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12 Abstract. The geometrically nonlinear analysis of Timoshenko beam structures with variable cross-sections is a common
13 challenge in engineering practice. However, traditional nonlinear analysis methods for such structures often suffer from limited
14 accuracy and computational inefficiency. To address these challenges, this study proposes an efficient geometrically nonlinear
15 analysis framework for variable cross-section Timoshenko beams based on the co-rotational formulation. First, the novel
16 Timoshenko beam element with a variable cross-section, based on analytical displacement shape functions, is developed to
17 enhance the computational accuracy of the co-rotational formulation. The Gaussian integration method is employed to compute
18 the stiffness and mass matrices of variable cross-section elements, thereby improving computational efficiency. Then, the
19 tangent stiffness matrix of the variable cross-section beam element is derived based on co-rotational formulation and the
70  proposed variable cross-section beam element. Finally, the dedicated finite element program is developed and validated
21 through four benchmark examples and comparisons with experimental data from the literature. The results demonstrate that
22 the proposed method achieves both high computational efficiency and accuracy in handling large deformations and nonlinear
23 behavior. The proposed method is particularly suitable for analyzing structures with irregular or proportionally graded cross-
24 sections and demonstrates advantages over existing co-rotational approaches.

25 Keywords: Timoshenko Beam, Geometric Nonlinear Analysis, Co-rotational Formulation, Variable Cross-section.

26 1. Introduction

27 Beam structures are fundamental load-bearing components in various engineering disciplines, valued for their high strength,
28 rigidity, and low weight. Although uniform cross-section beams have been extensively studied, modern engineering
29 applications increasingly utilize non-uniform flexible beams to optimize mass distribution and enhance mechanical
30  performance in structures such as wind turbine blades, robotic manipulators, and aerospace components (Xiao et.al., 2024;
31 Elkaimbillah et al., 2021;Wang et al., 2014). These variable cross-section flexible beams frequently experience large
32 deformations under operational loads, introducing geometric nonlinearities that invalidate classical linear beam theories based
33 on small deformation assumptions. Therefore, understanding the geometric nonlinearity of flexible beam structures with non-
34 uniform cross-sections is essential for accurate engineering analysis of such structures.

35 Substantial research efforts have been dedicated to developing finite element methodologies for the geometric nonlinear
36 analysis of flexible beams structures. The most commonly used finite element methods are the Total Lagrangian (TL)

37 (Heyliger et al., 2020; Saravia et al., 2012; Marjamaki et al.,2009) and Updated Lagrangian(UL) (Greco et al., 2022; Turkalj

38 et al., 2012; Kordkheili et al., 2011) formulations. While these approaches are widely adopted in commercial software due to

39 their broad applicability, they have inherent limitations. Notably, these methods do not account for coordinate system changes
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40 following beam element deformation, leading to unacceptable calculation errors when elements undergo large rotations. To
41 address this issue, an effective alternative for developing nonlinear beam elements is the co-rotational (CR) formulation.
42 Research on CR finite elements begin with the pioneering work of Wempner (Wempner, 1969), Belytschko and Hsieh
43 (Belytschko and Glaum, 1979), and Argyris and colleagues (Argyris et al., 1979). The key idea behind CR formulations is to

44 decompose the motion of a beam element into the sum of a rigid body motion and a pure deformational displacement, using a

45 local reference coordinate system that continuously rotates and translates with the element. Pioneering work by Rankin et al.

46 (Nour-Omid and Rankin, 1991; Rankin and Brogan, 1986) established a standard framework for calculating CR beam
47 formulation. Another significant contribution to CR beam theory was made by Crisfield and his collaborators (Crisfield, 1990;
48 Crisfield and Moita, 1996; Crisfield et al., 1997), who applied the CR formulation to solve various types of geometric
49 nonlinearities and proposed a consistent method for computing element equilibrium equations. Behdinan et al (Behdinan et al.,
50 1998) extended the consistent CR static analysis to the dynamic analysis of beams undergoing large deflections. Hsiao et
51 al.(Hsiao et al., 1999) introduced a consistent CR total Lagrangian finite element formulation for the geometrically nonlinear
52 dynamic analysis of Euler beams with large rotations but small strain. Early CR methods used different shape functions for
53 computing elastic and inertial force vectors of the beam element, whereas Li et al. (Le et al., 2011; Le et al., 2014) adopted
54 cubic interpolations to formulate both inertia and internal local terms, and employed their new CR formulation to perform
55 nonlinear dynamic analysis of 2D and 3D beams. The computational efficacy and accuracy of CR approaches have further
56 expanded their applications across various structural systems (Moon et al., 2023; Meng et al., 2016; Wang et al., 2018; Kim et

57 al., 2022; Shen et al., 2021; Timoshenko et al., 1930). However, most existing CR formulations assume constant cross-sectional

58 properties, significantly limiting their applicability to variable cross-section flexible beam designs.

