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Abstract. The geometrically nonlinear analysis of Timoshenko beam structures with variable cross-sections is a common 12 

challenge in engineering practice. However, traditional nonlinear analysis methods for such structures often suffer from limited 13 

accuracy and computational inefficiency. To address these challenges, this study proposes an efficient geometrically nonlinear 14 

analysis framework for variable cross-section Timoshenko beams based on the co-rotational formulation. First, the novel 15 

Timoshenko beam element with a variable cross-section, based on analytical displacement shape functions, is developed to 16 

enhance the computational accuracy of the co-rotational formulation. The Gaussian integration method is employed to compute 17 

the stiffness and mass matrices of variable cross-section elements, thereby improving computational efficiency. Then, the 18 

tangent stiffness matrix of the variable cross-section beam element is derived based on co-rotational formulation and the 19 

proposed variable cross-section beam element. Finally, the dedicated finite element program is developed and validated 20 

through four benchmark examples and comparisons with experimental data from the literature. The results demonstrate that 21 

the proposed method achieves both high computational efficiency and accuracy in handling large deformations and nonlinear 22 

behavior. The proposed method is particularly suitable for analyzing structures with irregular or proportionally graded cross-23 

sections and demonstrates advantages over existing co-rotational approaches. 24 

Keywords: Timoshenko Beam, Geometric Nonlinear Analysis, Co-rotational Formulation, Variable Cross-section. 25 

1. Introduction  26 

Beam structures are fundamental load-bearing components in various engineering disciplines, valued for their high strength, 27 

rigidity, and low weight. Although uniform cross-section beams have been extensively studied, modern engineering 28 

applications increasingly utilize non-uniform flexible beams to optimize mass distribution and enhance mechanical 29 

performance in structures such as wind turbine blades, robotic manipulators, and aerospace components (Xiao et.al., 2024; 30 

Elkaimbillah et al., 2021;Wang et al., 2014). These variable cross-section flexible beams frequently experience large 31 

deformations under operational loads, introducing geometric nonlinearities that invalidate classical linear beam theories based 32 

on small deformation assumptions. Therefore, understanding the geometric nonlinearity of flexible beam structures with non-33 

uniform cross-sections is essential for accurate engineering analysis of such structures. 34 

Substantial research efforts have been dedicated to developing finite element methodologies for the geometric nonlinear 35 

analysis of flexible beams structures. The most commonly used finite element methods are the Total Lagrangian (TL)   36 

(Heyliger et al., 2020; Saravia et al., 2012; Marjamäki et al.,2009) and Updated Lagrangian(UL) (Greco et al., 2022; Turkalj 37 

et al., 2012; Kordkheili et al., 2011) formulations. While these approaches are widely adopted in commercial software due to 38 

their broad applicability, they have inherent limitations. Notably, these methods do not account for coordinate system changes 39 
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following beam element deformation, leading to unacceptable calculation errors when elements undergo large rotations. To 40 

address this issue, an effective alternative for developing nonlinear beam elements is the co-rotational (CR) formulation. 41 

Research on CR finite elements begin with the pioneering work of Wempner (Wempner, 1969), Belytschko and Hsieh 42 

(Belytschko and Glaum, 1979), and Argyris and colleagues (Argyris et al., 1979). The key idea behind CR formulations is to 43 

decompose the motion of a beam element into the sum of a rigid body motion and a pure deformational displacement, using a 44 

local reference coordinate system that continuously rotates and translates with the element. Pioneering work by Rankin et al. 45 

(Nour-Omid and Rankin, 1991; Rankin and Brogan, 1986) established a standard framework for calculating CR beam 46 

formulation. Another significant contribution to CR beam theory was made by Crisfield and his collaborators (Crisfield, 1990; 47 

Crisfield and Moita, 1996; Crisfield et al., 1997), who applied the CR formulation to solve various types of geometric 48 

nonlinearities and proposed a consistent method for computing element equilibrium equations. Behdinan et al (Behdinan et al., 49 

1998) extended the consistent CR static analysis to the dynamic analysis of beams undergoing large deflections. Hsiao et 50 

al.(Hsiao et al., 1999) introduced a consistent CR total Lagrangian finite element formulation for the geometrically nonlinear 51 

dynamic analysis of Euler beams with large rotations but small strain. Early CR methods used different shape functions for 52 

computing elastic and inertial force vectors of the beam element, whereas Li et al. (Le et al., 2011; Le et al., 2014) adopted 53 

cubic interpolations to formulate both inertia and internal local terms, and employed their new CR formulation to perform 54 

nonlinear dynamic analysis of 2D and 3D beams. The computational efficacy and accuracy of CR approaches have further 55 

expanded their applications across various structural systems (Moon et al., 2023; Meng et al., 2016; Wang et al., 2018; Kim et 56 

al., 2022; Shen et al., 2021; Timoshenko et al., 1930). However, most existing CR formulations assume constant cross-sectional 57 

properties, significantly limiting their applicability to variable cross-section flexible beam designs. 58 

The increasing use of non-uniform flexible beams has driven recent research into their nonlinear behavior. The analog equation 59 

method (Sapountzakis and Panagos, 2008; Sapountzakis and Panagos, 2008) has been employed for the nonlinear analysis of 60 

Timoshenko beams undergoing large deflections with variable cross-sections. Yu and Zhao (Yu et al., 2024) developed a 61 

viscoelastic beam element based on the absolute nodal coordinate formulation for various cross-sectional structures, where the 62 

modified Kelvin-Voigt viscoelastic constitutive model was introduced to describe the large deformation of viscoelastic 63 

materials. Building on this work, Yu et al. (Yu et al.,2024) further proposed an improved absolute nodal coordinate formulation 64 

for analyzing the nonlinear behavior of variable cross-sections with large aspect ratios. Elkaimbillah el al. (Elkaimbillah et al., 65 

2021) employed Vlasov kinematics to develop a one-dimensional finite element model for the nonlinear dynamic analysis of 66 

thin-walled composite beams with open variable cross-sections. Additional studies have focused on the nonlinear behavior of 67 

axially functionally graded beams with various cross-sections (Kumar et al., 2015; Ghayesh, 2018; Sınır et al., 2018; Xu et al., 68 

