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Abstract. Power converters are among the most frequently failing subsystems of onshore and offshore wind turbines. In order

to minimize the resulting downtime and production losses, the time to repair should be as low as possible. In practice, however,

it is not uncommon for several turbine visits to be necessary, as information about the failure mode and the spare parts required

can often only be determined on site. This paper presents a data-driven, interpretable workflow for the remote diagnosis of

power-converter–related turbine shutdowns using converter control system data from an offshore wind farm. The study uses5

converter-fault events and three data sources: high-resolution fast logs (4.5 kHz, -350 ms to +200 ms around a fault-induced

trigger), 1-min operating data, and fault flags derived from event log data. From an initial 864 engineered features we remove

low-variance and highly correlated features, apply a subsampled decision-tree inclusion-rate filter to retain 34 features, and

estimate diagnostic impact via subsampled logistic regression. Results show that fast-log features and converter fault flags

contain the most predictive information for classifying standstill severity after a fault-induced shutdown, while low-resolution10

operating data contribute little. Using four of the derived features yields the best cross-validated performance in a decision tree

with an accuracy of 0.89 and an F1-score of 0.86. The proposed approach is practical for industry use and offers the potential

to provide explainable decision support for improving first-time fix rate.

1 Introduction15

Power converters are among the subsystems of wind turbines that are most susceptible to failure and, thus, cause considerable

costs and yield losses (Lin et al. (2016); ORE Catapult (2017, 2022); Tartt et al. (2022); Walgern et al. (2025)). Fraunhofer

IWES analyzed failure data from over 10,000 wind turbines worldwide to identify factors affecting converter reliability (An-

derson et al. (2025)). Despite some improvements (Anderson et al. (2025)), failure rates remain high at 0.21 converter-system

failures per MW converter capacity per year (Fischer et al. (2025)). In addition, the economic impact of failures grows with20

turbine size and offshore expansion, the latter of which limits accessibility. Early fault detection and differentiated remote

diagnostics are, therefore, increasingly important to keep any downtime and its associated yield loss as low as possible.

While nowadays all wind turbines are equipped with condition monitoring systems (CMS) for mechanical drive-train com-

ponents, effective CMS for power converters are not yet available. First prototypes and concepts presented during recent years

cover temperature monitoring of the power semiconductors (Rannestad et al. (2020)), the detection of humidity-related degra-25
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dation of IGBT modules (Kostka and Mertens (2022)), the impedance monitoring of DC-link capacitors (Zhou et al. (2019);

Froehling and Fischer (2025)) and corrosion monitoring in control electronics (Sehr et al. (2025)). However, none of these

approaches has reached market readiness so far. Among methods not requiring additional hardware, there are, on the one hand,

approaches based on SCADA data, which have shown insufficient performance in early fault detection (Asswad et al. (2024)).

On the other hand, high-resolution information from the converter system is generally recorded by the converter control, but30

has so far remained largely unused. This is mainly due to the fact that, for a long time, access to data from the converter control

system has been limited to manual downloading of disturbance logs (also called trigger files) generated during converter fault

events.

Since 2017, first initiatives have been launched to create a user interface and make high-resolution data from the converter

control available in the cloud in order to facilitate condition monitoring and predictive maintenance (Schönfelder (2017); ABB35

(2017); ABB). Its implementation, however, has remained limited to a low number of turbines. With Schwenzfeier et al. (2022),

a first scientific contribution to the use of multidimensional data from converter control systems of wind turbines for the purpose

of anomaly detection was published. The authors proposed a self-supervised learning approach using LSTM autoencoders to

identify outliers in the data.