59 The increasing use of non-uniform flexible beams has driven recent research into their nonlinear behavior. The analog equation

60  method (Sapountzakis and Panagos, 2008; Sapountzakis and Panagos, 2008) has been employed for the nonlinear analysis of
61 Timoshenko beams undergoing large deflections with variable cross-sections. Yu and Zhao (Yu et al., 2024) developed a
62 viscoelastic beam element based on the absolute nodal coordinate formulation for various cross-sectional structures, where the
63 modified Kelvin-Voigt viscoelastic constitutive model was introduced to describe the large deformation of viscoelastic
64 materials. Building on this work, Yu et al. (Yu et al.,2024) further proposed an improved absolute nodal coordinate formulation
65 for analyzing the nonlinear behavior of variable cross-sections with large aspect ratios. Elkaimbillah el al. (Elkaimbillah et al.,
66 2021) employed Vlasov kinematics to develop a one-dimensional finite element model for the nonlinear dynamic analysis of
67 thin-walled composite beams with open variable cross-sections. Additional studies have focused on the nonlinear behavior of

68 axially functionally graded beams with various cross-sections (Kumar et al., 2015; Ghayesh, 2018; Smir et al., 2018; Xu et al.,

69 2021). Regarding CR beam models for variable cross-sections, Nguyen and Gan (Nguyen, 2013; Nguyen and Gan, 2014)

70 employed the CR beam element to investigate the large displacement of tapered cantilever beams made of axially functionally
71 graded materials. Moon et al. (Moon et al.,2023) extended the work of Crisfield (Crisfield and Moita, 1996) on CR beam
72 elements by incorporating the fully populated and non-uniform cross-sectional stiffness matrix, expressed as a function of the
73 axial length, to develop an anisotropic CR beam model for variable cross-sections. Nevertheless, current CR methods for non-
74 uniform flexible beams remain constrained by computational inefficiency and limited precision.

75 To address these limitations, this paper presents an improved CR beam model for variable cross-sections. This model
76  introduces two key innovations. First, the enhanced spatial Timoshenko beam element with variable cross-section is used to
77 obtain the tangent stiffness matrix and internal force vector, significantly improving the computational accuracy of the CR
78 method. Second, it eliminates the need to calculate the moment of inertia by evaluating the parameters of each cross-section,
79 thereby enhancing the computational efficiency of variable cross-section beams. The proposed CR model enables geometric
80  nonlinear analysis of variable cross-section beams with irregular and proportionally varying cross-sections. The remainder of
81 this paper is organized as follows: Section 2 develops the improved stiffness and mass matrices for the variable cross-section

82 beam element, based on analytical displacement shape functions. In Section 3, geometric nonlinear analysis of variable cross-
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83 section beams is formulated using the CR formulation. Section 4 presents a comparative analysis of computational results,
84 including experimental data and numerical simulations, to validate the applicability and accuracy of the proposed method. The

85 main conclusions of this investigation are thereafter summarized in Section 5.

86 2.The improved spatial Timoshenko beam element with variable cross-section

87 The CR method enables the use of linear Timoshenko beam elements to derive the tangent stiffness matrix in the global
88 coordinate system. Typically, interpolated shape functions are employed to construct the beam element. However, most of
89 these shape functions approximate beam displacements, which introduces truncation errors and decreases computational
90 accuracy. In this section, an improved Timoshenko beam element with a variable cross-section is proposed to improve
91 computational accuracy by employing analytical displacement shape functions for bending deformation. The specific process
92 is outlined below.

93 As illustrated in Fig. 1, a beam with variable cross-section is considered. The beam element has a total length L, with the
94 coordinate origin at the left end. The x-axis is aligned with the longitudinal direction, while the y- and z- axes align with the
95 principal axis of the cross-section. Typically, the displacement at any point within the spatial beam element is represented
96  by{u,v,w,0,,0,,0,} where u is the axial displacement along the x axis, v and w are the transverse displacements along the y
97 and z axis, respectively, and 8y, 8,, 0, denote the rotations about the x, y, and z axis, respectively. The cross-section parameters
98 are defined: where b is the width, # is the thickness, S is the cross-sectional area, /, and /. are the moments of inertia about the
99  y- and z-axis, respectively.

100

101

102 Figure 1. Variable geometric properties in a tapered beam

103
104 Define k, and k, as the cross-sectional non-uniformity coefficients along the y and z axes, respectively, E as the elastic
105 modulus, G as the shear modulus, and J as the moment of inertia. Substituting the constitutive relations and geometric equations

106 of the Timoshenko beam into the equilibrium equations yields:

a 26,1 ow

S [En 5] = keea (3 +e,)
107 ot a0, , )

keGA (55 +52) =
108 The relationship between transverse displacement and bending displacement is given by:
_ _ Ely 2*wp | Ely d*wp
109 W =Wb =64 ox2 ' ky6a ox2 lx =0, @
110 where subscripts b denoting contributions from bending deformation respectively.
111 Similarly, the analytical solution of transverse displacement v satisfying the boundary conditions can be obtained as:
2 2

112 v=u, El; 0°vp El; 0 vblx:(), (3)

kyGA 0x?  kyGA 0x?
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113 Similar to the traditional Timoshenko beam element, the displacements in the u and 6, are interpolated linearly. While the

