Even though tower base and blade root DELs were not

part of the optimization problem, Figures 13c and d clearly show that increasing the modeling fidelity again yields beneficial

results. As the level of aeroelastic fidelity increases, both tower and blade loads display stronger reductions.

5 Conclusion and Outlook475

This work introduced QBtoWEIS, a new framework that integrates the QBlade and SONATA tools into the WEIS co-design

optimization framework for floating offshore wind turbines. This integration adds two new levels of aeroelastic fidelity to

WEIS, namely QBlade’s unsteady polar blade element momentum and lifting-line free vortex wake methods. QBlade also

provides a multi-body structural solver that uses one-dimensional beam representations, including both Euler-Bernoulli and

Timoshenko fully populated matrix elements. To enable the integrated generation of six-by-six stiffness and inertia matrices480

from the blade layup definition in WindIO, the cross-sectional analysis tool SONATA was also integrated into WEIS. This

allows aerodynamic and structural modeling fidelity to be systematically varied within control co-design optimizations of

floating offshore wind turbines. A comparative design study was carried out using QBtoWEIS to investigate the impact of

aeroelastic fidelity on the controller and substructure designs of a modern wind turbine on a semi-submersible platform. Two

optimization problems were formulated and each was run with five different combinations of aerodynamic and structural485

fidelity levels. The first was a torsion-constrained Euler–Bernoulli beam model combined with an unsteady blade element

momentum theory to mimic the level of fidelity already available in WEIS. Further, Euler–Bernoulli with torsion enabled and

a Timoshenko-FPM beam model were paired with the blade-element-momentum or lifting-line free-vortex-wake code.

The first optimization problem was formulated to minimize the damage equivalent loads for the tower base moment by vary-

ing the dimensions of the floating substructure together with the pitch controller tuning parameters. The results confirmed that490

modeling fidelity choices can meaningfully influence key design-driving metrics, such as the rotor thrust and torque and subse-

quently platform pitch, blade pitch actuation and tower base fore-aft moment. Across the investigated fidelity combinations, the

optimal designs produced different levels of tower base DEL reduction, as summarized in Table 7. A central mechanism that

enabled reduced loads was the decrease in waterplane area, which was achieved by reducing the outer column diameter. The

maximum platform pitch constraint limited the minimum feasible diameter for each aeroelastic model. Hence, the influence of495

aeroelastic fidelity on rotor thrust directly affects the resulting platform design. Notably, the LLFVW FPM case converged to a

design with considerably less platform mass than the BEM FPM case and the other configurations.

4The reduced frequency is a dimensionless number defined as fr = fD
v0

, with f denoting the nacelle velocity frequency in fore-aft direction, D the diameter

and v0 the wind velocity parallel to the rotor axis (Schulz et al., 2025)
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Table 7. Summary of the first optimization problem that aims to reduce tower base damage equivalent loads.

Aerodynamic model Beam model rel. platform mass [%] rel. DEL TwrBsMyt [%]

BEM GJ (10x) −1.1 −10.71

BEM Euler–Bernoulli −0.6 −11.84

BEM FPM −2.26 −12.47

LLFVW Euler–Bernoulli −0.35 −13.08

LLFVW FPM −4.23 −12.76

The second optimization was a reformulation of the first problem with levelized cost of energy as the merit figure. Even

though this metric proved not to be a perfect basis for comparison across fidelity levels, as differences in baseline AEP values

differ significantly between models and AEP affects LCOE significantly more than platform cost, clear trends nevertheless500

emerged as shown in Table 8. In this regard, the LLFVW cases achieved the largest platform cost reductions (up to 8.3%),

while the BEM-based cases showed smaller gains. Furthermore, the generator overspeed constraint appears to drive differences

in controller tuning between the models. This constraint separates the BEM GJ10 and Euler-Bernoulli cases from the higher-

fidelity models, suggesting that aeroelastic fidelity influences tuning.

Table 8. Summary of the second optimization problem that aims to reduce levelized cost of energy.

Aerodynamic model Beam model rel. AEP [%] rel. platform cost [%] rel. LCOE [%]

BEM GJ (10x) 0.48 −5.43 −0.88

BEM Euler–Bernoulli 0.44 −6.04 −0.89

BEM FPM 0.49 −6.79 −0.99

LLFVW Euler–Bernoulli 0.44 −7.04 −0.99

LLFVW FPM 0.34 −8.32 −0.96

Higher modeling fidelity comes at a non-negligible computational cost. With the infrastructure used in this study, the505

LLFVW implementation in QBlade is approximately 12.5 times more expensive than the BEM method and runs around

half the speed, while the Timoshenko-FPM beam model costs approximately 15% more than the Euler–Bernoulli formulation.

