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Abstract. Advanced wind energy technologies require predictions of the dynamic behaviour of wind turbine wakes. In this
work, we present a dynamic wind turbine model PhyWakeNet, a physics-integrated generative adversarial network-convolutional
neural network (GAN-CNN) model for wind turbines under aerodynamic force oscillations. The model combines three inter-
connected submodels for the time-averaged wake, wake meandering, and small-scale wake turbulence. The time-averaged wake
model derives from mass and momentum conservation based on the concept of momentum entrainment, which is computed
based on the wake meandering and small-scale wake turbulence models. The wake meandering is captured through conditional
GAN-reconstructed spatial modes and neural network-enhanced dynamic system for temporal evolution, while the small-scale
wake turbulence is generated via a CNN based on the time-averaged wake, wake meandering, and inflow turbulence. Vali-
dation on wind turbine wakes under active control demonstrates the model’s capability to predict frequency-dependent wake
responses, velocity deficits, and turbulence kinetic energy. The model accurately captures temporal variations of key charac-
teristics like instantaneous wake centers and velocity deficits, enabling potential applications in wake management to mitigate

aerodynamic loads and power fluctuations in wind farms.

1 Introduction

Wind turbine wakes significantly impact wind farm performance by reducing power output, increasing aerodynamic loads,
and contributing to power output fluctuations (Barthelmie and Jensen, 2010; Stevens and Meneveau, 2017; Meyers et al.,
2022). Emerging advancements in wind energy technology Howland et al. (2022); Meyers et al. (2022) aim at active control
of wind turbine wakes to mitigate their negative impacts. This presents new challenges to computational wake modeling, that
not only the time-averaged statistics but also the dynamic behaviour of wind turbine wakes need to be captured. However, the
modeling capabilities of existing wake models remain limited, with most of them developed for time-averaged wakes. One
critical challenge is the incorporation of aerodynamic force oscillations, a critical factor triggering wake meandering Li et al.
(2022a); Messmer et al. (2024a), the most important coherent flow structures in far wake. In this work, we propose a novel
modeling framework that integrates physical principles with advanced machine learning techniques to predict the dynamic

behaviour of wind turbine wakes under aerodynamic force oscillations.
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Wind turbine wake modeling approaches range from computationally intensive large-eddy simulation (LES) to fast ana-
lytical models. LES directly resolves the energy-containing eddies in atmospheric turbulence while modeling subgrid-scale
effects on the resolved flow field. For wind turbine wake simulations, blade aerodynamics is typically parameterized through
forcing terms to mitigate computational loads (Li et al., 2022c). Despite these parameterizations, LES of wind turbine wakes
still requires substantial computational resources, with simulation times extending from days to weeks depending on the re-
quired spatiotemporal resolutions and the spatiotemporal span of interest. This substantial computational demand renders LES
currently impractical for wind energy project design and control optimization applications. Analytical wake models, typi-
cally derived from volume-integrated mass and momentum conservation equations, remain the most widely used approach
in wind energy applications. The foundational model developed by Jensen Jensen (1983) represents the most prominent ex-
ample, characterizing downwind velocity deficits through wake expansion modeling and approximating radial velocity deficit
distributions using either Gaussian or cosine functions (Bastankhah and Porté-Agel, 2014; Xie and Archer, 2015; Tian et al.,
2015). Intermediate-fidelity models have also been developed, exemplified by approaches solving simplified Navier-Stokes
equations (Ainslie, 1988) and the vortex-based methods (Segalini and Alfredsson, 2013). These mid-fidelity models offer en-
hanced physical representation by directly resolving additional spatial dimensions, thereby eliminating the need for predefined
wake shape assumptions. Despite their advantages, mid-fidelity models share a fundamental limitation with analytical wake
models: neither approach can predict dynamic behaviour of wind turbine wakes.

The main coherent flow structure of interest for turbine-turbine interactions is wake meandering, a large-scale, low-frequency
motion of wind turbine wake in the transverse directions. The most well-known wake meandering model is the dynamic wake
meandering (DWM) model developed at Denmark University of Technology (DTU) (Larsen et al., 2008). The DWM model is
based on the assumption that the wake can be treated as passive scalars advected by inflow large eddies with the employment
of Taylor’s frozen flow hypothesis (He et al., 2017). Scale-by-scale turbulence kinetic energy analysis showed that the inflow
eddies with the integral length scale greater than ~ 3D (where D is the rotor diameter) are effective in advecting wind turbine
wakes Zhang et al. (2023). The shear layer instability mechanism is another important mechanism for wake meandering. It
has been systematically demonstrated using numerical simulations (Mao and Sgrensen, 2018; Gupta and Wan, 2019; Li et al.,
2022b), wind tunnel experiments (Messmer et al., 2024b; Schliffke et al., 2024) and field tests (Angelou et al., 2023). Blade
aerodynamics, especially its temporal force oscillations, is a critical factor for the onset and the strength of wake meandering,
and is becoming a novel principle for active wake control strategies Li et al. (2022b); Messmer et al. (2024b).

