
Large Eddy Simulation of Thermally Stratified Atmospheric
Boundary Layers with a Lattice Boltzmann Method
Henry Korb1, Henrik Asmuth1, Martin Schönherr2, Martin Geier2, and Stefan Ivanell1

1Wind Energy Division, Department of Earth Sciences, Uppsala University, Visby, Sweden
2Institute for Computational Modeling in Civil Engineering, TU Braunschweig, Braunschweig, Germany

Correspondence: Henry Korb (henry.korb@geo.uu.se)

Abstract. Thermal stratification plays an important role in wind farm flows and must therefore be included in simulations

of such flows. Meanwhile, wind farms are covering larger areas, requiring very large domains and leading to exceptional

computational costs for Large Eddy Simulation (LES). The lattice Boltzmann method (LBM) is a novel approach to LES of

wind farm flows that is particularly efficient and suitable for massively parallel hardware, such as GPUs (graphics processing

units). In this work we present a novel model for LES-LBM of stratified atmospheric boundary layers, using a so-called5

double distribution function approach. We develop a novel boundary condition to apply Monin-Obukhov similarity theory and

implement a number of other components required for simulations of stratified boundary layers in the GPU-resident version of

the open-source LBM solver VIRTUALFLUIDS. The model is validated for conventionally neutral and stably stratified boundary

layers. Results agree closely with numerical references. The model is able to simulate conventionally neutral boundary layers

at around realtime on a single GPU. Future work will include development of a precursor-successor method for wind farm flow10

simulations and improvements to the collision operator of temperature model.

1 Introduction

In 2019, the wind farm developer Ørsted announced that it had to reduce projected lifetime returns for multiple large offshore

wind farms by 0.5 percentage points. Having long noticed an under-performance of their assets, an internal investigation

revealed that this underestimation was due to an underestimation of blockage and wake effects in their models (Ørsted, 2019).15

The example of Ørsted shows that current state of the art models used in the wind energy industry are incapable of accounting

for the complexity of the atmospheric boundary layer and that more accurate models are needed to reduce risks and in turn

reduce costs in the wind energy sector.

It is now understood that an additional form of blockage, named hydrostatic blockage, occurs when large wind farms trigger

gravity waves in the stably stratified free atmosphere. These waves can result in unfavorable pressure gradients in front of the20

wind farm, as demonstrated in a range of LES (Large Eddy Simulation) by, for example, Lanzilao and Meyers (2022, 2024)

or Wu and Porté-Agel (2017). However, gravity waves can only exist if parts of the atmosphere are stably stratified and thus

can only be observed in LES if buoyancy effects are included in the LES model. Furthermore, the examination of gravity

waves requires very large domains with high resolution, since the wavelengths are on the order of tens of kilometers, while
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grid spacings of around 5m are required for accurate resolution of the wall and inversion layer, as discussed, in Allaerts and25

Meyers (2017). The resulting simulations thus feature extremely large numbers of degrees of freedom. Current LES models

for the atmospheric boundary layer, typically CPU-resident finite volume or pseudospectral solvers, require days or months of

computing time on very large compute clusters to perform such simulations.

A new generation of solvers seek to alleviate the immense computational cost by utilizing GPUs (Graphics Processing

Units), such as MIRCOHH (van Heerwaarden et al., 2017), AMR-WIND (Kuhn et al., 2025) and FASTEDDY (Sauer and30

Muñoz-Esparza, 2020). van Heerwaarden et al. (2017) report that 32 CPU cores are necessary to achieve the computational

performance as one NVIDIA Quadro K6000. Sauer and Muñoz-Esparza (2020) already report that one GPU equals the perfor-

mance of 256 CPU cores, highlighting the rapidly increasing speed of GPUs.

However, a different approach, based on the lattice Boltzmann method (LBM), was also introduced to wind energy and bound-

ary layer research over the last decade. The LBMs mathematical structure is well suited for the use of massively parallel35

hardware, such as GPUs. The LBM can be thought of as a two-step algorithm. First, populations at a node collide and are then

advected to neighboring nodes (Krüger et al., 2017). The collision step is potentially non-linear but is a local operation, while

the advection step simply consists of moving memory on a computer. While initial formulations of the LBM were unstable at

high Reynolds numbers, recent advances in the formulation of the collision step have rendered it a suitable method for high-

Reynolds flows and LES (Geier et al., 2015, 2020; Jacob et al., 2018).40

LES based on the LBM has been used now for over a decade to simulate large-scale boundary layer flows. Onodera et al. (2013)

present a simulation of 10km×10km of Tokyo’s urban area at a 1m resolution on up to 1000 GPUs, demonstrating the methods

suitability for very large problems. Further examples of simulations utilizing GPUs include King et al. (2017) and Lenz et al.

(2019). Both report near realtime computational performance, demonstrating the high computational efficiency of the LBM

on GPUs. None of the aforementioned simulations include wall models. Asmuth et al. (2021) introduced a wall-modeling45

approach suitable for atmospheric boundary layers and presented very good agreement with reference results.

All of the aforementioned models only consider isothermal boundary layers and very few models considering thermal strat-

ification have been previously presented in the literature. The temperature equation can be discretized either via "traditional"

approaches, such as finite difference or finite volume, or via a modified LBM. The former is named a hybrid approach while

the latter is referred to as a double-distribution-function approach (DDF). A hybrid approach was applied in one of the earliest50

studies of stratified boundary layer flows with the LBM, the THELMA project, described in a series of publications (Obrecht

et al., 2012, 2013, 2015). Another solver designed for atmospheric boundary layers implementing a hybrid approach is pre-

sented in Feng et al. (2021). PROLB employs the hybrid recursive regularized collision model (Jacob et al., 2018) and the

wall-modeling approach by Malaspinas and Sagaut (2014). However, it is not mentioned that it utilizes GPUs and no remarks

on its computational performance are given. An overview of advection-diffusion LBM models can be found in Gruszczyński55

and Łaniewski-Wołłk (2022), where the authors also compare a number of more advanced LBM models. They find that models

based on the cascaded LBM yield the most accurate results. A similar model is applied in Alihussein et al. (2021) to sim-

ulate the dissolution in porous media. Wang et al. (2020) present a method using the DDF approach for simulation of the
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stratified flow over a ridge. Both LBM models (for momentum and temperature), employ a multiple-relaxation time method

(d’Humières, 1994).60

In this paper, we propose a novel model to simulate the stratified atmospheric boundary layer via a DDF LBM model based

on the cumulant LBM for momentum and a factorized cascaded model for the advection diffusion equation. We describe the

methodology in section 2. We compare results obtained with our method to reference data for each a neutral and a stably

stratified test case in section 3 and give our concluding remarks in section 4. As with any model development, we have

tried many different variants until we converged on the model we present here. We document some of those approaches in65

Appendix A.

