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Abstract. Advanced wind energy technologies require predictions of the dynamic behaviour of wind turbine wakes. In this

work, we present a dynamic wind turbine model PhyWakeNet, a physics-integrated generative adversarial network-convolutional

neural network (GAN-CNN) model for wind turbines under aerodynamic force oscillations. The model combines three inter-

connected submodels for the time-averaged wake, wake meandering, and small-scale wake turbulence. The time-averaged wake

model derives from mass and momentum conservation based on the concept of momentum entrainment, which is computed5

based on the wake meandering and small-scale wake turbulence models. The wake meandering is captured through conditional

GAN-reconstructed spatial modes and neural network-enhanced dynamic system for temporal evolution, while the small-scale

wake turbulence is generated via a CNN based on the time-averaged wake, wake meandering, and inflow turbulence. Vali-

dation on wind turbine wakes under active control demonstrates the model’s capability to predict frequency-dependent wake

responses, velocity deficits, and turbulence kinetic energy. The model accurately captures temporal variations of key charac-10

teristics like instantaneous wake centers and velocity deficits, enabling potential applications in wake management to mitigate

aerodynamic loads and power fluctuations in wind farms.

1 Introduction

Wind turbine wakes significantly impact wind farm performance by reducing power output, increasing aerodynamic loads,

and contributing to power output fluctuations (Barthelmie and Jensen, 2010; Stevens and Meneveau, 2017; Meyers et al.,15

2022). Emerging advancements in wind energy technology Howland et al. (2022); Meyers et al. (2022) aim at active control

of wind turbine wakes to mitigate their negative impacts. This presents new challenges to computational wake modeling, that

not only the time-averaged statistics but also the dynamic behaviour of wind turbine wakes need to be captured. However, the

modeling capabilities of existing wake models remain limited, with most of them developed for time-averaged wakes. One

critical challenge is the incorporation of aerodynamic force oscillations, a critical factor triggering wake meandering Li et al.20

(2022a); Messmer et al. (2024a), the most important coherent flow structures in far wake. In this work, we propose a novel

modeling framework that integrates physical principles with advanced machine learning techniques to predict the dynamic

behaviour of wind turbine wakes under aerodynamic force oscillations.

1

https://doi.org/10.5194/wes-2025-189
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Wind turbine wake modeling approaches range from computationally intensive large-eddy simulation (LES) to fast ana-

lytical models. LES directly resolves the energy-containing eddies in atmospheric turbulence while modeling subgrid-scale25

effects on the resolved flow field. For wind turbine wake simulations, blade aerodynamics is typically parameterized through

forcing terms to mitigate computational loads (Li et al., 2022c). Despite these parameterizations, LES of wind turbine wakes

still requires substantial computational resources, with simulation times extending from days to weeks depending on the re-

quired spatiotemporal resolutions and the spatiotemporal span of interest. This substantial computational demand renders LES

currently impractical for wind energy project design and control optimization applications. Analytical wake models, typi-30

cally derived from volume-integrated mass and momentum conservation equations, remain the most widely used approach

in wind energy applications. The foundational model developed by Jensen Jensen (1983) represents the most prominent ex-

ample, characterizing downwind velocity deficits through wake expansion modeling and approximating radial velocity deficit

distributions using either Gaussian or cosine functions (Bastankhah and Porté-Agel, 2014; Xie and Archer, 2015; Tian et al.,

2015). Intermediate-fidelity models have also been developed, exemplified by approaches solving simplified Navier-Stokes35

equations (Ainslie, 1988) and the vortex-based methods (Segalini and Alfredsson, 2013). These mid-fidelity models offer en-

hanced physical representation by directly resolving additional spatial dimensions, thereby eliminating the need for predefined

wake shape assumptions. Despite their advantages, mid-fidelity models share a fundamental limitation with analytical wake

models: neither approach can predict dynamic behaviour of wind turbine wakes.

The main coherent flow structure of interest for turbine-turbine interactions is wake meandering, a large-scale, low-frequency40

motion of wind turbine wake in the transverse directions. The most well-known wake meandering model is the dynamic wake

meandering (DWM) model developed at Denmark University of Technology (DTU) (Larsen et al., 2008). The DWM model is

based on the assumption that the wake can be treated as passive scalars advected by inflow large eddies with the employment

of Taylor’s frozen flow hypothesis (He et al., 2017). Scale-by-scale turbulence kinetic energy analysis showed that the inflow

eddies with the integral length scale greater than ∼ 3D (where D is the rotor diameter) are effective in advecting wind turbine45

wakes Zhang et al. (2023). The shear layer instability mechanism is another important mechanism for wake meandering. It

has been systematically demonstrated using numerical simulations (Mao and Sørensen, 2018; Gupta and Wan, 2019; Li et al.,

2022b), wind tunnel experiments (Messmer et al., 2024b; Schliffke et al., 2024) and field tests (Angelou et al., 2023). Blade

aerodynamics, especially its temporal force oscillations, is a critical factor for the onset and the strength of wake meandering,

and is becoming a novel principle for active wake control strategies Li et al. (2022b); Messmer et al. (2024b).50

In this work, we develop a novel dynamic wake model that synergistically combines physical principles with machine

learning methods to compute the spatiotemporal characteristics of wind turbine wakes under aerodynamic force oscillations.

The proposed model integrates three interconnected submodels: 1) A time-averaged wake model; 2) A wake meandering model;

3) A model for small-scale turbulence. The proposed model is trained using comprehensive LES datasets and successfully

applied to compute the dynamics of wind turbine wakes under transverse aerodynamic force oscillations.55
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2 METHODS

The proposed PhyWakeNet model is based on the decomposition of the instantaneous velocity u(x, t) as follows:

u(x, t) = u(x) + ũ(x, t) +u′′(x, t) (1)

where u, ũ, and u′′ denote the time-averaged, wake meandering, and small-scale fluctuating velocity components, respectively.