As part of the ReCoWind2 project led by Fraunhofer IWES, in which three research institutes and six industry partners40

have joined forces to bring forward the reliability and monitoring of power converters in wind turbines, we have investigated

the utilization of data from the converter control for the purpose of remote diagnostics. In this context, the present work aims

at giving purely data-derived decision support through a remote diagnosis about the type of power converter fault-related

downtime. It is the initial step towards developing a decision support tool, allowing to enhance the first-time fix rate1 (also:

first-visit fix rate) by providing technicians with more accurate information about an occurred fault or failure before a repair45

visit at the turbine. To the knowledge of the authors, it is the first study exploring the utilization of converter-control data for

this purpose. In contrast to our previous analyses focusing on converter failures (e.g., Anderson et al. (2025); Pelka and Fischer

(2023); Fischer et al. (2019)), the present work is dedicated to the analysis of converter faults, i.e., events that led to a turbine

stop, but not necessarily involved a damage with the need for spare parts. Our diagnosis is derived by the fusion of multiple

data sources with information about the operating history of the power converter around a converter fault. A similar data fusion50

from multiple sources has already proven useful in the past, e.g., for wind turbine gearboxes (Hameed et al. (2009)). Apart

from the combination of data sources, focus is placed on ensuring that the results remain interpretable. Our work also addresses

the issue that researchers often call for more data. In that regard, our results demonstrate a methodology for working with a

small dataset of approximately 100 instances—specifically, fault events with derived features—emphasizing the need for data

scientists to effectively deal with the sometimes limited data available in the industry (Gück et al. (2024)).55

The rest of this article is organized as follows: In Sec. 2, we summarize the data basis underlying this work and explain the

preprocessing steps carried out to be able to use it in our analysis. Then, the methodology is explained in Sec. 3, detailing our

1The First Time Fix Rate (FTFR) is defined as the percentage of maintenance interventions where the technicians are able to resolve the issue during the

initial site visit, without the need for follow-up interventions.
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feature reduction steps and the derivation of feature importance. In Sec. 4, we present and discuss the results before we draw

our conclusions in Sec. 5.

2 Data Basis60

Our investigations are based on historical data from the converter control systems of wind turbines of an offshore wind farm

in the North Sea. Data were recorded around trigger events—specifically, converter faults of the turbines—spanning roughly

two years of operation of the entire wind farm. Fast logs (FL) were captured when faults triggered the power converter to shut

down. These logs contain operating data, in particular voltages, currents, corresponding setpoints, the generator speed, and the

converter’s operating states at a 4.5 kHz sampling rate (0.222 ms resolution) from 350 ms before to 200 ms after the trigger.65

Furthermore, operating data (OD) and event data from the converter controller were provided covering a window of seven days

before to seven days after the events. The operating data include currents and voltages inside the converter, turbine active and

reactive power generation, generator speed, and twelve temperature signals with 1-minute resolution. The event data consist

of records, i.e., a list with timestamps, of converter-internal and turbine-wide changes of operational states (OS) as well as

predefined fault flags (FF) from the converter control system.70

The event records are converted to binary time series with a shared temporal base to extract active fault flags (FF) at the

trigger event. As these event records contain information about the converter being connected to the grid, i.e., the so-called

parallel state, we derive additional features if the converter is grid-connected during the trigger, how long it was connected

until the fault trigger, and how long it was disconnected before the last grid connection. Lacking detailed fault or maintenance

information, we use the time until the turbine restarted as an indicator of fault severity. Their distribution is shown in the75

logarithmically binned histogram of Fig. 1, distinguishing between grid-related and converter-related faults. The first fault

category is due to the grid conditions being outside permissible tolerance. In this work, only data for converter related faults

(blue bars) are included, as we do not have any influence on the duration of grid outages and the associated forced shutdowns

of the turbines. We use the time until restart (standstill) as a target value for the models of this work, differentiating between

long (≥ 1 h) and short (< 1 h) standstill.80

From the operating data, we derive operating condition information before the trigger event. Previous investigations showed

an increase in the failure occurrence per unit of time of the converter core components with increasing active power output

of the turbine before the failure (Fischer et al. (2019)). In the present work, we identified correlation matrices to describe the

overall behavior of the turbine before the fault, giving a more detailed characterization of the turbine operation before a fault.