2021). Regarding CR beam models for variable cross-sections, Nguyen and Gan (Nguyen, 2013; Nguyen and Gan, 2014) 69 

employed the CR beam element to investigate the large displacement of tapered cantilever beams made of axially functionally 70 

graded materials. Moon et al. (Moon et al.,2023) extended the work of Crisfield (Crisfield and Moita, 1996) on CR beam 71 

elements by incorporating the fully populated and non-uniform cross-sectional stiffness matrix, expressed as a function of the 72 

axial length, to develop an anisotropic CR beam model for variable cross-sections. Nevertheless, current CR methods for non-73 

uniform flexible beams remain constrained by computational inefficiency and limited precision. 74 

To address these limitations, this paper presents an improved CR beam model for variable cross-sections. This model 75 

introduces two key innovations. First, the enhanced spatial Timoshenko beam element with variable cross-section is used to 76 

obtain the tangent stiffness matrix and internal force vector, significantly improving the computational accuracy of the CR 77 

method. Second, it eliminates the need to calculate the moment of inertia by evaluating the parameters of each cross-section, 78 

thereby enhancing the computational efficiency of variable cross-section beams. The proposed CR model enables geometric 79 

nonlinear analysis of variable cross-section beams with irregular and proportionally varying cross-sections. The remainder of 80 

this paper is organized as follows: Section 2 develops the improved stiffness and mass matrices for the variable cross-section 81 

beam element, based on analytical displacement shape functions. In Section 3, geometric nonlinear analysis of variable cross-82 
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section beams is formulated using the CR formulation. Section 4 presents a comparative analysis of computational results, 83 

including experimental data and numerical simulations, to validate the applicability and accuracy of the proposed method. The 84 

main conclusions of this investigation are thereafter summarized in Section 5. 85 

2.The improved spatial Timoshenko beam element with variable cross-section 86 

The CR method enables the use of linear Timoshenko beam elements to derive the tangent stiffness matrix in the global 87 

coordinate system. Typically, interpolated shape functions are employed to construct the beam element. However, most of 88 

these shape functions approximate beam displacements, which introduces truncation errors and decreases computational 89 

accuracy. In this section, an improved Timoshenko beam element with a variable cross-section is proposed to improve 90 

computational accuracy by employing analytical displacement shape functions for bending deformation. The specific process 91 

is outlined below. 92 

As illustrated in Fig. 1, a beam with variable cross-section is considered. The beam element has a total length L, with the 93 

coordinate origin at the left end. The x-axis is aligned with the longitudinal direction, while the y- and z- axes align with the 94 

principal axis of the cross-section. Typically, the displacement at any point within the spatial beam element is represented 95 

by{𝒖, 𝒗,𝒘, 𝜽𝒙, 𝜽𝒚, 𝜽𝒛}.where u is the axial displacement along the x axis, v and w are the transverse displacements along the y 96 

and z axis, respectively, and 𝜽𝒙, 𝜽𝒚, 𝜽𝒛 denote the rotations about the x, y, and z axis, respectively. The cross-section parameters 97 

are defined: where b is the width, h is the thickness, S is the cross-sectional area, Iy and Iz are the moments of inertia about the 98 

y- and z-axis, respectively. 99 

 100 

 101 

Figure 1. Variable geometric properties in a tapered beam 102 

 103 

Define 𝑘𝑦 and 𝑘𝑧 as the cross-sectional non-uniformity coefficients along the y and z axes, respectively, E as the elastic 104 

modulus, G as the shear modulus, and J as the moment of inertia. Substituting the constitutive relations and geometric equations 105 

of the Timoshenko beam into the equilibrium equations yields: 106 

{

𝜕

𝜕𝑥
[𝐸𝐼𝑦

𝜕𝜃𝑦

𝜕𝑥
] = 𝑘𝑧𝐺𝐴 (

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦)

𝑘𝑧𝐺𝐴 (
𝜕2𝑤

𝜕𝑥2
+

𝜕𝜃𝑦

𝜕𝑥
) = 0

,     (1) 107 

The relationship between transverse displacement and bending displacement is given by: 108 

 𝑤 = 𝑤𝑏 −
𝐸𝐼𝑦

𝑘𝑧𝐺𝐴

𝜕2𝑤𝑏

𝜕𝑥2
+

𝐸𝐼𝑦

𝑘𝑧𝐺𝐴

𝜕2𝑤𝑏

𝜕𝑥2
|𝑥 = 0,    (2) 109 

where subscripts b denoting contributions from bending deformation respectively. 110 

Similarly, the analytical solution of transverse displacement v satisfying the boundary conditions can be obtained as:  111 

𝑣 = 𝑣𝑏 −
𝐸𝐼𝑧

𝑘𝑦𝐺𝐴

𝜕2𝑣𝑏

𝜕𝑥2
+

𝐸𝐼𝑧

𝑘𝑦𝐺𝐴

𝜕2𝑣𝑏

𝜕𝑥2
|𝑥 = 0,    (3) 112 
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Similar to the traditional Timoshenko beam element, the displacements in the u and 𝜃𝑥are interpolated linearly. While the 113 

transverse displacements 𝑣𝑏 and 𝑤𝑏  are interpolated using cubic polynomial, and their expressions are given by: 114 

 115 

{
 

 
𝑢(𝑥) = 𝑐1𝑥 + 𝑐2
𝜃𝑥(𝑥) = 𝑐11𝑥 + 𝑐12

𝑣𝑏(𝑥) = 𝑐3𝑥
3 + 𝑐4𝑥

2 + 𝑐5𝑥 + 𝑐6
𝑤𝑏(𝑥) = 𝑐7𝑥

3 + 𝑐8𝑥
2 + 𝑐9𝑥 + 𝑐10

,     (4) 116 

In general, the strain vector of a spatial Timoshenko beam element is expressed as: 117 

{
 
 

 
 𝜺 = [𝜀𝑥, 𝛾𝑦, 𝛾𝑧 , 𝛾𝑥, 𝜀𝑦, 𝜀𝑧]

T

   = [
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
− 𝜃𝑧,

𝜕𝑤

𝜕𝑥
+ 𝜃𝑦 ,

𝜕𝜃𝑥
𝜕𝑥

,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧
𝜕𝑥
]

T

= 𝜺𝛼 + 𝜺𝛽

 119 

,     (5) 118 

where 𝜺𝛼 = [
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝜃𝑥

𝜕𝑥
,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧

𝜕𝑥
]
T
and 𝜺𝛽 = [0,−𝜃𝑧, 𝜃𝑦 , 0,0,0]