The model requires two primary inputs: the atmospheric flow conditions (Caf), and the turbine operating conditions (particularly60

control actions for active wake control, also denoted as Cop). The velocity field u = u+ũ+u′′ constitutes the model output. The

time-averaged velocity field u(x) is derived from mass and momentum conservation principles. The wake meandering com-

ponent ũ(x, t) is modeled through: 1) A conditional generative adversarial network (CGAN) for the dominant spatial modes,

and 2) A data-driven dynamical system for temporal evolution. The small-scale velocity fluctuations u′′(x, t) are generated

by a convolutional neural network (CNN) that takes both the inflow conditions, and time-averaged and wake meandering flow65

field as inputs. The coupling of the three submodels is enabled by both physical insights and machine learning methods. A key

challenge is to quantify the enhanced wake-ambient flow mixing induced by active wake control strategies, which is modeled

based on the momentum entrainment concept, quantifying the combined effects of wake meandering and small-scale velocity

fluctuations on wake recovery. In the following of the paper, u, v, and w represent the streamwise, spanwise, and vertical

velocity components, respectively. The fluctuating components are collectively denoted as u′(x, t) = ũ(x, t) +u′′(x, t).70

2.1 Time-averaged wake model

2.1.1 Governing equations

The time-averaged wake flow model is formulated based on mass and momentum conservations, predicting both velocity deficit

and wake width evolution along the wind turbine downstream direction. This model incorporates enhanced mass and momen-

tum fluxes resulting from wake meandering and small-scale velocity fluctuations through an entrainment model. Specifically,75

the following mass and momentum conservation equations are employed,




d(Awuw)
dx

= VeSw

d
(
Awu2

w

)

dx
= VeSwua

(2)

where Aw is the wake cross-sectional area normal to the centerline, uw is the mean streamwise wake velocity, Sw represents

the wake-ambient flow interface area per unit downwind distance, Ve is the entrainment velocity, ua is the ambient mean

streamwise velocity. The entrainment velocity Ve is computed through the entrainment coefficient E,80

Ve = E(ua−uw), (3)

where E quantifies the rate at which ambient fluid is entrained into the wake. The entrainment approach represents a well-

established method for modeling the development of highly turbulent regions into relatively quiescent ambient flows (Morton
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Figure 1. Schematic of the proposed PhyWakeNet model including three submodels for the time-averaged, meandering, and small-scale

turbulence of wind turbine wakes. The inputs include the atmospheric flow conditions and the turbine operational conditions. The output is

the spatiotemporal variation of velocity field. The time-averaged wake flow is modelled based on the mass and momentum conservations.

The wake meandering and small-scale turbulence are modelled using GCAN and CNN. The impacts of wake meandering and small-scale

turbulence on time-averaged wake are modelled based on the momentum entrainment model. The outputs from the time-averaged wake

model and the wake meandering model are employed for the construction of small-scale turbulence.

et al., 1956). For wind turbine wake modeling specifically, it has been employed in the work by Luzzatto-Fegiz Luzzatto-Fegiz

(2018). The wake’s cross-sectional shape is modeled as an ellipse with major axis Dw1 and minor axis Dw2 to capture the85

directional effects of aerodynamic force oscillations on wake meandering preferences. Consistent with this elliptical assump-

tion, we postulate that the wake growth rates along both principal directions scale with the ratio of their respective entrainment

coefficients, while the entrainment coefficient itself follows an elliptical distribution. These considerations yield the following

final governing equations:




d
(π

4
Dw1Dw2uw

)

dx
=

∫ 2π

0
E(θ)(Ua−Uw)cos(α− θ)rdθ,

d
(π

4
Dw1Dw2u

2
w

)

dx
=

∫ 2π

0
E(θ)(Ua−Uw)Ua cos(α− θ)rdθ,

dDw1

dx

/
dDw2

dx
= E1/E2,

(4)90
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Figure 2. Schematic of the time-averaged wake flow model. Left panel shows the wake profile in the hub-height x-y plane, while the right

panel displays the wake cross-section in the y-z plane. Arrows indicate ambient flow entrainment. The wake cross-section is modeled as an

ellipse (right panel), with aerodynamic force oscillations assumed to act in the y-direction.

Here E1 and E2 denote the entrainment constants along the major and minor axes respectively, with the angular dependence

E(θ) =
√

E2
1 cos2 θ +E2

2 sin2 θ. The angles α and θ, which define the orientation relationships, are illustrated in figure 2.

To solve the governing equations, initial conditions for both the streamwise velocity and wake diameter at the near-wake

position are required. In this work, these are determined using one-dimensional momentum theory:




uw = (1− 2a)uin,

Dw1 = Dw2 = D,
(5)95

evaluated at the 1D downstream position. Here uin represents the incoming wind speed (which may differ from the ambient

wind speed ua for turbines operating in an array), and a denotes the axial induction factor. The induction factor relates to the

thrust coefficient CT through the expression a = 1−√1−CT

2 .

It should be noted that the governing equations presented above only provide the mean velocity deficit. To characterize the

spatial distribution, we assume that the isocontours of uw follow an elliptical pattern, with the velocity deficit profile described100

by a cosine function along the major and minor axes:

uc cos(πDc/D) . (6)

The parameters uc and Dc are determined by enforcing conservation of mass and momentum fluxes before and after the

transformation:




Aw(1−uw) =
∫

uc cos(πy/Dc) dAcy,

Aw(1−uw)2 =
∫

(uc cos(πy/Dc))
2

dAcy.
(7)105

5

https://doi.org/10.5194/wes-2025-189
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Substituting the specific parameters yields the concrete form of these equations:




π

4
(1−uw)Dw1Dw2 =

∫ Dc/2

0
πuc cos(πy/Dc)(1 +Dw2/Dw1)ydy,

π

4
(1−uw)2Dw1Dw2 =

∫ Dc/2

0
π (uc cos(πy/Dc))

2 (1 +Dw2/Dw1)ydy.
(8)

Solving these equations leads to analytical expressions for uc and Dc:




uc =
8(1−uw)

π +2
,

Dc =

√
π2(π +2)
32(π− 2)

Dw1.