The question whether an increase in modeling accuracy or a reduction in uncertainty justifies the additional expense has no

straightforward answer. However, this work indicates that increasing the level of aeroelastic can lead to more efficient designs.

This is mainly due to two mechanisms:510

(i) Reduced conservativeness: Design-driving parameters such as damage equivalent loads or annual energy production

differed considerably between the compared levels of fidelity, even for identical systems (iteration 0). Increasing the

level of fidelity thus has the potential to reduce conservatism in the design.

(ii) Broader design space in constrained problems: the higher fidelity methods were able to navigate in a broader design

space, relatively speaking, due to lower levels of thrust and torque (through shear-twist coupling) as well as reduced515
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standard deviations and min-to-max ranges of various quantities (caused by explicit modeling of the wake). This resulted

in variations in both controller tuning and the sizing of the platform.

In contrast to other studies, where LLFVW methods could only be applied to a few, short and simplified cases, the efficient

numerical implementation in QBlade enables its inclusion in the design phase. Further efficiency gains in numerical algorithms,

combined with the rapid global expansion of compute infrastructure should continue to reduce the relative expense of such520

models and potentially enable an increased usage of higher fidelity tools in future design processes. Furthermore, multi-fidelity

approaches that combine the efficiency of lower-fidelity models with the accuracy of higher-fidelity methods, as demonstrated

by Jasa et al. (2022), offer the possibility to include these methods in design processes. Future work will focus on exploring

strategies to effectively combine LLFVW and BEM methods.
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Nomenclature

AI Artificial Intelligence

AEP Annual Energy Production

BEM Blade Element Momentum Theory

CapEx Capital Expenditure550

CCD Control Co-Design

COBYLA Constrained Optimization by Linear Approximations

CPU Central Processing Unit

EB Euler–Bernoulli (beam theory)

FEA Finite Element Analysis555

FOWT Floating Offshore Wind Turbine

FPM Fully Populated Matrix

LCOE Levelized Cost of Energy

LLFVW Lifting-Line Free Vortex Wake

MDAO Multidisciplinary Design Analysis and Optimization560

NREL National Renewable Energy Laboratory

NHR@ZIB national high performance computing center at Zuse Institute Berlin

PSD Power Spectral Density

RAO Response Amplitude Operator

RNA Rotor–Nacelle Assembly565

SONATA Structural Optimization and Aeroelastic Analysis

WEIS Wind Energy with Integrated Servo-control

XDSM (eXtended Design Structure Matrix
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Figure A1. Linear regression fits showing the relationship between LCOE and platform cost (a), platform mass (b) and AEP (c).

As illustrated in Figure A1, the linear regression fits demonstrate the relationship between the levelized cost of energy

and variations in platform cost, mass and AEP. The analysis indicates that even small changes in energy production have a

significant impact on the LCOE metric. At the same time, the effect of platform cost and subsequently mass is very small.

In order to quantify the relative importance of on the LCOE, the sensitivities regarding LCOE are calculated for the varying

measures. These sensitivites can be expressed through elasticity, which can be understood as the percentage change in an output575

(LCOE in this case) with respect to a percentage change in an input variable. For a generic input x and output y, the elasticity

is can be defined as follows (Hamby, 1994):

b =
dY

dX

(
X

Y

)
(A1)

To obtain the X and Y in Eq. A1, representative values for platform mass, cost and AEP (for the X) and LCOE (for the Y)

must be selected. For these representative values, the average was calculated across the varying aeroelastic fidelity levels from580

the initial iteration. The elasticities and further details concerning the linear regression are presented in Table A1.

Table A1. Linear-regression coefficients, fit statistics and elasticities of LCOE with respect to platform mass, platform cost and AEP, averaged

across the five aeroelastic-fidelity optimizations.

platform mass platform cost AEP LCOE

Representative value 21.2 [Mt] 11.81 [M$] 110 [GWh] 97.9 [$/MWh]

Averaged R2 0.12 0.12 0.88 –

Averaged intercept 93.4 [$/MWh] 90.5 [$/MWh] 194.4 [$/MWh] –

Averaged slope 2.014e−10 [$/(kWh·kg)] 6.031e−10 [$/(kWh·$)] -8.736e−10 [$/(kWh2)] –

Averaged elasticity 0.043 [%] 0.073 [%] -0.99 [%] –
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