In this work, we develop a novel dynamic wake model that synergistically combines physical principles with machine
learning methods to compute the spatiotemporal characteristics of wind turbine wakes under aerodynamic force oscillations.
The proposed model integrates three interconnected submodels: 1) A time-averaged wake model; 2) A wake meandering model;
3) A model for small-scale turbulence. The proposed model is trained using comprehensive LES datasets and successfully

applied to compute the dynamics of wind turbine wakes under transverse aerodynamic force oscillations.
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2 METHODS
The proposed PhyWakeNet model is based on the decomposition of the instantaneous velocity u(x,t) as follows:
u(x,t) =u(x)+u(x,t) +u’(x,t) (1)

where T, U, and u” denote the time-averaged, wake meandering, and small-scale fluctuating velocity components, respectively.
The model requires two primary inputs: the atmospheric flow conditions (Cy¢), and the turbine operating conditions (particularly
control actions for active wake control, also denoted as C,). The velocity field u = u+u-+u” constitutes the model output. The
time-averaged velocity field u(x) is derived from mass and momentum conservation principles. The wake meandering com-
ponent U(x,t) is modeled through: 1) A conditional generative adversarial network (CGAN) for the dominant spatial modes,
and 2) A data-driven dynamical system for temporal evolution. The small-scale velocity fluctuations u”(x,t) are generated
by a convolutional neural network (CNN) that takes both the inflow conditions, and time-averaged and wake meandering flow
field as inputs. The coupling of the three submodels is enabled by both physical insights and machine learning methods. A key
challenge is to quantify the enhanced wake-ambient flow mixing induced by active wake control strategies, which is modeled
based on the momentum entrainment concept, quantifying the combined effects of wake meandering and small-scale velocity
fluctuations on wake recovery. In the following of the paper, u, v, and w represent the streamwise, spanwise, and vertical

velocity components, respectively. The fluctuating components are collectively denoted as u’(x,t) = u(x,t) + u”(x,1).
2.1 Time-averaged wake model
2.1.1 Governing equations

The time-averaged wake flow model is formulated based on mass and momentum conservations, predicting both velocity deficit
and wake width evolution along the wind turbine downstream direction. This model incorporates enhanced mass and momen-
tum fluxes resulting from wake meandering and small-scale velocity fluctuations through an entrainment model. Specifically,

the following mass and momentum conservation equations are employed,

d (At
( dxu : = VeSu
(2)
4 (Au72) )
- 3. = VeSwua
dx

where A,, is the wake cross-sectional area normal to the centerline, @,, is the mean streamwise wake velocity, .S, represents
the wake-ambient flow interface area per unit downwind distance, V, is the entrainment velocity, u, is the ambient mean

streamwise velocity. The entrainment velocity V, is computed through the entrainment coefficient F,
%:E(ﬂa_ﬂw)7 (3)

where F quantifies the rate at which ambient fluid is entrained into the wake. The entrainment approach represents a well-

established method for modeling the development of highly turbulent regions into relatively quiescent ambient flows (Morton
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Figure 1. Schematic of the proposed PhyWakeNet model including three submodels for the time-averaged, meandering, and small-scale
turbulence of wind turbine wakes. The inputs include the atmospheric flow conditions and the turbine operational conditions. The output is
the spatiotemporal variation of velocity field. The time-averaged wake flow is modelled based on the mass and momentum conservations.
The wake meandering and small-scale turbulence are modelled using GCAN and CNN. The impacts of wake meandering and small-scale
turbulence on time-averaged wake are modelled based on the momentum entrainment model. The outputs from the time-averaged wake

model and the wake meandering model are employed for the construction of small-scale turbulence.

et al., 1956). For wind turbine wake modeling specifically, it has been employed in the work by Luzzatto-Fegiz Luzzatto-Fegiz
(2018). The wake’s cross-sectional shape is modeled as an ellipse with major axis D,,; and minor axis D, to capture the
directional effects of aerodynamic force oscillations on wake meandering preferences. Consistent with this elliptical assump-
tion, we postulate that the wake growth rates along both principal directions scale with the ratio of their respective entrainment
coefficients, while the entrainment coefficient itself follows an elliptical distribution. These considerations yield the following

final governing equations:

d (%leDuﬂﬂw) o
P = J, E(0)(Us —Uy)cos(a—0)rdo,
d(FDnDusy) )
=Jo E(0)(Us—Uy)Uqcos(a—0)rdo,
dz
dle dDw2 .
dx / de E1/ B,
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Figure 2. Schematic of the time-averaged wake flow model. Left panel shows the wake profile in the hub-height z-y plane, while the right
panel displays the wake cross-section in the y-z plane. Arrows indicate ambient flow entrainment. The wake cross-section is modeled as an

ellipse (right panel), with aerodynamic force oscillations assumed to act in the y-direction.

Here F; and E5 denote the entrainment constants along the major and minor axes respectively, with the angular dependence

E9) = \/ E?cos?0+ E3sin® 6. The angles o and 6, which define the orientation relationships, are illustrated in figure 2.
To solve the governing equations, initial conditions for both the streamwise velocity and wake diameter at the near-wake
position are required. In this work, these are determined using one-dimensional momentum theory:
Uy = (1 — 2a)yy,,

(5)
le = Dw2 = Du

evaluated at the 1D downstream position. Here w;, represents the incoming wind speed (which may differ from the ambient
wind speed 7, for turbines operating in an array), and a denotes the axial induction factor. The induction factor relates to the
thrust coefficient C'r through the expression a = ﬂ

It should be noted that the governing equations presented above only provide the mean velocity deficit. To characterize the
spatial distribution, we assume that the isocontours of u,, follow an elliptical pattern, with the velocity deficit profile described

by a cosine function along the major and minor axes:
u.cos(mD./D). (6)

The parameters u. and D,. are determined by enforcing conservation of mass and momentum fluxes before and after the

transformation:

Ap(1=Ty) = [uccos(my/D.) dAy,
(7
Aw(1 =) = [ (Gecos (my/De))” dAey.
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Substituting the specific parameters yields the concrete form of these equations:
™ _ D./2 __
Z(1 — Uy ) D1 Do = [ ' mccos (my/De) (1 + Dz /D)y dy,
®)
%(1 —T0)? i Dy = [ ** 7 (Tie cos (my/ De))* (14 Duva/ Dt Jy y.
Solving these equations leads to analytical expressions for u. and D.:
_ 8(1—uy)
42 ©)
2
2
D, = w D1
32(m—2)