114 transverse displacements v, and w,, are interpolated using cubic polynomial, and their expressions are given by:

115
ulx) =cx+c,
0,(x) =ciyx+c
1 16 x( )3 11 5 12 , (4)
Vp(x) = c3x° + c4x° + c5x + ¢4
Wy (%) = ;23 + cgx? + cox + ¢4
117 In general, the strain vector of a spatial Timoshenko beam element is expressed as:
T
€= (e ¥y Vo Voo 9, €4
119 _[Ou dv aw 6, 90, an]T
“lox’ax % ox ' Y ox’ dx ' ox
=&, + &p
18 ©))

T
120 where £, = [Z_z%'%'%'%'%] and g = [0' -6,,6,, O,O,O]T' By combining Egs. (4) and (5), the expressions for the

121 displacement and rotation vector u(x) of the beam can be obtained as follows:
122 u(x) =A®)c, (6)

123 where the matrix 4(x) represents the displacement-rotation coefficient matrix with respect to the shape function coefficient
124 vector ¢ = {c;, "+, c;,}T. Taking the derivative of Eq. (6) yields:
T
s jdue) = {525 5E T )
du(x) = dA(x)c
126 Based on the boundary conditions at x=0 and x=L, the relationship between the shape function coefficients and the nodal

127 displacements can be derived and expressed in matrix form as follows:

128  H(x)c=d, (®)

129 where H (x) is the coefficient matrix of the shape function coefficients. The nodal displacement d is expressed as:

T
130 d= {ulvvlrwlrexlreyll921!“2!vaWZrGXZJQyZVGZZ} ’ (€

131 By substituting Eq. (9) into Egs. (6) and (7), the following expressions are obtained:
132 u(x) = A(X)H(x) 'd, (10)
133 du(x) = dA(x)H(x)"d, , an
134 The relationship between the strain and nodal displacements of the element is then given by:
&, = du(x) = dA(x)H(x)"1d
135 g5 = Tyu(x) = TyA(x)H(x)™'d
e=¢g,+& =[dN(x) + TyN(x)]d = B(x)d

136 whereN(x) = A(x)H(x)"1,dN(x) = dA(x)H(x)"*,B(x) is the strain-displacement matrix, and Ty satisfies the following

, (12)

137 relationship:

00 0O0O0 O
00 00 0 -1
_10 00 01 O
138 Ty = 000 000 (13)
000 O0O0O
000 O0O0O0

139 By numerically integrating over the length L of the beam, the element stiffness matrix K. and mass matrix M, of the variable

140 cross-section Timoshenko beam element are formulated as:
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K. = [} B(x)"K(x)B(x)dx

141 L s
M, = fO N(X)TMCS(X)N(x)dx

14

142 Define J as the moment of inertia. The sectional stiffness matrix K ¢(x) for a variable cross-section beam is expressed as:
143 K. (x) = diag[ES(x), kyGS(x), k,GS(x), G] (x), EI, (x), E1,(x)], (15)

144 Directly evaluating the integrals in Eq. (14) for variable cross-sections is often computationally intensive. Therefore, in this
145 study, Gaussian quadrature is introduced to efficiently compute the element stiffness and mass matrices of the variable cross-
146 section beam:

L
K, = Z?=1 Py wiB(xi)TKcs (xi) B(xi)

147 L T )
M, = Z?:l EwiN(xi) M 5(x;) N(x;)

(16)

148 where n is the number of Gaussian integration points, w; and x; are the corresponding weight coefficients and integration

149 nodes, respectively.

150 The stiffness and mass matrices of the cross-section are determined based on the relevant parameters of the cross-section.
151 Considering the diverse forms of cross-sections, a general formula is provided here to handle the cross-sectional parameters

152 of variable cross-section beams with a certain taper.

153 Assuming that the aspect ratio of the variable cross-section beam remains constant, i.e.

by _ hy
b a7

155  where, b, and h, are the width and thickness of the cross-section at the right end, and b; and h; are the width and thickness

154

156 at the left end. Under this assumption, the cross-sectional parameters at any arbitrary point along the beam can be expressed
157 as:
h(x) =kix+ fy
b(x) = kah(x) = kp(kyx + f1)
S(x) = pib(N)R(X) = pky (eyx + £1)* = k3 (kyx + f1)?°
L (%) = peb(0)h(x)? = poka(kyx + f1)* = ky(eyx + f1)*

159 The calculation of the cross-sectional parameters for each cross-section requires solving for the corresponding coefficients f;

158 (18)

160 and k;(i = 1,3,4). The transition coefficients k,, p, and p, do not need to be solved. This can be achieved by solving using
161 the relevant parameters of the cross-section at both ends of the beam. For the fixed end of the beam, when x=0, we have h =
162 hy, S = Spaxs Iy = Lymax- when x=L, we have S = S, Iy = L,min. By substituting the known parameters of the beam at

163 both ends into Eq. (18), we obtain:

S .
164  ky=h /S’ﬂ /L
max

165 k3 = Spax/h? (19)

166 Jey = Iy max/h
167 When the aspect ratio of the structure is variable, the width and thickness of the cross-section are mutually independent, By

168  measuring the maximum thicknesses hy,,,, and h of the cross-sections perpendicular to the y-axis at both ends of the

rmax
169 structure, the expression for the cross-sectional parameters at any point within the unit can also be derived.