2 Methodology

We will be begin by describing the fundamentals of the cumulant Lattice Boltzmann method and its modifications to simulate

atmospheric boundary layers. Subsequently, we present the method used to simulate the advection-diffusion of the potential

temperature. Finally we discuss novel formulations for boundary conditions and other aspects specific to modeling thermally70

stratified boundary layers.

2.1 Governing equations

Our aim is to simulate the filtered incompressible Navier-Stokes equations with Coriolis forces coupled to an advection-

diffusion equation of potential temperature via the Boussinesq approximation (Stoll et al., 2020):
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Here, the coordinate system is denoted as x = [x,y,z]T , t is time, ρ0 is the density, u is the filtered velocity, p is the pressure

deviation from the background pressure, θ is the filtered potential temperature, the Coriolis and buoyancy force are F C and

F B, respectively, and subgrid stresses and heat flux are parameterized via an effective viscosity and diffusivity, νe and De,80

respectively. We use Einstein summation convention. The Coriolis force is given by

FC
i =−ϵij3 (Gj −uj)fc, (4)

where ϵijk is the Levi-Civita symbol, G =G[cosα,sinα,0]T is the geostrophic wind with the geostrophic wind speed G and

direction α, and fc is the Coriolis parameter. The buoyancy force is computed according to

FB
i = g

θ−⟨θ⟩(z)
θr

δi3, (5)85
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where g is the gravitational acceleration, ⟨·⟩ signifies horizontal averaging, θr is a reference temperature and δij is the Kronecker

delta. Contrary to "classical" computational fluid dynamics, we do not discretize these equations but instead solve them via the

lattice Boltzmann method implemented in the GPU-resident version of the open-source solver VIRTUALFLUIDS (Geier et al.,

2025).

2.2 The Cumulant Lattice Boltzmann Method90

The fundamental variable of the lattice Boltzmann method is the particle distribution function (PDF) f . The PDF describes the

probability of encountering a particle with velocity ξ at time t and location x. The discretization of velocity space to a lattice of

discrete velocities cικλ = (ιδi1 +κδi2 +λδi3)c with c= ∆x
∆t as lattice velocity, leads to the discrete populations fικλ(x, t) :=

f(cικλ,x, t). Following Geier et al. (2015), we denote lattice directions with triplets of Greek indices corresponding to their

directions in space and define ι :=−ι. Note that Greek indices are not subject to the summation convention and triplet indices95

in parentheses represent all possible permutations of that triplet. We employ a D3Q27 lattice, i.e. the set of 27 lattice directions

of all permutations with ι,κ,λ ∈ {−1,0,1}. The lattice speed of sound is cs = c√
3

and each cικλ has an associated weight

wικλ. Macroscopic quantities, that is quantities on the scale of continuum mechanics, are obtained by taking different order

moments of fικλ, for example density (zeroth-order) and velocity (first-order):

ρ=
∑

fικλ (6)100

ρu =
∑

cικλfικλ +
F

2
. (7)

F is the total force density. The evolution of the PDF is described by the Boltzmann equation. Replacing the continuous PDFs

with the discrete populations and integration along the characteristic x = cικλt from t to t+ ∆t yields the lattice Boltzmann

equation

fικλ(x + cικλ∆t, t+ ∆t) = fικλ(x, t) +∆tΩικλ(x, t), (8)105

where Ω is the collision operator, that will be discussed later on. Asymptotic analysis shows that the moments of the lattice

Boltzmann equation yield the weakly compressible Navier-Stokes equations, which approximates the incompressible Navier-

Stokes equations with an error proportional to O(Ma3), with the Mach number Ma = V0
cs

and V0 a reference velocity. The size

of this error is effectively controlled by the size of the time step and the grid spacing since

Ma =
√

3V0∆t
∆x

. (9)110

By limiting Ma< 0.1 we ensure that the error is small. The collision operator is of great importance for the accuracy and

stability of the method. In this work we employ the cumulant collision operator (Geier et al., 2015, 2017), here we present

a short overview. Generally, collision operators relax the populations towards an equilibrium. The cumulant collision opera-

tor performs this relaxation in cumulant space, eliminating many shortcomings of traditional multi-relaxation time methods,

mainly due to the fact that cumulants are statistically independent and can therefore be relaxed at independent rates. First, the115
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populations in continuous form undergo a Laplace transformation to wave number space:

F (Ξ) = L
{∑

ικλ

fικλδ(ιc− ξ)δ(κc− υ)δ(λc− ζ)
}
, (10)

where δ is the Dirac delta function. Thereafter, cumulants cαβγ are obtained from the cumulant generating function

cαβγ = c−α−β−γ ∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln(F (Ξ))

∣∣∣∣
Ξ=Υ=Z=0

. (11)

Note that transformation from populations to cumulants is implemented via the chimera transform, which greatly reduces the120

computational cost while significantly improving the numerical precision of the computation, (Geier et al., 2015, Appendix I).

After transformation, the cumulants are relaxed towards their respective equilibrium ceqαβγ :

c∗αβγ = ωαβγc
eq
αβγ + (1−ωαβγ)cαβγ , (12)

where c∗αβγ denotes the post-collision cumulant. Finally, the post-collision cumulants are transformed back to populations. The

relaxation rates ωαβγ are computed according to Geier et al. (2017). The relaxation rate of the second order cumulants ω(110)125

is related to the kinematic viscosity by

1
ω(110)

=
ν

c2s∆t
+

1
2
. (13)

In this study, we employ an eddy-viscosity model to explicitly model the subgrid scales of the LES. Some studies, e.g. Geier

et al. (2020) or Gehrke and Rung (2022) suggest to use the cumulant operator alone to conduct implicit LES. However, we have

found this method unsuitable for performing LES of the atmospheric boundary layer due to the very high Reynolds number, as130

discussed in Asmuth et al. (2021).

