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Abstract. The geometrically nonlinear analysis of Timoshenko beams with variable cross-sections remains a challenging task 

in engineering practice, particularly for structures subjected to large deformations. While co-rotational (CR) formulations have 

been widely adopted for geometric nonlinear analysis, most existing CR-based beam models assume constant cross-sectional 

properties, limiting their applicability to beams with variable geometries. To overcome this limitation, this study introduces a 

novel co-rotational formulation specifically tailored for variable cross-section Timoshenko beams. The proposed approach 

integrates two key innovations: (1) the development of an improved spatial Timoshenko beam element employing analytical 

displacement shape functions to accurately capture bending deformation in variable cross-sections, and (2) the introduction of 

an efficient Gaussian integration scheme for computing stiffness and mass matrices, eliminating the need for explicit moment-

of-inertia evaluations at each cross-section. The tangent stiffness matrix is systematically derived within the co-rotational 

framework. The method is validated through five benchmark examples, including comparisons with experimental data and 

numerical results from the literature. Results demonstrate that the proposed model achieves superior computational accuracy 

and efficiency in handling large deformations, dynamic responses, and nonlinear behaviors of beams with irregular or 

proportionally graded cross-sections, offering a robust alternative to existing variable cross-section beam formulations. 
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1. Introduction  

Beam structures are fundamental load-bearing components in various engineering disciplines, valued for their high strength, 

rigidity, and low weight. Although uniform cross-section beams have been extensively studied, modern engineering 

applications increasingly utilize non-uniform flexible beams to optimize mass distribution and enhance mechanical 

performance in structures such as wind turbine blades, robotic manipulators, and aerospace components (Xiao et.al., 2024; 

Elkaimbillah et al., 2021;Wang et al., 2014). These variable cross-section flexible beams frequently experience large 

deformations under operational loads, introducing geometric nonlinearities that invalidate classical linear beam theories based 

on small deformation assumptions. Therefore, understanding the geometric nonlinearity of flexible beam structures with non-

uniform cross-sections is essential for accurate engineering analysis of such structures. 

Substantial research efforts have been dedicated to developing finite element methodologies for the geometric nonlinear 

analysis of flexible beams structures. The most commonly used finite element methods are the Total Lagrangian (TL)   

(Heyliger et al., 2020; Saravia et al., 2012; Marjamäki et al.,2009) and Updated Lagrangian(UL) (Greco et al., 2022; Turkalj 

et al., 2012; Kordkheili et al., 2011) formulations. While these approaches are widely adopted in commercial software due to 

their broad applicability, they have inherent limitations. Notably, these methods do not account for coordinate system changes 
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following beam element deformation, leading to unacceptable calculation errors when elements undergo large rotations. To 

address this issue, an effective alternative for developing nonlinear beam elements is the co-rotational (CR) formulation. 

Research on CR finite elements begin with the pioneering work of Wempner (Wempner, 1969), Belytschko and Hsieh 

(Belytschko and Glaum, 1979), and Argyris and colleagues (Argyris et al., 1979). The key idea behind CR formulations is to 

decompose the motion of a beam element into the sum of a rigid body motion and a pure deformational displacement, using a 

local reference coordinate system that continuously rotates and translates with the element. Pioneering work by Rankin et al. 

(Nour-Omid and Rankin, 1991; Rankin and Brogan, 1986) established a standard framework for calculating CR beam 

formulation. Another significant contribution to CR beam theory was made by Crisfield and his collaborators (Crisfield, 1990; 

Crisfield and Moita, 1996; Crisfield et al., 1997), who applied the CR formulation to solve various types of geometric 

nonlinearities and proposed a consistent method for computing element equilibrium equations. Behdinan et al (Behdinan et al., 

1998) extended the consistent CR static analysis to the dynamic analysis of beams undergoing large deflections. Hsiao et 

al.(Hsiao et al., 1999) introduced a consistent CR total Lagrangian finite element formulation for the geometrically nonlinear 

dynamic analysis of Euler beams with large rotations but small strain. Early CR methods used different shape functions for 

computing elastic and inertial force vectors of the beam element, whereas Li et al. (Le et al., 2011; Le et al., 2014) adopted 

cubic interpolations to formulate both inertia and internal local terms, and employed their new CR formulation to perform 

nonlinear dynamic analysis of 2D and 3D beams. The computational efficacy and accuracy of CR approaches have further 

expanded their applications across various structural systems (Moon et al., 2023; Meng et al., 2016; Wang et al., 2018; Kim et 

al., 2022; Shen et al., 2021; Timoshenko et al., 1930). However, most existing CR formulations assume constant cross-sectional 

properties, significantly limiting their applicability to variable cross-section flexible beam designs. 

The increasing use of non-uniform flexible beams has driven recent research into their nonlinear behavior. The analog equation 

method (Sapountzakis and Panagos, 2008; Sapountzakis and Panagos, 2008) has been employed for the nonlinear analysis of 

Timoshenko beams undergoing large deflections with variable cross-sections. Yu and Zhao (Yu et al., 2024) developed a 

viscoelastic beam element based on the absolute nodal coordinate formulation for various cross-sectional structures, where the 

modified Kelvin-Voigt viscoelastic constitutive model was introduced to describe the large deformation of viscoelastic 

materials. Building on this work, Yu et al. (Yu et al.,2024) further proposed an improved absolute nodal coordinate formulation 

for analyzing the nonlinear behavior of variable cross-sections with large aspect ratios. Elkaimbillah el al. (Elkaimbillah et al., 

2021) employed Vlasov kinematics to develop a one-dimensional finite element model for the nonlinear dynamic analysis of 

thin-walled composite beams with open variable cross-sections. Additional studies have focused on the nonlinear behavior of 

axially functionally graded beams with various cross-sections (Kumar et al., 2015; Ghayesh, 2018; Sınır et al., 2018; Xu et al., 

2021). Regarding CR beam models for variable cross-sections, Nguyen and Gan (Nguyen, 2013; Nguyen and Gan, 2014) 

employed the CR beam element to investigate the large displacement of tapered cantilever beams made of axially functionally 

graded materials. Moon et al. (Moon et al.,2023) extended the work of Crisfield (Crisfield and Moita, 1996) on CR beam 

elements by incorporating the fully populated and non-uniform cross-sectional stiffness matrix, expressed as a function of the 

axial length, to develop an anisotropic CR beam model for variable cross-sections. Nevertheless, current CR methods for non-

uniform flexible beams remain constrained by computational inefficiency and limited precision. 

