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Abstract. Accurate modeling of wind-farm atmosphere interactions is critical for reliable energy yield assessments and flow

control strategies. However, formal model comparison methodologies that quantify model form uncertainty by also accounting

for parameter uncertainty are still lacking. This study presents an enhanced Bayesian uncertainty quantification framework

for the calibration and validation of engineering wind farm flow models. Building on previous work, the framework explicitly

incorporates model inadequacy through a parameterized model error distribution, enabling the separation of model and mea-5

surement uncertainties. The improved framework is demonstrated using a large-eddy simulation dataset for wind-farm blockage

and atmospheric gravity waves in conventionally neutral boundary layers. Two models of differing fidelity – a standard Gaus-

sian wake model and an atmospheric perturbation model (APM) – are calibrated and compared. The posterior distribution of

the model parameters reveals insights into model behavior and highlights areas for further improvement, for instance, when

estimated parameter values are inconsistent across the model chain. In addition, it is shown that not explicitly incorporating10

model inadequacy results in an overly confident posterior distribution, and renders derived stochastic flow models incapable of

representing model uncertainty. A comparison of the quantified model uncertainty shows that the APM has significantly lower

uncertainty than a standard wake model for this dataset, as the wake model is unable to represent wind-farm blockage effects.

This demonstrates the utility of the framework for objective model comparison with quantified parameter and model uncer-

tainty given a reference dataset. Both the framework and the parallelized Sequential Monte Carlo algorithm for accelerated15

posterior sampling are made available through the open-source Python package UMBRA.

1 Introduction

Wind farm flow model bias and uncertainty directly impact both the profitability of wind projects through pre-construction

energy yield assessments (Lee and Fields, 2021) and the financial targets of wind developers through production forecasts

(Ørsted, 2019). Although the estimation bias in annual energy predictions (AEP) has steadily declined in the last two decades,20

the uncertainty remained of similar magnitude (Lee and Fields, 2021). Historically, wind farm performance is one of the largest

contributors to AEP uncertainty, in part due to the uncertainty of the power losses on downstream turbines due to turbine wake

effects (Clifton et al., 2016; Lee and Fields, 2021). Although models for these wake losses can reproduce trends in benchmark

observations, their precision is highly variable; motivating the use of more precise and delineated observations of wind farms

under many different operating and atmospheric conditions instead of those averaged over long periods of time (Moriarty et al.,25
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2014). Moreover, the increasing capacity density and size of wind turbines require new wind farm flow models that consider

the atmospheric boundary layer from the surface to the free atmosphere to model effects such as wind-farm blockage (Allaerts

and Meyers, 2019) and wakes (Bastankhah et al., 2024). To turn new wind farm flow models into reliable and cost-effective

tools, objective methods are needed to validate them, quantify their uncertainty, and eventually calibrate them with a wide

variety of flow conditions (Rodrigo et al., 2017). The present manuscript studies the use of Bayesian uncertainty quantification30

as an objective method for model comparison given a reference dataset and calibration with quantified parameter uncertainty.

Many small- to large-scale benchmarking studies have validated the suitability of wind turbine wake models to represent

energy losses in downstream turbines with historical power data (see Doekemeijer et al. (2022) for a comprehensive overview).

Typically, these studies compare metrics such as farm power, turbine power for a given bin of wind directions, and wake loss,

while using default wake model parameters (Doekemeijer et al., 2022). This is common practice, as it is the most objective way35

of quantifying the baseline performance of the models (Rodrigo et al., 2017). However, it is known that the wake model bias is

site-specific (Nygaard, 2015) and that the wake recovery differs between offshore and onshore wind farms (Barthelmie et al.,

2009; Göçmen et al., 2016) and with atmospheric conditions (Abkar and Porté-Agel, 2015; Niayifar and Porté-Agel, 2016;

Klemmer and Howland, 2025). Therefore, site-specific model tuning is crucial for accurate production forecasts. Moreover,

in wind farm flow control, the flow model may be tuned to site-specific data in an open- or closed-loop fashion to adequately40

represent the flow field at any time (Göçmen et al., 2022; Meyers et al., 2022). Therefore, any model validation procedure may

benefit from including model calibration so that model performance in practical applications can be compared objectively.

Concerning the quantification of uncertainty, one must distinguish between forward (data-free) and inverse (data-driven)

UQ methods (Xiao and Cinnella, 2019). Forward UQ examines the effect of prespecified uncertainties on model inputs on the

model outcome and is widely used to quantify the effect of wind resource variability on AEP estimates (Lackner et al., 2007;45

Kwon, 2010; Clerc et al., 2012). The procedure of Gaumond et al. (2014) to assess the effect of wind direction uncertainty on

the predicted power of wake models also adheres to this approach. Despite being rigorous, forward UQ relies on the estimates

of the constituent uncertainties, which may be subjective (Nygaard, 2015). Inverse UQ estimates the uncertainty of the model,

and possibly its parameters, by comparing it with measured data. The estimated distribution of the discrepancy between model

predictions and measurements determines the model uncertainty through its width and the model bias through its mean. With50

an inverse UQ using operational data from 19 offshore wind farms, Nygaard et al. (2022) showed that the uncertainty on the

predicted wake loss relative to the observed wake loss is less than 10% of the observed loss for the TurboPark model. This is

significantly lower than previously estimated (Walker et al., 2015), in part due to thorough data processing and the inclusion of

heterogeneous background flow. However, the uncertainty of the model is still overestimated because it is not separated from

the experimental uncertainty. With Bayesian inverse UQ, it is possible to separate the measurement and model uncertainty, as55

demonstrated with operational power data from the Westermost Rough wind farm, while also accounting for the uncertainty of

the model parameters (Aerts et al., 2023).