170 Once the relevant coefficients are obtained, they can be substituted into the coordinates of the Gaussian integration points to
171 calculate the cross-sectional parameters. By substituting the cross-sectional parameters into Eqs. (14) and (15), the element

172 stiffness matrix K, and the element mass matrix M, of the variable cross-section Timoshenko beam element can be obtained.
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173 3.Co-rotational formulation

174 The co-rotational formulation stands out by extracting the elastic deformation displacements from the overall displacements,
175  thus predefining the projection relationship. The motion of the beam element from its initial state to the final deformed state
176 is decomposed into rigid body motion and pure deformation. The rigid body motion component encompasses the rigid
177 translation and rotation in the local reference coordinate system. Therefore, the core challenge of the co-rotational formulation
178 lies in handling the coordinate transformation between different frames, thereby establishing the relationship between pure

179 deformation and the overall deformation.

180 3.1Definition and transformation of the reference coordinate system for spatial beam elements

181 For the spatial two-node beam element, the reference coordinate system is defined as shown in Fig. 2. The unit orthogonal
182 vectors E;, i = 1,2,3, represent the global reference system of the beam element, which remains fixed and unchanged. The
183 unit orthogonal vectors E?, i = 1,2,3, represent the local reference system of the beam element after rigid body motion, which
184 continuously translates and rotates with the beam element. The local reference system E?,i = 1,2,3 represents the original
185 coordinate system of the beam element before deformation. Additionally, the vectors e} and e?, define the cross-sectional

186 reference system of the two nodes (1 and 2) of the beam.

Ry

187

Ry
188 Figure 2. Beam kinematics and coordinate systems
189

190  First, the rigid rotation of the local coordinate system E" is addressed. The rigid rotation matrix R, represents the
191 transformation matrix from the reference system E; to E”, and its expression is given by:

192 R, =[n 12 T3] (20)

193 The vector r; is computed as the line connecting node 1 and node 2 of the beam element before and after deformation:
194y =% @n

195 where sig represents the coordinates of node 7 in the global reference system after rigid rotation. The length / of the beam after

196  deformation can be obtained by [ = ||sy — s7||.
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197 The directions of the remaining two axes are determined by introducing an auxiliary vector q. The auxiliary vector serves two
198 main purposes: (1) to solve the rigid rotation matrix in the global coordinate system; (2) to determine the differential
199 relationship between the rigid rotation angle and the total displacement of the structure. Initially, the direction of q aligns with
200  the local coordinate axis E3. After deformation of the beam element, the determination of the auxiliary vector q is related to
201 the transformation of the local reference system:

202 gq;=R/Rf0 1 0]"i=12 ©2)

203 q=3(q+q) (23)
204 where Rf and Rg are the orthogonal matrices corresponding to the directions of the end nodes e} and e?, respectively. q;
205 and q, are the directions of the left and right end reference systems of the local reference system E' g after rigid rotation. R,
206 denotes the initial orientation of the local coordinates, and q represents the direction of the local reference system Eg after
207  rigid rotation.

208 By combining Egs. (21), (22), and (23), the expressions for the remaining two components of the orthogonal matrix R, can

209 be obtained:

r1Xq

210 Ty = T2 ST Xy, (24)
211 The local rotation matrix of the coordinate axis is defined as R;, and the transformation from E; to e} and e? can be
212 expressed as follows:

213 R.R,=RJR,i=12, (25)
214 Since RTR, = I, Eq. (25) can be transformed as follows:

215 R;=RTR/R,,i =12, (26)
216 Thus, the local rotation angles can be obtained as follows:

217 9, =log(R)), @n
218 3.2Transformation of displacement vectors between the local and global coordinate systems

219 The global displacement vector of the beam element is defined as P, and the displacement vector in the local coordinate
220 system after removing rigid body deformations is denoted as P;. By utilizing the rotation framework described in the previous
221 section, the local displacement P; is obtained by subtracting the rigid body displacement from the total displacement Pg . The
222 local internal force vector f; and the tangent stiffness matrix K; in the local coordinate system are computed through the
223 transformation relationship between the two. The expression of the internal force vector Fg in the global coordinate system

224 can be derived by balancing the internal virtual work in the global and local systems:

225 v =26P[f,=6PJF,, (28)

226 The variations of the displacement vectors Pg and P; can be expressed as follows:

227 6P, =[su 697 &O%IT, 29)
T

228 5P =[sud" 509" sul' 569" (30)

229 where, §9;, (i = 1,2) represents the variation of spatial rotation angles in the local coordinate system after considering rigid
230 body deformations, and 60;" (i = 1,2) represents the variation of spatial rotation angles in the global coordinate system.