Nevertheless, most existing CR formulations assume uniform cross‑sectional properties, which significantly restricts their 

applicability to modern designs employing tapered or functionally graded beams. Although a few studies have attempted to 

incorporate cross‑sectional variations within the CR framework, they often suffer from inadequate accuracy or computational 

inefficiency, especially when the cross‑section changes abruptly or the beam undergoes large rotations. 

To overcome these persisting challenges, this paper presents a refined co‑rotational beam model specifically designed for 

variable cross‑sections, with three principal contributions: 

A novel variable‑cross‑section Timoshenko beam element is formulated using analytical displacement shape functions derived 

from the equilibrium equations of a Timoshenko beam. This approach eliminates the truncation errors associated with standard 
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polynomial interpolations and provides a more accurate description of the bending deformation, thereby enhancing the overall 

precision of the co‑rotational procedure. 

An efficient numerical integration strategy based on Gaussian quadrature is introduced to compute the element stiffness and 

mass matrices. This strategy avoids the need to explicitly evaluate the moment of inertia at each cross‑section, leading to a 

substantial reduction in computational cost while maintaining accuracy. 

A consistent tangent stiffness matrix is derived within the co‑rotational framework, explicitly accounting for the geometric 

nonlinearities induced by large displacements and rotations. The formulation is general enough to accommodate both irregular 

and proportionally tapered cross‑sections, extending the applicability of CR methods to a broader class of engineering 

structures. 

The remainder of this paper is structured as follows: Section 2 develops the improved stiffness and mass matrices for the 

variable cross‑section beam element. Section 3 describes the co‑rotational formulation for geometric nonlinear analysis. 

Section 4 validates the proposed model through a series of benchmark examples, including constant and variable cross‑section 

beams, a tapered frame, and a dynamic frequency analysis. Finally, the main conclusions of this investigation are thereafter 

summarized in Section 5.  

2.The improved spatial Timoshenko beam element with variable cross-section 

The CR method enables the use of linear Timoshenko beam elements to derive the tangent stiffness matrix in the global 

coordinate system. Typically, interpolated shape functions are employed to construct the beam element. However, most of 

these shape functions approximate beam displacements, which introduces truncation errors and decreases computational 

accuracy. In this section, an improved Timoshenko beam element with a variable cross-section is proposed to improve 

computational accuracy by employing analytical displacement shape functions for bending deformation. The specific process 

is outlined below. 

As illustrated in Fig. 1, a beam with variable cross-section is considered. The beam element has a total length L, with the 

coordinate origin at the left end. The x-axis is aligned with the longitudinal direction, while the y- and z- axes align with the 

principal axis of the cross-section. Typically, the displacement at any point within the spatial beam element is represented 

by{𝒖, 𝒗,𝒘, 𝜽𝒙, 𝜽𝒚, 𝜽𝒛}.where u is the axial displacement along the x axis, v and w are the transverse displacements along the y 

and z axis, respectively, and 𝜽𝒙, 𝜽𝒚, 𝜽𝒛 denote the rotations about the x, y, and z axis, respectively. The cross-section parameters 

are defined: where b is the width, h is the thickness, S is the cross-sectional area, Iy and Iz are the moments of inertia about the 

y- and z-axis, respectively. 

 

 

Figure 1. Variable geometric properties in a tapered beam 

 

Define 𝑘𝑦 and 𝑘𝑧 as the cross-sectional non-uniformity coefficients along the y and z axes, respectively, E as the elastic 
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modulus, G as the shear modulus, and J as the moment of inertia. Substituting the constitutive relations and geometric equations 

of the Timoshenko beam into the equilibrium equations yields: 

{

𝜕

𝜕𝑥
[𝐸𝐼𝑦

𝜕𝜃𝑦

𝜕𝑥
] = 𝑘𝑧𝐺𝐴 (

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦)

𝑘𝑧𝐺𝐴 (
𝜕2𝑤

𝜕𝑥2
+

𝜕𝜃𝑦

𝜕𝑥
) = 0

,     (1) 

For clarity and conciseness in presentation, the equilibrium equations are initially presented in the x-z plane (2D form). The 

formulation in the x-y plane is analogous, following the same principle by substituting corresponding variables (e.g., replacing 

w with v, 𝜃𝑦  with 𝜃𝑧 , 𝐼𝑦  with𝐼𝑧 , and 𝑘𝑧  with 𝑘𝑦 ). This approach does not compromise generality, as the two bending 

directions are decoupled within the linear local element formulation. 

The relationship between transverse displacement and bending displacement is given by: 

 𝑤 = 𝑤𝑏 −
𝐸𝐼𝑦

𝑘𝑧𝐺𝐴

𝜕2𝑤𝑏

𝜕𝑥2
+

𝐸𝐼𝑦

𝑘𝑧𝐺𝐴

𝜕2𝑤𝑏

𝜕𝑥2
|𝑥 = 0,    (2) 

where subscripts b denoting contributions from bending deformation respectively. 

Similarly, the analytical solution of transverse displacement v satisfying the boundary conditions can be obtained as:  

𝑣 = 𝑣𝑏 −
𝐸𝐼𝑧

𝑘𝑦𝐺𝐴

𝜕2𝑣𝑏

𝜕𝑥2
+

𝐸𝐼𝑧

𝑘𝑦𝐺𝐴

𝜕2𝑣𝑏

𝜕𝑥2
|𝑥 = 0,    (3) 

Similar to the traditional Timoshenko beam element, the displacements in the u and 𝜃𝑥are interpolated linearly. While the 

transverse displacements 𝑣𝑏 and 𝑤𝑏  are interpolated using cubic polynomial, and their expressions are given by: 

 

{
 

 
𝑢(𝑥) = 𝑐1𝑥 + 𝑐2
𝜃𝑥(𝑥) = 𝑐11𝑥 + 𝑐12

𝑣𝑏(𝑥) = 𝑐3𝑥
3 + 𝑐4𝑥

2 + 𝑐5𝑥 + 𝑐6
𝑤𝑏(𝑥) = 𝑐7𝑥

3 + 𝑐8𝑥
2 + 𝑐9𝑥 + 𝑐10

,     (4) 

In general, the strain vector of a spatial Timoshenko beam element is expressed as: 

{
 
 

 
 𝜺 = [𝜀𝑥, 𝛾𝑦, 𝛾𝑧 , 𝛾𝑥, 𝜀𝑦, 𝜀𝑧]

T

   = [
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
− 𝜃𝑧,

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦 ,

𝜕𝜃𝑥
𝜕𝑥

,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧
𝜕𝑥
]

T

= 𝜺𝛼 + 𝜺𝛽

 