Compared to deterministic model calibration methods (see van Binsbergen et al. (2024) for a comprehensive overview),

Bayesian calibration gives not only the ‘best’ parameters, but a joint posterior distribution with information on the the parameter

uncertainties, and their correlations given the dataset (Aerts et al., 2023). The posterior parameter distribution may inform60
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modelers about missing physics, when parameter values are estimated differently throughout the model chain. For example,

LoCascio et al. (2023) showed that the posterior mean wake expansion rate and its uncertainty differ for different wake merging

methods, which is a cautionary finding for a modular approach to wake modeling. In addition, Zhang and Zhao (2020) and

LoCascio et al. (2023) have proposed using the posterior distribution of the model parameters to obtain stochastic wake models,

which can be used in wake steering under uncertainty (Howland, 2021). However, the current approaches to obtain such65

stochastic models include only the epistemic uncertainty (i.e. due to limited data) on the model parameters, and not the model

uncertainty due to varying physical phenomena not captured by the (deterministic) model.

In this study, we improve on a previously developed Bayesian UQ framework (Aerts et al., 2023) and demonstrate its use in

a controlled environment with large model uncertainty. To this end, we select a large-eddy simulation dataset for blockage due

to atmospheric gravity waves (Lanzilao and Meyers, 2024) as reference data, and perform an inverse UQ for a standard wake70

model and a recently developed atmospheric perturbation model (Devesse et al., 2024b). Specifically, we present how the model

uncertainty can be incorporated into the Bayesian framework to obtain stochastic models that include model uncertainty. In

addition, we illustrate how the adequate inclusion of model uncertainty is crucial to obtain a correct posterior distribution of the

empirical parameters, which is used in the current stochastic wake models. Lastly, we show how the Bayesian UQ framework

can be used for objective model comparison with quantified model and parameter uncertainty. In contrast to previous studies75

(Zhang and Zhao, 2020; Aerts et al., 2023; LoCascio et al., 2023), which relied on inherently serial Markov chain Monte Carlo

algorithms such as (Adaptive) Metropolis Hastings (Haario et al., 2001) and Hamiltonian Monte Carlo with No-U-Turn tuning

(Hoffman et al., 2014) to approximate the posterior distribution, we employ an inherently parallel sampling algorithm that

still performs so-called ‘exact’ posterior inference. The parallelized sampler and Bayesian framework are made available in an

open-source Python package coined UMBRA: Uncertainty Modeling toolbox for Bayesian data Re-Analysis.80

The improved Bayesian UQ framework is presented in Sect. 2, together with the inherently parallel algorithm to sample the

posterior. The setup of the demonstration case is introduced in Sect. 3, by presenting the essential parts of the wind farm flow

models and dataset. The results of the inverse UQ analyses are presented in Sect. 4, with emphasis on the consequences of

neglecting model error (Sect. 4.1), the framework’s adequacy (Sect. 4.2), its application to objective model comparison with

UQ (Sect. 4.3), and the generalizability of the findings (Sect. 4.4). A summary and outlook are given in Sect. 5.85

2 Bayesian uncertainty quantification

We first discuss how different sources of uncertainty are included in the UQ framework in Sect. 2.1, building on earlier work

(Aerts et al., 2023). Section 2.2 demonstrates how this formulation naturally leads to Bayesian updating from a prior to a

posterior distribution, and introduces the posterior predictive distribution as a key tool for validation in Bayesian UQ. The

parallelizable algorithm employed for posterior sampling is detailed in Sect. 2.3.90
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2.1 Sources of uncertainty

Wind farm flow models aim to predict quantities of interest for a given atmospheric state. When focusing on turbine-level

power output, the idealized ‘true process’ T (ψ) would yield the power P ∈ RNT of the NT turbines, normalized by the output

of an undisturbed upstream turbine, given a complete description of the wind farm and atmospheric state ψ:

P = T (ψ), (1)95

In practice, this process is approximated by a model M(ϑe,φ), which relies on empirical parameters ϑe and a partial state

description φ. This approximation introduces model bias and uncertainty (Sect. 2.1.1). Since the true process is only accessible

through measurements, measurement uncertainty also arises (Sect. 2.1.2). Moreover, the most representative values of ϑe for

the given conditions are initially unknown. Section 2.1.3 describes how this uncertainty is represented in a prior probability

density.100

2.1.1 Model error

Since the wind farm flow model is typically imperfect, we can define an additive model error EB(ϑe,ψ) that depends on the

choice of the model parameters ϑe and the state of the wind farm and atmosphere ψ:

T (ψ) ≜M(ϑe,φ) +EB(ϑe,ψ). (2)

Note that the model error is, in fact, deterministic given ϑe and ψ, so that p(EB |ϑe,ψ) = δ(EB −EB(ϑe,ψ)). However, since105

usually only a subset of the variables describing the atmospheric state is available or included as input to the model, we are

interested in the distribution of the true process T conditioned on φ= ψ \ψ′, given by

p(T |φ) =
∫
p(T |ψ)p(ψ′|φ) dψ′

=
∫
δ(M(ϑe,φ) + EB(ϑe,ψ)−T )p(ψ′) dψ′.

