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Abstract. The geometrically nonlinear analysis of Timoshenko beams with variable cross-sections remains a challenging task
in engineering practice, particularly for structures subjected to large deformations. While co-rotational (CR) formulations have
been widely adopted for geometric nonlinear analysis, most existing CR-based beam models assume constant cross-sectional
properties, limiting their applicability to beams with variable geometries. To overcome this limitation, this study introduces a
novel co-rotational formulation specifically tailored for variable cross-section Timoshenko beams. The proposed approach
integrates two key innovations: (1) the development of an improved spatial Timoshenko beam element employing analytical
displacement shape functions to accurately capture bending deformation in variable cross-sections, and (2) the introduction of
an efficient Gaussian integration scheme for computing stiffness and mass matrices, eliminating the need for explicit moment-
of-inertia evaluations at each cross-section. The tangent stiffness matrix is systematically derived within the co-rotational
framework. The method is validated through five benchmark examples, including comparisons with experimental data and
numerical results from the literature. Results demonstrate that the proposed model achieves superior computational accuracy
and efficiency in handling large deformations, dynamic responses, and nonlinear behaviors of beams with irregular or
proportionally graded cross-sections, offering a robust alternative to existing variable cross-section beam formulations.

Keywords: Timoshenko Beam, Geometric Nonlinear Analysis, Co-rotational Formulation, Variable Cross-section.

1. Introduction

Beam structures are fundamental load-bearing components in various engineering disciplines, valued for their high strength,
rigidity, and low weight. Although uniform cross-section beams have been extensively studied, modern engineering
applications increasingly utilize non-uniform flexible beams to optimize mass distribution and enhance mechanical
performance in structures such as wind turbine blades, robotic manipulators, and aerospace components (Xiao et.al., 2024;
Elkaimbillah et al., 2021;Wang et al., 2014). These variable cross-section flexible beams frequently experience large
deformations under operational loads, introducing geometric nonlinearities that invalidate classical linear beam theories based
on small deformation assumptions. Therefore, understanding the geometric nonlinearity of flexible beam structures with non-
uniform cross-sections is essential for accurate engineering analysis of such structures.

Substantial research efforts have been dedicated to developing finite element methodologies for the geometric nonlinear
analysis of flexible beams structures. The most commonly used finite element methods are the Total Lagrangian (TL)
(Heyliger et al., 2020; Saravia et al., 2012; Marjaméki et al.,2009) and Updated Lagrangian(UL) (Greco et al., 2022; Turkalj
et al., 2012; Kordkheili et al., 2011) formulations. While these approaches are widely adopted in commercial software due to

their broad applicability, they have inherent limitations. Notably, these methods do not account for coordinate system changes
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following beam element deformation, leading to unacceptable calculation errors when elements undergo large rotations. To
address this issue, an effective alternative for developing nonlinear beam elements is the co-rotational (CR) formulation.

Research on CR finite elements begin with the pioneering work of Wempner (Wempner, 1969), Belytschko and Hsieh

(Belytschko and Glaum, 1979), and Argyris and colleagues (Argyris et al., 1979). The key idea behind CR formulations is to
decompose the motion of a beam element into the sum of a rigid body motion and a pure deformational displacement, using a
local reference coordinate system that continuously rotates and translates with the element. Pioneering work by Rankin et al.
(Nour-Omid and Rankin, 1991; Rankin and Brogan, 1986) established a standard framework for calculating CR beam
formulation. Another significant contribution to CR beam theory was made by Crisfield and his collaborators (Crisfield, 1990;
Crisfield and Moita, 1996; Crisfield et al., 1997), who applied the CR formulation to solve various types of geometric
nonlinearities and proposed a consistent method for computing element equilibrium equations. Behdinan et al (Behdinan et al.,
1998) extended the consistent CR static analysis to the dynamic analysis of beams undergoing large deflections. Hsiao et
al.(Hsiao et al., 1999) introduced a consistent CR total Lagrangian finite element formulation for the geometrically nonlinear
dynamic analysis of Euler beams with large rotations but small strain. Early CR methods used different shape functions for
computing elastic and inertial force vectors of the beam element, whereas Li et al. (Le et al., 2011; Le et al., 2014) adopted
cubic interpolations to formulate both inertia and internal local terms, and employed their new CR formulation to perform
nonlinear dynamic analysis of 2D and 3D beams. The computational efficacy and accuracy of CR approaches have further
expanded their applications across various structural systems (Moon et al., 2023; Meng et al., 2016; Wang et al., 2018; Kim et
al.,2022; Shen et al., 202 1; Timoshenko et al., 1930). However, most existing CR formulations assume constant cross-sectional
properties, significantly limiting their applicability to variable cross-section flexible beam designs.