,     (5) 

where 𝜺𝛼 = [
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝜃𝑥

𝜕𝑥
,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧

𝜕𝑥
]
T
and 𝜺𝛽 = [0,−𝜃𝑧, 𝜃𝑦 , 0,0,0]

T
. By combining Eqs. (4) and (5), the expressions for the 

displacement and rotation vector 𝒖(𝑥) of the beam can be obtained as follows: 

𝒖(𝑥) = 𝑨(𝑥)𝒄,     (6) 

where the matrix A(x) represents the displacement-rotation coefficient matrix with respect to the shape function coefficient 

vector 𝒄 = {𝑐1, ⋯ , 𝑐12}
T. Taking the derivative of Eq. (6) yields: 

{𝑑𝒖(𝑥) = {
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝜃𝑥

𝜕𝑥
,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧

𝜕𝑥
}
T

𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝒄
,     (7) 

Based on the boundary conditions at x=0 and x=L, the relationship between the shape function coefficients and the nodal 

displacements can be derived and expressed in matrix form as follows:  

𝑯(𝑥)𝒄 = 𝒅,     (8) 

where H (x) is the coefficient matrix of the shape function coefficients. The nodal displacement d is expressed as: 

𝒅 = {𝑢1, 𝑣1, 𝑤1 , 𝜃𝑥1, 𝜃𝑦1, 𝜃𝑧1, 𝑢2, 𝑣2, 𝑤2, 𝜃𝑥2, 𝜃𝑦2, 𝜃𝑧2}
T
,    (9) 

By substituting Eq. (9) into Eqs. (6) and (7), the following expressions are obtained: 
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𝒖(𝑥) = 𝑨(𝑥)𝑯(𝑥)−1𝒅,     (10) 

𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1𝒅, ,    (11) 

The relationship between the strain and nodal displacements of the element is then given by: 

{

𝜺𝛼 = 𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1𝒅

𝜺𝛽 = 𝑻𝑁𝒖(𝑥) = 𝑻𝑁𝑨(𝑥)𝑯(𝑥)
−1𝒅

𝜺 = 𝜺𝛼 + 𝜺𝛽 = [𝑑𝑵(𝑥) + 𝑻𝑁𝑵(𝑥)]𝒅 = 𝑩(𝑥)𝒅

,     (12) 

where𝑵(𝑥) = 𝑨(𝑥)𝑯(𝑥)−1,𝑑𝑵(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1,𝑩(𝑥) is the strain-displacement matrix, and TN satisfies the following 

relationship: 

𝑻𝑁 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0

0 0 0
0 0 −1
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

,    (13) 

By numerically integrating over the length L of the beam, the element stiffness matrix Ke and mass matrix Me of the variable 

cross-section Timoshenko beam element are formulated as: 

{
𝑲𝑒 = ∫ 𝑩(𝑥)T𝑲𝑐𝑠(𝑥)𝑩(𝑥)𝑑𝑥

𝐿

0

𝑴𝑒 = ∫ 𝑵(𝑥)T𝑴𝑐𝑠(𝑥)𝑵(𝑥)𝑑𝑥
𝐿

0

,     (14) 

Define J as the moment of inertia.The sectional stiffness matrix 𝑲𝒄𝒔(𝑥) for a variable cross-section beam is expressed as： 

𝑲𝑐𝑠(𝑥) = 𝑑𝑖𝑎𝑔[𝐸𝑆(𝑥), 𝑘𝑦𝐺𝑆(𝑥), 𝑘𝑧𝐺𝑆(𝑥), 𝐺𝐽(𝑥), 𝐸𝐼𝑦(𝑥), 𝐸𝐼𝑧(𝑥)],    (15) 

Directly evaluating the integrals in Eq. (14) for variable cross-sections is often computationally intensive. Therefore, in this 

study, Gaussian quadrature is introduced to efficiently compute the element stiffness and mass matrices of the variable cross-

section beam: 

{
𝑲𝑒 = ∑

𝐿

2
𝜔𝑖𝑩(𝑥𝑖)

T𝑲𝑐𝑠(𝑥𝑖)
𝑛
𝑖=1 𝑩(𝑥𝑖)

𝑴𝑒 = ∑
𝐿

2
𝜔𝑖𝑵(𝑥𝑖)

T𝑴𝑐𝑠(𝑥𝑖)
𝑛
𝑖=1 𝑵(𝑥𝑖)

,     (16) 

where n is the number of Gaussian integration points, 𝜔𝑖 and 𝑥𝑖 are the corresponding weight coefficients and integration 

nodes, respectively. 

The stiffness and mass matrices of the cross-section are determined based on the relevant parameters of the cross-section. 

Considering the diverse forms of cross-sections, a general formula is provided here to handle the cross-sectional parameters 

of variable cross-section beams with a certain taper. 

Assuming that the aspect ratio of the variable cross-section beam remains constant, i.e. 

𝒃𝒓

𝒃𝒍
=

𝒉𝒓

𝒉𝒍
,     (17) 

where, 𝒃𝒓 and 𝒉𝒓 are the width and thickness of the cross-section at the right end, and 𝒃𝒍 and 𝒉𝒍 are the width and thickness 

at the left end. Under this assumption, the cross-sectional parameters at any arbitrary point along the beam can be expressed 

as:  

{
 

 
ℎ(𝑥) = 𝑘1𝑥 + 𝑓1

𝑏(𝑥) = 𝑘2ℎ(𝑥) = 𝑘2(𝑘1𝑥 + 𝑓1)

𝑆(𝑥) = 𝑝1𝑏(𝑥)ℎ(𝑥) = 𝑝1𝑘2(𝑘1𝑥 + 𝑓1)
2 = 𝑘3(𝑘1𝑥 + 𝑓1)

2

𝐼1(𝑥) = 𝑝2𝑏(𝑥)ℎ(𝑥)
3 = 𝑝2𝑘2(𝑘1𝑥 + 𝑓1)

4 = 𝑘4(𝑘1𝑥 + 𝑓1)
4

,    (18) 

The calculation of the cross-sectional parameters for each cross-section requires solving for the corresponding coefficients 𝑓𝑙 

and 𝑘𝑖(𝑖 = 1,3,4). The transition coefficients 𝑘2, 𝑝1  and 𝑝2  do not need to be solved. This can be achieved by solving using 

the relevant parameters of the cross-section at both ends of the beam. For the fixed end of the beam, when x=0, we have ℎ =
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ℎ𝒍, 𝑆 = 𝑆𝑚𝑎𝑥 , 𝐼𝑦 = 𝐼𝑦𝑚𝑎𝑥. when x=L, we have 𝑆 = 𝑆𝑚𝑖𝑛, 𝐼𝑦 = 𝐼𝑦𝑚𝑖𝑛. By substituting the known parameters of the beam at 

both ends into Eq. (18), we obtain: 

𝑘1 = ℎ1 (√
𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) 𝐿⁄  

𝑘3 = 𝑆𝑚𝑎𝑥 ℎ1
2⁄      (19) 

𝑘4 = 𝐼𝑦 𝑚𝑎𝑥 ℎ1
4⁄       

When the aspect ratio of the structure is variable, the width and thickness of the cross-section are mutually independent, By 

measuring the maximum thicknesses ℎ𝑙𝑚𝑎𝑥 and ℎ𝑟𝑚𝑎𝑥  of the cross-sections perpendicular to the y-axis at both ends of the 

structure, the expression for the cross-sectional parameters at any point within the unit can also be derived. 