T
. By combining Eqs. (4) and (5), the expressions for the 120 

displacement and rotation vector 𝒖(𝑥) of the beam can be obtained as follows: 121 

𝒖(𝑥) = 𝑨(𝑥)𝒄,     (6) 122 

where the matrix A(x) represents the displacement-rotation coefficient matrix with respect to the shape function coefficient 123 

vector 𝒄 = {𝑐1, ⋯ , 𝑐12}
T. Taking the derivative of Eq. (6) yields: 124 

{𝑑𝒖(𝑥) = {
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝜃𝑥

𝜕𝑥
,
𝜕𝜃𝑦

𝜕𝑥
,
𝜕𝜃𝑧

𝜕𝑥
}
T

𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝒄
,     (7) 125 

Based on the boundary conditions at x=0 and x=L, the relationship between the shape function coefficients and the nodal 126 

displacements can be derived and expressed in matrix form as follows:  127 

𝑯(𝑥)𝒄 = 𝒅,     (8) 128 

where H (x) is the coefficient matrix of the shape function coefficients. The nodal displacement d is expressed as: 129 

𝒅 = {𝑢1, 𝑣1, 𝑤1 , 𝜃𝑥1, 𝜃𝑦1, 𝜃𝑧1, 𝑢2, 𝑣2, 𝑤2, 𝜃𝑥2, 𝜃𝑦2, 𝜃𝑧2}
T
,    (9) 130 

By substituting Eq. (9) into Eqs. (6) and (7), the following expressions are obtained: 131 

𝒖(𝑥) = 𝑨(𝑥)𝑯(𝑥)−1𝒅,     (10) 132 

𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1𝒅, ,    (11) 133 

The relationship between the strain and nodal displacements of the element is then given by: 134 

{

𝜺𝛼 = 𝑑𝒖(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1𝒅

𝜺𝛽 = 𝑻𝑁𝒖(𝑥) = 𝑻𝑁𝑨(𝑥)𝑯(𝑥)
−1𝒅

𝜺 = 𝜺𝛼 + 𝜺𝛽 = [𝑑𝑵(𝑥) + 𝑻𝑁𝑵(𝑥)]𝒅 = 𝑩(𝑥)𝒅

,     (12) 135 

where𝑵(𝑥) = 𝑨(𝑥)𝑯(𝑥)−1,𝑑𝑵(𝑥) = 𝑑𝑨(𝑥)𝑯(𝑥)−1,𝑩(𝑥) is the strain-displacement matrix, and TN satisfies the following 136 

relationship: 137 

𝑻𝑁 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0

0 0 0
0 0 −1
0 1 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 

,    (13) 138 

By numerically integrating over the length L of the beam, the element stiffness matrix Ke and mass matrix Me of the variable 139 

cross-section Timoshenko beam element are formulated as: 140 
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{
𝑲𝑒 = ∫ 𝑩(𝑥)T𝑲𝑐𝑠(𝑥)𝑩(𝑥)𝑑𝑥

𝐿

0

𝑴𝑒 = ∫ 𝑵(𝑥)T𝑴𝑐𝑠(𝑥)𝑵(𝑥)𝑑𝑥
𝐿

0

,     (14) 141 

Define J as the moment of inertia.The sectional stiffness matrix 𝑲𝒄𝒔(𝑥) for a variable cross-section beam is expressed as： 142 

𝑲𝑐𝑠(𝑥) = 𝑑𝑖𝑎𝑔[𝐸𝑆(𝑥), 𝑘𝑦𝐺𝑆(𝑥), 𝑘𝑧𝐺𝑆(𝑥), 𝐺𝐽(𝑥), 𝐸𝐼𝑦(𝑥), 𝐸𝐼𝑧(𝑥)],    (15) 143 

Directly evaluating the integrals in Eq. (14) for variable cross-sections is often computationally intensive. Therefore, in this 144 

study, Gaussian quadrature is introduced to efficiently compute the element stiffness and mass matrices of the variable cross-145 

section beam: 146 

{
𝑲𝑒 = ∑

𝐿

2
𝜔𝑖𝑩(𝑥𝑖)

T𝑲𝑐𝑠(𝑥𝑖)
𝑛
𝑖=1 𝑩(𝑥𝑖)

𝑴𝑒 = ∑
𝐿

2
𝜔𝑖𝑵(𝑥𝑖)

T𝑴𝑐𝑠(𝑥𝑖)
𝑛
𝑖=1 𝑵(𝑥𝑖)

,     (16) 147 

where n is the number of Gaussian integration points, 𝜔𝑖 and 𝑥𝑖 are the corresponding weight coefficients and integration 148 

nodes, respectively. 149 

The stiffness and mass matrices of the cross-section are determined based on the relevant parameters of the cross-section. 150 

Considering the diverse forms of cross-sections, a general formula is provided here to handle the cross-sectional parameters 151 

of variable cross-section beams with a certain taper. 152 

Assuming that the aspect ratio of the variable cross-section beam remains constant, i.e. 153 

𝒃𝒓

𝒃𝒍
=

𝒉𝒓

𝒉𝒍
,     (17) 154 

where, 𝒃𝒓 and 𝒉𝒓 are the width and thickness of the cross-section at the right end, and 𝒃𝒍 and 𝒉𝒍 are the width and thickness 155 

at the left end. Under this assumption, the cross-sectional parameters at any arbitrary point along the beam can be expressed 156 

as:  157 

{
 

 
ℎ(𝑥) = 𝑘1𝑥 + 𝑓1

𝑏(𝑥) = 𝑘2ℎ(𝑥) = 𝑘2(𝑘1𝑥 + 𝑓1)

𝑆(𝑥) = 𝑝1𝑏(𝑥)ℎ(𝑥) = 𝑝1𝑘2(𝑘1𝑥 + 𝑓1)
2 = 𝑘3(𝑘1𝑥 + 𝑓1)

2

𝐼1(𝑥) = 𝑝2𝑏(𝑥)ℎ(𝑥)
3 = 𝑝2𝑘2(𝑘1𝑥 + 𝑓1)

4 = 𝑘4(𝑘1𝑥 + 𝑓1)
4

,    (18) 158 

The calculation of the cross-sectional parameters for each cross-section requires solving for the corresponding coefficients 𝑓𝑙 159 

and 𝑘𝑖(𝑖 = 1,3,4). The transition coefficients 𝑘2, 𝑝1  and 𝑝2  do not need to be solved. This can be achieved by solving using 160 

the relevant parameters of the cross-section at both ends of the beam. For the fixed end of the beam, when x=0, we have ℎ =161 