The increasing use of non-uniform flexible beams has driven recent research into their nonlinear behavior. The analog equation
method (Sapountzakis and Panagos, 2008; Sapountzakis and Panagos, 2008) has been employed for the nonlinear analysis of
Timoshenko beams undergoing large deflections with variable cross-sections. Yu and Zhao (Yu et al., 2024) developed a
viscoelastic beam element based on the absolute nodal coordinate formulation for various cross-sectional structures, where the
modified Kelvin-Voigt viscoelastic constitutive model was introduced to describe the large deformation of viscoelastic
materials. Building on this work, Yu et al. (Yu et al.,2024) further proposed an improved absolute nodal coordinate formulation
for analyzing the nonlinear behavior of variable cross-sections with large aspect ratios. Elkaimbillah el al. (Elkaimbillah et al.,
2021) employed Vlasov kinematics to develop a one-dimensional finite element model for the nonlinear dynamic analysis of
thin-walled composite beams with open variable cross-sections. Additional studies have focused on the nonlinear behavior of
axially functionally graded beams with various cross-sections (Kumar et al., 2015; Ghayesh, 2018; Sinir et al., 2018; Xu et al.,
2021). Regarding CR beam models for variable cross-sections, Nguyen and Gan (Nguyen, 2013; Nguyen and Gan, 2014)
employed the CR beam element to investigate the large displacement of tapered cantilever beams made of axially functionally
graded materials. Moon et al. (Moon et al.,2023) extended the work of Crisfield (Crisfield and Moita, 1996) on CR beam
elements by incorporating the fully populated and non-uniform cross-sectional stiffness matrix, expressed as a function of the
axial length, to develop an anisotropic CR beam model for variable cross-sections. Nevertheless, current CR methods for non-
uniform flexible beams remain constrained by computational inefficiency and limited precision.

Nevertheless, most existing CR formulations assume uniform cross-sectional properties, which significantly restricts their
applicability to modern designs employing tapered or functionally graded beams. Although a few studies have attempted to
incorporate cross-sectional variations within the CR framework, they often suffer from inadequate accuracy or computational
inefficiency, especially when the cross-section changes abruptly or the beam undergoes large rotations.

To overcome these persisting challenges, this paper presents a refined co-rotational beam model specifically designed for
variable cross-sections, with three principal contributions:

A novel variable-cross-section Timoshenko beam element is formulated using analytical displacement shape functions derived

from the equilibrium equations of a Timoshenko beam. This approach eliminates the truncation errors associated with standard
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polynomial interpolations and provides a more accurate description of the bending deformation, thereby enhancing the overall
precision of the co-rotational procedure.

An efficient numerical integration strategy based on Gaussian quadrature is introduced to compute the element stiffness and
mass matrices. This strategy avoids the need to explicitly evaluate the moment of inertia at each cross-section, leading to a
substantial reduction in computational cost while maintaining accuracy.

A consistent tangent stiffness matrix is derived within the co-rotational framework, explicitly accounting for the geometric
nonlinearities induced by large displacements and rotations. The formulation is general enough to accommodate both irregular
and proportionally tapered cross-sections, extending the applicability of CR methods to a broader class of engineering
structures.

The remainder of this paper is structured as follows: Section 2 develops the improved stiffness and mass matrices for the
variable cross-section beam element. Section 3 describes the co-rotational formulation for geometric nonlinear analysis.
Section 4 validates the proposed model through a series of benchmark examples, including constant and variable cross-section
beams, a tapered frame, and a dynamic frequency analysis. Finally, the main conclusions of this investigation are thereafter

summarized in Section 5.

2.The improved spatial Timoshenko beam element with variable cross-section

The CR method enables the use of linear Timoshenko beam elements to derive the tangent stiffness matrix in the global
coordinate system. Typically, interpolated shape functions are employed to construct the beam element. However, most of
these shape functions approximate beam displacements, which introduces truncation errors and decreases computational
accuracy. In this section, an improved Timoshenko beam element with a variable cross-section is proposed to improve
computational accuracy by employing analytical displacement shape functions for bending deformation. The specific process
is outlined below.

As illustrated in Fig. 1, a beam with variable cross-section is considered. The beam element has a total length L, with the
coordinate origin at the left end. The x-axis is aligned with the longitudinal direction, while the y- and z- axes align with the
principal axis of the cross-section. Typically, the displacement at any point within the spatial beam element is represented
by{u,v,w,0,,0,,0,} where u is the axial displacement along the x axis, v and w are the transverse displacements along the y
and z axis, respectively, and 6y, 8,, 8, denote the rotations about the x, y, and z axis, respectively. The cross-section parameters
are defined: where b is the width, /% is the thickness, S is the cross-sectional area, /, and /. are the moments of inertia about the

y- and z-axis, respectively.

Figure 1. Variable geometric properties in a tapered beam

Define k, and k, as the cross-sectional non-uniformity coefficients along the y and z axes, respectively, £ as the elastic
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modulus, G as the shear modulus, and J as the moment of inertia. Substituting the constitutive relations and geometric equations

of the Timoshenko beam into the equilibrium equations yields:

2 [E1, %] = k,GA (2 +6,) "
kZGA(zZTZ+%) -0

For clarity and conciseness in presentation, the equilibrium equations are initially presented in the x-z plane (2D form). The
formulation in the x-y plane is analogous, following the same principle by substituting corresponding variables (e.g., replacing
w with v, 8, with 6,, I, withl,, and k, with k,). This approach does not compromise generality, as the two bending
directions are decoupled within the linear local element formulation.