(9)

A note is that the wake width in this new distribution differs from that under a uniform distribution. With uin and a specified,110

the governing equations for the time-averaged wake statistics (uw, Dw1, Dw2) form a closed system when combined with the

entrainment coefficient model.

2.1.2 Wake entrainment model

The detailed theoretical derivation of the estimation method for parameter E is given in this section. Ambient turbulence and

wake shear layer constitute the primary drivers of mass and momentum entrainment across the wake boundary. This physical115

understanding leads to the following formulation for the total entrainment coefficient:

E = Ea + Es = Ea +
⟨VeAη⟩
⟨Ve,oAη,o⟩

Es,o, (10)

where Ea and Es represent contributions from ambient turbulence and wake shear layer effects respectively. The angle brackets

⟨·⟩ indicate time-averaged quantities. Subscript o denotes reference values corresponding to conditions without active wake

control, obtainable through either numerical simulations or experimental measurements. The ambient turbulence component120

Ea is treated as a known input parameter. The model accounts for enhanced entrainment through proportionality to both the

entrainment velocity Ve and the wake-ambient interface area Aη , the latter being directly computed from the modeled flow

fields ũ and u′′.

The entrainment velocity Ve remains the only quantity requiring modeling in this formulation. To approximate Ve, we first

establish the wake boundary as the iso-surface of streamwise velocity deficit ∆u. The material derivative of ∆u at an arbitrary125

point in the flow field is given by:

D∆u

Dt
=

∂∆u

∂t
+u · ∇∆u. (11)

At the wake boundary, where the material derivative vanishes, this relationship simplifies to:

0 =
∂∆u

∂t
+uη · ∇∆u, (12)

where uη represents the velocity of the wake boundary. The entrainment velocity is subsequently defined as the relative velocity130

component normal to this boundary:

Ve = (u−uη) · en, (13)
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with en denoting the unit normal vector to the wake boundary. By subtracting Equation 12 from Equation 11, we derive the

following expression for Ve:

Ve =−
[

1
|∇∆u|

D∆u

Dt

]

η

. (14)135

While this formulation theoretically enables direct computation of Ve, practical implementation presents challenges due to both

computational complexity and the frequent unavailability of instantaneous velocity deficit field snapshots.

In what follows, we demonstrate that the entrainment velocity can be approximated using the time derivative of the wake

center position in the transverse direction. The entrainment velocity is first expressed as,

Ve =−
[

1
|∇(∆u)|

D(∆u)
Dt

]

η

(15)140

=−




1√(
∂(∆u)

∂x

)2

+
(

∂(∆u)
∂y

)2

(
∂(∆u)

∂t
+ u

∂(∆u)
∂x

+ v
∂(∆u)

∂y

)



η

. (16)

For slender wakes, where both the transverse velocity component v and the streamwise gradient ∂∆u/∂x remain small, this

expression simplifies to

Ve ≈−
[(

∂(∆u)
∂y

)−1
∂(∆u)

∂t

]

η

. (17)

The transverse wake center position is defined as,145

yc(x,t) =

∫ ηu(t)

ηl(t)
∆u(x,y, t)y dy

∫ ηu(t)

ηl(t)
∆u(x,y, t) dy

, (18)

where ηl(t) and ηu(t) denote the transverse coordinates of the lower and upper wake boundaries, respectively. Introducing the

cumulative velocity deficit function F (y,t) =
∫ η

−∞∆u(x,y, t) dy, this expression transforms to,

yc(x,t) =
F (y,t)y|ηu(t)

ηl(t)
−

∫ ηu(t)

ηl(t)
F (y,t) dy

F (y,t)|ηu(t)
ηl(t)

. (19)

Recognizing that F (ηl, t) = 0 by definition, we obtain the simplified form,150

yc(x,t) = ηu(t)−
∫ ηu(t)

ηl(t)
F (y,t) dy

F (ηu(t), t)
. (20)

The temporal evolution of the wake center position follows from differentiation,

dyc(x,t)
dt

=
dηu(t)

dt
− d

dt




∫ ηu(t)

ηl(t)
F (y,t)dy

F (ηu(t), t)


 . (21)
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Under the assumption that velocity deficit integrals remain approximately stationary, this simplifies to,

dyc(x,t)
dt

≈ dηu(t)
dt

. (22)155

At the upper wake boundary, where ∆u(ηu(t), t) = C remains constant, differentiation yields,

0 =
∂(∆u)
∂ηu

dηu

dt
+

∂(∆u)
∂t

. (23)

Combining Equations (17), (22), and (23), and assuming ∂(∆u)/∂ηu ≈ ∂(∆u)/∂y, we derive the entrainment velocity ap-

proximation,

Ve ≈
dyc

dt
. (24)160

This leads to the final expression for the entrainment coefficient,

E = Ea +
⟨(dyc/dt)Aη⟩
⟨(dyc/dt)oAη,o⟩

Es,o ≈ Ea +
(dyc/dt)max⟨Aη⟩

[(dyc/dt)f ]max⟨Aη,o⟩
Es,o. (25)

In the second formulation, the instantaneous dyc/dt is replaced by its temporal maximum to avoid computing the product

with Aη . The reference quantities (dyc/dt)o, Aη,o, and Es,o are derived from LES data: the first two are computed directly

from simulations, while Es,o is obtained through least-squares fitting of the velocity deficit to Equation (2). Notably, E varies165

spatially in oscillating turbine wakes due to the downstream evolution of Aη .