ℎ𝒍, 𝑆 = 𝑆𝑚𝑎𝑥 , 𝐼𝑦 = 𝐼𝑦𝑚𝑎𝑥. when x=L, we have 𝑆 = 𝑆𝑚𝑖𝑛, 𝐼𝑦 = 𝐼𝑦𝑚𝑖𝑛. By substituting the known parameters of the beam at 162 

both ends into Eq. (18), we obtain: 163 

𝑘1 = ℎ1 (√
𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) 𝐿⁄  164 

𝑘3 = 𝑆𝑚𝑎𝑥 ℎ1
2⁄      (19) 165 

𝑘4 = 𝐼𝑦 𝑚𝑎𝑥 ℎ1
4⁄       166 

When the aspect ratio of the structure is variable, the width and thickness of the cross-section are mutually independent, By 167 

measuring the maximum thicknesses ℎ𝑙𝑚𝑎𝑥 and ℎ𝑟𝑚𝑎𝑥  of the cross-sections perpendicular to the y-axis at both ends of the 168 

structure, the expression for the cross-sectional parameters at any point within the unit can also be derived. 169 

Once the relevant coefficients are obtained, they can be substituted into the coordinates of the Gaussian integration points to 170 

calculate the cross-sectional parameters. By substituting the cross-sectional parameters into Eqs. (14) and (15), the element 171 

stiffness matrix 𝑲𝑒  and the element mass matrix 𝑴𝑒 of the variable cross-section Timoshenko beam element can be obtained. 172 
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3.Co-rotational formulation 173 

The co-rotational formulation stands out by extracting the elastic deformation displacements from the overall displacements, 174 

thus predefining the projection relationship. The motion of the beam element from its initial state to the final deformed state 175 

is decomposed into rigid body motion and pure deformation. The rigid body motion component encompasses the rigid 176 

translation and rotation in the local reference coordinate system. Therefore, the core challenge of the co-rotational formulation 177 

lies in handling the coordinate transformation between different frames, thereby establishing the relationship between pure 178 

deformation and the overall deformation. 179 

3.1Definition and transformation of the reference coordinate system for spatial beam elements 180 

For the spatial two-node beam element, the reference coordinate system is defined as shown in Fig. 2. The unit orthogonal 181 

vectors 𝑬𝑖 , 𝑖 = 1,2,3, represent the global reference system of the beam element, which remains fixed and unchanged. The 182 

unit orthogonal vectors 𝑬𝑖
ℎ , 𝑖 = 1,2,3, represent the local reference system of the beam element after rigid body motion, which 183 

continuously translates and rotates with the beam element. The local reference system 𝑬𝑖
𝑞
, 𝑖 = 1,2,3 represents the original 184 

coordinate system of the beam element before deformation. Additionally, the vectors 𝒆𝑖
1 and 𝒆𝑖

2,  define the cross-sectional 185 

reference system of the two nodes (1 and 2) of the beam.  186 

  187 

Figure 2. Beam kinematics and coordinate systems 188 

 189 

First, the rigid rotation of the local coordinate system 𝑬𝑖
ℎ  is addressed. The rigid rotation matrix 𝑹𝑟  represents the 190 

transformation matrix from the reference system 𝑬𝑖  to 𝑬𝑖
ℎ, and its expression is given by:  191 

𝑹𝑟 = [𝑟1 𝑟2 𝑟3]     (20) 192 

The vector 𝒓1 is computed as the line connecting node 1 and node 2 of the beam element before and after deformation:  193 

𝒓1 =
𝑺2
𝑔
−𝑺1

𝑔

𝑙
,     (21) 194 

where 𝑠𝑖
𝑔

 represents the coordinates of node i in the global reference system after rigid rotation. The length l of the beam after 195 

deformation can be obtained by 𝑙 = ‖𝑠2
𝑔
− 𝑠1

𝑔
‖. 196 

1

2

1

2
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The directions of the remaining two axes are determined by introducing an auxiliary vector 𝒒. The auxiliary vector serves two 197 

main purposes: (1) to solve the rigid rotation matrix in the global coordinate system; (2) to determine the differential 198 

relationship between the rigid rotation angle and the total displacement of the structure. Initially, the direction of 𝒒 aligns with 199 

the local coordinate axis 𝑬2
𝑞
. After deformation of the beam element, the determination of the auxiliary vector 𝒒 is related to 200 

the transformation of the local reference system: 201 

𝒒𝑖 = 𝑹𝑖
𝑔
𝑹0[0 1 0]T, 𝑖 = 1,2,     (22) 202 

𝒒 =
1

2
(𝒒1 + 𝒒2),     (23) 203 

where 𝑹1
𝑔

 and 𝑹2
𝑔

 are the orthogonal matrices corresponding to the directions of the end nodes 𝒆𝑖
1 and 𝒆𝑖

2, respectively. 𝒒1 204 

and 𝒒2 are the directions of the left and right end reference systems of the local reference system 𝑬2
𝑞
 after rigid rotation. 𝑹0 205 

denotes the initial orientation of the local coordinates, and 𝒒 represents the direction of the local reference system 𝑬2
𝑞
 after 206 

rigid rotation. 207 

By combining Eqs. (21), (22), and (23), the expressions for the remaining two components of the orthogonal matrix 𝑹𝑟 can 208 

be obtained: 209 

𝒓3 =
𝒓1×𝒒

‖𝒓1×𝒒‖
 𝒓2 = 𝒓3 × 𝒓1,     (24) 210 

The local rotation matrix of the coordinate axis is defined as 𝑹̄𝑖 , and the transformation from 𝑬𝑖   to 𝒆𝑖
1  and 𝒆𝑖

2  can be 211 

expressed as follows: 212 

𝑹𝑟𝑹̄𝑖 = 𝑹𝑖
𝑔
𝑹0, 𝑖 = 1,2,     (25) 213 

Since 𝑹𝑟
T𝑹𝑟 = 𝐼, Eq. (25) can be transformed as follows: 214 

𝑹̄𝑖 = 𝑹𝑟
T𝑹𝑖

𝑔
𝑹0, 𝑖 = 1,2,     (26) 215 

Thus, the local rotation angles can be obtained as follows:  216 

𝝑̄𝑖 = 𝑙𝑜𝑔(𝑹̄𝑖),     (27) 217 

3.2Transformation of displacement vectors between the local and global coordinate systems 218 