(3)

The unmodeled or unobserved variations in atmospheric conditions related to ψ′ = ψ \φ thus introduce uncertainty in the

conditional process T |φ through the conditional model error EB |φ. Note that if we were to take T |φ≜M|ϑe,φ+ EB |ϑe,φ110

as a starting point, the aforementioned uncertainty must be reflected in the model itself or the model error. Hence, we have

to choose whether to incorporate this uncertainty – which we will further refer to as model uncertainty – within the model

parameters, the model error, or both.

The first option is to incorporate the model uncertainty within the model parameters (see also Sargsyan et al., 2015; Wu et al.,

2018a). To that end, we consider that each realization (ψi,Ti) is associated with model parameter values ϑe,i that yield the115

same model error, i.e., EB(ϑe,i,ψi) = µB . Since only φi is known, the resulting uncertainty on the model output is quantified

by propagating the distribution of the parameters ϑe,i through the model. For a normal distribution ϑe,i ∼N (µϑ,σ
2
ϑ), the
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resulting distribution of the model output in terms of µϑ and σϑ is

p(Ti|µϑ,σϑ,φi) =
∫
p(T |ϑe,i,φi)p(ϑe,i|µϑ,σϑ) dϑe,i

=
∫
δ(M(ϑe,i,φi) +µB −Ti)N (ϑe,i;µϑ,σ

2
ϑ) dϑe,i

≈N (Ti;M(µϑ,φi) +µB ,σ
2
ϑJMJ⊤M)

(4)

where the approximation corresponds to a linearization of the model M(ϑe,φ)≈M(µϑ,φ) +JM(ϑe−µϑ) for a scalar120

parameter ϑe ∈ R and Jacobian JM ∈ RNT . Hence the uncertainty is determined by the model parameter uncertainty σϑ and

the model structure through the Jacobian JM. However, the model uncertainty may have a different structure than the model

itself. Taking the example of a wake model with an unknown wake expansion rate, the model uncertainty on the upstream

turbines due to blockage cannot be captured in this approach as the sensitivity of the upstream turbine power to the wake

expansion rate is zero. Hence an additional model error term is generally needed. Moreover, a forward UQ is still necessary to125

translate the uncertainty on the model parameters to uncertainty on the model output, which is typically of interest for many

practical applications.

The second approach attributes the model uncertainty to the model error term. To that end, we select each observation

(ψi,Ti) to have a corresponding and distinct model error EB(ϑe,i,ψi), which is not necessarily the same for all observations,

given the fixed model parameter values ϑe that best represent all observations. Hence, the model uncertainty is represented in130

the distribution of the model error p(EB |φ), obtained by the marginalization

p(EB |φ) =
∫
p(EB |ψ)p(ψ′) dψ′ ≈N (EB ;µB ,ΣB) (5)

where we presume a normal distribution of the model error, which is the maximum entropy distribution given that we are only

interested in the first and second order moments (McElreath, 2018). This approach is independent of the model structure and

is readily interpreted as uncertainty on either the model or the model error due to additivity. Note that if both approaches are135

combined, there is no way to distinguish uncertainty that would result from the model parameter(s) or from the additive term.

To allow for a general model error uncertainty parameterization while avoiding that the problem becomes underdetermined,

we opt for the second approach. Hence, the model error distribution is parameterized by its expected value µB and covariance

ΣB .

The current parameterization of the model error scales with the number of turbines NT in the farm since µB ∈ RNT and140

ΣB ∈ RNT×NT . To reduce its dimensionality, we follow the same approach as in our previous work (Aerts et al., 2023). The

correlations in ΣB are neglected and the mean and standard deviation of the model error on the power of the turbine i is binned

based on the number of upstream turbines ζ(i) that cause a wake loss on the turbine i greater than 1% of the free stream wind

speed. Hence,

µB,i = δζ(i) (6)145

ΣB,ij = δijσ
2
B,ζ(i) (7)
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with δij the Kronecker delta. As such, the model error distribution is parameterized by the model error parameters ϑb =

{δζ ,σB,ζ}ζmax
ζ=0 with ζ = 0 the index for the upstream turbines, ζ = 1 the index for turbines with one upstream turbine that

wakes them, and so forth.

2.1.2 Measurement error150

The true process can only be observed with measurements P∗, which come with a measurement error EM

P∗ = T |ψ+ EM |ψ. (8)

We will make the simplifying assumption that the measurement error is independent of the unobserved or unmodelled physics

ψ′ such that EM |ψ ≈ EM |φ (Aerts et al., 2023). Since most engineering wind farm flow models represent stationary atmo-

spheric flows, their predictions should be compared with time-averaged data. However, observational and high-fidelity simula-155

tion data are typically subjected to temporally resolved turbulence. Because only a finite time period is available for averaging

due to changing atmospheric conditions or computational constraints, the measurement error consists both of the error of the

apparatus and the averaging error. The measurement bias and standard deviation due to the apparatus are typically known a

priori, such that the distribution of the apparatus error can be taken as a normal distribution based on these quantities. In what

follows, we will presume that the averaging error dominates. This is certainly true for simulation data, as is the case in our160

manuscript. Due to the central limit theorem and given that the estimator is unbiased, the measurement error then follows a

multivariate normal distribution with zero mean and a covariance matrix ΣT .