2.2 Wake meandering model

The coherent flow structures in the wake, represented by the leading SPOD modes, are modeled using a CGAN model, with

their temporal evolution captured by a data-driven dynamical system. Specifically, the coherent velocity ũ is expressed as:

ũ(Caf,Cop,x, t)≈
N∑

i=1

ai(Caf,Cop, t)Φi (Caf,Cop,x) , (26)170

where Φi represents the SPOD modes and ai denotes the corresponding temporal coefficients, with N being the number of

leading SPOD modes employed for coherent flow construction. Both Φi and ai depend on Caf, the atmospheric flow condition,

and Cop, the wind turbine operational condition. A schematic of the coherent wake flow model is shown in figure 3.

2.2.1 Model for Spatial Modes

This section presents the modeling approach for the SPOD modes Φi. The conditional generative adversarial network (CGAN)175

generates the ith SPOD mode for specified conditions Caf and Cop according to the following expression:

Φi (Caf,Cop,x) = ΦNN
(
Caf,Cop,Φ1

i

(
C1

af,C
1
op,x

)
,Φ2

i

(
C2

af,C
2
op,x

)
, · · ·

)
, (27)

where ΦNN denotes the neural network model trained on multiple realizations of the ith SPOD mode, Φj
i (j = 1,2, · · · ), under

different conditions Cj
af and Cj

op. The model uses Caf and Cop as input features. This formulation implicitly assumes that the
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Figure 3. Conceptual diagram of the coherent wake flow model. The upper portion illustrates the generation of spatial modes while the lower

portion shows the model for temporal evolutions.

ith mode depends exclusively on corresponding modes from various conditions, without explicit consideration of interactions180

with other modes.

The CGAN model for generating spatial modes comprises two components (figure 4): a generator and a discriminator. The

generator accepts the operating conditions Caf and Cop as inputs and produces predicted spatial modes ΦNN. The discriminator

evaluates input pairs consisting of operating conditions (Caf, Cop) and corresponding spatial modes (ΦNN), outputting a bi-

nary classification (real or fake). During training, the discriminator’s weights remain fixed while only the generator’s weights185

undergo updates. After training completion, the generator functions as a surrogate model for predicting spatial modes under

arbitrary atmospheric and operational conditions.

2.2.2 Temporal Evolution Model

This section describes the model for the temporal coefficients ai of the SPOD modes. The temporal evolution of coherent flow

structures is modeled through a dynamic system representation for ai(Caf,Cop, t) expressed as:190

dai

dt
= fi, (28)

where fi represents the forcing term modeled using a deep neural network (DNN). The forcing term construction involves two

sequential steps: first generating sample temporal coefficients for each SPOD mode under specified conditions Caf and Cop,

followed by constructing the forcing term using these generated coefficients. The sample temporal coefficients derive from

corresponding frequency spectra models for each SPOD mode, which are themselves modeled using neural networks trained195
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Figure 4. Schematic of the CGAN model for generating spatial modes.

on frequency spectra datasets across various operational conditions:

Sai
(Caf,Cop,ω) = DNNS

(
Caf,Cop,S

1
ai

(
C1

af,C
1
op,ω

)
,S2

ai

(
C2

af,C
2
op,ω

)
, · · ·

)
, (29)

where ω denotes frequency, Sai
represents the frequency spectrum for the ith SPOD mode under conditions Caf and Cop,

and DNNS constitutes the neural network model approximating the frequency spectrum. This model employs datasets of

frequency spectra (S1
ai

,S2
ai

, · · · ) from various conditions while maintaining the same fundamental assumption as the SPOD200

mode model - that the frequency spectrum for specific conditions can be approximated using corresponding spectra from

different conditions at the same modal order. The inverse Fourier transform of these learned frequency spectra yields the

sample temporal coefficients for each SPOD mode.

Using the obtained sample temporal coefficients for leading SPOD modes, the forcing term is approximated through a deep

neural network:205

fi = DNNf (a1,a2, · · · ,aN ) . (30)

Notably, the forcing term for the ith SPOD mode incorporates information from all considered SPOD modes’ temporal deriva-

tives (ȧi) rather than relying solely on its own temporal derivative. This approach compensates for potential information loss

at higher frequencies during neural network approximation of the frequency spectrum through DNNS . The resulting dynamic

equation can be numerically integrated for arbitrary initial conditions, with this work employing the Runge-Kutta method210

described in Kennedy et al. (2000) for time integration.
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2.3 Model for small-scale turbulence

To accurately approximate the entrainment constant for the time-averaged wake flow model, both coherent and incoherent tur-

bulent fluctuations must be modeled. This section presents the incoherent wake flow model for generating incoherent turbulent

fluctuations based on the time-averaged flows, coherent flows, and inflow conditions. The most straightforward approach is to215

incorporate higher-order modes directly during modal reconstruction. However, the complex spatial distribution and temporal

variation of these higher-order modes make them difficult to predict, thereby compromising model predictability. To overcome

this limitation, an alternative method has been developed based on physical insights and high-fidelity data.

A key physical insight suggests that within wind turbine wakes, small-scale structures tend to concentrate around the pe-

riphery of larger-scale wake structures. A schematic of the proposed incoherent wake flow model is shown in figure 5. By220

employing convolutional neural networks (CNNs) to predict these small-scale structures, we can simultaneously identify wake

boundaries and augment small-scale structures. While a single snapshot of coherent structures can enrich small-scale repre-

sentation, such predictions lack temporal evolution information, disrupting the connection between instantaneous small-scale

states. To solve this issue, flow snapshots across time are employed to construct the model, resulting the following model for

incoherent velocity fluctuations,225

u′′(x, t) = CNNu′′(u(x) + ũ(x, t),uaf(x, tseq)), (31)

where uaf(x, tseq) represents the velocity field of the ambient flow from the upstream measurement. The coordinate tseq de-

notes the snapshot sequence within the [−3D,0D] range rotor upstream. The predicted small-scale structures can be directly

superimposed onto the large-scale flow field from the time-averaged wake flow model and coherent wake flow model at corre-

sponding instants, yielding the complete instantaneous flow field.230

Incorporating entire snapshot sequences (i.e., the uaf(x, tseq) input for the CNNu′′ model) during model training would

significantly reduce efficiency and increase complexity. To address this, temporal downsampling is first applied to the snap-

shot sequences, substantially reducing memory requirements. The Taylor frozen hypothesis is then employed to reconstruct

snapshots between sampling intervals, restoring temporal resolution while avoiding large-scale computational tasks.