231 The variation of the transformation matrix involves the formation of a new matrix composed of rotational angles:

232 R, = §6,R; 3D
233 where the superscript tilde denotes the skew-symmetric matrix corresponding to a vector. A new local coordinate system,
234 denoted as P, is defined based on Eqs. (29) and (31).

235 P,=[a 67 o1, (32)
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236  Let f, represents the internal force vector corresponding to §P,, and K, denotes the transformed local stiffness matrix K,
237 obtained in Section 2 of this paper, which is converted to a 7-degree-of-freedom system. The transformation matrix between
238  vectors P, and P; can be obtained through the transformation relationship of their respective stiffness matrices. The final

239 conversion of K; to K, can be expressed as follows:

0 01><3 01><3
03x1 Kji O3y
03><1 03><3 KhZ

240 K,=BTK,B, +K,K,= , (33)

241 The matrix B; can be directly obtained by rotating the vector. The expressions for K, and K, are derived from the

242 following equation:

O pp=To) — O pp—T 790 _ 0 g 11
243 5 [T;Tv] = 3 [T5Tv] 3 = 39 [TsT]TS L, (34)
244
__sing _singy 1 1.sin(@/2)\2 %
245 Ty (P) = ” I+(1 " )ee +2(—¢/2 )P, (35)

246 where v represents the bending moment acting on the two ends of the internal force vector in the local coordinate system, e
247 is the unit vector corresponding to the angle vector, K,; and K, correspond to 9; and 9, in Eq. (34). Consequently, the
248 differential relationship between the rotational vector in the local coordinate system and the displacement vector in the global

249 coordinate system can be derived as follows:

80:) _ (10 1 0 01_[Go"|\grsps — pETspe
250 [592]_([0 0o 1l [GQT E"6PY = PE"5PY, (36)

208
)

251 where Go = 7 5.E = diag[R, R, R, R,].
g

252 Thus, the relationship between §P, and an can be obtained as follows:

253 8P, = BuSPY,Ba = [pp1]- 37

254 where ¥ =[-r] 0,43 7] 053] The matrix G4 in Eq. (36) is related to §%.
—r1érs

255  86¢ = RT6R,, 502 = |—rlor|, (38)
Ti6T)

256 The expression for r;,r,,r;, and §r; can be easily obtained. As for §rj, it is related to §q according to Eq. (23):

1 1 = A
257 8q=;(8R, +8R,)Ro[0 1 0]" =_(567q, +567q,), (39)

e
#. The detailed derivation can be found in
g

258 The expression of the matrix Gy can be obtained through Eq. (39) and Gy = 00
259 reference (Crisfield, 1990). Eq. (37) yields the relationship between the force vector in the global coordinates and the internal
260 force vector in the local coordinates.

261  F9 =BIf,, (40)
262 Similarly, by considering the variation of the force vector in the global coordinates in Eq. (37), it can be obtained as follows:
{ 8F9 = BISf, + 61" f o + S(EPT)m
m=(fo faz fas fas fas farl®

264  where f,;(i = 1,---,7) represent the components of the force vector f,. In conclusion, the tangent stiffness matrix in the

263 (41)

265 global coordinate system can be obtained as follows:

266

K9 =BYK,B, + K,, 2)
K

m = Dfy —EQGy"E™ + EGyar’
267 where:
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[d 0 —-d O
0 o0 0 o0 1
268 D=|_ o 4 old=71U-mrD, (43)
0 o0 0 o
_él 0
260 @=|%| a=|ntu+ fus)/l = (s + fas) /1], (44)
s (fas + far)/1
LQ4
270 P"m=1[Q] @} @} @i". (45)

271 By utilizing the obtained tangent stiffness matrix, the difference in the global force vector can be calculated. The iterative
272 process is employed to gradually converge the results towards the exact solution. The computational flowchart of nonlinear

273 deformation in variable cross-section beam is illustrated in Fig. 3.

Input rdinat .
pu Coord < Iteration Output result
parameters transformation
Material Mass and stiffness Balance of internal The deflection of

beams

matrix in local and external forces

1

| |
parameters | 1
1 coordinate 1
1 1
1 1
1 1

Initial sh:te)

K, :j: B(x)' K., (x) B(x)dx

M- L' NG M (x) N external force

T
1
1
1
1
]
|
o I . 1 g
1 Corotational 1 1 Undeformed
1 formulation 1 . 1
274 | A 1 Fo| — B4 1 1 ;
| Vs | RS s
1 T \‘/ﬁ/~ | Iz | | i
! \ e ! N ! J : ! After deformation
1. . 1 ' 1
1 T — 1 L 1 ]
1 )_ 2 1 X x 1 F
; 1
Set up nodes and : ¢ I Calculated J .
Internal force and ! displacement
elements 1 . . 1 1
displacement in global .
! coordinate !
1 1 ]
1 1 1 X
1 | I load-displacement curve
275 Figure 3. Flowchart of nonlinear deformation in the variable cross-section beam

276 4.Applications

277 This section presents comparative analysis between the proposed co-rotational Timoshenko beam model with variable cross-
278 section and existing benchmark results to validate its accuracy. The validation is carried out in three stages. First, the simple
279 beam models with the constant cross-section are simulated to verify the proposed beam model with geometric nonlinearity.
280 Second, the proposed co-rotational model is applied to a beam with variable cross-section and evaluated against both analytical
281 solutions and numerical results from the literature, thereby confirming the capability of the proposed model in handling non-
282  uniform geometries. Finally, a frequency analysis is conducted on a variable cross-section beam, and the computed results are
283 compared with experimental measurements and published data to further demonstrate the capability of the developed beam

284 element for dynamic analyses.