From these correlation matrices, we derive clusters of similar collective behavior in windows of 3 h, similar to Bette et al.85

(2023). We partitioned all data into six clusters (0 to 5) of operating behavior, ordered by ascending mean active power output,

i.e. cluster 0 having the lowest, cluster 5 the highest.

To utilize the fast log data time series effectively, we applied the Park transformation to convert the three-phase signals into a

rotating reference frame. In this frame, the sinusoidal signals become steady values under steady-state conditions. The transfor-

mation yields so-called direct and quadrature components of the original space vector with preserved amplitude information,90
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Figure 1. Histogram of the relative distribution of the restart time after a trigger event as an indicator for the severity of a fault, differentiated

between grid and converter related faults.

while the electrical angle and its derivative, i.e., rotational speed, define the phase and frequency of the underlying oscillations.

On these preprocessed signals, we use statistical and temporal feature extraction techniques that compute characteristic values

for each time series, including, e.g., standard deviation, Shannon entropy, signal total range as well as inter-quartile range

(IQR), and the mean slope by fitting a line to the observed data. To account for the variability and for the fact that the fault

trigger event is located approximately at two-thirds of the recorded FL time periods, the complete time span is segmented into95

five overlapping 183-ms-windows (named W0 to W4), with features extracted independently for each window.

3 Methodology

A key task when working with a large number of features—as in our dataset—is identifying the most important ones and

their relevance to specific events. Before reduction, our dataset contains 864 features, around 800 from the fast logs alone. By

removing features with no variance and keeping only one of a set of highly correlated features, we are able to reduce the dataset100

to 164 features. For further reduction, we pull 400 subsamples containing randomly selected 80% of the remaining features

from the fast logs. On each of these subsets, we train an entropy-based decision tree model. We inspect each of these decision

trees and the features that the optimization algorithm chooses to implement and count their overall inclusion rate, i.e., how

often they are used in the 400 models. We then only keep features that are implemented in more than 2% of the models, see

also Table 2. Reducing the number of features from the fast logs, we are able to reduce the total dataset to 34 features.105

To assess the impact of the remaining features, we choose to directly apply the features for a training on a logistic regression

model. Before training, all features are min-max-scaled, thus ranging from 0 to 1. With this approach, the regression coefficients

of the features allow giving a direct estimate on the tendency towards short or long standstill. To account for variability, we

again use the subsampling technique with 400 80%-subsamples on the remaining dataset containing 34 features.
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Table 1. Overview of the feature reduction steps and the number of features left after each preparation step

Preparation step Number of features

1. Compilation of generated features 864

2. Removal of features with no variance and keeping only one of strongly correlated features 164

3. Discarding insignificant features from fast logs through inclusion rate in decision tres 34

We choose the usage of decision trees and logistic regression for feature reduction and impact estimation as it allows for110

interpretability and full control of each analysis step. In the decision trees, a decision node directly shows how and why the

dataset is split, and the regression coefficient has direct influence on the overall outcome of the regression model. In contrast,

more sophisticated methods like Shapley value approaches (Chen et al. (2023)) might be used with larger datasets, higher

feature number, and in more complex machine learning models.

4 Results115

The model coefficients resulting from the average of all regression models are displayed as bars in Fig. 2. These mean values

of the fit coefficients give an estimate of how strongly each feature relates to faults causing long standstills. The error bars

correspond to the standard deviation of each coefficient directly reflecting the variations of the model coefficients of all 400

subsamples.