3 RESULTS235

3.1 Tests of submodels

This section evaluates various components of the proposed model. Momentum entrainment across the wake boundary serves as

the key mechanism coupling the time-averaged wake flow model with the fluctuating wake flow model. Figure 6 presents the

model-predicted wake–ambient interface area Aη and the entrainment velocity Ve, compared against LES results. Overall, good

agreement is observed, especially the different streamwise evolutions under different force oscillating frequencies, although240

the model predictions are slightly lower. This discrepancy is considered acceptable, as the small-scale curled structures along

the interface are challenging to capture accurately.
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Figure 5. Schematic of the incoherent wake flow model.

Figure 6. Comparison of the wake-ambient interface area Aη and entrainment velocity Ve correspond to three different aerodynamic force

disturbance characteristic frequencies of StF = 0.12 , StF = 0.25 , and StF = 0.84 .

This work is based on the fundamental assumption that the coherent flow component is predictable. To verify this assumption,

we evaluate the model’s performance in predicting leading SPOD modes for three characteristic aerodynamic force oscillation

frequencies (St = 0.12, 0.25, and 0.84) in figure 7. As seen, our model demonstrates excellent performance across most cases,245
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Figure 7. Comparison of the first SPOD mode for the test cases with StF = 0.12 (a, d), StF = 0.25 (b, e), and StF = 0.84 (c, f), with (a-c)

and (d-f) showing the results predicted by large-eddy simulation and the proposed model, respectively.

except for low-frequency conditions where coherent structures are less distinct. The model particularly excels at capturing the

hub vortex formation, which produces a characteristic meandering pattern near the nacelle centerline in the highest frequency

test case (St = 0.84). For the intermediate frequency case (St = 0.25), the simulation reveals a gradual downstream expansion

of the meandering pattern. Conversely, the low-frequency case (St = 0.12) exhibits minimal spatial growth of the meandering

pattern, a behavior that the model reproduces accurately. Overall, the results confirm the model’s capability in predicting250

coherent wake dynamics under aerodynamic force oscillations in terms of: 1) Global flow pattern morphology; 2) Downstream

evolution characteristics; and 3) Systematic variation with oscillation frequency.

The capability of the proposed model in predicting the energy spectra of SPOD modes is examined in Figure 8, comparing

three configurations: (1) large-scale structures reconstructed from the first two modal orders without the incoherent wake
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Figure 8. Comparison of the energy spectra of the leading SPOD mode correspond to three different aerodynamic force disturbance char-

acteristic frequencies of StF = 0.12 (a), StF = 0.25 (b), and StF = 0.84 (c). In the figure, the black dashed line represents the k−5/3 law,

while the gray solid line indicates the corresponding dimensionless frequency after temporal downsampling in the time domain. The red

dashed lines and blue dash-dot lines represent the results with and without the inclusion of the incoherent wake flow model.

flow model, (2) large-scale structures combined with reconstructed small-scale turbulence using the incoherent wake flow255

model, and (3) reference LES results. The spectrum exhibits distinct peaks at St = 0.25 and 0.84 in Figures 8(b) and (c),

respectively, corresponding to the aerodynamic force oscillation frequency and dominant coherent flow structures. All three

cases show an inertial subrange following the −5/3 power law. While the dominant peak frequency is well captured by the

model without the incoherent wake flow model, the energy densities at other frequencies are significantly underpredicted

and fail to exhibit the −5/3 scaling. With the inclusion of the incoherent wake flow model, the reconstructed flow field’s260

energy spectra show excellent agreement with reference LES data across all frequencies in figure 8, extending even beyond the

coarse sampling frequency (indicated by the gray line) used as input for the small-scale model. This demonstrates the model’s

remarkable generative capabilities. Furthermore, for the St = 0.12 case, the energy density at the corresponding frequency is

less pronounced compared to the other two cases. In contrast, the St = 0.84 case reveals two harmonics of the fundamental

frequency. The proposed model successfully captures these spectral variations with respect to aerodynamic force oscillation265

frequency.

At last, the performance of the wake flow model for small-scale fluctuations is tested. Figure 9 shows the comparison

of the model-predicted small-scale velocity fluctuations with the LES results. Although the amplitudes of velocity fluctua-

tions are somewhat underpredicted, two critical characteristics are well captured. They include: 1) the development of small

scales, which initiate around the ambient-wake interface, grows in amplitude, and expands in the radial direction as traveling270

downstream; 2) the impacts of wake meandering on small-scale fluctuations, which follow the meandering pattern and are

significantly amplified by the meandering motion;
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Figure 9. Small-scale velocity fluctuations obtained from LES (a-e) and the proposed model (f-j) at the same instants. The contour is colored

by instantaneous streamwise velocity. The three rows from top to bottom correspond to three aerodynamic force oscillation frequencies St =

0.12, St = 0.25, and St = 0.84, respectively. The fourth and fifth rows correspond to two inflow conditions with [I∞ = 0.8%, L∞ = 1.0D]

and [I∞ = 0.2%, L∞ = 4.0D], respectively.

3.2 Time-averaged wake flow statistics

The section examines the time-averaged flow statistics predicted by the model. The quantitative evaluation of the proposed

model’s prediction of time-averaged wake statistics is presented in figure 11. We first examine the time-averaged velocity275

deficits ∆u. Although discrepancies exist in the shape of the velocity deficit in the near-wake region, the proposed model

demonstrates strong predictive capabilities in the far-wake region, with predicted curves closely matching the reference profiles.