The variation pattern of cross-sections is classified into two categories: 

(1) Only partial cross-sectional moments of inertia and cross-sectional areas are known. In this paper, by assuming linear 

variation of width and thickness, the number of undetermined coefficients is reduced, which proves to be relatively accurate 

for the calculation of simple tapered beams. When calculating large deformations of beams with significantly tapered cross-

sectional variations, higher-order interpolation is required for width and thickness. Each additional order introduces two 

additional undetermined coefficients, necessitating extra known conditions (such as cross-sectional areas and moments of 

inertia in the y- and z-directions at other sections). Only under these conditions can the derived shape function expressions 

accurately represent the large deformations of beams with notably tapered cross-sectional variations. 

(2) The specific expression for the variation of cross-sectional dimensions (such as width or diameter) is known. In this paper, 

the cross-sectional characteristics at the Gaussian integration points of the element can be directly computed using the 

expression for dimensional variation, and the solution is then obtained through Gaussian integration. Under such circumstances, 

this method demonstrates high accuracy and strong robustness even for nonlinearly varying cross-sectional dimensions. 

Once the relevant coefficients are obtained, they can be substituted into the coordinates of the Gaussian integration points to 

calculate the cross-sectional parameters. By substituting the cross-sectional parameters into Eqs. (14) and (15), the element 

stiffness matrix 𝑲𝑒  and the element mass matrix 𝑴𝑒 of the variable cross-section Timoshenko beam element can be obtained. 

3.Co-rotational formulation 

The co-rotational formulation stands out by extracting the elastic deformation displacements from the overall displacements 

(Crisfield, 1990; Crisfield and Moita, 1996; Crisfield et al., 1997), thus predefining the projection relationship. The motion of 

the beam element from its initial state to the final deformed state is decomposed into rigid body motion and pure deformation. 

The rigid body motion component encompasses the rigid translation and rotation in the local reference coordinate system. 

Therefore, the core challenge of the co-rotational formulation lies in handling the coordinate transformation between different 

frames, thereby establishing the relationship between pure deformation and the overall deformation. 

3.1Definition and transformation of the reference coordinate system for spatial beam elements 

For the spatial two-node beam element, the reference coordinate system is defined as shown in Fig. 2. The unit orthogonal 

vectors 𝑬𝑖 , 𝑖 = 1,2,3, represent the global reference system of the beam element, which remains fixed and unchanged. The 

unit orthogonal vectors 𝑬𝑖
ℎ , 𝑖 = 1,2,3, represent the local reference system of the beam element after rigid body motion, which 

continuously translates and rotates with the beam element. The local reference system 𝑬𝑖
𝑞
, 𝑖 = 1,2,3 represents the original 

coordinate system of the beam element before deformation. Additionally, the vectors 𝒆𝑖
1 and 𝒆𝑖

2,  define the cross-sectional 

reference system of the two nodes (1 and 2) of the beam.  
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Figure 2. Beam kinematics and coordinate systems 

 

First, the rigid rotation of the local coordinate system 𝑬𝑖
ℎ  is addressed. The rigid rotation matrix 𝑹𝑟  represents the 

transformation matrix from the reference system 𝑬𝑖  to 𝑬𝑖
ℎ, and its expression is given by:  

𝑹𝑟 = [𝑟1 𝑟2 𝑟3]     (20) 

The vector 𝒓1 is computed as the line connecting node 1 and node 2 of the beam element before and after deformation:  

𝒓1 =
𝑺2
𝑔
−𝑺1

𝑔

𝑙
,     (21) 

where 𝑠𝑖
𝑔

 represents the coordinates of node i in the global reference system after rigid rotation. The length l of the beam after 

deformation can be obtained by 𝑙 = ‖𝑠2
𝑔
− 𝑠1

𝑔
‖. 

The directions of the remaining two axes are determined by introducing an auxiliary vector 𝒒. The auxiliary vector serves two 

main purposes: (1) to solve the rigid rotation matrix in the global coordinate system; (2) to determine the differential 

relationship between the rigid rotation angle and the total displacement of the structure. Initially, the direction of 𝒒 aligns with 

the local coordinate axis 𝑬2
𝑞
. After deformation of the beam element, the determination of the auxiliary vector 𝒒 is related to 

the transformation of the local reference system: 

𝒒𝑖 = 𝑹𝑖
𝑔
𝑹0[0 1 0]T, 𝑖 = 1,2,     (22) 

𝒒 =
1

2
(𝒒1 + 𝒒2),     (23) 

where 𝑹1
𝑔

 and 𝑹2
𝑔

 are the orthogonal matrices corresponding to the directions of the end nodes 𝒆𝑖
1 and 𝒆𝑖

2, respectively. 𝒒1 

and 𝒒2 are the directions of the left and right end reference systems of the local reference system 𝑬2
𝑞
 after rigid rotation. 𝑹0 

denotes the initial orientation of the local coordinates, and 𝒒 represents the direction of the local reference system 𝑬2
𝑞
 after 

rigid rotation. 