The global displacement vector of the beam element is defined as 𝑷𝑔
𝑔

, and the displacement vector in the local coordinate 219 

system after removing rigid body deformations is denoted as 𝑃𝑙 . By utilizing the rotation framework described in the previous 220 

section, the local displacement 𝑷𝑙 is obtained by subtracting the rigid body displacement from the total displacement 𝑷𝑔
𝑔

. The 221 

local internal force vector 𝒇𝑙 and the tangent stiffness matrix 𝑲𝑙 in the local coordinate system are computed through the 222 

transformation relationship between the two. The expression of the internal force vector 𝑭𝑔 in the global coordinate system 223 

can be derived by balancing the internal virtual work in the global and local systems: 224 

𝑉 = 𝛿𝑷𝑙
T𝑓𝑙 = 𝛿𝑷𝑔

𝑔T
𝑭𝑔,     (28) 225 

The variations of the displacement vectors 𝑷𝑔
𝑔

 and 𝑷𝑙 can be expressed as follows: 226 

𝛿𝑷𝑙 = [𝛿𝒖̄ 𝛿𝝑̄1
T 𝛿𝝑̄2

T]T,     (29) 227 

𝛿𝑷𝑔
𝑔
= [𝛿𝒖1

𝑔T
𝛿𝜽1

𝑔T
𝛿𝒖2

𝑔T
𝛿𝜽2

𝑔T]
T
,     (30) 228 

where, 𝛿𝝑̄𝑖, (𝑖 = 1,2) represents the variation of spatial rotation angles in the local coordinate system after considering rigid 229 

body deformations, and 𝜕𝜽𝑖
𝑔
(𝑖 = 1,2) represents the variation of spatial rotation angles in the global coordinate system. 230 

The variation of the transformation matrix involves the formation of a new matrix composed of rotational angles: 231 

𝛿𝑹̄𝑖 = 𝛿𝜽̃̄𝑖𝑅̄𝑖,     (31) 232 

where the superscript tilde denotes the skew-symmetric matrix corresponding to a vector. A new local coordinate system, 233 

denoted as 𝑷𝑎, is defined based on Eqs. (29) and (31). 234 

𝑷𝑎 = [𝒖̄ 𝜽̄1
T 𝜽̄2

T]T,     (32) 235 
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Let 𝒇𝑎 represents the internal force vector corresponding to 𝛿𝑷𝑎, and 𝑲𝑙 denotes the transformed local stiffness matrix 𝑲𝑒 236 

obtained in Section 2 of this paper, which is converted to a 7-degree-of-freedom system. The transformation matrix between 237 

vectors 𝑷𝑎 and 𝑷𝑙 can be obtained through the transformation relationship of their respective stiffness matrices. The final 238 

conversion of 𝑲𝑙 to 𝑲𝑎 can be expressed as follows: 239 

𝑲𝑎 = 𝑩𝑙
T𝑲𝑙𝑩𝑙 + 𝑲ℎ, 𝑲ℎ = [

0 01×3 01×3
03×1 𝑲ℎ1 03×3
03×1 03×3 𝑲ℎ2

],     (33) 240 

The matrix 𝑩𝑙  can be directly obtained by rotating the vector. The expressions for 𝑲ℎ1  and 𝑲ℎ2  are derived from the 241 

following equation: 242 

𝜕

𝜕𝜽̄
[𝑻𝑠

−𝑇𝒗] =
𝜕

𝜕𝝑̄
[𝑻𝑠

−𝑇𝒗]
𝜕𝝑̄

𝜕𝜽̄
=

𝜕

𝜕𝝑̄
[𝑻𝑠

−𝑇𝒗]𝑻𝑠
−1,    (34) 243 

  244 

𝑻𝑠(𝛷) =
𝑠𝑖𝑛 𝜑

𝜑
𝑰 + (1 −

𝑠𝑖𝑛 𝜑

𝜑
)𝒆𝒆T +

1

2
(
𝑠𝑖𝑛(𝜑/2)

𝜑/2
)2𝜱̃,    (35) 245 

where 𝒗 represents the bending moment acting on the two ends of the internal force vector in the local coordinate system, 𝒆 246 

is the unit vector corresponding to the angle vector, 𝑲ℎ1 and 𝑲ℎ2 correspond to 𝝑̄1 and 𝝑̄2 in Eq. (34). Consequently, the 247 

differential relationship between the rotational vector in the local coordinate system and the displacement vector in the global 248 

coordinate system can be derived as follows:   249 

[
𝛿𝜽̄1
𝛿𝜽̄2

] = ([
0 𝑰 0 0
0 0 0 𝑰

] − [
𝑮𝜃

T

𝑮𝜃
T]) 𝑬

T𝛿𝑷𝑔
𝑔
= 𝑷𝑬T𝛿𝑷𝑔

𝑔
,     (36) 250 

where 𝑮𝜃 =
𝜕𝜽𝑟

𝑒

𝜕𝑷𝑔
𝑔,𝑬 = 𝑑𝑖𝑎𝑔[𝑹𝑟 𝑹𝑟 𝑹𝑟 𝑹𝑟]. 251 

Thus, the relationship between 𝛿𝑷𝑎 and 𝜕𝑷𝑔
𝑔

 can be obtained as follows: 252 

𝛿𝑷𝑎 = 𝑩𝑎𝛿𝑷𝑔
𝑔
, 𝐵𝑎 = [

𝒓
𝑷𝑬T

],     (37) 253 

where 𝒓 = [−𝒓1
T 𝟎1×3 𝒓1

T 𝟎1×3]. The matrix 𝑮𝜃 in Eq. (36) is related to 𝛿𝜽𝑟
𝑒. 254 

𝛿𝜽̃𝑟
𝑒 = 𝑹𝑟

T𝛿𝑹𝑟 , 𝛿𝜽𝑟
𝑒 = [

−𝒓2
T𝛿𝒓3

−𝒓3
T𝛿𝒓1

𝒓2
T𝛿𝒓1

],     (38) 255 

The expression for 𝒓1,𝒓2,𝒓3, and 𝛿𝑟1 can be easily obtained. As for 𝛿𝒓3, it is related to 𝛿𝒒 according to Eq. (23): 256 