The averaging error covariance matrix ΣT on the mean can either be prespecified or unknown. For N independent measure-

ments of the power output of each turbine i for the same atmospheric condition, the error on the average of theN measurements

can be estimated as V(P∗i )/N with V(P∗i ) the sample variance (Wasserman, 2013). Equivalently, all individual measurements165

can be used with the sample variance, given that they are independent and represent the same atmospheric state. For a correlated

time series, the moving block bootstrap can be employed (Garcia et al., 2005). If no information is available, the averaging

error covariance can also be estimated directly from the data based on a parameterization with parameters ϑt (Aerts et al.,

2023). However, if the covariance structures between the averaging error and the model error are not sufficiently different, they

are indistinguishable. Therefore, it is preferred to use the estimated error on the mean if available.170

In practice, the inflow conditions can also be uncertain due to any kind of measurement error. This inflow uncertainty may

be propagated through the model with a marginalization similar to that in Eq. (4). Note that this procedure is similar to that of

Gaumond et al. (2014) to incorporate the effect of wind direction variability on the mean power, but also includes the resulting

variance of the model output. In that manner, a part of the total variance in the data can be attributed to inflow uncertainty,

thereby reducing the observed model uncertainty.175

2.1.3 Prior parameter uncertainty

The most representative empirical model parameters of the wind farm flow model ϑe are a priori uncertain, but the associated

model error distribution, parameterized by ϑb, and possibly measurement error covariance, parameterized by ϑt, are as well.
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This a priori uncertainty can be quantified or specified in a prior distribution p(ϑe,ϑb,ϑt), which reflects one’s assumptions

and state of knowledge before data come along (Trotta, 2008). We will use a weakly informative prior, which is designed to180

regularize inferences with structural information (Gelman et al., 2017). The provided information is intentionally weaker than

any actual prior knowledge available (Gelman et al., 2013) and we choose the shape of the distribution to have the highest

entropy given the provided information. Since the joint prior has maximum entropy when the parameters are not correlated, the

prior is constructed as the product of the marginal priors. Typically, we know what the range of reasonable or allowable values

is for the model parameters. In that case, the proper distribution with maximum entropy is a uniform distribution (Toussaint,185

2011). As the exponential distribution has maximum entropy among all nonnegative continuous distributions with the same

average displacement (McElreath, 2018), the standard deviations of the model error terms are assigned exponential priors with

averages of 0.1.

In Bayesian calibration, particular attention must be given to the choice of the prior distribution for the model bias (Brynjars-

dóttir and O’Hagan, 2014). In the Kennedy and O’Hagan (2001) framework for Bayesian calibration used previously (Aerts190

et al., 2023), model inadequacy is a priori considered independent of the model output. To make the model parameters identi-

fiable, we constrained the bias on the farm power to be zero by solving

0 =
NT∑

i=1

µB,i =
NT∑

i=1

δζ(i), (9)

for δ0 and only estimating {δζ}ζmax
ζ=1 (Aerts et al., 2023). However, the value of the model error EB,i(ϑe,ψ) for each turbine i

depends on the choice of model parameters ϑe, so simultaneously identifying both the model error and model parameters may195

introduce confounding of the model error with calibration parameters (Brynjarsdóttir and O’Hagan, 2014). Therefore, it is more

intuitive to define the mean bias as the discrepancy µB,i = Eφ[Pi−Mi(ϑ∗e,φ)] that remains when the model is calibrated with

a ‘best-fit’ parameter ϑ∗e (Plumlee, 2017). If that best fit is defined as ϑ∗e = argmin Eφ

[∑NT

i=1(Pi−Mi(ϑe,φ))2
]
, we have as

a necessary condition for optimality that

Eφ




NT∑

i=1

∂Mi(ϑe,φ)
∂ϑe

∣∣∣∣∣
ϑe=ϑ∗e

µB,i


= 0. (10)200

In general, an additional constraint on the bias is added per parameter. Since we do not know the ‘best-fit’ parameters a priori,

we can satisfy this condition trivially by requiring that µB,i = 0 if ∂Mi(ϑe,φ)/∂ϑe ̸= 0 for at least one value of ϑe with

nonzero prior probability. As a result, the predicted farm power will be biased if ∂Mi(ϑe,φ)/∂ϑe = 0 for all ϑe with nonzero

prior probability. However, we find that also requiring µB,i = 0 in that case works best in practice, but alternatives are explored

in Sect. 4.2. Hence, the model bias parameters {δζ}ζmax
ζ=0 are all given a Dirac delta distribution centered at zero as marginal205

prior.

2.2 Bayesian updating

The objective of Bayesian uncertainty quantification is to construct and interpret the posterior distribution of the model pa-

rameters after Bayesian updating. The construction of the posterior based on the prior and the preceding description of the
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uncertainties is discussed in Sect. 2.2.1. The posterior distribution can be used as the constituent distribution to perform a210

forward uncertainty quantification or obtain a stochastic flow model. In this manner, the posterior predictive distribution is

obtained, which can be used to validate the adequacy of the UQ procedure as explained in Sect. 2.2.2.