By combining Eqs. (21), (22), and (23), the expressions for the remaining two components of the orthogonal matrix 𝑹𝑟 can 

be obtained: 

𝒓3 =
𝒓1×𝒒

‖𝒓1×𝒒‖
 𝒓2 = 𝒓3 × 𝒓1,     (24) 

1

2

1

2
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The local rotation matrix of the coordinate axis is defined as 𝑹̄𝑖 , and the transformation from 𝑬𝑖   to 𝒆𝑖
1  and 𝒆𝑖

2  can be 

expressed as follows: 

𝑹𝑟𝑹̄𝑖 = 𝑹𝑖
𝑔
𝑹0, 𝑖 = 1,2,     (25) 

Since 𝑹𝑟
T𝑹𝑟 = 𝐼, Eq. (25) can be transformed as follows: 

𝑹̄𝑖 = 𝑹𝑟
T𝑹𝑖

𝑔
𝑹0, 𝑖 = 1,2,     (26) 

Thus, the local rotation angles can be obtained as follows:  

𝝑̄𝑖 = 𝑙𝑜𝑔(𝑹̄𝑖),     (27) 

3.2Transformation of displacement vectors between the local and global coordinate systems 

The global displacement vector of the beam element is defined as 𝑷𝑔
𝑔

, and the displacement vector in the local coordinate 

system after removing rigid body deformations is denoted as 𝑃𝑙 . By utilizing the rotation framework described in the previous 

section, the local displacement 𝑷𝑙 is obtained by subtracting the rigid body displacement from the total displacement 𝑷𝑔
𝑔

. The 

local internal force vector 𝒇𝑙 and the tangent stiffness matrix 𝑲𝑙 in the local coordinate system are computed through the 

transformation relationship between the two. The expression of the internal force vector 𝑭𝑔 in the global coordinate system 

can be derived by balancing the internal virtual work in the global and local systems: 

𝑉 = 𝛿𝑷𝑙
T𝑓𝑙 = 𝛿𝑷𝑔

𝑔T
𝑭𝑔,     (28) 

The variations of the displacement vectors 𝑷𝑔
𝑔

 and 𝑷𝑙 can be expressed as follows: 

𝛿𝑷𝑙 = [𝛿𝒖̄ 𝛿𝝑̄1
T 𝛿𝝑̄2

T]T,     (29) 

𝛿𝑷𝑔
𝑔
= [𝛿𝒖1

𝑔T
𝛿𝜽1

𝑔T
𝛿𝒖2

𝑔T
𝛿𝜽2

𝑔T]
T
,     (30) 

where, 𝛿𝝑̄𝑖, (𝑖 = 1,2) represents the variation of spatial rotation angles in the local coordinate system after considering rigid 

body deformations, and 𝜕𝜽𝑖
𝑔
(𝑖 = 1,2) represents the variation of spatial rotation angles in the global coordinate system. 

The variation of the transformation matrix involves the formation of a new matrix composed of rotational angles: 

𝛿𝑹̄𝑖 = 𝛿𝜽̃̄𝑖𝑅̄𝑖,     (31) 

where the superscript tilde denotes the skew-symmetric matrix corresponding to a vector. A new local coordinate system, 

denoted as 𝑷𝑎, is defined based on Eqs. (29) and (31). 

𝑷𝑎 = [𝒖̄ 𝜽̄1
T 𝜽̄2

T]T,     (32) 

Let 𝒇𝑎 represents the internal force vector corresponding to 𝛿𝑷𝑎, and 𝑲𝑙 denotes the transformed local stiffness matrix 𝑲𝑒 

obtained in Section 2 of this paper, which is converted to a 7-degree-of-freedom system. The transformation matrix between 

vectors 𝑷𝑎 and 𝑷𝑙 can be obtained through the transformation relationship of their respective stiffness matrices. The final 

conversion of 𝑲𝑙 to 𝑲𝑎 can be expressed as follows: 

𝑲𝑎 = 𝑩𝑙
T𝑲𝑙𝑩𝑙 + 𝑲ℎ, 𝑲ℎ = [

0 01×3 01×3
03×1 𝑲ℎ1 03×3
03×1 03×3 𝑲ℎ2

],     (33) 

The matrix 𝑩𝑙  can be directly obtained by rotating the vector. The expressions for 𝑲ℎ1  and 𝑲ℎ2  are derived from the 

following equation: 

𝜕

𝜕𝜽̄
[𝑻𝑠

−𝑇𝒗] =
𝜕

𝜕𝝑̄
[𝑻𝑠

−𝑇𝒗]
𝜕𝝑̄

𝜕𝜽̄
=

𝜕

𝜕𝝑̄
[𝑻𝑠

−𝑇𝒗]𝑻𝑠
−1,    (34) 

  

𝑻𝑠(𝛷) =
𝑠𝑖𝑛 𝜑

𝜑
𝑰 + (1 −

𝑠𝑖𝑛 𝜑

𝜑
)𝒆𝒆T +

1

2
(
𝑠𝑖𝑛(𝜑/2)

𝜑/2
)2𝜱̃,    (35) 

where 𝒗 represents the bending moment acting on the two ends of the internal force vector in the local coordinate system, 𝒆 

is the unit vector corresponding to the angle vector, 𝑲ℎ1 and 𝑲ℎ2 correspond to 𝝑̄1 and 𝝑̄2 in Eq. (34). Consequently, the 

differential relationship between the rotational vector in the local coordinate system and the displacement vector in the global 
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coordinate system can be derived as follows:   

[
𝛿𝜽̄1
𝛿𝜽̄2

] = ([
0 𝑰 0 0
0 0 0 𝑰

] − [
𝑮𝜃

T

𝑮𝜃
T
]) 𝑬T𝛿𝑷𝑔

𝑔
= 𝑷𝑬T𝛿𝑷𝑔

𝑔
,     (36) 

where 𝑮𝜃 =
𝜕𝜽𝑟

𝑒

𝜕𝑷𝑔
𝑔,𝑬 = 𝑑𝑖𝑎𝑔[𝑹𝑟 𝑹𝑟 𝑹𝑟 𝑹𝑟]. 

Thus, the relationship between 𝛿𝑷𝑎 and 𝜕𝑷𝑔
𝑔

 can be obtained as follows: 

𝛿𝑷𝑎 = 𝑩𝑎𝛿𝑷𝑔
𝑔
, 𝐵𝑎 = [

𝒓
𝑷𝑬T

],     (37) 

where 𝒓 = [−𝒓1
T 𝟎1×3 𝒓1

T 𝟎1×3]. The matrix 𝑮𝜃 in Eq. (36) is related to 𝛿𝜽𝑟
𝑒. 

𝛿𝜽̃𝑟
𝑒 = 𝑹𝑟

T𝛿𝑹𝑟 , 𝛿𝜽𝑟
𝑒 = [

−𝒓2
T𝛿𝒓3

−𝒓3
T𝛿𝒓1

𝒓2
T𝛿𝒓1

],     (38) 

The expression for 𝒓1,𝒓2,𝒓3, and 𝛿𝑟1 can be easily obtained. As for 𝛿𝒓3, it is related to 𝛿𝒒 according to Eq. (23): 

𝛿𝒒 =
1

2
(𝛿𝑹𝛾 + 𝛿𝑹𝜸)𝑹0[0 1 0]T =

1

2
(𝛿𝜽̃1

𝑔
𝒒1 + 𝛿𝜽̃2

𝑔
𝒒2),    (39) 

The expression of the matrix 𝑮𝜃  can be obtained through Eq. (39) and 𝑮𝜃 =
𝜕𝜽𝑟

𝑒

𝜕𝑷𝑔
𝑔. The detailed derivation can be found in 

reference (Crisfield, 1990). Eq. (37) yields the relationship between the force vector in the global coordinates and the internal 

force vector in the local coordinates. 