A note is that the wake width in this new distribution differs from that under a uniform distribution. With %;, and a specified,
the governing equations for the time-averaged wake statistics (Uy,, Dq1, Doy2) form a closed system when combined with the

entrainment coefficient model.
2.1.2 Wake entrainment model

The detailed theoretical derivation of the estimation method for parameter E is given in this section. Ambient turbulence and
wake shear layer constitute the primary drivers of mass and momentum entrainment across the wake boundary. This physical

understanding leads to the following formulation for the total entrainment coefficient:

(Vedy)
(Ve,oAn,o)

where F, and F represent contributions from ambient turbulence and wake shear layer effects respectively. The angle brackets

E:Ea+Es:Ea+ Es,oa (10)

(-) indicate time-averaged quantities. Subscript , denotes reference values corresponding to conditions without active wake
control, obtainable through either numerical simulations or experimental measurements. The ambient turbulence component
FE, is treated as a known input parameter. The model accounts for enhanced entrainment through proportionality to both the
entrainment velocity V. and the wake-ambient interface area A, the latter being directly computed from the modeled flow
fields 1 and u”.

The entrainment velocity V. remains the only quantity requiring modeling in this formulation. To approximate V., we first
establish the wake boundary as the iso-surface of streamwise velocity deficit Au. The material derivative of Aw at an arbitrary

point in the flow field is given by:

DAu  0Au
= _ = .VAu. 11
Dt o Ve (b
At the wake boundary, where the material derivative vanishes, this relationship simplifies to:
0A
0= a—tquun-VAu, (12)

where u,, represents the velocity of the wake boundary. The entrainment velocity is subsequently defined as the relative velocity

component normal to this boundary:

Vo=(u—u,) e, (13)
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with e,, denoting the unit normal vector to the wake boundary. By subtracting Equation 12 from Equation 11, we derive the

following expression for V:

1 DAu
Ve__LVAu Dt L

(14)

While this formulation theoretically enables direct computation of V,, practical implementation presents challenges due to both

computational complexity and the frequent unavailability of instantaneous velocity deficit field snapshots.

In what follows, we demonstrate that the entrainment velocity can be approximated using the time derivative of the wake

center position in the transverse direction. The entrainment velocity is first expressed as,

D(Au)

Ve:‘__|V<1Au>| Dt }
_ 1 0(Au) u@(Au) U@(Au)
o \/(6(({?1”)24-(8(?7”)2( ot + Ox + oy >

n

5)

(16)

For slender wakes, where both the transverse velocity component v and the streamwise gradient JAw/9x remain small, this

expression simplifies to
(Au)\ " a(Au)
Oy ot ’
n

The transverse wake center position is defined as,

Vor -

iy Buley, )y dy

fn“(t Au(z,y,t) dy ’

Ye(z,t) =

a7

(18)

where 7, (t) and 7,,(t) denote the transverse coordinates of the lower and upper wake boundaries, respectively. Introducing the

cumulative velocity deficit function F'(y,t) f " Awu(x,y,t) dy, this expression transforms to,

m(t) m(t)

F(y, )Zl‘w

F(y,t)y|™ " = [0 F(y,t) dy
Ye(z,t) = .

Recognizing that F'(7;,t) = 0 by definition, we obtain the simplified form,

) By, ) dy
_ m(t)
=) = @)

The temporal evolution of the wake center position follows from differentiation,

Ye(w,t)

L()
dye(z,t) dnu(t)  d [ Join Flu,t)dy
F(nu(t),t)

dt dt dt

19)

(20)

ey



155

160

165

170

175

https://doi.org/10.5194/wes-2025-189 - WIND

Preprint. Discussion started: 24 October 2025 ENERGY
(© Author(s) 2025. CC BY 4.0 License. e We \

european academy of wind energy SCI E N C E
Under the assumption that velocity deficit integrals remain approximately stationary, this simplifies to,
dye(z,t)  dn.(¢)
~ . 22
dt dt @2)
At the upper wake boundary, where Au(n,(t),t) = C remains constant, differentiation yields,
O(Au) dn,  O(Au)

0= T . 23

on, dt + ot 23)
Combining Equations (17), (22), and (23), and assuming 9(Au)/0n, =~ 0(Au)/dy, we derive the entrainment velocity ap-
proximation,

dy.
V. ~ . 24

T (24)
This leads to the final expression for the entrainment coefficient,

dy./dt)A dy./dt)max (A

E—=E 4 <( yC/ ) 7]> Es,o an"’ ( yC/ ) a < 77> (25)

((dye/dt)oAy,0) [(dye/dt) flmax (An,o) o

In the second formulation, the instantaneous dy./d¢ is replaced by its temporal maximum to avoid computing the product
with A,,. The reference quantities (dy./dt),, A0, and E; , are derived from LES data: the first two are computed directly
from simulations, while E , is obtained through least-squares fitting of the velocity deficit to Equation (2). Notably, I varies

spatially in oscillating turbine wakes due to the downstream evolution of A4,,.
2.2 'Wake meandering model

The coherent flow structures in the wake, represented by the leading SPOD modes, are modeled using a CGAN model, with

their temporal evolution captured by a data-driven dynamical system. Specifically, the coherent velocity u is expressed as:

~( afaC0p7Xt ZCM afa opa 1(Caf7C0p7X)a (26)

where ®; represents the SPOD modes and a; denotes the corresponding temporal coefficients, with N being the number of
leading SPOD modes employed for coherent flow construction. Both ®; and a; depend on C,¢, the atmospheric flow condition,

and C,p, the wind turbine operational condition. A schematic of the coherent wake flow model is shown in figure 3.
2.2.1 Model for Spatial Modes

This section presents the modeling approach for the SPOD modes ®,. The conditional generative adversarial network (CGAN)

generates the i SPOD mode for specified conditions C,¢ and Cy, according to the following expression:

®; (Caf, Cop, ) = D (Cat, Cop, B (Ca, Copo ) , ®7 (Cop, C2 ) -+ ) 27)

where ®yy denotes the neural network model trained on multiple realizations of the i SPOD mode, @g (7 =1,2,--+), under

different conditions C‘Zf and Cgp. The model uses C,¢ and C,, as input features. This formulation implicitly assumes that the
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Figure 3. Conceptual diagram of the coherent wake flow model. The upper portion illustrates the generation of spatial modes while the lower

portion shows the model for temporal evolutions.

i mode depends exclusively on corresponding modes from various conditions, without explicit consideration of interactions
with other modes.

The CGAN model for generating spatial modes comprises two components (figure 4): a generator and a discriminator. The
generator accepts the operating conditions Cy¢ and C,, as inputs and produces predicted spatial modes ®yy. The discriminator
evaluates input pairs consisting of operating conditions (Cyt, Cop) and corresponding spatial modes (®nn), outputting a bi-
nary classification (real or fake). During training, the discriminator’s weights remain fixed while only the generator’s weights
undergo updates. After training completion, the generator functions as a surrogate model for predicting spatial modes under

arbitrary atmospheric and operational conditions.
2.2.2 Temporal Evolution Model

This section describes the model for the temporal coefficients a; of the SPOD modes. The temporal evolution of coherent flow
structures is modeled through a dynamic system representation for a;(Cy¢, Cop,t) expressed as:

dai
T p 28

a ~ I (28)
where f; represents the forcing term modeled using a deep neural network (DNN). The forcing term construction involves two
sequential steps: first generating sample temporal coefficients for each SPOD mode under specified conditions Cy and C,p,
followed by constructing the forcing term using these generated coefficients. The sample temporal coefficients derive from

corresponding frequency spectra models for each SPOD mode, which are themselves modeled using neural networks trained
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Figure 4. Schematic of the CGAN model for generating spatial modes.
on frequency spectra datasets across various operational conditions:
Sai (Caf7C0p7w) = DNNS (Cafacopasé,i (C;fvc(l)pvw) 7551- (Ce21f7c(2)p7w) 7"')a (29)

where w denotes frequency, S,, represents the frequency spectrum for the i SPOD mode under conditions Cys and Cop>
and DNNg constitutes the neural network model approximating the frequency spectrum. This model employs datasets of
frequency spectra (S’;Z , th, ,---) from various conditions while maintaining the same fundamental assumption as the SPOD
mode model - that the frequency spectrum for specific conditions can be approximated using corresponding spectra from
different conditions at the same modal order. The inverse Fourier transform of these learned frequency spectra yields the
sample temporal coefficients for each SPOD mode.

Using the obtained sample temporal coefficients for leading SPOD modes, the forcing term is approximated through a deep

neural network:
fq;:DNNf(al,ag,u-,aN). (30)

Notably, the forcing term for the i SPOD mode incorporates information from all considered SPOD modes’ temporal deriva-
tives (a;) rather than relying solely on its own temporal derivative. This approach compensates for potential information loss
at higher frequencies during neural network approximation of the frequency spectrum through DNNg. The resulting dynamic
equation can be numerically integrated for arbitrary initial conditions, with this work employing the Runge-Kutta method

described in Kennedy et al. (2000) for time integration.

10
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2.3 Model for small-scale turbulence

To accurately approximate the entrainment constant for the time-averaged wake flow model, both coherent and incoherent tur-
bulent fluctuations must be modeled. This section presents the incoherent wake flow model for generating incoherent turbulent
fluctuations based on the time-averaged flows, coherent flows, and inflow conditions. The most straightforward approach is to
incorporate higher-order modes directly during modal reconstruction. However, the complex spatial distribution and temporal
variation of these higher-order modes make them difficult to predict, thereby compromising model predictability. To overcome
this limitation, an alternative method has been developed based on physical insights and high-fidelity data.

A key physical insight suggests that within wind turbine wakes, small-scale structures tend to concentrate around the pe-
riphery of larger-scale wake structures. A schematic of the proposed incoherent wake flow model is shown in figure 5. By
employing convolutional neural networks (CNNs) to predict these small-scale structures, we can simultaneously identify wake
boundaries and augment small-scale structures. While a single snapshot of coherent structures can enrich small-scale repre-
sentation, such predictions lack temporal evolution information, disrupting the connection between instantaneous small-scale
states. To solve this issue, flow snapshots across time are employed to construct the model, resulting the following model for

incoherent velocity fluctuations,
u”(x,t) = CNNy» (W(x) + 0(x, 1), Uar(X, tseq)), (1)

where u,s(xX,t.q) represents the velocity field of the ambient flow from the upstream measurement. The coordinate ty.q de-
notes the snapshot sequence within the [—3D,0D] range rotor upstream. The predicted small-scale structures can be directly
superimposed onto the large-scale flow field from the time-averaged wake flow model and coherent wake flow model at corre-
sponding instants, yielding the complete instantaneous flow field.