2.2.1 Posterior distribution

Given a power measurement P and the corresponding input of the model φ describing the state of the wind farm and the

atmosphere, the prior distribution p(ϑ) = p(ϑe,ϑb,ϑt) can be updated using Bayes’ theorem to a posterior distribution215

p(ϑ|P,φ) =
p(P |ϑ,φ)p(ϑ)

p(P |φ)
. (11)

The likelihood p(P |ϑ,φ) of the power measurement P , given the parameters ϑ and input to the model φ, is given by

p(P |ϑ,φ) =N (P ;M(ϑe,φ) +µB(ϑb),ΣT (ϑt) +ΣB(ϑb)), (12)

based on the description of model uncertainty in Sect. 2.1.1 and measurement uncertainty in Sect. 2.1.2. The evidence p(P |φ)

does not depend on the parameters ϑ and corresponds to a normalization factor. As a result, the posterior is fully determined220

by the prior and the likelihood.

For a dataset D = {Pi,φi}ND
i=1 of independent power measurements Pi with corresponding inputs to the model φi, the

posterior is given by

p(ϑ|D)∝ p(ϑ)
ND∏

i=1

N (Pi;M(ϑe,φi) +µB(ϑb),ΣT (ϑt) +ΣB(ϑb)) (13)

where the total likelihood is a product of the individual likelihoods due to independence and the prior p(ϑ) is given by the225

product of the marginal priors as discussed in Sect. 2.1.3. In the limit of an infinite amount of data, the posterior converges

to a point mass, given that the parameters are identifiable – see Gelman et al. (2013, p. 89) for other conditions. For a finite

but large amount of data, the relative uncertainty of each of the model parameters in the posterior is inversely related to the

sensitivity of the log-likelihood to that parameter, through the Fisher information matrix (Gelman et al., 2013, p. 88). Hence,

the posterior parameter uncertainty represents epistemic uncertainty that can be reduced with more observations. Irreducible230

forms of uncertainty, such as measurement and model uncertainty, are quantified by their parameterization in the likelihood:

ΣT and ΣB here. It is crucial that these forms of uncertainty are adequately quantified, as otherwise the the marginal posterior

for the model parameters p(ϑe|D) may be over-confident and biased (Brynjarsdóttir and O’Hagan, 2014).

2.2.2 Posterior predictive distribution

The posterior predictive is the distribution of new (predicted) observations given all previous observations, the wind farm235

flow model, and the description of all sources of uncertainty in the likelihood and prior. For the Bayesian UQ analysis to be

adequate, the original data should seem plausible under the posterior predictive distribution (Gelman et al., 2013, p. 143). Any

systematic differences between the posterior predictions and the data indicate potential failings of the specified likelihood and

8

https://doi.org/10.5194/wes-2025-196
Preprint. Discussion started: 22 October 2025
c© Author(s) 2025. CC BY 4.0 License.



prior to model the actual process that generates the data (cf. Eq. (2) and (8)). For instance, if the model error uncertainty is not

included in the analysis, the posterior predictive may underestimate the variance of the data. In that case, a posterior predictive240

check will reveal the inadequacy of the specified likelihood and prior.

The posterior predictive distribution p(Pnew|φnew,D) can be rewritten as

p(Pnew|φnew,D) =
∫
p(Pnew,ϑ|φnew,D) dϑ,

(1)
=
∫
p(Pnew|ϑ,φnew)p(ϑ|D,φnew) dϑ,

(2)
=
∫
p(Pnew|ϑ,φnew)p(ϑ|D) dϑ,

(14)

where (1) requires that the new measurement is again independent from the previous ones, and (2) presumes that the posterior

based on the previously observed states of the wind farm and atmosphere is independent of the new state. In practice, this means245

that the calibrated model and quantified model uncertainty should also be adequate for the new inflow condition φnew (more on

that in Sect. 4.4). Samples from the posterior predictive for a given model input φ∗new are obtained by first sampling the posterior

distribution ϑ∗e,ϑ
∗
b ∼ p(ϑ|D), and then sampling from the likelihood P ∗new ∼ p(Pnew|ϑ∗e,ϑ∗b ,ϕ∗new) given the sampled parameters.

Consequently, it can be interpreted as the forward UQ of the model given the epistemic uncertainty in the posterior, and the

measurement and model uncertainty in the likelihood. By leaving out the measurement uncertainty, one obtains a stochastic250

flow model that accounts for both the epistemic uncertainty on the model parameters and the (systematic) model uncertainty.

2.3 Sampling the posterior distribution

In practice, the analytical derivation of the moments and marginal distributions of the posterior distribution quickly becomes

intractable. Instead, Markov chain Monte Carlo (MCMC) algorithms are typically used to efficiently sample the posterior dis-

tribution. With those samples, one can visualize the marginalized and joint posterior(s), consult the posterior predictive, and255

compute expected values. However, these algorithms are inherently serial and require O(105) likelihood evaluations to con-

verge to the posterior and adequately represent it (Geyer, 2011). Even for engineering models with reasonable computational

expense, this can become relatively time-consuming. Therefore, we employ a variant of the transitional Markov chain Monte

Carlo (TMCMC) algorithm (Ching and Chen, 2007), which is inherently parallel.