𝛿𝒒 =
1

2
(𝛿𝑹𝛾 + 𝛿𝑹𝜸)𝑹0[0 1 0]T =

1

2
(𝛿𝜽̃1

𝑔
𝒒1 + 𝛿𝜽̃2

𝑔
𝒒2),    (39) 257 

The expression of the matrix 𝑮𝜃  can be obtained through Eq. (39) and 𝑮𝜃 =
𝜕𝜽𝑟

𝑒

𝜕𝑷𝑔
𝑔. The detailed derivation can be found in 258 

reference (Crisfield, 1990). Eq. (37) yields the relationship between the force vector in the global coordinates and the internal 259 

force vector in the local coordinates. 260 

𝑭𝑔 = 𝑩𝑎
T𝒇𝑎,     (40) 261 

Similarly, by considering the variation of the force vector in the global coordinates in Eq. (37), it can be obtained as follows: 262 

{
𝛿𝑭𝑔 = 𝑩𝑎

T𝛿𝒇𝑎 + 𝛿𝒓
T𝒇𝑎1 + 𝛿(𝑬𝑷

T)𝒎

𝒎 = [𝑓𝑎2 𝑓𝑎3 𝑓𝑎4 𝑓𝑎5 𝑓𝑎6 𝑓𝑎7]
T
,     (41) 263 

where 𝑓𝒂𝒊(𝑖 = 1,⋯ ,7) represent the components of the force vector 𝒇𝑎. In conclusion, the tangent stiffness matrix in the 264 

global coordinate system can be obtained as follows: 265 

 {
𝑲𝑔 = 𝑩𝑎

T𝑲𝑎𝑩𝑎 + 𝑲𝑚

𝑲𝑚 = 𝑫𝑓𝑎1 − 𝑬𝑸𝑮𝜃
T𝑬T + 𝑬𝑮𝜃𝒂𝒓

,     (42) 266 

where: 267 
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𝑫 = [

𝒅 𝟎 −𝒅 𝟎
𝟎 𝟎 𝟎 𝟎
−𝒅 𝟎 𝒅 𝟎
𝟎 𝟎 𝟎 𝟎

] , 𝒅 =
1

𝑙
(𝑰 − 𝒓1𝒓1

T),     (43) 268 

𝑸 =

[
 
 
 
 
𝑸̃𝟏
𝑸̃𝟐
𝑸̃𝟑
𝑸̃𝟒]
 
 
 
 

, 𝒂 = [

0
𝜂(𝑓𝑎2 + 𝑓𝑎5)/𝑙 − (𝑓𝑎3 + 𝑓𝑎6)/𝑙

(𝑓𝑎4 + 𝑓𝑎7)/𝑙
],     (44) 269 

𝑷T𝒎 = [𝑸𝟏
T 𝑸𝟐

T 𝑸𝟑
T 𝑸𝟒

T]T,     (45) 270 

By utilizing the obtained tangent stiffness matrix, the difference in the global force vector can be calculated. The iterative 271 

process is employed to gradually converge the results towards the exact solution. The computational flowchart of nonlinear 272 

deformation in variable cross-section beam is illustrated in Fig. 3. 273 

 274 

Figure 3. Flowchart of nonlinear deformation in the variable cross-section beam 275 

4.Applications 276 

This section presents comparative analysis between the proposed co-rotational Timoshenko beam model with variable cross-277 

section and existing benchmark results to validate its accuracy. The validation is carried out in three stages. First, the simple 278 

beam models with the constant cross-section are simulated to verify the proposed beam model with geometric nonlinearity. 279 

Second, the proposed co-rotational model is applied to a beam with variable cross-section and evaluated against both analytical 280 

solutions and numerical results from the literature, thereby confirming the capability of the proposed model in handling non-281 

uniform geometries. Finally, a frequency analysis is conducted on a variable cross-section beam, and the computed results are 282 

compared with experimental measurements and published data to further demonstrate the capability of the developed beam 283 

element for dynamic analyses. 284 

4.1Application on constant cross-section beam element 285 

4.1.1 Large deformation analysis of spatially pre-bent cantilever beams subjected to concentrated loads 286 

A 45° cantilever circular arc beam with a radius of R=100m is subjected to a vertical concentrated load F of magnitude 300N 287 
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at its free end as shown in Fig. 4 below.  288 

 289 

Figure 4. Pre-bent cantilever beam  290 

 291 

The beam is divided into 8 elements, and the detailed cross-section properties of the beam are provided in Reference (Nguyen 292 

and Gan, 2014). Table 1 presents a comparative analysis of the displacements at the free end of the beam in the x, y, and z 293 

directions, as computed by the proposed method, the HAWC2 software, and the analytical solution. 294 

Table 1 shows that the obtained large deformations from the developed co-rotational beam model in the x and y directions are 295 

-12.08m and -7.10m, respectively. Compared with the results obtained using HAWC2, the proposed approach improves the 296 

computational accuracy by 0.3% in the x direction and 1.1% in the y direction. The results confirm that the proposed model 297 

achieves high accuracy in capturing the large deformation behavior of spatial Timoshenko beams. 298 

 299 

Table 1. Comparison of the Pre-bent beam tip displacements under a force applied at the free end 300 

 Displacements (m) Rel. Diff. (%) 

 x y z x y z 

Analytical 

Solution 
-11.87 -6.96 40.08 - - - 

HAWC2 -12.12 -7.18 40.08 2.1 3.1 0.0 

Present -12.08 -7.10 40.41 1.8 2.0 0.8 

 301 

4.1.2 Large Deformation Analysis of a Thin Plate Beams under Concentrated Load 302 

Fig. 5 illustrates a cantilevered thin plate beam with a total length of 0.51m, a cross-sectional width of 30mm, and a thickness 303 

of 1mm. The beam is made of 304 stainless steel, with a Young’s modulus of 193 GPa and a Poisson’s ratio of 0.3. To simulate 304 

concentrated loading, weights of 0.7N and 1.3N are suspended from the free end of the cantilever beam. For each case, the 305 

actual horizontal displacement u and vertical displacement v at three selected points along the beam are measured. In this 306 

https://doi.org/10.5194/wes-2025-180
Preprint. Discussion started: 30 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

 11 

section, the proposed co-rotational beam model is employed to calculate the large deformation displacements of the cantilever 307 

beam under the two loading cases, and the plate beam is divided into 9 elements. Table 2 compares the results from the present 308 

study, the experimental measurements, and the data reported in Reference (Jiang et al.,2023) 309 

 310 

Figure 5. Schematic Diagram of Thin Plate Beam 311 

 312 

Table 2. Comparison of Nodal Displacements of the Thin Plates under Free-end Loading  313 

Case 

Positi

on 

(x/L) 

u v 

Test 

(mm) 

ASU[5] 

(mm) 

Rel. 