For positive coefficients, a higher absolute feature value increases the normalized probability of a severe fault leading to a120

longer standstill. For binary values like a fault flag (FF), the probability is directly proportional to the bar length. For positive

coefficients a low feature value or a binary feature of 0 indicates a lower probability of a long standstill. The opposite applies

for negative coefficients. In Fig. 2, the highest coefficients are the slope of the actuating space vector length at the line side

in window 0 (W0), a fault flag from the converter, and the standard deviation of the voltage space vector, indicating a long

standstill. The lowest coefficients are seen for the Shannon entropy in one setpoint of the line side converter current in window125

3 (W3), a fault flag for high temperature at the low voltage filter, and the range of the space vector length at the line side of the

converter, indicating a short standstill. See the coefficients of Fig. 2 also listed in Table 2.

Some features in the center of Fig. 2 with low overall prefactors have high relative uncertainties. If the features resulted from

the selection of the decision tree analysis, also low inclusion rates can be seen for these features. Therefore, we deduce that the

inclusion rate threshold could be chosen higher, e.g., at least to >5%. Nevertheless, this plot gives an exemplary overview of130

the influence of each feature to the type of shutdown. Additionally, these results allow identifying insignificant features when

using them for diagnosis. Using all features of Fig. 2 for a model leads to strong overfitting and bad generalizability. When

testing the prediction performance via subsampling and splitting the dataset 400 times randomly in 80% for training and 20%

for cross validation, we obtain mean F1 scores of around 0.6 for both logistic regression and decision tree predictions during

cross validation.135
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Table 2. Overview of the 34 included features in the logistic regression analysis showing both the inclusion rate from the decision tree (DT)

feature reduction as well as the regression coefficient of the logistic regression (LR) with corresponding standard deviation.

Feature Inclusion Rate DT Coefficient LR

FL: LSC current setpoint entropy (W3) 62% -0.68±0.11

FF: High temperature LV filter - -0.54±0.16

FL: LSC actuating space vector length range (W0) 18% -0.52±0.07

OD: Correlation cluster 5 - -0.36±0.19

OS: Parallel at trigger - -0.32±0.11

FF: Fuse trip DC link - -0.30±0.10

FF: Crowbar cooling time - -0.26±0.19

FL: LSC actuating space vector length IQR (W0) 4% -0.25±0.06

FF: Chopper - -0.23±0.12

FL: LSC voltage space vector velocity IQR (W0) 2% -0.22±0.15

FF: External PLC - -0.19±0.16

OS: Parallel time before shutdown - -0.12±0.13

FL: DC link voltage slope (W1) 3% -0.12±0.13

FL: LSC actuating space vector velocity slope (W1) 4% -0.11±0.16

FL: LSC voltage space vector length slope (W1) 4% -0.06±0.16

OD: Correlation cluster 2 - -0.05±0.20

FL: LSC current space vector velocity slope (W1) 5% 0.02±0.14

FL: Mains voltage space vector velocity mean (W3) 3% 0.04±0.12

FF: LSC IGBT overload - 0.05±0.13

FF: MSC IGBT overload - 0.05±0.13

FF: MSC asymmetric current - 0.06±0.14

OD: Correlation cluster 0 - 0.08±0.15

OD: Correlation cluster 4 - 0.12±0.20

OS: Time not parallel beforehand - 0.14±0.12

FL: MSC current space vector length slope (W1) 2% 0.21±0.13

OD: Correlation cluster 3 - 0.22±0.12

FL: Mains current space vector velocity slope (W1) 3% 0.22±0.12

FF: Fuse trip supply voltage - 0.23±0.13

FF: Ringline shutdown - 0.23±0.15

FL: LSC actuating space vector velocity SD (W4) 9% 0.23±0.12

FL: LSC current space vector length slope (W1) 7% 0.26±0.12

FL: LSC voltage space vector velocity SD (W4) 10% 0.31±0.13

FF: Control System - 0.46±0.14

FL: LSC actuating space vector length slope (W0) 16% 0.75±0.11
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Figure 2. Resulting regression coefficients from logistic regression with corresponding standard deviation depicted as error bars: Negative

values displayed in green bars tend toward short standstill after shutdown, whereas positive values in orange bars tend toward long standstill.