Instead of directly sampling the posterior distribution, TMCMC samples a sequence of target distributions with a sequen-260

tial Monte Carlo (SMC) method. This sequence πj(ϑ) is obtained by tempering the likelihood: a stage exponent or inverse

temperature βj is introduced that sequentially ‘cools’ the target

πj(ϑ)∝ p(D|ϑ)βjp(ϑ) (15)

with j = 1, . . . ,J and 0 = β1 < · · ·< βJ = 1, such that the algorithm transitions from the prior (j = 1) – which is typically

easy to sample from – to the posterior (j = J). This nomenclature stems from the analogy with the Boltzmann distribution265

p(ε)∝ exp(−ε/(kBΘ)), which has high variance for high temperatures Θ and vice versa. The goal of the stage exponent is to

9

https://doi.org/10.5194/wes-2025-196
Preprint. Discussion started: 22 October 2025
c© Author(s) 2025. CC BY 4.0 License.



πj(ϑ)

p(D|ϑ)Δβ

πj+1(ϑ)

p(D|ϑ)β   p(ϑ)j+1

weight resample perturb

βj+1 w(ϑj
(k))

Figure 1. Schematic overview of one stage in the transitional Markov chain Monte Carlo (TMCMC) algorithm. From left to right, the

samples are weighted, resampled, and perturbed. The algorithm can be parallelized in the perturbation phase. This figure is based on similar

figures in literature of sequential Monte Carlo and TMCMC (e.g. Doucet et al. (2001); Minson et al. (2013); Murphy (2023)).

gradually increase the influence of the likelihood by starting with an artificially large variance and then subsequently shrinking

it. As a result, the algorithm can efficiently explore the prior range and successfully sample multimodal target distributions.

On the sequence of tempered target distributions, a particular version of the Resample–Move SMC algorithm is then used

(Gilks and Berzuini, 2001; Doucet et al., 2009), as depicted in Figure 1. At every stage, importance resampling is used to270

obtain N samples that asymptotically follow the target distribution. To that end, importance weights are computed for every

j-th generation of particles

w(ϑ(k)
j ) =

p(D|ϑ(k)
j )βj+1p(ϑ(k)

j )

p(D|ϑ(k)
j )βjp(ϑ(k)

j )
= p(D|ϑ(k)

j )∆β , (16)

with ∆β = βj+1−βj to resample the particles {ϑ(k)
j }N

k=1 with a probability

P(Θ(k)
j+1 = ϑ

(k)
j ) =

w(ϑ(k)
j )

∑N
k=1w(ϑ(k)

j )
= w̄(ϑ(k)

j ). (17)275

Due to the importance sampling steps, the algorithm works best for priors that sufficiently cover the high-likelihood region.

Since we employ wide weakly informative priors, this is almost always the case.

Then N Metropolis-Hastings (MH) MCMC chains of length L are instantiated to perturb these samples again and remove

the degeneracy introduced by the resampling step (Wu et al., 2018b). In the MH-algorithm, the new sample ϑk+1 is sampled

from a proposal density q(ϑk+1|ϑk) that only depends on the previous sample (Markov property). The new sample is accepted280

with a probability min(1,αMH), where the acceptance ratio αMH is defined as

αMH =
πj(ϑk+1)
πj(ϑk)

q(ϑk+1|ϑk)
q(ϑk|ϑk+1)

. (18)
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The L-th samples in the chains are taken as particle generation j+1. Since all MH chains can run simultaneously, the algorithm

is inherently parallel. However, due to the MH steps – and thus similar to (Adaptive) MH – TMCMC does not scale as well with

parameter dimension as Hamiltonian Monte Carlo, which employs gradient information. If the prior does not sufficiently cover285

the high-likelihood region, longer MH chains are also required to compensate for the degeneracy introduced during importance

sampling.

Several components of the algorithm can be tuned, such as the proposal distribution q(ϑk+1|ϑk) in MH, the method to

determine βj , the number of samples per stage N , and the number of MCMC steps L. In our case, the distribution of the

MH proposal is multivariate normal, that is, q(ϑk+1|ϑk) =N (ϑk+1;ϑk,Σq), with as a covariance matrix Σq the importance290

weighted sample covariance matrix of the previous stage scaled by 1/9+8/9R, with R the observed acceptance rate (Minson

et al., 2013). The cooling rate should be fast enough to reduce the computational cost but slow enough to adequately represent

the next target distribution after resampling. This adequacy can be quantified by the effective sample size (ESS) N eff (Gelman

et al., 2013). Its interpretation is that N weighted samples {w(k)
j ,ϑj

(k)}N
k=1 are worth N eff i.i.d. samples drawn from the target

distribution pj+1 (Beck and Zuev, 2013). The ESS is estimated from the normalized importance weights as295

N̂ eff
j =

1
∑

k w̄(ϑ(k)
j )2

=

(∑
k p(D|ϑ

(k)
j )∆β

)2

∑
k p(D|ϑ

(k)
j )2∆β

(19)

The optimal cooling rate is obtained when βj+1 is chosen such that the ESS is approximately half the total number of samples

per stage (Minson et al., 2013). To that end, Eq. (19) is solved for βj+1 with a bisection method on (βj ,1] (Kantas et al., 2014).