Diff(

%) 

Present  

(mm) 

Rel. 

Diff 

(%) 

Test 

value 

(mm) 

ASU[5] 

(mm) 

Rel. 

Diff. 

(%) 

Present  

(mm) 

Rel. 

Diff 

(%) 

Ⅰ 

1/3 -2.0 -1.6 20.0 -1.9 5.0 -21.5 -23.5 9.3 22.6 5.1 

2/3 -12.0 -10.7 10.8 -11.3 5.3 -78.0 -80.9 3.7 77.8 0.3 

1 -24.0 -26.0 8.3 -26.5 10.4 -150 -154.6 3.1 148.4 1.1 

Ⅱ 

1/3 -3.0 -3.3 10 3.1 3.3 -28.0 -29.5 5.4 29.0 3.6 

2/3 -17.0 -19.1 12.4 18.4 8.2 -96.0 -100.7 4.9 98.8 2.9 

1 -42.0 -44.9 6.9 43.1 2.6 -185.0 -190.6 3.0 187.1 1.1 

 314 

As shown in Table 2, except for the case 1, where the relative error of the horizontal displacement at the free end reached 315 

10.4%, most of the other relative errors were within 10%, and this error remains stable as the applied load increases. In terms 316 

of the vertical displacement v, the proposed model produces the results with relative errors below 5%. Moreover, the predicted 317 

vertical deformation at the free end of the beam closely matches the measured values. These results validate the effectiveness 318 

and accuracy of the proposed model in capturing large elastic deformations in thin-walled flexible structures. 319 

4.2Numerical analysis of variable cross-section beams 320 

To validate the performance of the proposed model in handling variable geometric configurations, numerical simulations are 321 

conducted on two variable cross-section beams. The results obtained using the proposed model are compared with those from 322 

relevant literature to assess its accuracy and effectiveness. 323 
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4.2.1 Numerical analysis of a rectangular variable cross-section cantilever beam 324 

The cantilever beam with a rectangular cross-section, as shown in Fig. 6, is considered. The beam has a total length of 10 m 325 

and a constant width of b = 0.25 m, its thickness tapers linearly from 1.0 m at the fixed end to 0.2 m at the free end. The elastic 326 

modulus of the material is 𝑬 = 3.0 × 104𝐺𝑃𝑎, and the beam is subjected to a concentrated vertical load of 10,000 N at the 327 

free end. To evaluate the performance of the model, the beam is discretized into 10 elements. The computed deflection and 328 

rotation at the free end are compared with the exact analytical solution and results from alternative method, as summarized in 329 

Table 3.   330 

 331 

 332 

Figure 6. Simplified diagram of rectangular variable cross-section cantilever beam 333 

 334 

As shown in Table 3, the deflection and rotation results obtained using the proposed model align exceptionally well with the 335 

analytical solution. The predicted deflection at the free end is 0.01530 m, exactly matching the analytical value, and the 336 

computed rotation is 0.00399 rad, with a relative difference of only 0.25%. In comparison, the segmental constant elements 337 

method yields a relative difference of 0.59% in deflection and 2.00% in rotation. This example demonstrates the effectiveness 338 

of the proposed co-rotational beam model in capturing the geometric nonlinear behavior of beams with varying cross-sections. 339 

 340 

Table 3. Comparison of Deflection and Rotation at the Free End of a Rectangular Variable Cross-Section Cantilever Beam 341 

 Deflection (m) Rel. Diff. (%) Rotation(rad) Rel. Diff. (%) 

Analytical Solution 0.01530 - 0.00400 - 

Segmental Constant Elements 

[40] 
0.01521 0.59 0.00392 2.00 

Present 0.01530 0.00 0.00399 0.25 

 342 

4.2.2 Numerical simulation of a cantilever conical beam 343 

A variable cross-section cantilever beam, as shown in Fig. 7, is analyzed with a total length of 10 m. At the free end, both the 344 

moment of inertia IL and cross-sectional area AL are one-third of those at the fixed end. The ratio of the beam length to the 345 

height of the cantilever end section is 50:1. The material properties include an elastic modulus of 210 GPa and a shear modulus 346 
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of 80.77 GPa. To facilitate comparison with existing numerical studies, a dimensionless load parameter𝐅 = 𝐹𝐿2/𝐸𝐼𝐿 , as 347 

defined in reference (Marjamäki and Mäkinen, 2009), is employed.  348 

Fig. 8 shows the load–displacement response of the conical cantilever beam subjected to a vertically downward point load at 349 

its free end. The results from the proposed co-rotational beam model are compared with the numerical solution obtained using 350 

the Runge–Kutta method from reference (Marjamäki and Mäkinen, 2009) and with finite element results reported by Nguyen 351 

(Nguyen, 2013). As evident in Fig. 8, the response predicted by the proposed method aligns closely with the Runge–Kutta 352 

solution and shows improved agreement compared to Nguyen's finite element results. This comparison validates the accuracy 353 

and effectiveness of the proposed co-rotational model in capturing large deformation behavior in conical cantilever beams with 354 

variable cross-sections. 355 

 356 

Figure 7. Conical beam 357 
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 359 