285 4.1Application on constant cross-section beam element

286 4.1.1 Large deformation analysis of spatially pre-bent cantilever beams subjected to concentrated loads

287 A 45° cantilever circular arc beam with a radius of R=100m is subjected to a vertical concentrated load F of magnitude 300N
9
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at its free end as shown in Fig. 4 below.

Z

Figure 4. Pre-bent cantilever beam

The beam is divided into 8 elements, and the detailed cross-section properties of the beam are provided in Reference (Nguyen
and Gan, 2014). Table 1 presents a comparative analysis of the displacements at the free end of the beam in the x, y, and z
directions, as computed by the proposed method, the HAWC?2 software, and the analytical solution.

Table 1 shows that the obtained large deformations from the developed co-rotational beam model in the x and y directions are
-12.08m and -7.10m, respectively. Compared with the results obtained using HAWC2, the proposed approach improves the
computational accuracy by 0.3% in the x direction and 1.1% in the y direction. The results confirm that the proposed model

achieves high accuracy in capturing the large deformation behavior of spatial Timoshenko beams.

Table 1. Comparison of the Pre-bent beam tip displacements under a force applied at the free end

Displacements (m) Rel. Diff. (%)
X y z X y z
Asrﬁszr?l 187 -6.96 40.08 - - -
HAWC2 -12.12 -7.18 40.08 2.1 3.1 0.0
Present -12.08 -7.10 40.41 1.8 2.0 0.8

4.1.2 Large Deformation Analysis of a Thin Plate Beams under Concentrated Load

Fig. 5 illustrates a cantilevered thin plate beam with a total length of 0.51m, a cross-sectional width of 30mm, and a thickness
of 1mm. The beam is made of 304 stainless steel, with a Young’s modulus of 193 GPa and a Poisson’s ratio of 0.3. To simulate
concentrated loading, weights of 0.7N and 1.3N are suspended from the free end of the cantilever beam. For each case, the

actual horizontal displacement u and vertical displacement v at three selected points along the beam are measured. In this

10
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DISCUSSIONS

section, the proposed co-rotational beam model is employed to calculate the large deformation displacements of the cantilever

beam under the two loading cases, and the plate beam is divided into 9 elements. Table 2 compares the results from the present

study, the experimental measurements, and the data reported in Reference (Jiang et al.,2023)

Figure 5. Schematic Diagram of Thin Plate Beam

Table 2. Comparison of Nodal Displacements of the Thin Plates under Free-end Loading

u v
Positi
on Rel.
Case Test ASUP! R.el' Present Diff Test ASUP! R.e L Present R?l'
(/L) (mm) (mm) Diff( (mm) value (mm) Diff. (mm) Diff
%) o (mm %) )
1/3 -2.0 -1.6 20.0 -1.9 5.0 -21.5 -23.5 9.3 22.6 5.1
I 2/3 -12.0 -10.7 10.8 -11.3 53 -78.0 -80.9 3.7 77.8 0.3
1 -24.0 -26.0 8.3 -26.5 10.4 -150 -154.6 3.1 148.4 1.1
1/3 -3.0 -3.3 10 3.1 33 -28.0 -29.5 54 29.0 3.6
I 213 -17.0 -19.1 124 18.4 8.2 -96.0 -100.7 4.9 98.8 2.9
1 -42.0 -44.9 6.9 43.1 2.6 -185.0 -190.6 3.0 187.1 1.1

As shown in Table 2, except for the case 1, where the relative error of the horizontal displacement at the free end reached

10.4%, most of the other relative errors were within 10%, and this error remains stable as the applied load increases. In terms

of the vertical displacement v, the proposed model produces the results with relative errors below 5%. Moreover, the predicted

vertical deformation at the free end of the beam closely matches the measured values. These results validate the effectiveness

and accuracy of the proposed model in capturing large elastic deformations in thin-walled flexible structures.