𝑭𝑔 = 𝑩𝑎
T𝒇𝑎,     (40) 

Similarly, by considering the variation of the force vector in the global coordinates in Eq. (37), it can be obtained as follows: 

{
𝛿𝑭𝑔 = 𝑩𝑎

T𝛿𝒇𝑎 + 𝛿𝒓
T𝒇𝑎1 + 𝛿(𝑬𝑷

T)𝒎

𝒎 = [𝑓𝑎2 𝑓𝑎3 𝑓𝑎4 𝑓𝑎5 𝑓𝑎6 𝑓𝑎7]
T
,     (41) 

where 𝑓𝒂𝒊(𝑖 = 1,⋯ ,7) represent the components of the force vector 𝒇𝑎. In conclusion, the tangent stiffness matrix in the 

global coordinate system can be obtained as follows: 

 {
𝑲𝑔 = 𝑩𝑎

T𝑲𝑎𝑩𝑎 + 𝑲𝑚

𝑲𝑚 = 𝑫𝑓𝑎1 − 𝑬𝑸𝑮𝜃
T𝑬T + 𝑬𝑮𝜃𝒂𝒓

,     (42) 

where: 

𝑫 = [

𝒅 𝟎 −𝒅 𝟎
𝟎 𝟎 𝟎 𝟎
−𝒅 𝟎 𝒅 𝟎
𝟎 𝟎 𝟎 𝟎

] , 𝒅 =
1

𝑙
(𝑰 − 𝒓1𝒓1

T),     (43) 

𝑸 =

[
 
 
 
 
𝑸̃𝟏
𝑸̃𝟐
𝑸̃𝟑
𝑸̃𝟒]
 
 
 
 

, 𝒂 = [

0
𝜂(𝑓𝑎2 + 𝑓𝑎5)/𝑙 − (𝑓𝑎3 + 𝑓𝑎6)/𝑙

(𝑓𝑎4 + 𝑓𝑎7)/𝑙
],     (44) 

𝑷T𝒎 = [𝑸𝟏
T 𝑸𝟐

T 𝑸𝟑
T 𝑸𝟒

T]T,     (45) 

By utilizing the obtained tangent stiffness matrix, the difference in the global force vector can be calculated. The iterative 

process is employed to gradually converge the results towards the exact solution. The computational flowchart of nonlinear 

deformation in variable cross-section beam is illustrated in Fig. 3. 
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Figure 3. Flowchart of nonlinear deformation in the variable cross-section beam 

4.Applications 

This section presents comparative analysis between the proposed co-rotational Timoshenko beam model with variable cross-

section and existing benchmark results to validate its accuracy. The validation is carried out in three stages. First, the simple 

beam models with the constant cross-section are simulated to verify the proposed beam model with geometric nonlinearity. 

Second, the proposed co-rotational model is applied to a beam with variable cross-section and evaluated against both analytical 

solutions and numerical results from the literature, thereby confirming the capability of the proposed model in handling non-

uniform geometries. Finally, a frequency analysis is conducted on a variable cross-section beam, and the computed results are 

compared with experimental measurements and published data to further demonstrate the capability of the developed beam 

element for dynamic analyses. 

4.1Application on constant cross-section beam element 

4.1.1 Large deformation analysis of spatially pre-bent cantilever beams subjected to concentrated loads 

A 45° cantilever circular arc beam with a radius of R=100m is subjected to a vertical concentrated load F of magnitude 300N 

at its free end as shown in Fig. 4 below.  
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Figure 4. Pre-bent cantilever beam  

 

The beam is divided into 8 elements, and the detailed cross-section properties of the beam are provided in Reference (Nguyen 

and Gan, 2014). Table 1 presents a comparative analysis of the displacements at the free end of the beam in the x, y, and z 

directions, as computed by the proposed method, the HAWC2 software, and the analytical solution. 

Table 1 shows that the obtained large deformations from the developed co-rotational beam model in the x and y directions are 

-12.08m and -7.10m, respectively. Compared with the results obtained using HAWC2, the proposed approach improves the 

computational accuracy by 0.3% in the x direction and 1.1% in the y direction. The results confirm that the proposed model 

achieves high accuracy in capturing the large deformation behavior of spatial Timoshenko beams. 

 

Table 1. Comparison of the Pre-bent beam tip displacements under a force applied at the free end 

 Displacements (m) Rel. Diff. (%) 

 x y z x y z 

Analytical 

Solution 
-11.87 -6.96 40.08 - - - 

HAWC2 -12.12 -7.18 40.08 2.1 3.1 0.0 

Present -12.08 -7.10 40.41 1.8 2.0 0.8 

 

4.1.2 Large Deformation Analysis of a Thin Plate Beams under Concentrated Load 

Fig. 5 illustrates a cantilevered thin plate beam with a total length of 0.51m, a cross-sectional width of 30mm, and a thickness 

of 1mm. The beam is made of 304 stainless steel, with a Young’s modulus of 193 GPa and a Poisson’s ratio of 0.3. To simulate 

concentrated loading, weights of 0.7N and 1.3N are suspended from the free end of the cantilever beam. For each case, the 

actual horizontal displacement u and vertical displacement v at three selected points along the beam are measured. In this 

section, the proposed co-rotational beam model is employed to calculate the large deformation displacements of the cantilever 
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beam under the two loading cases, and the plate beam is divided into 9 elements. Table 2 compares the results from the present 

study, the experimental measurements, and the data reported in Reference (Jiang et al.,2023) 

 

Figure 5. Schematic Diagram of Thin Plate Beam 

 

Table 2. Comparison of Nodal Displacements of the Thin Plates under Free-end Loading  

Case 

Positi

on 

(x/L) 

u v 

Test 

(mm) 

ASU[5] 

(mm) 

Rel. 

Diff(

%) 

Present  

(mm) 

Rel. 

Diff 

(%) 

Test 

value 

(mm) 

ASU[5] 

(mm) 

Rel. 

Diff. 

(%) 

Present  

(mm) 

Rel. 