The relationship between transverse displacement and bending displacement is given by:

_ Ely 3wy | Ely 3%wy
k,GA 9x2 k,GA 9x2

w=w, [x =0, 2

where subscripts b denoting contributions from bending deformation respectively.

Similarly, the analytical solution of transverse displacement v satisfying the boundary conditions can be obtained as:

El, 8%vy El, 8%vy
kyGA dx? kyGA dx?

vV=v,— [x =0, 3)

Similar to the traditional Timoshenko beam element, the displacements in the u and 8,are interpolated linearly. While the

transverse displacements v, and w, are interpolated using cubic polynomial, and their expressions are given by:

( u(x) =C1X + Cy
{ 0,.(x) = c11x + C1p .

vp(x) = c3x3 + e x? + csx + 6

wy(x) = e x> + CsX2 + Ccox + ¢y
In general, the strain vector of a spatial Timoshenko beam element is expressed as:

T
( E = [Sx,)/y,)/z. Y Sy, SZ]
% _[0u v ow  , 96 08, an]T
= axlax z ax yl ax ) ax ) ax

| S,
| ®)

T
where €0 = |05 9 e ax] and g = [0’ ~6,,6,, O,O,O]T' By combining Egs. (4) and (5), the expressions for the

displacement and rotation vector u(x) of the beam can be obtained as follows:
u(x) = A(x)c, (6)

where the matrix 4(x) represents the displacement-rotation coefficient matrix with respect to the shape function coefficient

vector ¢ = {c;, -+, ¢;}T. Taking the derivative of Eq. (6) yields:
T
du) = {550 5 50 o) )
du(x) = dA(x)c

Based on the boundary conditions at x=0 and x=L, the relationship between the shape function coefficients and the nodal
displacements can be derived and expressed in matrix form as follows:
H(x)c =d, (®)
where H (x) is the coefficient matrix of the shape function coefficients. The nodal displacement d is expressed as:

T
d= {u1' V1, W1, 01, 0y1, 021, U, V2, Wo, 052, 0, 922} > (©)

By substituting Eq. (9) into Egs. (6) and (7), the following expressions are obtained:
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u(x) = A(x)H(x)"'d, (10)
du(x) = dA(x)H(x)™'d, , (11)
The relationship between the strain and nodal displacements of the element is then given by:

g, = du(x) = dA(x)H(x)"'d
g5 = Tyu(x) = TyA(x)H(x)™'d
£=¢g, +& =[dN(x) + TyN(x)]d = B(x)d

. (12)

whereN(x) = A(x)H(x)™1,dN(x) = dA(x)H(x)"1,B(x) is the strain-displacement matrix, and T satisfies the following

relationship:
0 000 0 O
000 0 0 -1
/10 0 0 01 O
Ty = 000 O0OTOFY (13)
0 00 0 OO
0 00 0 OO

By numerically integrating over the length L of the beam, the element stiffness matrix K. and mass matrix M. of the variable
cross-section Timoshenko beam element are formulated as:
L
K, = [ B(x)"Ks(x)B(x)dx (14)
L 2
M, = fo N(x)"M s (x)N(x)dx

Define J as the moment of inertia.The sectional stiffness matrix K.;(x) for a variable cross-section beam is expressed as:
K (x) = diag|ES(x), k,GS(x), k,GS(x), G] (x), EL,(x), EL,(x)], (15)

Directly evaluating the integrals in Eq. (14) for variable cross-sections is often computationally intensive. Therefore, in this

study, Gaussian quadrature is introduced to efficiently compute the element stiffness and mass matrices of the variable cross-
section beam:
L

Ke = ?:1 2 wiB(xi)TKcs (xi) B(xi)

L )
M, = Z?:l 2 wiN(xi)TMcs (xi) N(xi)

(16)

where n is the number of Gaussian integration points, w; and x; are the corresponding weight coefficients and integration

nodes, respectively.

The stiffness and mass matrices of the cross-section are determined based on the relevant parameters of the cross-section.
Considering the diverse forms of cross-sections, a general formula is provided here to handle the cross-sectional parameters

of variable cross-section beams with a certain taper.

Assuming that the aspect ratio of the variable cross-section beam remains constant, i.e.

by _ hy
b R (17)

where, b, and h, arethe width and thickness of the cross-section at the right end, and b; and h; are the width and thickness

at the left end. Under this assumption, the cross-sectional parameters at any arbitrary point along the beam can be expressed

as:
h(x) =k x+ f;
! bG) = ksh(x) = ky(lax + £,) )
S(x) = p1b(xX)h(x) = pik,(kix + f1)2 = ky(kix + f1)2 ’

L(x) = pyb(0)h(x)* = pyky(kyx + fi)* = ky(kyx + f1)*
The calculation of the cross-sectional parameters for each cross-section requires solving for the corresponding coefficients f;
and k;(i = 1,3,4). The transition coefficients k, p, and p, do not need to be solved. This can be achieved by solving using

the relevant parameters of the cross-section at both ends of the beam. For the fixed end of the beam, when x=0, we have h =



hi, S = Smax> Iy = Lymax. when x=L, we have § = S,,;,, Iy = lymn. By substituting the known parameters of the beam at

both ends into Eq. (18), we obtain:

S .
k, = hy min /L

Smax
k3 = Smax/h% (19)

ky = Iy max/ h‘f

When the aspect ratio of the structure is variable, the width and thickness of the cross-section are mutually independent, By
measuring the maximum thicknesses h;,,q, and h,,,,, of the cross-sections perpendicular to the y-axis at both ends of the
structure, the expression for the cross-sectional parameters at any point within the unit can also be derived.