Based on the study of the sensitivity of the posterior to the choice of N and L with increasing parameter dimension by Minson

et al. (2013), we take N = 1920 and L= 20 for a total of (maximum) 10 parameters. For 15 stages, this requires 5.76× 105300

likelihood evaluations, of which only 300 are inherently serial. For further details on the implementation, the reader is referred

to the Python toolbox UMBRA, which is released together with this paper.

3 Case setup

The Bayesian UQ framework is demonstrated with a reference large-eddy simulation (LES) dataset for wind-farm blockage

and atmospheric gravity waves in conventionally neutral boundary layers (CNBLs). Since it is still challenging to model these305

effects with state-of-the-art models, the dataset provides a controlled setting for evaluating the framework under conditions

of substantial model bias and uncertainty. The wind farm flow models are introduced in Sect. 3.1 and the dataset is described

in Sect. 3.2. Based on the empirical model parameters and dataset characteristics, the prior distribution is further specified in

Sect. 3.3.
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3.1 Wind farm flow models310

The two wind farm flow models we will consider in this study are a standard wake model (Sect. 3.1.1) and an atmospheric

perturbation model (APM) (Sect. 3.1.2). The wake model cannot capture wind-farm blockage and is expected to exhibit large

model uncertainty for the considered dataset. In addition, it serves as a baseline for the model uncertainty of the APM.

3.1.1 Standard wake model

The primary objective of wake models is to predict the effect of the velocity deficit downstream of a turbine on the other315

turbines within a farm. The most well-known and widely used wake model is presumably the one originally proposed by

Jensen (1983), but over the years many others have followed (Göçmen et al., 2016). In this study, the Gaussian wake model

of Bastankhah and Porté-Agel (2014) will be employed. It is based on the typical self-similar Gaussian profile of the velocity

deficit and mass and momentum conservation in the wake (see also Frandsen et al. (2006)).

The velocity deficit of a turbine k located upstream is then given by320

U∞−Uw(x)
U∞

=

(
1−

√
1− CT,k

8σ∗k
2

)
exp

(
− 1

2σ∗k
2

y2 + z2

D2
k

)
H(x). (20)

with U∞ the free stream speed, Uw the speed in the wake, and x = [x,y,z]⊤ defined in a local coordinate system at the turbine

hub, with z the vertical direction, z and y spanning the rotor plane, and x > 0 downstream of the turbine. Further, H is the

Heaviside function, CT,k the turbine thrust coefficient, Dk rotor diameter, and σ∗k = σk/Dk the normalized wake width which

grows linearly with the distance downstream from the rotor as325

σ∗k = kw
x

Dk
+ ϵ. (21)

Here, kw is the wake expansion rate which is fitted to the local turbulence intensity at turbine as kw = kaI + kb with ka =

0.3837,kb = 0.003678 (Niayifar and Porté-Agel, 2016). Finally, ϵ= 0.2
√

(1− a)/(1− 2a) is a semi-empirical parameter that

represents the initial wake width and a is the turbine induction factor. The turbulence intensity at the turbine is determined with

the method of Niayifar and Porté-Agel (2016) based on the original (Zehtabiyan-Rezaie and Abkar, 2023) expression for the330

added turbulence intensity expression by Crespo and Hernández (1996)

I+ = 0.73a0.8325I−0.0325
∞ (x/D)−0.32, (22)

with I∞ the background turbulence intensity.

In order to combine multiple wakes into one flow field a wake-merging method is needed. We will use the one developed by

Lanzilao and Meyers (2022). Additionally, the turbines are mirrored to capture the effect of the ground plane (Lissaman, 1979).335

The power extracted by turbine k can then be computed as Pk = 1
2ρAkU

3
kCP,k(Uk) with CP,k(Uk) the power coefficient of

that turbine, Ak the swept rotor area, and Uk the disk averaged flow speed, calculated with the same quadrature method as in

Allaerts and Meyers (2019).
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Figure 2. Schematic representation wind-farm atmosphere interaction via atmospheric gravity waves and Internal Boundary Layer (IBL)

development as modeled by the atmospheric perturbation model: (a) a sketch of the wind farm, vertical profiles of wind speed (blue) and

potential temperature (purple), wave crests and troughs for internal gravity waves in the free atmosphere (red) and interface waves on the

inversion layer (orange), and a developing IBL (gray); (b) the added momentum flux due to the presence of the wind farm and related to

IBL growth as modeled in the APM; (c) a hypothetical displacement of the inversion layer with the associated pressure feedback pt in the

Atmospheric Boundary Layer (ABL), split up in the pressure components related to the waves on the inversion layer pi, and the waves in the

free atmosphere pfa.