2.3 The Lattice Boltzmann Method for Advection-Diffusion

To solve the advection-diffusion equation, one can either use a so-called hybrid solver, that solves the Navier-Stokes equations

via the LBM and the advection-diffusion equation via finite differences or the finite volume method. The other possibility is

to use another LBM solver to solve the advection-diffusion equation with a double distribution function (DDF) approach. The135

hybrid method has the advantage that it requires significantly less memory, since for every node in the grid we only have to save

one quantity, as compared to the DDF, which needs to save 27 (if one uses a D3Q27 lattice) quantities per node. Therefore, we

also implemented a hybrid approach first but despite much effort it was not successful. We discuss the details of the approaches

we tried in Appendix A. Instead, we pivoted to a DDF approach:

We can describe a scalar, such as the potential temperature θ, with a second set of populations, gικλ, and define:140

θ =
∑

gικλ. (14)

During collision, only the zeroth-order moment, i.e. θ, is conserved. The lattice Boltzmann equation for the advection-diffusion

problem is analogous to the formulation for momentum:

gικλ(x + cικλ∆t, t+ ∆t) = gικλ(x, t) +∆tΩAD
ικλ(x, t). (15)
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In this work, we employ the factorized central moment based collision operator described in Yang et al. (2016). Similar to the145

cumulant method, the populations gικλ first undergo a Laplace transform

G(Ξ) = L
{∑

ικλ

gικλδ(ιc− ξ)δ(κc− υ)δ(λc− ζ)
}
. (16)

Central moments κ̃ are then obtained from the moment generating function

κ̃αβγ = c−α−β−γ ∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
e−u·ΞG(Ξ)

∣∣∣∣
Ξ=Υ=Z=0

. (17)

Again, the computation is performed via the chimera transform. To obtain the factorized central moments καβγ , the following150

orthogonalization is applied:

κ000 = κ̃000

κ(100) = κ̃(100)

κ(110) = κ̃(110)

κ111 = κ̃111155

κ(200) = κ̃(200)−
1
3
κ000

κ(210) = κ̃(210)−
1
3
κ(010)

κ(211) = κ̃(211)−
1
3
κ(011)

κ(220) = κ̃(220)−
1
3
κ000

κ(221) = κ̃(221)−
1
9
κ(001)160

κ222 = κ̃222−
1
27
κ000.

The factorized central moments are then relaxed towards their equilibria

κ∗αβγ = ωαβγκ
eq
αβγ + (1−ωαβγ)καβγ . (18)

All equilibria are zero, except

κeq
(200) = c2sκ000 (19)165

κeq
(220) = c4sκ000 (20)

κeq
(222) = c6sκ000. (21)

The first order relaxations are related to the diffusivity by

1
ω(100)

=
D

c2s∆t
+

1
2
, (22)

while we set all other relaxation rates to one. After the relaxation, the factorized central moments have to be transformed back170

to central moments and then populations.
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2.4 Boundary Conditions

We require two boundary conditions for the fluid and potential temperature field each. At the top of the domain we set a slip

condition for the fluid flow and either a Neumann or Dirichlet type boundary condition for potential temperature. At the bottom

we will set a combined stress and flux boundary condition computed from a wall model that will be discussed in subsection 2.5.175

Boundary conditions in the LBM have to be specified for the populations, therefore a variety of methods can be found resulting

in the same macroscopic boundary condition. For the sake of completeness we describe the boundary conditions for the fluid

in more detail in Appendix B. A Dirichlet type boundary condition for the scalar can be implemented via the anti bounce-back

rule as described in Krüger et al. (2017, p. 318). A Neumann boundary condition can be implemented via this approach as

well. However, in preliminary studies we found this approach to cause spurious oscillations at the top of the domain.180

Instead, we present here a formulation for a flux boundary condition, that will also be used as a Neumann boundary condition

at the top of the domain. We first recall a few basic relations. The total flux j is the sum of the diffusive and advective fluxes

jD and jA:

j = jD + jA =−D∇θ+ uθ. (23)

Our goal is now to set a specified wall flux qw, which will either be computed from a wall model, or, in case of a Neumann185

boundary condition from qw =−D ∂θ
∂n , where ∂θ

∂n is the specified gradient in wall normal direction n, with n pointing into the

fluid domain.

We compute the diffusive flux at the node from the first order moment of g:

jDi =
∑

gικλcικλ,i−uiθ. (24)

We then prescribe the flux at the wall jw to be equal to the diffusive flux in the tangential direction and equal to qw in the wall190

normal direction:

jwi = jDi − (jDj nj)ni + qwni. (25)

Finally, we employ the bounce back rule to compute the missing distributions gικλ:

gικλ = gικλ− 2wικλ
cικλ,ij

w
i

c2s
. (26)

2.5 Wall Model195

At the bottom boundary, we make use of the standard Monin-Obukhov similarity theory (MOST) to determine the wall shear-

stress τw and heat flux qw:

ζ(z) =
z

L
=−zκgqw

u3∗θr
(27)

u(z) =
u∗
κ

(
ln
z

z0
−ψM (ζ)

)
(28)

θ(z)− θ0 =− qw
u∗κ

(
ln

z

z0,H
−ψH (ζ)

)
, (29)200
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where ζ is a stability parameter based on the Obukhov length L, u∗ =
√

τw
ρ is the friction velocity, κ is the von-Kàrmàn

constant, z0 and z0,H are roughness lengths for momentum and temperature, respectively, and θ0 is the surface temperature

(Arya, 2001). The similarity functions for momentum (ψM (ζ)) and heat (ψH (ζ)) have to be determined experimentally. We

use the classical Businger-Dyer relations (Businger et al., 1971)

ϕ−1
M (ζ) = (1− γMζ)

1/4 (30)205

ϕ−1
H (ζ) = (1− γHζ)

1/2 (31)

ψM (ζ) =





ln

[(
1 +ϕ−2

M

2

)(
1 +ϕ−1

M

2

)2
]