The variation pattern of cross-sections is classified into two categories:

(1) Only partial cross-sectional moments of inertia and cross-sectional areas are known. In this paper, by assuming linear
variation of width and thickness, the number of undetermined coefficients is reduced, which proves to be relatively accurate
for the calculation of simple tapered beams. When calculating large deformations of beams with significantly tapered cross-
sectional variations, higher-order interpolation is required for width and thickness. Each additional order introduces two
additional undetermined coefficients, necessitating extra known conditions (such as cross-sectional areas and moments of
inertia in the y- and z-directions at other sections). Only under these conditions can the derived shape function expressions
accurately represent the large deformations of beams with notably tapered cross-sectional variations.

(2) The specific expression for the variation of cross-sectional dimensions (such as width or diameter) is known. In this paper,
the cross-sectional characteristics at the Gaussian integration points of the element can be directly computed using the
expression for dimensional variation, and the solution is then obtained through Gaussian integration. Under such circumstances,
this method demonstrates high accuracy and strong robustness even for nonlinearly varying cross-sectional dimensions.

Once the relevant coefficients are obtained, they can be substituted into the coordinates of the Gaussian integration points to
calculate the cross-sectional parameters. By substituting the cross-sectional parameters into Egs. (14) and (15), the element

stiffness matrix K, and the element mass matrix M, ofthe variable cross-section Timoshenko beam element can be obtained.

3.Co-rotational formulation

The co-rotational formulation stands out by extracting the elastic deformation displacements from the overall displacements

(Crisfield, 1990; Crisfield and Moita, 1996; Crisfield et al., 1997), thus predefining the projection relationship. The motion of

the beam element from its initial state to the final deformed state is decomposed into rigid body motion and pure deformation.
The rigid body motion component encompasses the rigid translation and rotation in the local reference coordinate system.
Therefore, the core challenge of the co-rotational formulation lies in handling the coordinate transformation between different

frames, thereby establishing the relationship between pure deformation and the overall deformation.

3.1Definition and transformation of the reference coordinate system for spatial beam elements

For the spatial two-node beam element, the reference coordinate system is defined as shown in Fig. 2. The unit orthogonal
vectors E;, i = 1,2,3, represent the global reference system of the beam element, which remains fixed and unchanged. The
unit orthogonal vectors E ?, i = 1,2,3, represent the local reference system of the beam element after rigid body motion, which
continuously translates and rotates with the beam element. The local reference system E?,i = 1,2,3 represents the original
coordinate system of the beam element before deformation. Additionally, the vectors e} and e?, define the cross-sectional

reference system of the two nodes (1 and 2) of the beam.
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Figure 2. Beam kinematics and coordinate systems

First, the rigid rotation of the local coordinate system E! is addressed. The rigid rotation matrix R, represents the
transformation matrix from the reference system E; to E, and its expression is given by:

R, =[n 72 T3] (20)
The vector 1, is computed as the line connecting node 1 and node 2 of the beam element before and after deformation:

r =S5, @1
where sig represents the coordinates of node i in the global reference system after rigid rotation. The length / of the beam after
deformation can be obtained by I = ||s5 — s7||.

The directions of the remaining two axes are determined by introducing an auxiliary vector q. The auxiliary vector serves two
main purposes: (1) to solve the rigid rotation matrix in the global coordinate system; (2) to determine the differential
relationship between the rigid rotation angle and the total displacement of the structure. Initially, the direction of q aligns with
the local coordinate axis Ea. After deformation of the beam element, the determination of the auxiliary vector q is related to

the transformation of the local reference system:

q;=R/R,J0 1 0]"i=12, (22)

q=>(0:+4q), (23)
where RY and RYJ are the orthogonal matrices corresponding to the directions of the end nodes e} and e?, respectively. g,
and q, are the directions of the left and right end reference systems of the local reference system E g after rigid rotation. R,
denotes the initial orientation of the local coordinates, and q represents the direction of the local reference system Eg after
rigid rotation.