Diff 

(%) 

Ⅰ 

1/3 -2.0 -1.6 20.0 -1.9 5.0 -21.5 -23.5 9.3 22.6 5.1 

2/3 -12.0 -10.7 10.8 -11.3 5.3 -78.0 -80.9 3.7 77.8 0.3 

1 -24.0 -26.0 8.3 -26.5 10.4 -150 -154.6 3.1 148.4 1.1 

Ⅱ 

1/3 -3.0 -3.3 10 3.1 3.3 -28.0 -29.5 5.4 29.0 3.6 

2/3 -17.0 -19.1 12.4 18.4 8.2 -96.0 -100.7 4.9 98.8 2.9 

1 -42.0 -44.9 6.9 43.1 2.6 -185.0 -190.6 3.0 187.1 1.1 

 

As shown in Table 2, except for the case 1, where the relative error of the horizontal displacement at the free end reached 

10.4%, most of the other relative errors were within 10%, and this error remains stable as the applied load increases. In terms 

of the vertical displacement v, the proposed model produces the results with relative errors below 5%. Moreover, the predicted 

vertical deformation at the free end of the beam closely matches the measured values. These results validate the effectiveness 

and accuracy of the proposed model in capturing large elastic deformations in thin-walled flexible structures. 

4.2Numerical analysis of variable cross-section beams 

To validate the performance of the proposed model in handling variable geometric configurations, numerical simulations are 

conducted on two variable cross-section beams. The results obtained using the proposed model are compared with those from 

relevant literature to assess its accuracy and effectiveness. 

4.2.1 Numerical analysis of a rectangular variable cross-section cantilever beam 

The cantilever beam with a rectangular cross-section, as shown in Fig. 6, is considered. The beam has a total length of 10 m 
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and a constant width of b = 0.25 m, its thickness tapers linearly from 1.0 m at the fixed end to 0.2 m at the free end. The elastic 

modulus of the material is 𝑬 = 3.0 × 104GPa, and the beam is subjected to a concentrated vertical load of 10,000 N at the 

free end. To evaluate the performance of the model, the beam is discretized into 10 elements. The computed deflection and 

rotation at the free end are compared with the exact analytical solution and results from alternative method, as summarized in 

Table 3.   

 

 

Figure 6. Simplified diagram of rectangular variable cross-section cantilever beam 

 

As shown in Table 3, the deflection and rotation results obtained using the proposed model align exceptionally well with the 

analytical solution. The predicted deflection at the free end is 0.01530 m, exactly matching the analytical value, and the 

computed rotation is 0.00399 rad, with a relative difference of only 0.25%. In comparison, the segmental constant elements 

method yields a relative difference of 0.59% in deflection and 2.00% in rotation. This example demonstrates the effectiveness 

of the proposed co-rotational beam model in capturing the geometric nonlinear behavior of beams with varying cross-sections. 

 

Table 3. Comparison of Deflection and Rotation at the Free End of a Rectangular Variable Cross-Section Cantilever Beam 

 Deflection (m) Rel. Diff. (%) Rotation(rad) Rel. Diff. (%) 

Analytical Solution 0.01530 - 0.00400 - 

Segmental Constant Elements 

[40] 
0.01521 0.59 0.00392 2.00 

Present 0.01530 0.00 0.00399 0.25 

 

4.2.2 Numerical simulation of a cantilever conical beam 

A variable cross-section cantilever beam, as shown in Fig. 7, is analyzed with a total length of 10 m. At the free end, both the 

moment of inertia IL and cross-sectional area AL are one-third of those at the fixed end. The ratio of the beam length to the 

height of the cantilever end section is 50:1. The material properties include an elastic modulus of 210 GPa and a shear modulus 

of 80.77 GPa. To facilitate comparison with existing numerical studies, a dimensionless load parameter𝐅 = 𝐹𝐿2/𝐸𝐼𝐿 , as 

defined in reference (Marjamäki and Mäkinen, 2009), is employed.  

Fig. 8 shows the load–displacement response of the conical cantilever beam subjected to a vertically downward point load at 
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its free end. The results from the proposed co-rotational beam model are compared with the numerical solution obtained using 

the Runge–Kutta method from reference (Marjamäki and Mäkinen, 2009) and with finite element results reported by Nguyen 

(Nguyen, 2013). As evident in Fig. 8, the response predicted by the proposed method aligns closely with the Runge–Kutta 

solution and shows improved agreement compared to Nguyen's finite element results. This comparison validates the accuracy 

and effectiveness of the proposed co-rotational model in capturing large deformation behavior in conical cantilever beams with 

variable cross-sections. 

 

Figure 7. Conical beam 
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Figure 8. Normalized moment and deformation in tapered beam 

 

4.3Variable taper frame model 

A well-know benchmark frame structure (Manuel et al., 1968), shown in Fig. 9, is commonly used to assess the performance 

of nonlinear analysis methods. In its original configuration, members AB and BC possess constant stiffness. Building upon 

this example, Francisco(de Araujo et al., 2017) proposed a modified version by introducing variable stiffness to column AB, 

as illustrated in Fig. 10. The cross-sectional properties at points A and B for this modified configuration are provided as follows: 

{

𝐼𝑥𝐴 = 14.76042 × 10
−8𝑚4, 𝐼𝑧𝐴 = 17.04167 × 10−8𝑚4

𝐼𝑥𝐵 = 0.09375 × 10
−8𝑚4, 𝐼𝑧𝐵 = 0.27083 × 10−8𝑚4

𝑆𝐴 = 8.5 × 10−4𝑚2, 𝑆𝐵 = 1.0 × 10−4𝑚2

,                  (46) 

|𝑢̅| 

𝑣̅ 

𝜃̅ 
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Beam BC retains a constant rectangular cross-section with S = 0.006 m2 and 𝐼 = 2 × 10−8m4
.  The material properties for the 

entire frame are assumed to be homogeneous, with an elastic modulus 𝐸 = 7.2 × 109GPa and Poisson’s ratio v=0.3. The frame 

is discretized into 20 elements, and the interpolation method proposed in this study is applied. The resulting vertical and 

horizontal displacements at the load application points are compared with those obtained from Francisco2017 and a highly 

refined finite element mesh reported in reference (de Araujo et al., 2017). As shown in Fig. 11, the responses match quite well.  

 

Figure 9. Frame scheme 

 

 

Figure 10. Column geometry 
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(a) 𝑢𝑥 Displacement at node 13  (b) 𝑢𝑦 Displacement at node 13 

Figure 11. Frame displacement at node 13 
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4.4Natural frequencies of the conical cantilever beam 

This section considers an experimental conical cantilever beam reported in reference (Le et al., 2011) to verify the developed 

beam element. A modal analysis is performed where the natural frequencies are compared. The beam has a total length of 0.5m, 

with a fixed-end section diameter of 0.03m, and a free-end section diameter of 0.005m. The mass density and elastic modulus 

are 7800kg/m3 and 210 GPa, respectively. The specific experimental setup is described in detail in reference (Le et al., 2011). 