− 2tan−1ϕ−1
M +

π

2
, ζ < 0

−βMζ, ζ ≥ 0

(32)

ψH (ζ) =





2ln
(

1 +ϕ−1
H

2

)
, ζ < 0

−βHζ, ζ ≥ 0

. (33)

We set βM = 4.8 and βH = 7.8 according to Beare et al. (2006) and γM = γH = 15 as suggested by Arya (2001). Based on a

user-specified distance zEL, we sample an exchange-location temperature θEL and velocity uEL. Additionally, the exchange-210

location quantities are exponentially averaged in time, as is recommended by Yang et al. (2017). The user can choose to either

prescribe the surface heatflux or the surface temperature. We employ a variation of algorithm(1) or algorithm(2) from Basu

et al. (2008), depending on the prescribed quantity, displayed in Algorithm 1. In the following, the subscript t denotes vectors

tangential to the wall, overbars denote temporal averages and quantities at the first node in the fluid domain are denoted with

the subscript 1.

Algorithm 1 Algorithm for computing wall shear stress and kinematic heat flux

ut
∗← ut−1

∗ , qt
w← qt−1

w

repeat

uOld
∗ ← ut

∗

compute ζ via (27)

compute ψH and ψM via (32) and (33)

ut
∗ = κ|ut

EL|
(
ln zEL

z0
−ψM

)−1

if surface temperature given then

qt
w =−ut

∗κ
(
θEL− θ0

)(
ln zEL

z0,H
−ψH

)−1

end if

until ut
∗−uOld

∗
uOld∗

< 10−4

τw = ρ(ut
∗)

2 u1,t

|u1,t|
215

The combined boundary condition, which we named the surface layer boundary condition is executed in the following steps:
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1. load f∗ικλ at boundary node and compute ρ1 and u1 via (6) and (7)

2. load g∗ικλ at boundary node and compute θ1 via (14)

3. compute τw and qw according to Algorithm 1 using uEL, θEL, z0, z0,H, zEL and θ0

4. apply inverse Momentum Exchange Method to determine uw and fικλ220

5. apply flux boundary condition to determine gικλ

Thus, the boundary condition is entirely local, with the exception of uEL and θEL. Furthermore, it is defined in a linkwise-

manner, and can thus be adapted to curved boundaries.

2.6 Further Models

A number of further modifications to VIRTUALFLUIDS had to be implemented in order for it to be fully equipped to con-225

duct simulations of atmospheric boundary layers. Namely, Coriolis and buoyancy force have to be computed and a Rayleigh

damping layer has to implemented.

2.6.1 Coriolis Force

The Coriolis force can be computed directly from (4) based on a user- prescribed geostrophic wind and Coriolis parameter. The

Coriolis force is simply added to the body force field in our implementation. Further potential for optimization by combining230

the computation with the collision kernel was left for future work.

2.6.2 Buoyancy Force

As described in the beginning, we model the effect of buoyancy via the Boussinesq approximation. After the collision kernel for

g has finished, we have added a number of models to compute the buoyancy. For simplicity’s sake we allocate an array with the

size of the grid for a local reference temperature. The constant buoyancy provider only computes a buoyancy force according to235

(5) and adds it to the body force field. Thus we can implement a constant reference temperature profile simply by changing the

way that the reference temperature is initialized. The second variant computes buoyancy relative to the horizontally averaged

temperature as is described by (5).

2.6.3 Damping Layer

Since the free atmosphere is essentially an undamped oscillator, spurious oscillations that can arise at the top of the capping240

inversion propagate throughout the domain. To mitigate these waves, it is common practice to use Rayleigh damping layers

(Allaerts and Meyers, 2017). The force of in the damping layer FD is computed by

FD
i =−f

(
z− zs
ze− zs

)
wδi3. (34)
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The function f(z̃) of height normalized between start and end height zs and ze of the damping layer can be chosen freely in

our implementation but is normally set to f(z̃) = fR sin2 π
2 z̃ with a damping factor roughly fR = 1× 10−41/s.245

2.7 Turbulence Models

As mentioned in subsection 2.1, we parameterize subgrid scale fluxes with effective viscosity and diffusivity models. A number

of turbulent viscosity models were implemented for previous studies, namely the Smagorinsky (Smagorinsky, 1963), QR

(Verstappen, 2011) and anisotropic minimum dissipation (AMD) model (Rozema et al., 2015). Note that due to the relation

between second order cumulants and the stress tensor, the Smagorinsky and QR model can be computed very efficiently during250

the collision step. In addition, we have implemented a number of turbulent diffusivity models for this study, two standalone

diffusivity models, namely a constant turbulent Prandtl number model and the model suggested by Moeng (1984). Finally,

we have also implemented the stratified AMD model proposed by Abkar et al. (2016), which augments the original AMD

model for turbulence viscosity with a term modeling the effect of buoyancy on turbulence and includes a turbulence diffusivity.

As this model requires the full velocity gradient tensor, that is only available in-between collisions, we compute the effective255

turbulence viscosity and diffusivity for computing the collision at time step t from the velocity and temperature field at time

t− 1. In preliminary studies we found the stratified AMD model to yield the best results, therefore we use only this model in

the remainder of this study.

3 Results

We validate our model against reference data in two stability conditions, namely conventionally neutral and stable conditions.260

We provide a convergence study of the advection-diffusion model in Appendix C and find the order of convergence to be

slightly above two for both advection and diffusion.