By combining Egs. (21), (22), and (23), the expressions for the remaining two components of the orthogonal matrix R, can

be obtained:

Ty = LE Loy Iy T3 X1 (24)
lr1%qll ’




The local rotation matrix of the coordinate axis is defined as R;, and the transformation from E; to e} and e? can be

i
expressed as follows:

R.R,=R/R,i=12, (25)
Since RIR, = I, Eq. (25) can be transformed as follows:

R, =R'R7R,,i =12, (26)
Thus, the local rotation angles can be obtained as follows:

9; = log(R)), (27)
3.2Transformation of displacement vectors between the local and global coordinate systems

The global displacement vector of the beam element is defined as PY, and the displacement vector in the local coordinate
system after removing rigid body deformations is denoted as P;. By utilizing the rotation framework described in the previous
section, the local displacement P, is obtained by subtracting the rigid body displacement from the total displacement Pg . The
local internal force vector f; and the tangent stiffness matrix K; in the local coordinate system are computed through the

transformation relationship between the two. The expression of the internal force vector F in the global coordinate system

can be derived by balancing the internal virtual work in the global and local systems:

V =8Plf, = 5PJ"F,, (28)

The variations of the displacement vectors Pg and P; can be expressed as follows:

6P, =[6u 6§97 689117, (29)
T

5P = [sud” 509" sul" s69"] (30)

where, §9;, (i = 1,2) represents the variation of spatial rotation angles in the local coordinate system after considering rigid
body deformations, and 60? (i = 1,2) represents the variation of spatial rotation angles in the global coordinate system.

The variation of the transformation matrix involves the formation of a new matrix composed of rotational angles:

SR, = 50,R;, €20
where the superscript tilde denotes the skew-symmetric matrix corresponding to a vector. A new local coordinate system,
denoted as P, is defined based on Egs. (29) and (31).

P,=[a 87 8" (32)

Let f, represents the internal force vector corresponding to §P,, and K; denotes the transformed local stiffness matrix K,
obtained in Section 2 of this paper, which is converted to a 7-degree-of-freedom system. The transformation matrix between
vectors P, and P; can be obtained through the transformation relationship of their respective stiffness matrices. The final

conversion of K; to K, can be expressed as follows:

0 01><3 01><3

K,=BTKB, + Ky, Ky = 0301 Kni  Osysl, (33)

03><1 03><3 K h2
The matrix B; can be directly obtained by rotating the vector. The expressions for K,,; and K,, are derived from the

following equation:

9 e O oy 109 0 op 1o
55 [T vl = S [T5Tv] o5 = < [TsvITS G4

T(®) =201+ (1~ Dee” + (02

2\ 2 ’ (335)

where v represents the bending moment acting on the two ends of the internal force vector in the local coordinate system, e
is the unit vector corresponding to the angle vector, K,; and K, correspond to 9, and 19, in Eq. (34). Consequently, the

differential relationship between the rotational vector in the local coordinate system and the displacement vector in the global
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coordinate system can be derived as follows:
86| _ (10 1 0 01_[Ga"|\ prspg _ prrsps
[592]_<[0 0 o 1l [GgT E"6PY = PETSPY, (36)
268
where Gg = _g,E = diag[R, R, R, R.].
g

Thus, the relationship between §P, and (?Pg can be obtained as follows:

T
8P, = B,5PY,B, = [PET]’ 37
where r = [-1T 0,3 71 0;,3] The matrix Gy in Eq. (36) is related to §6¢.
—riér,
56¢ = RISR,,60¢ = |—risr |, (38)
riér,
The expression for r,,r,,r5, and §r; can be easily obtained. As for 873, it is related to §q according to Eq. (23):
1 1 ~ ~
5q =>(6R, + 6Ry)Ro[0 1 01" =-(567q, +567q,), (39)
965 . . .
The expression of the matrix G4 can be obtained through Eq. (39) and Gg = %. The detailed derivation can be found in
g

reference (Crisfield, 1990). Eq. (37) yields the relationship between the force vector in the global coordinates and the internal

force vector in the local coordinates.

F¢ = BIf,. (40)

Similarly, by considering the variation of the force vector in the global coordinates in Eq. (37), it can be obtained as follows:
8F9 = BISf, + 617 f o + S(EPT)m

{m =[faz fas faa fas fas farl"

where f,;(i = 1,--+,7) represent the components of the force vector f,. In conclusion, the tangent stiffness matrix in the

(41)

global coordinate system can be obtained as follows:

_ pT
{ K9 = BaKaB% +T K,, ’ @)
Km = Dfal - EQGQ E" + EGgaT'
where:
[d 0 —-d O
0O 0 0 O 1
D= d o d o ,d=7(1—r1rf), (43)
[0 0 0 O
Q4
0 0
Q= ~2|'a=[77(fa2 + fas)/U = (faz + fas) /1], (44)
2 (fas + far)/1
A
Pm=[o] o} ¢} eiI" 4s)

By utilizing the obtained tangent stiffness matrix, the difference in the global force vector can be calculated. The iterative
process is employed to gradually converge the results towards the exact solution. The computational flowchart of nonlinear

deformation in variable cross-section beam is illustrated in Fig. 3.
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Figure 3. Flowchart of nonlinear deformation in the variable cross-section beam

4.Applications

This section presents comparative analysis between the proposed co-rotational Timoshenko beam model with variable cross-
section and existing benchmark results to validate its accuracy. The validation is carried out in three stages. First, the simple
beam models with the constant cross-section are simulated to verify the proposed beam model with geometric nonlinearity.
Second, the proposed co-rotational model is applied to a beam with variable cross-section and evaluated against both analytical
solutions and numerical results from the literature, thereby confirming the capability of the proposed model in handling non-
uniform geometries. Finally, a frequency analysis is conducted on a variable cross-section beam, and the computed results are
compared with experimental measurements and published data to further demonstrate the capability of the developed beam

element for dynamic analyses.