Incorporating entire snapshot sequences (i.e., the Uu(xX,%sq) input for the CNN,» model) during model training would
significantly reduce efficiency and increase complexity. To address this, temporal downsampling is first applied to the snap-
shot sequences, substantially reducing memory requirements. The Taylor frozen hypothesis is then employed to reconstruct

snapshots between sampling intervals, restoring temporal resolution while avoiding large-scale computational tasks.

3 RESULTS
3.1 Tests of submodels

This section evaluates various components of the proposed model. Momentum entrainment across the wake boundary serves as
the key mechanism coupling the time-averaged wake flow model with the fluctuating wake flow model. Figure 6 presents the
model-predicted wake—ambient interface area A, and the entrainment velocity V., compared against LES results. Overall, good
agreement is observed, especially the different streamwise evolutions under different force oscillating frequencies, although
the model predictions are slightly lower. This discrepancy is considered acceptable, as the small-scale curled structures along

the interface are challenging to capture accurately.

11
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Figure 5. Schematic of the incoherent wake flow model.
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Figure 6. Comparison of the wake-ambient interface area A,, and entrainment velocity V. correspond to three different aerodynamic force

disturbance characteristic frequencies of Stp = 0.12, Str = 0.25,and Str = 0.84 .
This work is based on the fundamental assumption that the coherent flow component is predictable. To verify this assumption,

we evaluate the model’s performance in predicting leading SPOD modes for three characteristic aerodynamic force oscillation

245 frequencies (St = 0.12, 0.25, and 0.84) in figure 7. As seen, our model demonstrates excellent performance across most cases,
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Figure 7. Comparison of the first SPOD mode for the test cases with Stp = 0.12 (a, d), Str = 0.25 (b, e), and Str = 0.84 (c, f), with (a-c)

and (d-f) showing the results predicted by large-eddy simulation and the proposed model, respectively.

except for low-frequency conditions where coherent structures are less distinct. The model particularly excels at capturing the
hub vortex formation, which produces a characteristic meandering pattern near the nacelle centerline in the highest frequency
test case (St = 0.84). For the intermediate frequency case (St = 0.25), the simulation reveals a gradual downstream expansion
of the meandering pattern. Conversely, the low-frequency case (St = 0.12) exhibits minimal spatial growth of the meandering
pattern, a behavior that the model reproduces accurately. Overall, the results confirm the model’s capability in predicting
coherent wake dynamics under aerodynamic force oscillations in terms of: 1) Global flow pattern morphology; 2) Downstream
evolution characteristics; and 3) Systematic variation with oscillation frequency.

The capability of the proposed model in predicting the energy spectra of SPOD modes is examined in Figure 8, comparing

three configurations: (1) large-scale structures reconstructed from the first two modal orders without the incoherent wake
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Figure 8. Comparison of the energy spectra of the leading SPOD mode correspond to three different aerodynamic force disturbance char-
acteristic frequencies of Str = 0.12 (a), Str = 0.25 (b), and Str = 0.84 (¢). In the figure, the black dashed line represents the k%73 law,
while the gray solid line indicates the corresponding dimensionless frequency after temporal downsampling in the time domain. The red

dashed lines and blue dash-dot lines represent the results with and without the inclusion of the incoherent wake flow model.

flow model, (2) large-scale structures combined with reconstructed small-scale turbulence using the incoherent wake flow
model, and (3) reference LES results. The spectrum exhibits distinct peaks at St = 0.25 and 0.84 in Figures 8(b) and (c),
respectively, corresponding to the aerodynamic force oscillation frequency and dominant coherent flow structures. All three
cases show an inertial subrange following the —5/3 power law. While the dominant peak frequency is well captured by the
model without the incoherent wake flow model, the energy densities at other frequencies are significantly underpredicted
and fail to exhibit the —5/3 scaling. With the inclusion of the incoherent wake flow model, the reconstructed flow field’s
energy spectra show excellent agreement with reference LES data across all frequencies in figure 8, extending even beyond the
coarse sampling frequency (indicated by the gray line) used as input for the small-scale model. This demonstrates the model’s
remarkable generative capabilities. Furthermore, for the St = 0.12 case, the energy density at the corresponding frequency is
less pronounced compared to the other two cases. In contrast, the St = 0.84 case reveals two harmonics of the fundamental
frequency. The proposed model successfully captures these spectral variations with respect to aerodynamic force oscillation
frequency.

At last, the performance of the wake flow model for small-scale fluctuations is tested. Figure 9 shows the comparison
of the model-predicted small-scale velocity fluctuations with the LES results. Although the amplitudes of velocity fluctua-
tions are somewhat underpredicted, two critical characteristics are well captured. They include: 1) the development of small
scales, which initiate around the ambient-wake interface, grows in amplitude, and expands in the radial direction as traveling
downstream; 2) the impacts of wake meandering on small-scale fluctuations, which follow the meandering pattern and are

significantly amplified by the meandering motion;
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Figure 9. Small-scale velocity fluctuations obtained from LES (a-e) and the proposed model (f-j) at the same instants. The contour is colored
by instantaneous streamwise velocity. The three rows from top to bottom correspond to three aerodynamic force oscillation frequencies St =
0.12, St = 0.25, and St = 0.84, respectively. The fourth and fifth rows correspond to two inflow conditions with [Ioc = 0.8%, Loc = 1.0D]
and [Ioc = 0.2%, Lo = 4.0D], respectively.