Figure 8. Normalized moment and deformation in tapered beam 360 

 361 

4.3Variable taper frame model 362 

A well-know benchmark frame structure (Manuel et al., 1968), shown in Fig. 9, is commonly used to assess the performance 363 

of nonlinear analysis methods. In its original configuration, members AB and BC possess constant stiffness. Building upon 364 

this example, Francisco(de Araujo et al., 2017) proposed a modified version by introducing variable stiffness to column AB, 365 

as illustrated in Fig. 10. The cross-sectional properties at points A and B for this modified configuration are provided as follows: 366 

|𝑢̅| 

𝑣̅ 

𝜃̅ 
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{

𝐼𝑥𝐴 = 14.76042 × 10
−8𝑚4, 𝐼𝑧𝐴 = 17.04167 × 10−8𝑚4

𝐼𝑥𝐵 = 0.09375 × 10
−8𝑚4, 𝐼𝑧𝐵 = 0.27083 × 10−8𝑚4

𝑆𝐴 = 8.5 × 10−4𝑚2, 𝑆𝐵 = 1.0 × 10−4𝑚2

,                  (46) 367 

Beam BC retains a constant rectangular cross-section with S = 0.006 m2 and 𝐼 = 2 × 10−8𝑚4
.  The material properties for the 368 

entire frame are assumed to be homogeneous, with an elastic modulus 𝐸 = 7.2 × 109GPa and Poisson’s ratio v=0.3. The frame 369 

is discretized into 20 elements, and the interpolation method proposed in this study is applied. The resulting vertical and 370 

horizontal displacements at the load application points are compared with those obtained from Francisco2017 and a highly 371 

refined finite element mesh reported in reference (de Araujo et al., 2017). As shown in Fig. 11, the responses match quite well.  372 

 373 

 374 

Figure 9. Frame scheme 375 

 376 

 377 

Figure 10. Column geometry 378 

 379 
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 380 

(a) 𝑢𝑥 Displacement at node 13  (b) 𝑢𝑦 Displacement at node 13 381 

Figure 11. Frame displacement at node 13 382 

 383 

4.4Natural frequencies of the conical cantilever beam 384 

This section considers an experimental conical cantilever beam reported in reference (Le et al., 2011) to verify the developed 385 

beam element. A modal analysis is performed where the natural frequencies are compared. The beam has a total length of 0.5m, 386 

with a fixed-end section diameter of 0.03m, and a free-end section diameter of 0.005m. The mass density and elastic modulus 387 

are 7800kg/m3 and 210 GPa, respectively. The specific experimental setup is described in detail in reference (Le et al., 2011). 388 

The first five natural frequencies of the conical beam are computed using the proposed variable cross-section beam model and 389 

are compared with both experimental results and two numerical approaches from Ref. (Le et al., 2011). The comparison is 390 

presented in Table 4. 391 

 392 

Table 4. Natural frequencies of the conical cantiliver beam 393 

Natural 

modes 

TMM using 

Bessel functions 

(errors) [Hz] % 

TMM using 

cylindrical elements 

(errors) [Hz] % 

Present result 

(errors) [Hz] % 

Experimental 

results [Hz] 

Mode1 160.7(1.1) 162.5(2.2) 166.4(4.6) 159.0 

Mode2 455.5(3.0) 457.4(3.4) 445.0(0.6) 442.2 

Mode3 962.8(7.3) 963.0(7.3) 920.2(2.5) 897.5 

Mode4 1702.0(6.9) 1699.0(6.7) 1658.9(4.2) 1592.1 

Mode5 2679.1(7.0) 2671.5(6.7) 2607.8(4.1) 2504.0 

 394 

From Table 4, all three numerical methods produce results reasonably close to the experimental values. However, the proposed 395 

model demonstrates superior accuracy, with relative errors consistently below 5% across all five modes. In contrast, the relative 396 

errors of the TMM approaches in (Le et al.,2011) exceed 5% in several modes. Notably, the present model yields the most 397 

accurate results for the second and third modes, with relative errors of only 0.6% and 2.5%, respectively. These results confirm 398 

that the proposed variable cross-section beam model is effective in predicting the dynamic behavior of conical cantilever beams.  399 
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5.Conclusions 400 

In summary, a new approach for analyzing conical and geometrically nonlinear beam models has been successfully proposed 401 

by incorporating the analytical displacement shape functions and an improved co-rotational coordinate method to update the 402 

overall stiffness matrix. Firstly, the cantilever beam model with a constant cross-section and the cantilever thin plate experiment 403 

were compared with existing literature, and the obtained deformation results were found to be in close agreement with the 404 

actual results reported in the literature. Secondly, the cantilever beam and variable taper frame model considering geometric 405 

nonlinearity effects was examined, and the numerical calculations yielded deformation and rotation results that were consistent 406 

with the overall trends observed in the existing literature. Finally, the natural frequency of a conical beam was considered, and 407 

the numerical simulation results were compared with the simulated and experimental results from existing literature, 408 

demonstrating that the proposed model in this study exhibits higher computational accuracy. 409 

In this study, a new analytical approach for modeling conical and geometrically nonlinear beams is developed, incorporating 410 

analytical displacement shape functions and co-rotational formulation to update the global stiffness matrix. The proposed 411 

methodology is rigorously validated through four benchmark cases: (1) a pre-curved beam model, (2) large deformation 412 

analysis of thin plates, (3) conical beam modeling, and (4) variable-taper beam simulation. These validation studies 413 

systematically examine the method's capability to accurately model tapered beam configurations and precisely analyze 414 

geometrically nonlinear behavior in beams with varying cross-sections. Obtained results can be summarized as follows:  415 

Case 1: Validation studies were conducted by comparing the model predictions against established benchmark cases from 416 

literature. The constant cross-section cantilever beam analysis demonstrated excellent agreement with classical solutions, while 417 

the cantilever thin plate simulations closely matched experimental deformation patterns reported in previous studies. These 418 

comparisons confirmed the fundamental accuracy of the proposed formulation. 419 

Case 2: The nonlinear analysis capabilities were examined through simulations of large deformation scenarios. Both cantilever 420 

beam and variable taper frame configurations were investigated under geometrically nonlinear conditions. The obtained 421 

displacement and rotation results exhibited consistent trends with reference solutions, verifying the model's ability to handle 422 

nonlinear structural behavior. 423 

Case 3: Dynamic characteristics were evaluated through natural frequency analysis of conical beam structures. Comparative 424 

studies with existing numerical and experimental data revealed that the present model achieves superior accuracy in predicting 425 

vibrational behavior compared to conventional approaches. The improved performance is attributed to the precise 426 

representation of stiffness variations along the beam axis. 427 

In summary, this study develops and validates an advanced beam element formulation that successfully addresses two critical 428 

challenges in structural analysis: accurate modeling of variable cross-sections and robust simulation of geometric nonlinearity. 429 

The comprehensive validation framework demonstrates the method's reliability across multiple benchmark cases, establishing 430 

its potential for engineering applications requiring precise analysis of tapered beam structures under large deformations. 431 
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