4.1Application on constant cross-section beam element

4.1.1 Large deformation analysis of spatially pre-bent cantilever beams subjected to concentrated loads

A 45° cantilever circular arc beam with a radius of R=100m is subjected to a vertical concentrated load F of magnitude 300N

at its free end as shown in Fig. 4 below.
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Figure 4. Pre-bent cantilever beam

The beam is divided into 8 elements, and the detailed cross-section properties of the beam are provided in Reference (Nguyen
and Gan, 2014). Table 1 presents a comparative analysis of the displacements at the free end of the beam in the x, y, and z
directions, as computed by the proposed method, the HAWC2 software, and the analytical solution.

Table 1 shows that the obtained large deformations from the developed co-rotational beam model in the x and y directions are
-12.08m and -7.10m, respectively. Compared with the results obtained using HAWC?2, the proposed approach improves the
computational accuracy by 0.3% in the x direction and 1.1% in the y direction. The results confirm that the proposed model

achieves high accuracy in capturing the large deformation behavior of spatial Timoshenko beams.

Table 1. Comparison of the Pre-bent beam tip displacements under a force applied at the free end

Displacements (m) Rel. Diff. (%)
X y z X y z
Apattieal 187 696 40.08 . . .
HAWC2 -12.12 -7.18 40.08 2.1 3.1 0.0
Present -12.08 -7.10 4041 1.8 2.0 0.8

4.1.2 Large Deformation Analysis of a Thin Plate Beams under Concentrated Load

Fig. 5 illustrates a cantilevered thin plate beam with a total length of 0.51m, a cross-sectional width of 30mm, and a thickness
of Imm. The beam is made of 304 stainless steel, with a Young’s modulus of 193 GPa and a Poisson’s ratio of 0.3. To simulate
concentrated loading, weights of 0.7N and 1.3N are suspended from the free end of the cantilever beam. For each case, the
actual horizontal displacement u and vertical displacement v at three selected points along the beam are measured. In this

section, the proposed co-rotational beam model is employed to calculate the large deformation displacements of the cantilever
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beam under the two loading cases, and the plate beam is divided into 9 elements. Table 2 compares the results from the present

study, the experimental measurements, and the data reported in Reference (Jiang et al.,2023)

Figure 5. Schematic Diagram of Thin Plate Beam

Table 2. Comparison of Nodal Displacements of the Thin Plates under Free-end Loading

u v
Positi
on Rel.
Case Test ASUP! R.el. Present Diff Test ASUDP! R.e L Present R?l'
(/L) (mm) (mm) Diff{( (mm) 1 value (mm) Diff. (mm) Diff
%) (%) (mm) (%) (%)
1/3 2.0 -1.6 20.0 -1.9 5.0 -21.5 -23.5 9.3 22.6 5.1
I 2/3 -12.0 -10.7 10.8 -11.3 53 -78.0 -80.9 3.7 77.8 0.3
1 -24.0 -26.0 8.3 -26.5 104 -150 -154.6 3.1 148.4 1.1
1/3 3.0 33 10 3.1 3.3 -28.0 -29.5 5.4 29.0 3.6
I 2/3 -17.0 -19.1 12.4 18.4 8.2 -96.0 -100.7 4.9 98.8 2.9
1 -42.0 -44.9 6.9 43.1 2.6 -185.0 -190.6 3.0 187.1 1.1

As shown in Table 2, except for the case 1, where the relative error of the horizontal displacement at the free end reached
10.4%, most of the other relative errors were within 10%, and this error remains stable as the applied load increases. In terms
of the vertical displacement v, the proposed model produces the results with relative errors below 5%. Moreover, the predicted
vertical deformation at the free end of the beam closely matches the measured values. These results validate the effectiveness

and accuracy of the proposed model in capturing large elastic deformations in thin-walled flexible structures.

4.2Numerical analysis of variable cross-section beams

To validate the performance of the proposed model in handling variable geometric configurations, numerical simulations are
conducted on two variable cross-section beams. The results obtained using the proposed model are compared with those from

relevant literature to assess its accuracy and effectiveness.

4.2.1 Numerical analysis of a rectangular variable cross-section cantilever beam

The cantilever beam with a rectangular cross-section, as shown in Fig. 6, is considered. The beam has a total length of 10 m
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and a constant width of b = 0.25 m, its thickness tapers linearly from 1.0 m at the fixed end to 0.2 m at the free end. The elastic
modulus of the material is E = 3.0 X 10*GPa, and the beam is subjected to a concentrated vertical load of 10,000 N at the
free end. To evaluate the performance of the model, the beam is discretized into 10 elements. The computed deflection and
rotation at the free end are compared with the exact analytical solution and results from alternative method, as summarized in

Table 3.

| L=10m |
\ ) |

Figure 6. Simplified diagram of rectangular variable cross-section cantilever beam

As shown in Table 3, the deflection and rotation results obtained using the proposed model align exceptionally well with the
analytical solution. The predicted deflection at the free end is 0.01530 m, exactly matching the analytical value, and the
computed rotation is 0.00399 rad, with a relative difference of only 0.25%. In comparison, the segmental constant elements
method yields a relative difference of 0.59% in deflection and 2.00% in rotation. This example demonstrates the effectiveness

of the proposed co-rotational beam model in capturing the geometric nonlinear behavior of beams with varying cross-sections.