3.1 Conventionally neutral boundary layer

We begin validation of our model for thermally stratified boundary layers by comparing to the conventionally neutral boundary

layer (CNBL) simulation described in Berg et al. (2020). This case has also been used to validate the LES solver AMR-WIND265

and we have therefore two references to compare to. The domain has an extent of 2560m× 2560m× 896m, with periodic

boundaries in the streamwise and lateral direction. We conduct simulations at two resolutions, ∆x= 7m and ∆x= 3.5m,

corresponding to grids B and C of the original publication, respectively. At the top we employ a slip condition for momentum

and the Neumann condition as described in subsection 2.4 for the potential temperature. The bottom boundary is a surface

layer boundary condition with a prescribed heatflux of 0K/ms and a roughness length of z0 = 0.05m. The geostrophic wind270

speed G is 5m/s, the Coriolis parameter is 10−41/s, and the free lapse rate is ∂θ/∂z = 3K/km. The reference temperature

is θr = 290K and gravitational acceleration is 9.81m/s. The domain is initialized with constant geostrophic wind speed and

a constant temperature gradient equal to the free lapse rate. Further details of the reference case can be found in the original

description. We assume an eddy turnover time TE = 1700s and average from 55 to 65 TE. We use the stratified AMD model
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Figure 1. Instantaneous velocity fields of the CNBL case. Horizontal wind speed and vertical velocity in the plane at z = 37m shown. Black

arrow indicates average wind direction in the plane.

with a model constant set to 1/3. Since we use an explicit subgrid-scale model we "turn-off" the limiter of the cumulants by275

setting it to 105. No damping is activated.

The original study employs a pseudo-spectral code developed at the National Center for Atmospheric Research (NCAR)

over the last forty years, with pseudo-spectral spatial discretization in horizontal directions and second order finite differences

in the vertical direction. Time-stepping is performed with a third order Runge-Kutta scheme. In addition to the results from the

original publication, we also compare to the results published in the Exawind benchmark database (Kuhn et al.) obtained with280

AMR-WIND. AMR-WIND utilizes a combination of finite volume and finite element methods for spatial discretization and

second-order accurate time-stepping, details on AMR-WIND can be found in Kuhn et al. (2025). We compare our results to

results obtained on grids C and D, with a resolution of ∆x= 3.5m and ∆x= 1.75m, respectively.

We provide a qualitative impression of the simulation in Figure 1 and Figure 2, where we show instantaneous horizontal

wind speed and vertical velocity at z = 35m and z = 333m, equivalent to 10% and 90% of boundary layer height, respectively.285

Similar plots are shown in Berg et al. (2020). At the lower height we see the dominance of small scale turbulent structures in
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Figure 3. Vertical profiles of averaged velocity and temperature of the CNBL reference case.

both horizontal and vertical direction, as expected due to the proximity of the wall. At higher resolution we can observe that

smaller scales are resolved. Close to the inversion height we find much fewer small scales, instead larger structures dominate.

Comparing the direction of the mean horizontal velocity indicated by the black arrow, we observe the expected veer.
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Table 1. Friction velocity and inversion height of the CNBL case compared to references.

VIRTUALFLUIDS Berg et al. AMR-WIND

Quantity B C C D C D

u∗/m/s 0.207 0.205 0.225 0.221 0.208 0.203

zi/m 381.5 362.3 372 350 352.1 337.0
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〉
/u2
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Figure 4. Vertical profiles of second order statistics of velocity and temperature of the CNBL reference case.

Moving to a more quantitative analysis, we show the horizontal averages of wind speed S, wind direction ϕ and potential290

temperature of our model, referred to as VF, alongside respective results from references in Figure 3. Overall, we find very

good agreement between our results and the references. Especially within the boundary layer we observe very close agreement

in all quantities, indicating that the boundary condition and other models behave correctly. However, we observe that the grid

B is not able to properly resolve the upper edge of the capping inversion, resulting in a weaker gradient. This is in line with

observations in Berg et al. (2020) and a range of other literature, for example van Heerwaarden et al. (2017). Furthermore, we295

observe that the wind direction in the free atmosphere is not exactly aligned with the geostrophic wind for the higher resolution

case. This inaccuracy is due to the forcing of the geostrophic wind being very small compared to the streamwise velocity in

the free atmosphere. Nevertheless, the error is small and seems to have a negligible effect on the wind direction below the

inversion.

From the averaged results we can compute an inversion height zi as the height with the maximum temperature gradient. We300

list our results next to the results reported by Berg et al. and AMR-WIND in Table 1. Furthermore, we list the friction velocity

computed from the wall model. All results agree closely. The inversion height decreases with higher resolution for all solvers.

AMR-WIND reports the lowest inversion heights, while our results for grid C are in the middle. We report the lowest friction

velocity, while Berg et al. (2020) report the highest. Nevertheless, the results agree within 8% of each other.

We show second order statistics in Figure 4, where we present the vertical momentum flux in streamwise (u′w′) and lateral305

direction (v′w′), and turbulence intensity based on the horizontally averaged wind speed, computed as
√

2TKE/3/⟨S⟩, where

TKE = 1
2 (⟨u′u′⟩+ ⟨v′v′⟩+ ⟨w′w′⟩) is the turbulence kinetic energy. Again, we find very good agreement to both references.
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Figure 5. Horizontal (top) and vertical (bottom) spectra at z = 37m (left), z = 186m (center), and z = 333m (right).

The streamwise flux even shows excellent agreement. We can see the influence of the mismatch in wind direction in the lateral

vertical momentum flux, which is slightly too high in the upper region of the boundary layer. The turbulence intensity is slightly

higher near the ground than the results from AMR-WIND (there are no results presented in Berg et al. (2020)). The prominent310

increase of turbulence intensity at the inversion height observed in AMR-WIND is significantly less prominent in our results,

even at the same resolution.

Finally, we compare spatial velocity spectra obtained at three different heights (z = 37m,186m,333m) in Figure 5. We

compute spectra from horizontal planes following the procedure described in Berg et al. (2020). First, we compute the spectral

tensors Φ11,Φ22 and Φ33 from the covariance function Rij(rx, ry,z) = ⟨u′i(x,y,z)u′j(x+ rx,y+ ry,z)⟩:315

Φij(kx,ky,z) =
1

(2π)2

∫∫
Rije

ı̂(rxkx+ryky)drxdry, (35)

where ı̂ is the imaginary unit. Then, we compute the ring averaged energy in horizontal and vertical spectraEh(kh) andEv(kh)

with kh =
√
k2
x + k2

y:

Eh(kh) =
1
2

2π∫

0

Φ11(kh,ϕ) +Φ22(kh,ϕ)dϕ (36)

Ev(kh) =

2π∫

0

Φ33(kh,ϕ)dϕ (37)320
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Results are binned into 50 equally sized bins. Wavelengths are normalized with the computed inversion height and spectra are

normalized by 2π
ziu∗ah

and 2π
ziu∗av

with ah = 0.54(55/18)a and av = 0.61(55/18)a and a= 0.5, in accordance with Berg et al.