The model accurately predicts differences in wake development for various aerodynamic force oscillations. Specifically, it

captures the faster wind speed recovery observed for the two higher force oscillation frequencies (St = 0.25 and 0.84). The

overall agreement with reference profiles confirms the model’s effectiveness in capturing the downwind wind speed recovery.280

This success stems from properly accounting for enhanced entrainment due to both coherent flow patterns and small-scale

velocity fluctuations.
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Figure 10. Comparison of the mean streamwise wake velocity ūw ,the major axis diameter Dw1 and the minor axis diameter,correspond to

three different aerodynamic force disturbance characteristic frequencies of StF = 0.12 , StF = 0.25 , and StF = 0.84 .

We first compare the model predictions of the mean streamwise velocity averaged over the wake’s cross section and the

minor and major axis diameters of the wake’s cross section with the LES results. As seen in figure 10, the proposed model

accurately captures the impacts of aerodynamic force oscillation frequencies on mean streamwise velocity and wake diameters.285

The wake recovers faster at the frequencies StF = 0.25, 0.84 compared with StF = 0.12. The streamwise velocity in the wake

with StF = 0.84 is higher than the other two at 2D 3D turbine downstream locations. The wake flow with StF = 0.25, on the

other hand, starts its faster recovery at around 5D turbine downstream because of the onset of wake meandering.

We then examine the variance of the streamwise velocity fluctuations (⟨u′u′⟩) predicted by the proposed model. Overall good

agreement with the reference data is observed, particularly for the case with St = 0.25 where significant wake meandering oc-290

curs. The model demonstrates particular accuracy in predicting: 1) Locations of high-intensity ⟨u′u′⟩ turbulent kinetic energy,

which primarily occur near the blade tips; and 2) The overall magnitude of ⟨u′u′⟩ fluctuations. For cases with St = 0.12 and

0.84, where the wake lacks dominant coherent flow structures, the agreement with reference ⟨u′u′⟩ data remains acceptable,

though with larger discrepancies compared to the St = 0.25 case. Overall, the model demonstrates strong capabilities in pre-

dicting basic wake flow statistics, including both the mean velocity deficit and streamwise velocity fluctuation variance. The295

following analysis focuses on evaluating the model’s performance in predicting wake meandering statistics.
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Figure 11. Time-averaged streamwise velocity deficit (∆u, (a-c)) and variance of streamwise velocity fluctuations (⟨u′u′⟩, (d-f)) profiles at

various wind turbine downwind positions for three aerodynamic force oscillation frequencies (a, d) St = 0.12, (b, e) St = 0.25, and (c, f)

St = 0.84. Black solid lines: reference LES results; Dashed lines: model predictions for red ∆u and blue ⟨u′u′⟩.
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Figure 12. Instantaneous flow fields obtained from LES (a-e) and the proposed model (f-j) at the same instants. The contour is colored by

instantaneous streamwise velocity. The three rows from top to bottom correspond to three aerodynamic force oscillation frequencies St =

0.12, St = 0.25, and St = 0.84, respectively. The fourth and fifth rows correspond to two inflow conditions with [I∞ = 0.8%, L∞ = 1.0D]

and [I∞ = 0.2%, L∞ = 4.0D], respectively.

3.3 Instantaneous wake flows

This section demonstrates the capability of the model in predicting instantaneous wake flows. We first compare the model-

predicted instantaneous streamwise velocity fields against LES results in figure 12. The proposed model demonstrates strong

agreement in capturing the onset of wake meandering, the large-scale meandering patterns across all tested locations, and300

the distinct wake behavior for different aerodynamic force oscillation frequencies. The model successfully reproduces small-

scale flow structures that predominantly emerge along the wake boundary and surround the large-scale coherent structures.

One limitation concerns the nacelle-induced flow fluctuations, that the near-wake centerline features are not captured. This is

expected given the cosine-shaped velocity deficit assumption and the exclusion of nacelle effects and initial wake development

physics in the model.305
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The amplitude of wake meandering σy , defined as the standard deviation of instantaneous wake center positions in the

spanwise direction, is presented in Figure 13 for downstream locations x/D = 5 and 10. The proposed model accurately

predicts the variation of σy with respect to aerodynamic force oscillation frequency (St) and Atmospheric turbulence conditions

At x/D = 5, σy exhibits a maximum in the frequency range 0.4≤ St≤ 0.6, decreasing for both higher and lower frequencies.

While the model captures this trend well, it shows slight overestimations of σy within this frequency range. Further downstream310

at x/D = 10, the wake meandering amplitude σy displays a pronounced peak near St = 0.3, with rapid decay at both higher

and lower frequencies - a characteristic that the model reproduces with good fidelity. The analysis of inflow turbulence effects

reveals that: 1) at x/D = 5, the wake meandering amplitude is higher for higher inflow turbulence intensity; 2) at x/D = 10,

the sensitivity to inflow turbulence conditions diminishes significantly.

In active wake control applications, precise prediction of wake positions is essential. Figure 14 evaluates the model’s perfor-315

mance in this regard by analyzing temporal variations of both spanwise wake center positions (yc) and wake centerline velocity

deficits (∆uc) at the 10D downstream location. The proposed model demonstrates strong predictive capability, accurately

capturing both long-term trends and short-term fluctuations in the wake behavior. While the agreement with reference data is

generally good for both quantities, the predictions for yc show better correspondence than those for ∆uc. This performance

difference is partly caused the modeling framework’s underlying assumptions: the time-averaged velocity deficit distribution320

for the wake is prescribed rather than simulated.
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Figure 13. Comparison of actual and model-predicted wake center fluctuation amplitudes under varying aerodynamic force oscillation

frequencies (a, b) and varying turbulent inflows (c, d). The subplots (a, c) show the comparison at a streamwise position of x/D = 5, while

the subplots (b, d) show the comparison at a streamwise position of x/D = 10. The thirteen frequencies in (a, b) are 0.1, 0.12, 0.2, 0.25, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.84, 0.9, and 1.0. The twelve inflows in (c, d) are the results of three turbulent integral length scales and four turbulent

intensities. The crosses represent the unseen cases.