Table 3. Comparison of Deflection and Rotation at the Free End of a Rectangular Variable Cross-Section Cantilever Beam

Deflection (m) Rel. Diff. (%) Rotation(rad) Rel. Diff. (%)
Analytical Solution 0.01530 - 0.00400 -
Segmental C?fg}ant Elements 0.01521 0.59 0.00392 2.00
Present 0.01530 0.00 0.00399 0.25

4.2.2 Numerical simulation of a cantilever conical beam

A variable cross-section cantilever beam, as shown in Fig. 7, is analyzed with a total length of 10 m. At the free end, both the
moment of inertia /; and cross-sectional area A4; are one-third of those at the fixed end. The ratio of the beam length to the
height of the cantilever end section is 50:1. The material properties include an elastic modulus of 210 GPa and a shear modulus
of 80.77 GPa. To facilitate comparison with existing numerical studies, a dimensionless load parameterF = F[?/E],, as

defined in reference (Marjamiki and Mékinen, 2009), is employed.

Fig. 8 shows the load—displacement response of the conical cantilever beam subjected to a vertically downward point load at
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its free end. The results from the proposed co-rotational beam model are compared with the numerical solution obtained using
the Runge—Kutta method from reference (Marjaméki and Mékinen, 2009) and with finite element results reported by Nguyen
(Nguyen, 2013). As evident in Fig. 8, the response predicted by the proposed method aligns closely with the Runge—Kutta
solution and shows improved agreement compared to Nguyen's finite element results. This comparison validates the accuracy
and effectiveness of the proposed co-rotational model in capturing large deformation behavior in conical cantilever beams with

variable cross-sections.
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Figure 7. Conical beam
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Figure 8. Normalized moment and deformation in tapered beam

4.3Variable taper frame model

A well-know benchmark frame structure (Manuel et al., 1968), shown in Fig. 9, is commonly used to assess the performance
of nonlinear analysis methods. In its original configuration, members AB and BC possess constant stiffness. Building upon
this example, Francisco(de Araujo et al., 2017) proposed a modified version by introducing variable stiffness to column AB,
as illustrated in Fig. 10. The cross-sectional properties at points A and B for this modified configuration are provided as follows:

Ly = 14.76042 x 1078m*, I, = 17.04167 x 1078m*
L = 0.09375 x 1078m*, I, = 0.27083 x 10~8m* , (46)
S, =85x10"*m? Sz = 1.0 x 10™*m?
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Beam BC retains a constant rectangular cross-section with S=0.006 m*and | = 2 x 10~®m* The material properties for the
entire frame are assumed to be homogeneous, with an elastic modulus E = 7.2 x 10°GPa and Poisson’s ratio v=0.3. The frame
is discretized into 20 elements, and the interpolation method proposed in this study is applied. The resulting vertical and
horizontal displacements at the load application points are compared with those obtained from Francisco2017 and a highly

refined finite element mesh reported in reference (de Araujo et al., 2017). As shown in Fig. 11, the responses match quite well.

1.2m |

0.24m

._1P1 000N
; g\

1.2m

Cross-section A Cross-section B

Figure 10. Column geometry
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Figure 11. Frame displacement at node 13
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4.4Natural frequencies of the conical cantilever beam

This section considers an experimental conical cantilever beam reported in reference (Le et al., 2011) to verify the developed
beam element. A modal analysis is performed where the natural frequencies are compared. The beam has a total length of 0.5m,
with a fixed-end section diameter of 0.03m, and a free-end section diameter of 0.005m. The mass density and elastic modulus
are 7800kg/m?® and 210 GPa, respectively. The specific experimental setup is described in detail in reference (Le et al., 2011).
The first five natural frequencies of the conical beam are computed using the proposed variable cross-section beam model and
are compared with both experimental results and two numerical approaches from Ref. (Le et al., 2011). The comparison is

presented in Table 4.

Table 4. Natural frequencies of the conical cantiliver beam

TMM using TMM using

Natural 16 . lindrical el Present result Experimental
modes Bessel functions cylindrical elements (errors) [Hz] % results [Hz]
(errors) [Hz] % (errors) [Hz] %

Model 160.7(1.1) 162.5(2.2) 166.4(4.6) 159.0
Mode2 455.5(3.0) 457.4(3.4) 445.0(0.6) 442.2
Mode3 962.8(7.3) 963.0(7.3) 920.2(2.5) 897.5
Mode4 1702.0(6.9) 1699.0(6.7) 1658.9(4.2) 1592.1
Mode5 2679.1(7.0) 2671.5(6.7) 2607.8(4.1) 2504.0

From Table 4, all three numerical methods produce results reasonably close to the experimental values. However, the proposed
model demonstrates superior accuracy, with relative errors consistently below 5% across all five modes. In contrast, the relative
errors of the TMM approaches in (Le et al.,2011) exceed 5% in several modes. Notably, the present model yields the most
accurate results for the second and third modes, with relative errors of only 0.6% and 2.5%, respectively. These results confirm

that the proposed variable cross-section beam model is effective in predicting the dynamic behavior of conical cantilever beams.