3.2 Time-averaged wake flow statistics

The section examines the time-averaged flow statistics predicted by the model. The quantitative evaluation of the proposed
model’s prediction of time-averaged wake statistics is presented in figure 11. We first examine the time-averaged velocity
deficits Au. Although discrepancies exist in the shape of the velocity deficit in the near-wake region, the proposed model
demonstrates strong predictive capabilities in the far-wake region, with predicted curves closely matching the reference profiles.
The model accurately predicts differences in wake development for various aerodynamic force oscillations. Specifically, it
captures the faster wind speed recovery observed for the two higher force oscillation frequencies (St = 0.25 and 0.84). The
overall agreement with reference profiles confirms the model’s effectiveness in capturing the downwind wind speed recovery.
This success stems from properly accounting for enhanced entrainment due to both coherent flow patterns and small-scale

velocity fluctuations.
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Figure 10. Comparison of the mean streamwise wake velocity ., ,the major axis diameter D,,1 and the minor axis diameter,correspond to

three different aerodynamic force disturbance characteristic frequencies of Str = 0.12, Sty = 0.25, and Str =0.84.

We first compare the model predictions of the mean streamwise velocity averaged over the wake’s cross section and the
minor and major axis diameters of the wake’s cross section with the LES results. As seen in figure 10, the proposed model
accurately captures the impacts of aerodynamic force oscillation frequencies on mean streamwise velocity and wake diameters.
The wake recovers faster at the frequencies Stp = 0.25, 0.84 compared with Sty = 0.12. The streamwise velocity in the wake
with Stp = 0.84 is higher than the other two at 2D 3D turbine downstream locations. The wake flow with Str = 0.25, on the
other hand, starts its faster recovery at around 5D turbine downstream because of the onset of wake meandering.

We then examine the variance of the streamwise velocity fluctuations ({(u'v')) predicted by the proposed model. Overall good
agreement with the reference data is observed, particularly for the case with St = 0.25 where significant wake meandering oc-
curs. The model demonstrates particular accuracy in predicting: 1) Locations of high-intensity (u/v’) turbulent kinetic energy,
which primarily occur near the blade tips; and 2) The overall magnitude of (u’u) fluctuations. For cases with St = 0.12 and
0.84, where the wake lacks dominant coherent flow structures, the agreement with reference (u'u’) data remains acceptable,
though with larger discrepancies compared to the St = 0.25 case. Overall, the model demonstrates strong capabilities in pre-
dicting basic wake flow statistics, including both the mean velocity deficit and streamwise velocity fluctuation variance. The

following analysis focuses on evaluating the model’s performance in predicting wake meandering statistics.
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Figure 12. Instantaneous flow fields obtained from LES (a-e) and the proposed model (f-j) at the same instants. The contour is colored by
instantaneous streamwise velocity. The three rows from top to bottom correspond to three aerodynamic force oscillation frequencies St =
0.12, St = 0.25, and St = 0.84, respectively. The fourth and fifth rows correspond to two inflow conditions with [Io, = 0.8%, Lo = 1.0D]
and [Io = 0.2%, Loo = 4.0D], respectively.

3.3 Instantaneous wake flows

This section demonstrates the capability of the model in predicting instantaneous wake flows. We first compare the model-
predicted instantaneous streamwise velocity fields against LES results in figure 12. The proposed model demonstrates strong
agreement in capturing the onset of wake meandering, the large-scale meandering patterns across all tested locations, and
the distinct wake behavior for different aerodynamic force oscillation frequencies. The model successfully reproduces small-
scale flow structures that predominantly emerge along the wake boundary and surround the large-scale coherent structures.
One limitation concerns the nacelle-induced flow fluctuations, that the near-wake centerline features are not captured. This is
expected given the cosine-shaped velocity deficit assumption and the exclusion of nacelle effects and initial wake development

physics in the model.
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The amplitude of wake meandering o, defined as the standard deviation of instantaneous wake center positions in the
spanwise direction, is presented in Figure 13 for downstream locations /D =5 and 10. The proposed model accurately
predicts the variation of o, with respect to aerodynamic force oscillation frequency (St) and Atmospheric turbulence conditions
Atz/D =5, o, exhibits a maximum in the frequency range 0.4 < St < 0.6, decreasing for both higher and lower frequencies.
While the model captures this trend well, it shows slight overestimations of ¢, within this frequency range. Further downstream
at z/D = 10, the wake meandering amplitude o, displays a pronounced peak near St = 0.3, with rapid decay at both higher
and lower frequencies - a characteristic that the model reproduces with good fidelity. The analysis of inflow turbulence effects
reveals that: 1) at /D = 5, the wake meandering amplitude is higher for higher inflow turbulence intensity; 2) at /D = 10,
the sensitivity to inflow turbulence conditions diminishes significantly.

In active wake control applications, precise prediction of wake positions is essential. Figure 14 evaluates the model’s perfor-
mance in this regard by analyzing temporal variations of both spanwise wake center positions (y.) and wake centerline velocity
deficits (Awu,) at the 10D downstream location. The proposed model demonstrates strong predictive capability, accurately
capturing both long-term trends and short-term fluctuations in the wake behavior. While the agreement with reference data is
generally good for both quantities, the predictions for y. show better correspondence than those for Awu,.. This performance
difference is partly caused the modeling framework’s underlying assumptions: the time-averaged velocity deficit distribution

for the wake is prescribed rather than simulated.
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Figure 13. Comparison of actual and model-predicted wake center fluctuation amplitudes under varying aerodynamic force oscillation

frequencies (a, b) and varying turbulent inflows (c, d). The subplots (a, c¢) show the comparison at a streamwise position of /D = 5, while

the subplots (b, d) show the comparison at a streamwise position of 2/ D = 10. The thirteen frequencies in (a, b) are 0.1, 0.12, 0.2, 0.25, 0.3,

0.4,0.5,0.6,0.7,0.8,0.84, 0.9, and 1.0. The twelve inflows in (c, d) are the results of three turbulent integral length scales and four turbulent

intensities. The crosses represent the unseen cases.
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at the 10D downstream location. From top to bottom are three cases with motion frequencies of Str = 0.12, Sty = 0.25, and Sty = 0.84,

respectively. The solid lines and the dashed lines represent the results of large-eddy simulation and the proposed model, respectively.
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4 CONCLUSIONS

We proposed a physics-integrated GNN-CNN wake model (PhyWakeNet) for predicting the dynamics of wind turbine wakes
under aerodynamic force oscillations. The PhyWakeNet model integrates three interconnected submodels: the time-averaged
wake model, the wake meandering model, and the model for small-scale turbulence.