(2020). As a final step we average the spectra computed from 10 time steps to reduce noise.

Our results match the results from AMR-WIND very closely at all heights despite the lower resolution. This demonstrates

the lower dissipitavity of the cumulant LBM compared to finite volume solvers. At lower wavenumbers there is also very good325

agreement with the results from Berg et al. (2020). At high wavenumbers, the LBM is more dissipative than the pseudospectral

solver. Close to the inversion height, the small wavenumbers are lower due to the capping inversion and a characteristic hump

is visible in the vertical spectra, which we could accurately reproduce with our solver.

Overall we find very good agreement in all examined quantities to the reference data, even at lower resolutions. In general,

the accuracy of the model is positioned between the two reference models. The newly developed surface boundary condition330

is able to model the wall region accurately in neutral conditions.

Our simulations were carried out using a single NVidia RTX A6000 GPU on a workstation computer. Simulating 122500s

with grid B required 3.4×104s of wall time, while the simulation of grid C ran for 5.1×105s, which is approximately a 16-fold

increase as is expected. Hence, we are able to run full boundary layer simulations using a workstation computer on the order of

realtime. Compared to isothermal simulations on the same hardware the computational speed is reduced by around 26% due to335

the double distribution approach which essentially doubles the memory accessed per node as well as the additional models for

Coriolis and buoyancy force. Future work will combine the different forces and collision kernels to minimize memory accesses

and increase computational efficiency.

3.2 Stably stratified boundary layer

To examine the performance of our model in stable boundary layer simulations, we compare with the well-known GABLS1340

benchmark (Beare et al., 2006). The domain has an extent of 400m×400m×400m, with periodic boundaries in the streamwise

and lateral direction. The geostrophic wind is set to 8m/s and the Coriolis parameter to 1.39× 10−41/s. The domain is

initialized with a constant velocity equal to the geostrophic wind and a two layered temperature profile. The lowest 100m are

initialized with a constant temperature θ0 = 265K, above sits an inversion layer with a temperature gradient of 0.01K/m. In the

lowest 50m the temperature is superimposed with random fluctuations with amplitude 0.1K. The surface temperature is also345

initialized with θ0, and a constant cooling rate of 0.25K/h is applied. The roughness length is set to z0 = 0.1m. The reference

temperature is set to 263.5 K, density is 1.3223kg/m3 and gravity to 9.81m/s2. A Rayleigh damping layer is used at the top

with damping factor set to 1.6× 10−31/s. We apply the same boundary conditions as in the previous case but now the surface

temperature is prescribed in the surface layer boundary condition. The total simulated time is 9h and averages are computed

over the last hour. We simulate two grids, one with ∆x= 2m and a finer resolution of ∆x= 1m.350

We compare our results to data from the original benchmark and a later publication by Gadde et al. (2021). In the original

paper, a number of different models are compared, with a large variety of formulations. Gadde et al. employs a pseudo-

spectral discretization in horizontal directions and second order finite differences in the vertical direction and Adam-Bashforth

time-stepping. They compare a three different turbulence models, the Smagorinsky model, the AMD model and the Lagrangian
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Figure 6. Instantaneous velocity and temperature fields at x= 200m of simulations of the GABLS1 reference case with both resolutions at

t= 9h.

Averaged Scale Dependent model (LASD) (Bou-Zeid et al., 2005). We compare only to the results obtained with the Smagorin-355

sky and LASD model since the results differ only marginally between LASD and AMD. Gadde et al. conduct all simulations

at an isotropic resolution of 2.08m.

As with the previous case, we first show an instantaneous view of the simulation in Figure 6. The capping inversion is

clearly visible in the velocity field, exhibiting a super geostrophic wind and high veer. Above the inversion a clear reduction in

turbulence can be observed. At the higher resolution the transition from boundary layer to free atmosphere is sharper, which360

will be discussed in more detail later on. The temperature field shows a stable stratification and the presence of a strong capping

inversion.

We show profiles of horizontally averaged quantities of simulating the GABLS1 reference case in Figure 7. The wind speed

below the inversion agrees well with the reference data in both cases. The case with lower resolution exhibits a significantly

lower velocity gradient than the higher resolution case. This is in line with findings from Beare et al. (2006), where simulations365

at a lower resolution also exhibited this behavior. At the higher resolution, our results match those of Gadde et al. (2021)

closely. We find higher negative veer in the inversion layer compared to Gadde et al., particularly at higher resolution, which

also results in higher wind speed in that region. However, there seems to be only a very limited effect on the flow in the

boundary layer. The temperature profile at the lower resolution agrees well with the reference data within the boundary layer.
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Table 2. Friction velocity, boundary layer height, and buoyancy flux of the GABLS1 case.

VIRTUALFLUIDS Beare et al. Gadde et al.

Quantity ∆x= 2m ∆x= 1m ∆x= 2m ∆x= 1m Smag. LASD

u∗/m/s 0.27 0.26 0.24 – 0.28 – 0.265 0.253

h/m 180 159 162 – 197 149 – 164 166 166

− g⟨wθ⟩
θ0
· 104/m2/s3 3.86 3.44 3.5 – 4.7 – 4.1 3.8

In the inversion layer the gradient is slightly lower than that of Gadde et al. (2021), but still well within the range of results from370

Beare et al. (2006). At the higher resolution we find very good agreement. The vertical momentum fluxes agree very well with

the reference results. Only results from Gadde et al. (2021) are available. The vertical temperature fluxes give a similar picture,

although they are slightly smaller than the reference data. Furthermore, there exists a small hump in the results from the case

with lower resolution. We believe this is connected to the velocity profile, where the top of the inversion had a significantly

lower gradient.375

A comparison of some quantities of interest is shown in Table 2. Note that the friction velocity and buoyancy flux are

computed from the total fluxes at the second node since this is the node we use as exchange location for the wall model. We

compute the boundary layer height h with the same method used in the references. We first find the height h0.05 at which the

shear stress
√

(u′w′)2 + (v′w′)2 is less than 5% of the wall shear stress and extrapolate by h= h0.05
0.95 .
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Figure 8. Time evolution of friction velocity and buoyancy flux of the GABLS1 reference case.