4.5 3D frame structure with variation of beam cross-sections

Figure 12 shows a 3D frame, with beams of varying circular cross-sections, loaded by concentrated loads F at node 1. The
displacements of nodes 1 to 4 were founded. Variation of the cross-sectional area of the beams «a is defined by the following
diameter quadratic functiond(y) = 0.04 + 0.04y?. The beams b and ¢ have constant diameters through lengths of elements.
Detailed parameters can be found in (Murin et al. 2002). Only one exact beam element was used to model each beam (a, b, c).
In the Hermite beam element model, only one element was used to represent the beams b and c in all cases, but beams a were

modelled with 1, 2 and 3 elements in models 1, 2 and 3 respectively.
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Figure 12. Frame displacement at node 13 (Murin et al. 2002)

The numerical results obtained by the present method are compared against those from the method proposed by Murin et al.
(2002) and the solutions from classical Hermite beam elements, as presented in Table 5. It can be observed from the table that
compared to the reference method, the displacement solutions of the present method at all nodes and under all loading cases
are consistently closer to the exact solution, demonstrating a significant enhancement in computational accuracy. Furthermore,
when the number of elements is varied, the present method exhibits a narrower and more stable variation range in its solutions,

highlighting its superior numerical robustness.

Table 5. Comparison of results

Nodel (errors %) Node?2 (errors %) Node3 (errors %) Node4 (errors %)
Uy (mm) U,(mm)  U,(mm) U,(mm) Up(mm) U, (mm) U,(mm) U,(mm)
Exact solution 0.775 -1.098 0.774 -0.428 0.945 -0.428 0.945 -1.098

Modell ref  0.651(16.0) -0.882(19.7) 0.650  -0.336(21.5) 0.763(19.3) -0.336  0.763  -0.882
Modell this paper  0.745(3.9) -0.981(10.7)  0.745  -0.427(02)  0.859(9.1) -0427 0859  -0.981
Model2 ref 0.743(4.1)  -1.008(82)  0.722  -0.390(8.9)  0.869(8.0) -0390  0.869  -1.008
Model?2 this paper  0.767(1.0)  -1.085(12) 0766  -0.423(1.2)  0933(1.3) -0423 0933  -1.086
Model3 ref 0.749(3.4)  -1.054(4.0)  0.748  -0.409(44)  0.908(3.9) -0.409 0908  -1.054
Model3 this paper  0.772(0.4)  -1.093(0.5) 0771  -0.426(0.5)  0.940(0.5) -0.426 0940  -1.093

5.Conclusions

This study proposes a novel co-rotational finite element framework for the geometrically nonlinear analysis of variable cross-
section Timoshenko beams, which significantly enhances computational accuracy, efficiency, and robustness through the
introduction of analytical displacement shape functions and a Gaussian integration strategy.

Case 1: A variable cross-section beam element based on analytical displacement shape functions is proposed, replacing
traditional interpolation functions and significantly enhancing computational accuracy in geometrically nonlinear analysis.
Example 1 (large deformation of a uniform cross-section cantilever beam) and Example 3 (beam with constant taper) validate
the accuracy of this element in capturing bending deformation, especially under variable cross-section conditions where it
demonstrates higher convergence accuracy compared to conventional piecewise uniform cross-section approaches.

Case2: Gaussian integration is introduced within the corotational framework to compute element matrices, eliminating the
need for repeated moment-of-inertia calculations at each cross-section and thereby improving computational efficiency.

Example 4 (large deformation of a linearly tapered beam) shows that the method maintains accuracy while outperforms existing
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variable cross-section corotational methods in computational efficiency; for cases with pronounced nonlinear taper, the method
can be extended flexibly by incorporating additional sectional information.

Case 3: A local-to-global coordinate transformation method tailored for variable cross-section beams is developed, capable of
handling irregular and proportionally graded sections, thus extending the applicability of the corotational formulation.
Example 2 (spatial beam large-deformation experiment) and Example 5 (frame structure with varying taper) demonstrate that
the method retains good numerical stability and robustness in three-dimensional large-deformation analysis and complex
geometric nonlinear problems. Example 6 further confirms the framework's suitability for spatially tapered beam analysis.

In summary, the proposed corotational model for variable cross-section beams exhibits clear advantages in accuracy, efficiency,
and generality, providing a reliable and efficient computational tool for predicting geometrically nonlinear responses of
variable-section structures in engineering practice. Future work may focus on higher-order variable cross-section models,

treatment of abruptly changing sections, and multiphysics coupling problems.
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