The time-averaged wake model is derived from the fundamental mass and momentum conservation principles, with its
entrainment parameter dynamically determined based on the other two submodels. For wake meandering prediction, the model
employs a spatiotemporal decomposition approach where the spatial modes are reconstructed through a combination of spectral
proper orthogonal decomposition (SPOD) and conditional generative adversarial network (CGAN). Computational efficiency
is maintained by retaining only the first five SPOD modes. Temporal evolution is captured through a dynamic system model
enhanced by a deep neural network (DNN)-derived forcing term. The small-scale turbulence is generated by a convolutional
neural network (CNN) that processes three key inputs: time-averaged wake field, wake meandering, and inflow turbulence.
This comprehensive approach enables the model to capture a broad spectrum of wake dynamics.

Validation studies across various aerodynamic force oscillations and inflow turbulence conditions demonstrate the model’s
capabilities in capturing both the time-averaged and dynamic features of wind turbine wakes. The results show that the Phy Wak-
eNet model accurately reproduces frequency-dependent variations in wake characteristics, outperforming existing engineering
wake models in several aspects. Beyond predicting velocity deficits —a standard capability of traditional models —it success-
fully captures turbulence intensity distributions and the fluctuating wake features, including instantaneous wake positions and

velocity deficits.

Appendix A: DATASETS
A1l Numerical methods

The training datasets are generated using the large-eddy simulation module of the Virtual Flow Simulator (VFS-Wind) code Yang

et al. (2015); Yang and Sotiropoulos (2018); Santoni et al. (2023). The flow physics is governed by the filtered incompressible

Navier-Stokes equations:
Ou;
ox j

Ou;  Ouu; 1 0p 0 ou;

ot + aﬁj paxl 8xj (V+Vt) 8{1,'j +f

where 7,5 = 1,2,3 denote spatial indices, u represents the velocity field, p is the pressure, v indicates the kinematic viscosity,

=0
(AL)

and v, stands for the eddy viscosity modeled through the Smagorinsky model with dynamically determined coefficients. The
body force term f; (per unit mass) originates from the actuator surface model, which captures both turbine blades and nacelle
effects. Unlike the commonly used actuator line model, the actuator surface method explicitly incorporates blade geometry

features, particularly the chord distribution along the spanwise direction, while also resolving nacelle geometry Yang and
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Sotiropoulos (2018). Force and torque conservation during information transfer between the actuator surface grid and back-
ground flow solver grid is maintained through a smoothed discrete delta function approach Yang et al. (2009) using just 3 to 5
grid cells.

Spatial discretization employs a second-order central difference scheme, coupled with temporal advancement via a second-
order fractional step method Ge and Sotiropoulos (2007). The momentum equation solution utilizes a matrix-free Newton-
Krylov approach Knoll and Keyes (2004), while the pressure Poisson equation is solved through the Generalized Minimal

Residual (GMRES) method accelerated by algebraic multi-grid techniques.
A2 Simulated cases

In this study, we employ the NREL offshore 5 MW reference wind turbine model as our baseline configuration, which was
developed by Jonkman, Butterfield, and Musial Jonkman et al. (2009). This turbine features a rotor diameter of 126 meters and
a cuboidal nacelle measuring 2.3 meters by 2.3 meters by 14.2 meters.

Two distinct case configurations are investigated: one with inflow turbulence and one without. The tip-speed ratio A is set at
7, while the Reynolds number based on inflow velocity and rotor diameter reaches approximately 9.6 x 107. The computational
domain forms a cuboid measuring 14D x 7D x 7D in the streamwise (z), horizontal (y), and vertical (z) directions respec-
tively. The rotor is positioned 3.5D downstream from the inlet at the domain’s central cross-section. A uniformly distributed
inflow velocity is imposed at the inlet boundary (z = —3.5D), while the outlet boundary (x = 10.5D) employs a Neumann
condition (% = 0). For turbulent inflow cases, velocity fluctuations generated using the synthetic turbulence technique Mann
(1998) are superimposed onto the uniform inflow profile. Lateral boundaries implement free-slip conditions throughout the
simulations. The domain is discretized using a Cartesian grid with uniform spacing of Az = D/20 in the streamwise direc-
tion and Ay = Az = D/20 within the near-wake region (y, z € [—1.5D,1.5D]). Grid spacing expands gradually outside this
region. Comprising 281 x 141 x 141 nodes, this grid configuration has demonstrated capability for accurate predictions of ve-
locity deficits and turbulence intensities in the turbine wake, as validated in our previous work Li et al. (2022b). Table A1 lists

all simulated cases. Except for Sty = 0.12,0.25,0.84, all other cases are employed for model training.
Appendix B: MODEL TRAINING DETAILS

B1 Training of the CGAN model for generating spatial coherent modes

The training process involves two competing components: the discriminator learns to distinguish between authentic pairs of
spatial modes with their corresponding operating conditions, while the generator attempts to produce realistic spatial modes
that create data pairs indistinguishable from genuine ones. The discriminator achieves this by minimizing its classification

error. The objective function is expressed as:

minmaxV(D,G) = Eg, ~pp(@,)[108 D(®in|C)] +Eflog(1 - D(G(®:,|Cy))] (B1)
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Table A1. Parameters for simulated cases