The friction velocity and buoyancy flux are well within the range of the reference results. This indicates that our wall mod-380

eling approach and boundary condition yield accurate results. The boundary layer height decreases with increasing resolution

as was also observed in Beare et al. (2006).

To examine the performance of the new boundary condition in more detail, we show the time evolution of friction velocity

and buoyancy flux in Figure 8. In the initial seconds of the simulation, both quantities exhibit large spikes. The friction velocity

first decreases quickly as a boundary layer develops, decreasing shear in the lowest part of the domain. The surface heat385

flux increases in magnitude as the surface cools and thus the temperature gradient near the surface increases. Both quantities

stabilize towards the end of the simulation, indicating that the simulation has reached a state of equilibrium. This behavior

is qualitatively similar to the results reported in Beare et al. (2006) and Sauer and Muñoz-Esparza (2020). Despite varying

formulations, different approaches yield similar results near the equilibrium state of the boundary layer.

It is worth noting that the reference results also yield a large variation in all observed quantities, as noted by other studies390

comparing to this case, e.g. van Heerwaarden et al. (2017) and Sauer and Muñoz-Esparza (2020). Generally, our results within

the boundary layer fall well within the range of the results obtained by other solvers, despite the differences in approach,

subgrid-scale models, etc. At the top of the boundary layer our model requires higher resolution than most other solvers to

accurately represent the capping inversion. We believe this is caused by the model not representing the temperature gradient

accurately enough. One way to improve the model is to further refine the collision operator of the advection diffusion LBM.395

In a comparison of different advection diffusion collision operators, Gruszczyński and Łaniewski-Wołłk (2022) found a two-
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relaxation time central moment operator to be more accurate than the central moment operator most similar to the one employed

here. By introducing more relaxation times, leading order error terms can be canceled out and accuracy of the collision operator

can be improved, as was done, for example, in Geier et al. (2017).

4 Conclusions400

This paper presents a novel method for conducting large eddy simulation of thermally stratified atmospheric boundary layers

using the double-distribution function (DDF) lattice Boltzmann method (LBM) in a GPU-resident solver. Very few applications

of the LBM to stratified atmospheric boundary layers have been presented in the literature so far and this work comprises the

first application of a DDF approach to such flows in conjunction with employing GPUs. We give a thorough description of

our methodology for the simulation of the bulk flow, present a novel boundary condition to use a combined wall model for405

wall shear stress and heat flux prescribed by Monin-Obukhov similarity theory and present other models implemented in the

GPU-resident LBM solver VIRTUALFLUIDS in order to simulate stratified atmospheric boundary layers, including horizontally

averaged buoyancy, Coriolis force and Rayleigh damping layer.

We test our model in simulations of conventionally neutral and stably stratified boundary layers. Simulations of the con-

ventionally neutral boundary layer agree very well with reference data obtained both with pseudo-spectral and finite volume410

methods. At a coarse resolution of 7m, the inversion layer can not be represented accurately. At a finer resolution of 3.5m the

results match closely with the reference data at twice the resolution obtained with pseudo-spectral and finite volume methods.

Second order statistics also agree very well. The spectra obtained at three heights show that the LBM exhibits excellent spec-

tral properties and has lower diffusion than the finite volume solver at higher resolution. Damping of vertical motions near the

inversion layer is also clearly present.415

Simulations of the stably stratified GABLS1 reference case also yield satisfactory results. The proposed boundary condition

is able to properly reproduce the friction velocity and buoyancy flux at the wall. The boundary layer height agrees with results

obtained at the same resolution.

A general shortcoming of the model is its inability to correctly reproduce the direction of the geostrophic wind and this

discrepancy grows with increasing resolution. However, we find that this does not affect the results in the boundary layer and420

the misalignment is small. Overall we achieve satisfactory accuracy for both cases. The method exhibits the expected behavior,

being in general more accurate than a second order finite volume method, but not as accurate as a pseudo-spectral approach.

The present model exhibits excellent computational efficiency. All simulations, even the highly resolved neutral boundary

layer with ≈ 140 million nodes, are carried out on a single graphics card. At a coarse resolution of ∆x= 7m, the simulation is

carried out four times faster than realtime. Increasing resolution to ∆x= 3.5m results in a simulation at 0.25 realtime.425

This article comprises a model for an empty boundary layer with flat terrain. Future work will focus on implementing a

precursor-successor setup to simulate wind farms. One of the limitations of our model is that the surface layer boundary condi-

tion is only formulated for straight walls. As noted by Asmuth et al. (2021), an extension of the inverse Momentum Exchange

Method is possible but not available as of yet. Nevertheless this work represents an important step for the lattice Boltzmann
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method and CFD in general towards simulations of stratified boundary layers while fully leveraging the computational effi-430

ciency of GPUs. It represents one of the most cost-effective and fastest methods available to conduct LES of such complexity.

The reduction in computational cost benefits researchers in many ways, from reducing development time to enabling larger

parameter studies. Furthermore, a reduction in computational cost is crucial for enabling industrial application of LES, for

example in the wind energy sector. That way, manufacturers, developers and operators can take into account the complex

behavior of the atmospheric boundary layer and reduce model uncertainties, ultimately reducing the cost of electricity.435

Code and data availability. VIRTUALFLUIDS is available open source at https://git.rz.tu-bs.de/irmb/VirtualFluids. The model described in

this paper is published in version 1.3. The data for creating the plots in section 3 and the corresponding postprocessing scripts are available

at https://source.coderefinery.org/wind_energy_uu/stratificationinlbm

Appendix A: Unsuccessful preliminary studies

The development of this model was rich with paths that lead us nowhere, as is often the case when developing a new model.440

We want to record some of those paths in the hope that others might learn to either avoid those paths or will see where we went

wrong and will be able to tell us what we should have done instead.

A1 Hybrid Finite Difference Scheme

We first tried to implement a hybrid solver by using finite differences for the advection-diffusion problem. The hybrid method

has a number of benefits. The finite differences approach is much simpler and much more well known, hence there is also more445

literature on the topic. Furthermore, it requires significantly less memory while also yielding higher computational perfor-

mance. Hence it is used in a number of other thermal LBM models, for example Onodera et al. (2021) and (Feng et al., 2021).