Therefore, we systematically reduce the feature set by retaining only a specified number of extreme coefficients: selecting

two features corresponds to preserving the largest and smallest coefficient, four features correspond to the two largest and two

smallest coefficients, and so forth. The results of this analysis are displayed in Fig. 3 (a), the retained features for each step in

Fig. 3 (b). The best model is achieved by retaining only four features in total, yielding an F1 score of 0.86 and an accuracy

of 0.89 in the decision tree model. For a higher number of implemented features those metrics decrease steadily by roughly140

0.1 towards 16 features. Hence, coefficients with higher relative uncertainty or those coefficients with relatively small absolute

values are consequently disadvantageous for the model and must therefore be omitted, also for decision support in remote

diagnostics. In particular, this example shows that the information in the fault flags and the high-resolution information from

the fast logs provide the necessary information, while the low-resolution features of the operating data contribute little or no

predictive value. Please note that the limited size of our dataset with around 100 fault events limits the conclusions about its145

generalizability.
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(a) (b)

n Feature Coeff. LR

2 FL: LSC current setpoint entropy (W3) -0.68±0.11

2 FL: LSC actuating space vector length slope (W0) 0.75±0.11

4 FF: High temperature LV filter -0.54±0.16

4 FF: Control System 0.46±0.14

6 FL: LSC actuating space vector length range (W0) -0.52±0.07

6 FL: LSC voltage space vector velocity SD (W4) 0.31±0.13

8 OD: Correlation cluster 5 -0.36±0.19

8 FL: LSC current space vector length slope (W1) 0.26±0.12

10 OS: Parallel at trigger -0.32±0.11

10 FL: LSC actuating space vector velocity SD (W4) 0.23±0.12

12 FF: Fuse trip DC link -0.30±0.10

12 FF: Ringline shutdown 0.23±0.15

14 FF: Crowbar cooling time -0.26±0.19

14 FF: Fuse trip supply voltage 0.23±0.13

16 FL: LSC actuating space vector length IQR (W0) -0.25±0.06

16 FL: Mains current space vector velocity slope (W1) 0.22±0.12

Figure 3. (a) Resulting accuracy (ACC) and F1-Score (F1) for a systematic analysis keeping only a certain number of features in decision tree

(DT) or logistic regression (LR) models; (b) Retained features in analysis for the numbers of features kept (n) with corresponding regression

coefficient of Fig.2. Please note that all preceding features are also retained for a certain number n of features kept.

5 Summary and Conclusions

We have shown an approach to derive, combine, and reduce features from three data sources for a power converter in a wind

turbine: operating data with a resolution of 1 min, event data, and high-resolution (4.5 kHz) fast logs recorded around a fault

trigger. We have used this information for a remote diagnosis of the standstill time, i.e., the time until restart of the turbine,150

after a fault-induced shutdown.

With the shown algorithm, technical operation can automatically derive relevant additional insights from their available

in-house datasets and use them for decision support, providing valuable information for a maintenance task. In the shown

example, fast logs and fault flags of the converter control system are more relevant for determining the fault severity than

operating or status data. The approach opens the possibility to identify patterns related to certain faults from a plethora of155

features on a purely data-driven basis. In an ideal case, more detailed information about the converter faults and—even more

importantly—about converter failures would be available from maintenance reports or post-mortem analyses. Furthermore,

due to the dataset’s size, we focused on simple models. Dataset augmentation by synthetic data generation, allowing for dataset

size variations, and a comparison with alternative machine learning methods, e.g., random forests or SVMs, will be taken into

consideration in future work.160
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Considering the successful prediction of converter-fault related standstill times achieved with the presented approach, the

inclusion of such data could make it possible to remotely diagnose converter failure modes and spare-part needs in the future.

This bears the potential of increasing the first-time fix rate in converter maintenance and in this way reducing downtime,

particularly in offshore wind farms.
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