The first five natural frequencies of the conical beam are computed using the proposed variable cross-section beam model and 

are compared with both experimental results and two numerical approaches from Ref. (Le et al., 2011). The comparison is 

presented in Table 4. 

 

Table 4. Natural frequencies of the conical cantiliver beam 

Natural 

modes 

TMM using 

Bessel functions 

(errors) [Hz] % 

TMM using 

cylindrical elements 

(errors) [Hz] % 

Present result 

(errors) [Hz] % 

Experimental 

results [Hz] 

Mode1 160.7(1.1) 162.5(2.2) 166.4(4.6) 159.0 

Mode2 455.5(3.0) 457.4(3.4) 445.0(0.6) 442.2 

Mode3 962.8(7.3) 963.0(7.3) 920.2(2.5) 897.5 

Mode4 1702.0(6.9) 1699.0(6.7) 1658.9(4.2) 1592.1 

Mode5 2679.1(7.0) 2671.5(6.7) 2607.8(4.1) 2504.0 

 

From Table 4, all three numerical methods produce results reasonably close to the experimental values. However, the proposed 

model demonstrates superior accuracy, with relative errors consistently below 5% across all five modes. In contrast, the relative 

errors of the TMM approaches in (Le et al.,2011) exceed 5% in several modes. Notably, the present model yields the most 

accurate results for the second and third modes, with relative errors of only 0.6% and 2.5%, respectively. These results confirm 

that the proposed variable cross-section beam model is effective in predicting the dynamic behavior of conical cantilever beams.  

4.5 3D frame structure with variation of beam cross-sections 

Figure 12 shows a 3D frame, with beams of varying circular cross-sections, loaded by concentrated loads F at node 1. The 

displacements of nodes 1 to 4 were founded. Variation of the cross-sectional area of the beams a is defined by the following 

diameter quadratic functiond(y) = 0.04 + 0.04𝑦2. The beams b and c have constant diameters through lengths of elements. 

Detailed parameters can be found in (Murı́n et al. 2002). Only one exact beam element was used to model each beam (a, b, c). 

In the Hermite beam element model, only one element was used to represent the beams b and c in all cases, but beams a were 

modelled with 1, 2 and 3 elements in models 1, 2 and 3 respectively.  
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Figure 12. Frame displacement at node 13 (Murı́n et al. 2002) 

 

The numerical results obtained by the present method are compared against those from the method proposed by Murı́n et al. 

(2002) and the solutions from classical Hermite beam elements, as presented in Table 5. It can be observed from the table that 

compared to the reference method, the displacement solutions of the present method at all nodes and under all loading cases 

are consistently closer to the exact solution, demonstrating a significant enhancement in computational accuracy. Furthermore, 

when the number of elements is varied, the present method exhibits a narrower and more stable variation range in its solutions, 

highlighting its superior numerical robustness. 

 

Table 5. Comparison of results 

 
Node1 (errors %) Node2 (errors %) Node3 (errors %) Node4 (errors %) 

𝑈𝑥(mm) 𝑈𝑧(mm) 𝑈𝑥(mm) 𝑈𝑧(mm) 𝑈𝑥(mm) 𝑈𝑧(mm) 𝑈𝑥(mm) 𝑈𝑧(mm) 

Exact solution 0.775 -1.098 0.774 -0.428 0.945 -0.428 0.945 -1.098 

Model1 ref 0.651(16.0) -0.882(19.7) 0.650 -0.336(21.5) 0.763(19.3) -0.336 0.763 -0.882 

Model1 this paper 0.745(3.9) -0.981(10.7) 0.745 -0.427(0.2) 0.859(9.1) -0.427 0.859 -0.981 

Model2 ref 0.743(4.1) -1.008(8.2) 0.722 -0.390(8.9) 0.869(8.0) -0.390 0.869 -1.008 

Model2 this paper 0.767(1.0) -1.085(1.2) 0.766 -0.423(1.2) 0.933(1.3) -0.423 0.933 -1.086 

Model3 ref 0.749(3.4) -1.054(4.0) 0.748 -0.409(4.4) 0.908(3.9) -0.409 0.908 -1.054 

Model3 this paper 0.772(0.4) -1.093(0.5) 0.771 -0.426(0.5) 0.940(0.5) -0.426 0.940 -1.093 

 

5.Conclusions 

This study proposes a novel co-rotational finite element framework for the geometrically nonlinear analysis of variable cross-

section Timoshenko beams, which significantly enhances computational accuracy, efficiency, and robustness through the 

introduction of analytical displacement shape functions and a Gaussian integration strategy.  

Case 1: A variable cross‑section beam element based on analytical displacement shape functions is proposed, replacing 

traditional interpolation functions and significantly enhancing computational accuracy in geometrically nonlinear analysis. 

Example 1 (large deformation of a uniform cross‑section cantilever beam) and Example 3 (beam with constant taper) validate 

the accuracy of this element in capturing bending deformation, especially under variable cross‑section conditions where it 

demonstrates higher convergence accuracy compared to conventional piecewise uniform cross‑section approaches. 

Case 2: Gaussian integration is introduced within the corotational framework to compute element matrices, eliminating the 

need for repeated moment‑of‑inertia calculations at each cross‑section and thereby improving computational efficiency. 

Example 4 (large deformation of a linearly tapered beam) shows that the method maintains accuracy while outperforms existing 
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variable cross‑section corotational methods in computational efficiency; for cases with pronounced nonlinear taper, the method 

can be extended flexibly by incorporating additional sectional information. 

Case 3: A local‑to‑global coordinate transformation method tailored for variable cross‑section beams is developed, capable of 

handling irregular and proportionally graded sections, thus extending the applicability of the corotational formulation. 

Example 2 (spatial beam large‑deformation experiment) and Example 5 (frame structure with varying taper) demonstrate that 

the method retains good numerical stability and robustness in three‑dimensional large‑deformation analysis and complex 

geometric nonlinear problems. Example 6 further confirms the framework's suitability for spatially tapered beam analysis. 

In summary, the proposed corotational model for variable cross‑section beams exhibits clear advantages in accuracy, efficiency, 

and generality, providing a reliable and efficient computational tool for predicting geometrically nonlinear responses of 

variable‑section structures in engineering practice. Future work may focus on higher‑order variable cross‑section models, 

treatment of abruptly changing sections, and multiphysics coupling problems. 
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