4.2Numerical analysis of variable cross-section beams

To validate the performance of the proposed model in handling variable geometric configurations, numerical simulations are

conducted on two variable cross-section beams. The results obtained using the proposed model are compared with those from

relevant literature to assess its accuracy and effectiveness.
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324 4.2.1 Numerical analysis of a rectangular variable cross-section cantilever beam

325 The cantilever beam with a rectangular cross-section, as shown in Fig. 6, is considered. The beam has a total length of 10 m
326 and a constant width of » = 0.25 m, its thickness tapers linearly from 1.0 m at the fixed end to 0.2 m at the free end. The elastic
327 modulus of the material is E = 3.0 X 10*GPa, and the beam is subjected to a concentrated vertical load of 10,000 N at the
328 free end. To evaluate the performance of the model, the beam is discretized into 10 elements. The computed deflection and

329 rotation at the free end are compared with the exact analytical solution and results from alternative method, as summarized in

330 Table 3.
331
;. b=0.25m
332 i
=== = E
I 1 A(x)
1 | 1
) 1
1
| L=10m [
I I
333 Figure 6. Simplified diagram of rectangular variable cross-section cantilever beam
334

335 As shown in Table 3, the deflection and rotation results obtained using the proposed model align exceptionally well with the
336 analytical solution. The predicted deflection at the free end is 0.01530 m, exactly matching the analytical value, and the
337 computed rotation is 0.00399 rad, with a relative difference of only 0.25%. In comparison, the segmental constant elements
338 method yields a relative difference of 0.59% in deflection and 2.00% in rotation. This example demonstrates the effectiveness

339 of the proposed co-rotational beam model in capturing the geometric nonlinear behavior of beams with varying cross-sections.

340
341 Table 3. Comparison of Deflection and Rotation at the Free End of a Rectangular Variable Cross-Section Cantilever Beam
Deflection (m) Rel. Diff. (%) Rotation(rad) Rel. Diff. (%)
Analytical Solution 0.01530 - 0.00400 -
Segmental C‘Ej‘giam Elements 0.01521 0.59 0.00392 2.00
Present 0.01530 0.00 0.00399 0.25
342

343 4.2.2 Numerical simulation of a cantilever conical beam

344 A variable cross-section cantilever beam, as shown in Fig. 7, is analyzed with a total length of 10 m. At the free end, both the
345  moment of inertia /; and cross-sectional area A; are one-third of those at the fixed end. The ratio of the beam length to the

346 height of the cantilever end section is 50:1. The material properties include an elastic modulus of 210 GPa and a shear modulus

12
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347 of 80.77 GPa. To facilitate comparison with existing numerical studies, a dimensionless load parameterF = FI?/El,, as

348 defined in reference (Marjamiki and Mikinen, 2009), is employed.

349 Fig. 8 shows the load—displacement response of the conical cantilever beam subjected to a vertically downward point load at
350 its free end. The results from the proposed co-rotational beam model are compared with the numerical solution obtained using
351 the Runge—Kutta method from reference (Marjaméki and Mékinen, 2009) and with finite element results reported by Nguyen
352 (Nguyen, 2013). As evident in Fig. 8, the response predicted by the proposed method aligns closely with the Runge—Kutta
353 solution and shows improved agreement compared to Nguyen's finite element results. This comparison validates the accuracy
354 and effectiveness of the proposed co-rotational model in capturing large deformation behavior in conical cantilever beams with

355 variable cross-sections.

356
AO,IO

10m
) 1
357 Figure 7. Conical beam

\\\\]\\

358
12 . .
»»»»»» j Nguyen2013| |
X o Runge Kutta
= I '
SN PO ottt At 1 A present work|--]
s |
2 ; ;
Y I 0
2 1 5
= 17
Q T
E ”H\
§ 0.6 ; i
359 5 i |
A A |
o ~ | |ﬁ|
B 04 oo S e e
E % . & _o—*
< " o=
g | ?/%k |
202 77777777 %";;“ 7777777777777} 77777777777777777
< I 1
| |
0.0 = =
0 5 10 15
Normalized load
360 Figure 8. Normalized moment and deformation in tapered beam
361

362 4.3Variable taper frame model

363 A well-know benchmark frame structure (Manuel et al., 1968), shown in Fig. 9, is commonly used to assess the performance

364 of nonlinear analysis methods. In its original configuration, members AB and BC possess constant stiffness. Building upon

365 this example, Francisco(de Araujo et al., 2017) proposed a modified version by introducing variable stiffness to column AB,

366 as illustrated in Fig. 10. The cross-sectional properties at points A and B for this modified configuration are provided as follows:

13
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367 L = 0.09375 x 1078m*, I, = 0.27083 x 10™8m* , (46)

Iy = 14.76042 x 1078m*, I, = 17.04167 x 10~8m*
{ Sy =8.5x%x107*m?,S; = 1.0 X 10™*m?
368 Beam BC retains a constant rectangular cross-section with §=0.006 m”and I = 2 x 10~8m* The material properties for the
369 entire frame are assumed to be homogeneous, with an elastic modulus E = 7.2 X 10°GPa and Poisson’s ratio v=0.3. The frame
370 is discretized into 20 elements, and the interpolation method proposed in this study is applied. The resulting vertical and
371 horizontal displacements at the load application points are compared with those obtained from Francisco2017 and a highly

372 refined finite element mesh reported in reference (de Araujo et al., 2017). As shown in Fig. 11, the responses match quite well.