Results for the canonical test cases looked very promising so we decided to pursue this direction further. However, when we

simulated the atmospheric boundary layer we could never avoid spurious oscillations that ultimately degraded the simulation,

particularly at the top of the inversion layer. We implemented a variety of approaches, beginning with central differences and450

Euler forward time-stepping. We refined our approach, using a variety of different finite difference schemes, such as second

order upwind, the MUSCL scheme, QUICK and QUICKEST scheme and mixed fourth order central differences and QUICK

scheme. We also tried a second order Adam-Bashforth time integration, but all to no avail. At this point we pivoted to a DDF

approach that was already implemented in VIRTUALFLUIDS since adding even higher order approaches seemed not promising.

As of yet it is unclear, what were the differences in our approach to, for example the model implemented in PROLB (Feng455

et al., 2021). On the one hand, we use a much less diffusive collision operator, thus oscillations are not damped as much. On

the other hand, no other study actually simulates a capping inversion, where the oscillations originated in our simulations.

Furthermore, there is very little literature concerning this issue. We speculate that the instabilities occur due to the differences

in stencil / lattice. The lattice Boltzmann method only access the direct neighbors, while all the higher order methods require
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information from the second neighbor as well, thus information can travel at different speeds. As this was not the aim of this460

work, we did not explore this direction further.

A2 Reference temperature

To improve the numerical precision of the populations gικλ are set so that θ− θm =
∑
gικλ. The choice of the reference

temperature θm is crucial to improve the accuracy of the simulation. A naïve choice would be to either set it to the reference

temperature θr or the surface temperature θ0, however we found that oscillations tended to originate from areas where the465

temperature is far away from θm. We found that the best choice was usually to set θm to a value of the temperature in the

inversion layer.

Appendix B: Boundary Conditions Fluid

We set a slip boundary condition by a similar method as we set the flux boundary condition. At the upper most fluid node we

compute the velocity from (7) and then compute the tangential velocity with470

ut
i = ui− (ujnj)ni. (B1)

Then we apply the bounce back rule:

fικλ = fικλ− 2ρwικλ
uicικλ,i

c2s
. (B2)

At the bottom boundary we employ the iMEM approach from Asmuth et al. (2021). We want to give a few clarifications and

correct some misprints in the original publication. Recall that the momentum transferred from the fluid to the wall is475

∆pικλ,i =
(
fικλ + fικλ

)
cικλ,i. (B3)

Hence, the total force exerted onto the wall by the fluid is

Fi =
∆x3

∆t

∑

ικλ∈Γ

∆pικλ,i, (B4)

where Γ is the set of all links cutting the wall. From the wall model we compute the force acting on the wall from the wall

shear stress480

Fi = τw
i ∆x2. (B5)

We now seek a wall velocity uw, such that the bounce back rule (B2) results in the correct force. To that end, we split the force

into two components, the force due to the population and due to the wall velocity, F f and Fuw :

F f
i =

∆x3

∆t

∑

ικλ∈Γ

cικλ,i

(
fικλ + fικλ

)
(B6)

Fuw
i =−∆x3

∆t

∑

ικλ∈Γ

2ρwικλcικλ,i
ujcικλ,j

c2s
. (B7)485
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Thus, Fuw
i = Fi−F f

i , resulting in a system of equations that needs to be solved for uw. For the case of a straight wall at the

bottom, the solution is

uw =−3c2s
ρ

∆t2

∆x4
(3Fuw

1 ,3Fuw
2 ,Fuw

3 )T . (B8)

Appendix C: Converge study

To determine the order of convergence of the advection diffusion equation numerically, we simulate the advection diffusion of490

a Gaussian Hill of concentration. Note, that in this case, θ is a passive scalar. The initial field of concentration θ is described

by (Krüger et al., 2017, p. 322)

θ(x, t= 0) = θ0 exp−|x−x0|2
2σ0

. (C1)

Under a constant advection velocity u,

θ(x, t) =
σ2

0

σ2
0 +σ2

D

θ0 exp−|x−x0−ut|2
2(σ2

0 +σ2
D)

(C2)495

is a solution for the advection-diffusion equation

∂θ

∂t
+ u · ∂θ

∂x
=

1
Pe

∂2θ

∂x2
, (C3)

with σD =
√

2Dt, the Peclét Number Pe = σ0U
D and u = [1,1,1]TU . We conduct a convergence study for a diffusion domi-

nated problem (Pe = 1) and an advection dominated problem (Pe = 105). We vary N = σ0/∆x= 2,4,8,16, while we keep

σ0 = 1 and ∆t= 1 constant. In case of Pe = 1, we set the diffusivity in lattice units D̃ =D ∆t
∆x2 = 0.01 and we simulate until500

Tend = 0.3σ0
U is reached. In the case of Pe = 105, D̃ = 1× 10−5, and Tend = 3σ0

U . In both cases the domain has a size of

18σ0× 18σ0× 18σ0. To optimally utilize the simulation domain we set x0 =−TendU/2. The analytical solutions for both

Peclét numbers at t= 0 and t= Tend is shown in Figure C1. The results of the convergence test for both Peclét numbers can be

found in Figure C2. The results clearly show a convergence rate slightly above second order in both cases, as expected. More

precisely, we compute a convergence rate of 2.5 and 2.2 for Pe = 1 and Pe = 105, respectively. A more detailed view of the505

error can be found in Figure C3, where we show the absolute difference between analytical and numerical solution. We see

that in both cases errors decrease with higher resolution and that the error is symmetric in the diffusion dominated case, while

advection case exhibits errors aligned with the direction of advection. We also see that errors become negligibly small towards

the boundaries of the domain, so the domain was chosen large enough to not affect the results.
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Figure C1. Analytical solution for the concentration in the test case of a Gaussian hill of concentration, projected onto the x-y plane. In the

white region concentration θ ≤ 1× 10−10
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Figure C2. Maximum error ∆θ of the numerical results of simulating the advection-diffusion of a Gaussian hill of concentration.
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