20

https://doi.org/10.5194/wes-2025-189
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 14. Comparison of temporal variations of spanwise wake center positions (yc, (a-c)) and wake centerline velocity deficits (∆uc, (d-f))

at the 10D downstream location. From top to bottom are three cases with motion frequencies of StF = 0.12, StF = 0.25, and StF = 0.84,

respectively. The solid lines and the dashed lines represent the results of large-eddy simulation and the proposed model, respectively.
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4 CONCLUSIONS

We proposed a physics-integrated GNN-CNN wake model (PhyWakeNet) for predicting the dynamics of wind turbine wakes

under aerodynamic force oscillations. The PhyWakeNet model integrates three interconnected submodels: the time-averaged

wake model, the wake meandering model, and the model for small-scale turbulence.325

The time-averaged wake model is derived from the fundamental mass and momentum conservation principles, with its

entrainment parameter dynamically determined based on the other two submodels. For wake meandering prediction, the model

employs a spatiotemporal decomposition approach where the spatial modes are reconstructed through a combination of spectral

proper orthogonal decomposition (SPOD) and conditional generative adversarial network (CGAN). Computational efficiency

is maintained by retaining only the first five SPOD modes. Temporal evolution is captured through a dynamic system model330

enhanced by a deep neural network (DNN)-derived forcing term. The small-scale turbulence is generated by a convolutional

neural network (CNN) that processes three key inputs: time-averaged wake field, wake meandering, and inflow turbulence.

This comprehensive approach enables the model to capture a broad spectrum of wake dynamics.

Validation studies across various aerodynamic force oscillations and inflow turbulence conditions demonstrate the model’s

capabilities in capturing both the time-averaged and dynamic features of wind turbine wakes. The results show that the PhyWak-335

eNet model accurately reproduces frequency-dependent variations in wake characteristics, outperforming existing engineering

wake models in several aspects. Beyond predicting velocity deficits —a standard capability of traditional models —it success-

fully captures turbulence intensity distributions and the fluctuating wake features, including instantaneous wake positions and

velocity deficits.

Appendix A: DATASETS340

A1 Numerical methods

The training datasets are generated using the large-eddy simulation module of the Virtual Flow Simulator (VFS-Wind) code Yang

et al. (2015); Yang and Sotiropoulos (2018); Santoni et al. (2023). The flow physics is governed by the filtered incompressible

Navier-Stokes equations:

∂uj

∂xj
= 0

∂ui

∂t
+

∂uiuj

∂xj
=−1

ρ

∂p

∂xi
+

∂

∂xj

(
(ν + νt)

∂ui

∂xj

)
+ fi

(A1)345

where i, j = 1,2,3 denote spatial indices, u represents the velocity field, p is the pressure, ν indicates the kinematic viscosity,

and νt stands for the eddy viscosity modeled through the Smagorinsky model with dynamically determined coefficients. The

body force term fi (per unit mass) originates from the actuator surface model, which captures both turbine blades and nacelle

effects. Unlike the commonly used actuator line model, the actuator surface method explicitly incorporates blade geometry

features, particularly the chord distribution along the spanwise direction, while also resolving nacelle geometry Yang and350
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Sotiropoulos (2018). Force and torque conservation during information transfer between the actuator surface grid and back-

ground flow solver grid is maintained through a smoothed discrete delta function approach Yang et al. (2009) using just 3 to 5

grid cells.

Spatial discretization employs a second-order central difference scheme, coupled with temporal advancement via a second-

order fractional step method Ge and Sotiropoulos (2007). The momentum equation solution utilizes a matrix-free Newton-355

Krylov approach Knoll and Keyes (2004), while the pressure Poisson equation is solved through the Generalized Minimal

Residual (GMRES) method accelerated by algebraic multi-grid techniques.

A2 Simulated cases

In this study, we employ the NREL offshore 5 MW reference wind turbine model as our baseline configuration, which was

developed by Jonkman, Butterfield, and Musial Jonkman et al. (2009). This turbine features a rotor diameter of 126 meters and360

a cuboidal nacelle measuring 2.3 meters by 2.3 meters by 14.2 meters.

Two distinct case configurations are investigated: one with inflow turbulence and one without. The tip-speed ratio λ is set at

7, while the Reynolds number based on inflow velocity and rotor diameter reaches approximately 9.6×107. The computational

domain forms a cuboid measuring 14D× 7D× 7D in the streamwise (x), horizontal (y), and vertical (z) directions respec-

tively. The rotor is positioned 3.5D downstream from the inlet at the domain’s central cross-section. A uniformly distributed365

inflow velocity is imposed at the inlet boundary (x =−3.5D), while the outlet boundary (x = 10.5D) employs a Neumann

condition
(

∂ui

∂x = 0
)
. For turbulent inflow cases, velocity fluctuations generated using the synthetic turbulence technique Mann

(1998) are superimposed onto the uniform inflow profile. Lateral boundaries implement free-slip conditions throughout the

simulations. The domain is discretized using a Cartesian grid with uniform spacing of ∆x = D/20 in the streamwise direc-

tion and ∆y = ∆z = D/20 within the near-wake region (y,z ∈ [−1.5D,1.5D]). Grid spacing expands gradually outside this370

region. Comprising 281× 141× 141 nodes, this grid configuration has demonstrated capability for accurate predictions of ve-

locity deficits and turbulence intensities in the turbine wake, as validated in our previous work Li et al. (2022b). Table A1 lists

all simulated cases. Except for StF = 0.12,0.25,0.84, all other cases are employed for model training.