373
1.2m |
0.24m
—11’1 000N
T [ AN
374
&
| A

375 Figure 9. Frame scheme
376
377

Cross-section A Cross-section B

378 Figure 10. Column geometry

379
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381 (a) u, Displacement at node 13 (b) uy Displacement at node 13

382 Figure 11. Frame displacement at node 13

383

384  4.4Natural frequencies of the conical cantilever beam

385 This section considers an experimental conical cantilever beam reported in reference (Le et al., 2011) to verify the developed
386 beam element. A modal analysis is performed where the natural frequencies are compared. The beam has a total length of 0.5m,
387 with a fixed-end section diameter of 0.037, and a free-end section diameter of 0.0057. The mass density and elastic modulus
388 are 7800kg/m® and 210 GPa, respectively. The specific experimental setup is described in detail in reference (Le et al., 2011).
389 The first five natural frequencies of the conical beam are computed using the proposed variable cross-section beam model and
390 are compared with both experimental results and two numerical approaches from Ref. (Le et al., 2011). The comparison is

391 presented in Table 4.

392

393 Table 4. Natural frequencies of the conical cantiliver beam
Natural TMM using .TMM using Present result Experimental
modes Bessel functions cylindrical elements (errors) [Hz] % results [Hz]

(errors) [Hz] % (errors) [Hz] %

Model 160.7(1.1) 162.5(2.2) 166.4(4.6) 159.0
Mode2 455.5(3.0) 457.4(3.4) 445.0(0.6) 442.2
Mode3 962.8(7.3) 963.0(7.3) 920.2(2.5) 897.5
Mode4 1702.0(6.9) 1699.0(6.7) 1658.9(4.2) 1592.1
Mode5 2679.1(7.0) 2671.5(6.7) 2607.8(4.1) 2504.0

394

395 From Table 4, all three numerical methods produce results reasonably close to the experimental values. However, the proposed

396 model demonstrates superior accuracy, with relative errors consistently below 5% across all five modes. In contrast, the relative

397 errors of the TMM approaches in (Le et al.,2011) exceed 5% in several modes. Notably, the present model yields the most
398 accurate results for the second and third modes, with relative errors of only 0.6% and 2.5%, respectively. These results confirm

399 that the proposed variable cross-section beam model is effective in predicting the dynamic behavior of conical cantilever beams.
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400 5.Conclusions

401 In summary, a new approach for analyzing conical and geometrically nonlinear beam models has been successfully proposed
402 by incorporating the analytical displacement shape functions and an improved co-rotational coordinate method to update the
403 overall stiffness matrix. Firstly, the cantilever beam model with a constant cross-section and the cantilever thin plate experiment
404  were compared with existing literature, and the obtained deformation results were found to be in close agreement with the
405 actual results reported in the literature. Secondly, the cantilever beam and variable taper frame model considering geometric
406 nonlinearity effects was examined, and the numerical calculations yielded deformation and rotation results that were consistent
407 with the overall trends observed in the existing literature. Finally, the natural frequency of a conical beam was considered, and
408 the numerical simulation results were compared with the simulated and experimental results from existing literature,
409 demonstrating that the proposed model in this study exhibits higher computational accuracy.

410 In this study, a new analytical approach for modeling conical and geometrically nonlinear beams is developed, incorporating
411 analytical displacement shape functions and co-rotational formulation to update the global stiffness matrix. The proposed
412 methodology is rigorously validated through four benchmark cases: (1) a pre-curved beam model, (2) large deformation
413 analysis of thin plates, (3) conical beam modeling, and (4) variable-taper beam simulation. These validation studies
414 systematically examine the method's capability to accurately model tapered beam configurations and precisely analyze
415 geometrically nonlinear behavior in beams with varying cross-sections. Obtained results can be summarized as follows:

416 Case 1: Validation studies were conducted by comparing the model predictions against established benchmark cases from
417 literature. The constant cross-section cantilever beam analysis demonstrated excellent agreement with classical solutions, while
418 the cantilever thin plate simulations closely matched experimental deformation patterns reported in previous studies. These
419 comparisons confirmed the fundamental accuracy of the proposed formulation.

420 Case 2: The nonlinear analysis capabilities were examined through simulations of large deformation scenarios. Both cantilever
421 beam and variable taper frame configurations were investigated under geometrically nonlinear conditions. The obtained
422 displacement and rotation results exhibited consistent trends with reference solutions, verifying the model's ability to handle
423 nonlinear structural behavior.

424 Case 3: Dynamic characteristics were evaluated through natural frequency analysis of conical beam structures. Comparative
425 studies with existing numerical and experimental data revealed that the present model achieves superior accuracy in predicting
426 vibrational behavior compared to conventional approaches. The improved performance is attributed to the precise
427 representation of stiffness variations along the beam axis.

428  In summary, this study develops and validates an advanced beam element formulation that successfully addresses two critical
429 challenges in structural analysis: accurate modeling of variable cross-sections and robust simulation of geometric nonlinearity.
430  The comprehensive validation framework demonstrates the method's reliability across multiple benchmark cases, establishing

431 its potential for engineering applications requiring precise analysis of tapered beam structures under large deformations.
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