Cases Parameters

Inflow turbulence: N/A

Force oscillation:

I 0.1,0.12,0.15,0.2,0.23,0.25,0.26, 0.3,
Str €< 0.4,0.5,0.6,0.7,0.8,0.83,0.84,0.86, ¢, A=0.01D
0.9,1.0

Inflow turbulence:

I €{0.2,0.4,0.6,0.8}%,

Lo €{1.0,1.5,4.0}D

Force oscillation: Str = 0.25, A=0.01D

II

In this formulation, ®;,, represents an authentic sample drawn from the real data distribution pga (®41, ), C, corresponds to the
conditional vector, and D(®;,,|C,,) indicates the discriminator’s estimated probability that ®;,, constitutes a genuine sample
under condition C,,. Since the distributions in the loss equation (B1) remain unknown, we employ empirical loss equations
following Mirza and Osindero (2014). The hyperparameters for both generator and discriminator are detailed in Table B1.
Training data comprises flow snapshots from LES that capture spatial modes across various operational conditions. The
conditional vector C,, originates from ambient flow and turbine operation parameters. Data preprocessing involves normal-
ization and spatial mode alignment to maintain consistent input dimensions. The generated spatial modes form 3D tensors

(191 x 121 x 5) representing five dominant spatial coordinates and flow variables.
B2 Training of the DNN model for predicting the temporal evolution of coherent wake flows

Frequency Spectrum Model. The values of the hyperparameters are determined through validation errors using a systematic
grid search approach. The employed hyperparameter values are presented in table B2.

Forcing term for the dynamic system. We generated 2000 snapshots from tU,, /D = 0 to 10.8 through LES simulation.
For different cases, we selected varying numbers of snapshots to maintain consistent periodicity across all datasets.

Our training data spans the interval from tU, /D = 0 to 3.6, while data beyond tU,, /D = 3.6 serves as the test set, ensuring
rigorous evaluation of the model’s predictive capability on unseen data.

The DNN’s performance critically depends on hyperparameter selection. We employed random search techniques to identify
optimal hyperparameter configurations. The complete set of hyperparameters used is listed in table B4, while the optimal set
obtained through random search appears in table B3.

In both tables B3 and B4, o denotes the activation function, a represents the learning rate, and A is the regularization
parameter. The variable ny,, indicates the number of iterations, while 3; and (2 correspond to the exponential decay rates in

the Adam optimization method.
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Model

Value/Description

Generator

Discriminator

Loss Function
Optimizer
Learning Rate (Ir)

Adam Parameters

Input: Noise vector (z) and conditional feature (c)
Layers:

e Linear (z + sin(2mc¢) + cos(2m¢c) — 1000)

e BatchNorm1d (1000)

e ReL.U activation

e Linear (1000 — 1000)

e ReL.U activation

e Linear (2000 — 191 x 5 x 121)
Output: Generated image (191 x 5 x 121)

Input: Image (191 x 5 x 121) and conditional feature (c)
Layers:

e Linear (img + sin(27¢) + cos(2m¢) — 1000)

e ReLLU activation

e Linear (1000 — 100)

e ReL.U activation

e Linear (200 — 1)

e Sigmoid activation

Output: Probability of image being real (0 or 1)
Binary Cross-Entropy Loss (BCELoss)

Adam

0.0001

31 =0.9, B2 = 0.999

Table B2. Hyperparameters for the Temporal Prediction Model

DNN Architecture o o BN Tliter B B2

1-500-1000-100

Tanh 0.0001 0.001 10,000 0.9 0.999

Table B3. Model generation parameters for the Case St = 0.25

Tmodels Tlayers

min

Tlayers Thiddenp;, Thiddenpax Omin Omax

max

200 4

12 40 240 8 12

25
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Table B4. Optimal hyperparameters for the case St = 0.25

DNN Architecture o o A Miter B1 B2

5-56-225-46-5 ELU 0.001 3.0128x 10~ 10,000 0.9 0.999

B3 Training of the CNN model for predicting incoherent wake turbulence

We employ a three-dimensional convolutional neural network (3D-CNN) as our foundational architecture, as 3D-CNNs demon-
strate exceptional capability in capturing complex patterns across both spatial and temporal dimensions. The model accepts

405 a three-dimensional tensor input representing flow field data in space and time, and produces an output tensor of identical
dimensions that predicts small-scale turbulence structures.

The training data originates from coarsely sampled turbulent flow fields. To implement the Taylor hypothesis, we define an
advancing space-line that progresses with time. Behind this space-line, small-scale structures are obtained through interpolation
of flow fields from subsequent time points within the coarse sampling interval. Ahead of the advancing line, small-scale

410 structures derive from joint interpolation of flow fields from both preceding and subsequent time points within the sampling

interval. Specific training parameters are detailed in Table BS.

Table BS. Training details for 3D-CNN model

Parameter Value/Description

Model Architecture 3D Convolutional Neural Network (3D-CNN)
Input Shape (20,191,121,1)

Additional Input Shape (20,65,121,1)

Output Shape (20,191,121,1)

Activation Functions LeakyReLU (a = 0.01), Tanh (output layer)
Optimizer Adam (a = 0.0001, 81 = 0.9, B2 =0.999, e =1 x 10~ 7)
Loss Function Mean Squared Error (MSE)

Metrics Accuracy

Batch Size 5

Epochs 50

Number of GPUs 5 (using MirroredStrategy)

Gradient Check Frequency Every 5 epochs
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