Appendix B: MODEL TRAINING DETAILS

B1 Training of the CGAN model for generating spatial coherent modes375

The training process involves two competing components: the discriminator learns to distinguish between authentic pairs of

spatial modes with their corresponding operating conditions, while the generator attempts to produce realistic spatial modes

that create data pairs indistinguishable from genuine ones. The discriminator achieves this by minimizing its classification

error. The objective function is expressed as:

min
G

max
D

V (D,G) = EΦn∼pdata(Φn)[logD(Φin|Cn)] + E[log(1−D(G(Φ̂in|Cn))] (B1)380
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Table A1. Parameters for simulated cases

Cases Parameters

I

Inflow turbulence: N/A

Force oscillation:

StF ∈


0.1,0.12,0.15,0.2,0.23,0.25,0.26,0.3,

0.4,0.5,0.6,0.7,0.8,0.83,0.84,0.86,

0.9,1.0

, A = 0.01D

II

Inflow turbulence:

I∞ ∈ {0.2,0.4,0.6,0.8}%,

L∞ ∈ {1.0,1.5,4.0}D
Force oscillation: StF = 0.25, A = 0.01D

In this formulation, Φin represents an authentic sample drawn from the real data distribution pdata(Φin), Cn corresponds to the

conditional vector, and D(Φin|Cn) indicates the discriminator’s estimated probability that Φin constitutes a genuine sample

under condition Cn. Since the distributions in the loss equation (B1) remain unknown, we employ empirical loss equations

following Mirza and Osindero (2014). The hyperparameters for both generator and discriminator are detailed in Table B1.

Training data comprises flow snapshots from LES that capture spatial modes across various operational conditions. The385

conditional vector Cn originates from ambient flow and turbine operation parameters. Data preprocessing involves normal-

ization and spatial mode alignment to maintain consistent input dimensions. The generated spatial modes form 3D tensors

(191× 121× 5) representing five dominant spatial coordinates and flow variables.

B2 Training of the DNN model for predicting the temporal evolution of coherent wake flows

Frequency Spectrum Model. The values of the hyperparameters are determined through validation errors using a systematic390

grid search approach. The employed hyperparameter values are presented in table B2.

Forcing term for the dynamic system. We generated 2000 snapshots from tU∞/D = 0 to 10.8 through LES simulation.

For different cases, we selected varying numbers of snapshots to maintain consistent periodicity across all datasets.

Our training data spans the interval from tU∞/D = 0 to 3.6, while data beyond tU∞/D = 3.6 serves as the test set, ensuring

rigorous evaluation of the model’s predictive capability on unseen data.395

The DNN’s performance critically depends on hyperparameter selection. We employed random search techniques to identify

optimal hyperparameter configurations. The complete set of hyperparameters used is listed in table B4, while the optimal set

obtained through random search appears in table B3.

In both tables B3 and B4, σ denotes the activation function, α represents the learning rate, and λ is the regularization

parameter. The variable niter indicates the number of iterations, while β1 and β2 correspond to the exponential decay rates in400

the Adam optimization method.
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Table B1. Training details for the cGAN model

Model Value/Description

Generator

Input: Noise vector (z) and conditional feature (c)

Layers:

• Linear (z + sin(2πc)+ cos(2πc)→ 1000)

• BatchNorm1d (1000)

• ReLU activation

• Linear (1000 → 1000)

• ReLU activation

• Linear (2000 → 191× 5× 121)

Output: Generated image (191× 5× 121)

Discriminator

Input: Image (191× 5× 121) and conditional feature (c)

Layers:

• Linear (img +sin(2πc) + cos(2πc)→ 1000)

• ReLU activation

• Linear (1000 → 100)

• ReLU activation

• Linear (200 → 1)

• Sigmoid activation

Output: Probability of image being real (0 or 1)

Loss Function Binary Cross-Entropy Loss (BCELoss)

Optimizer Adam

Learning Rate (lr) 0.0001

Adam Parameters β1 = 0.9, β2 = 0.999

Table B2. Hyperparameters for the Temporal Prediction Model

DNN Architecture σ α λ niter β1 β2

1-500-1000-100 Tanh 0.0001 0.001 10,000 0.9 0.999

Table B3. Model generation parameters for the Case St = 0.25

nmodels nlayersmin nlayersmax nhiddenmin nhiddenmax θmin θmax

200 4 12 40 240 8 12
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Table B4. Optimal hyperparameters for the case St = 0.25

DNN Architecture σ α λ niter β1 β2

5-56-225-46-5 ELU 0.001 3.0128× 10−11 10,000 0.9 0.999

B3 Training of the CNN model for predicting incoherent wake turbulence

We employ a three-dimensional convolutional neural network (3D-CNN) as our foundational architecture, as 3D-CNNs demon-

strate exceptional capability in capturing complex patterns across both spatial and temporal dimensions. The model accepts

a three-dimensional tensor input representing flow field data in space and time, and produces an output tensor of identical405

dimensions that predicts small-scale turbulence structures.

The training data originates from coarsely sampled turbulent flow fields. To implement the Taylor hypothesis, we define an

advancing space-line that progresses with time. Behind this space-line, small-scale structures are obtained through interpolation

of flow fields from subsequent time points within the coarse sampling interval. Ahead of the advancing line, small-scale

structures derive from joint interpolation of flow fields from both preceding and subsequent time points within the sampling410

interval. Specific training parameters are detailed in Table B5.

Table B5. Training details for 3D-CNN model

Parameter Value/Description

Model Architecture 3D Convolutional Neural Network (3D-CNN)

Input Shape (20,191,121,1)

Additional Input Shape (20,65,121,1)

Output Shape (20,191,121,1)

Activation Functions LeakyReLU (α = 0.01), Tanh (output layer)

Optimizer Adam (α = 0.0001, β1 = 0.9, β2 = 0.999, ϵ = 1× 10−7)

Loss Function Mean Squared Error (MSE)

Metrics Accuracy

Batch Size 5

Epochs 50

Number of GPUs 5 (using MirroredStrategy)

Gradient Check Frequency Every 5 epochs
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