3.1.2 Atmospheric perturbation model

Atmospheric perturbation models aim to model wind-farm atmosphere interaction effects such as wind-farm blockage in addi-340

tion to the turbine-scale interactions due to wakes. They do so by solving the height-averaged and linearized Reynolds-averaged

Navier-Stokes (RANS) equations for the atmospheric boundary layer (ABL) under the Boussinesq approximation. The lin-

earization involves adding a perturbation velocity u = [u,v,w]⊤ to the velocity U = [U,V,W ]⊤ in the ABL. The APM further

divides the ABL in a wind-farm layer of height H1 and a second layer of height H2 =H −H1 with H the ABL height. The

equations and their solution procedure are derived and described in detail by Allaerts and Meyers (2019); Stipa et al. (2023);345

Devesse et al. (2024a). The three most important terms for our purposes are the farm thrust, the added turbulent momentum

flux associated with the development of an internal boundary layer (IBL), and the pressure feedback induced by the upward

displacement of the capping inversion layer – the interface between the neutral atmospheric boundary layer and the stably strat-

ified free atmosphere aloft in CNBLs. The farm trust and turbulent momentum flux contain parameters that will be calibrated

with the Bayesian framework, whereas pressure feedback is crucial to capture the blockage effect. Figure 2 represents these350

effects schematically.

The wind-farm thrust f(x,y) is represented in the APM by filtering the turbine thrust forces fk located at the turbine

positions (Allaerts and Meyers, 2019)

f(x,y) =

Lx∫

0

Ly∫

0

G(x−x′,y− y′)
Nt∑

k=1

fkδ(x
′−xk,y

′− yk)dx′dy′ (23)
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with δ(x,y) the two-dimensional Dirac delta and G(x,y) a Gaussian filter kernel with filter length scale Lf355

G(x,y) =
1

πL2
f

exp

(
−x

2 + y2

L2
f

)
. (24)

The filter length scale is set to 1000 m by Allaerts and Meyers (2019); Devesse et al. (2024a) and 500 m by Stipa et al. (2023),

and can be considered an uncertain parameter. This filtering operation must be applied to the momentum equations as a whole,

but since the effect of the resulting dispersive stresses is primarily limited to the farm entrance region (Devesse et al., 2024a),

we will ignore them to reduce computational cost (Devesse et al., 2024b).360

The development of an internal boundary layer is accompanied by an increase of the momentum flux from the layer above

the wind farm to the wind-farm layer. This added turbulent momentum flux is represented as (Devesse et al., 2024a)

∆τWF (x,y) = aτCF Π(x− dτDes) (25)

with aτ the proportionality constant to the wind-farm force density CF = 1
2CTNTA||U1||2/SF , and es is the streamwise unit

vector. Here,CT is the average turbine thrust coefficient,NT the number of turbines,A the swept rotor area,U1 the unperturbed365

velocity in the farm layer, and SF the wind farm surface. The added momentum flux is oriented along the wind-farm forcing

and is zero everywhere except on the wind-farm footprint Π(x). For a rectangular farm, this is a block function. To include the

development of the IBL, the footprint is shifted dτ turbine diameters downstream given that the turbines that are on average

aligned with the wind. That leaves two empirical parameters aτ and dτ , which were previously fitted to 0.12 and 27.8 based

on the computed added momentum flux from LES data (Devesse et al., 2024a).370

The farm thrust will slow down the flow in the ABL. The resulting decrease of the streamwise velocity u is balanced in

the continuity equation by induced spanwise flow v and thickening of the ABL. This thickening corresponds to a lifting of

the capping inversion η, which leads to two distinct processes that result in the pressure feedback pt = pi + pfa (cf. Figure

2c). First, the lifting of the capping inversion directly corresponds to a cold anomaly, as the air below it is colder than the

air above. These pressure perturbations pi can travel horizontally along the capping inversion as two-dimensional interfacial375

gravity waves. Second, the changes in capping inversion height perturb the free atmosphere aloft, leading to internal gravity

waves. These three-dimensional waves also lead to pressure perturbations, which are felt throughout the ABL (Smith, 2010).

Combined, these two types of gravity waves cause a pressure increase upstream, leading to the blockage effect. Downstream,

they also induce a favorable pressure gradient throughout the farm (cf. Figure 2c).

The wake effects are included with a standard wake model, which can be coupled to the height-averaged RANS equations380

for the two layers together with the pressure feedback from the upper atmosphere (Devesse et al., 2024b). The predicted flow

redirection is included with a simplified version of the bidirectional wake merging method of Lanzilao and Meyers (2022),

which is elaborated in Appendix A. In the current work, the wake model is coupled via the pressure (Stipa et al., 2023), but

an upstream coupling (Allaerts and Meyers, 2019), and a velocity matching approach exist as well (Devesse et al., 2024a).

Figure 3 shows the obtained flow field, where the wake model provides the information on the wakes and the APM provides385

the background velocity and pressure information.
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Figure 3. Wind speed and pressure field obtained with an atmospheric perturbation coupled via the pressure to a Gaussian wake model

with a bidirectional wake merging method. The staggered wind farm consists of 16 rows of 10 wind turbines with streamwise and spanwise

spacings of 5 rotor diameters. The atmospheric boundary layer height amounts to 500 m with a capping inversion strength of 4 K and a free-

atmosphere lapse rate of 8 Kkm−1. The friction velocity equals 0.275 ms−1 . The upstream wind speed and ambient turbulence intensity

at hub height are 9.24 ms−1 and 3.93%.

3.2 Reference dataset

As reference data, the parametric LES study of wind-farm blockage and gravity waves in CNBLs of Lanzilao and Meyers

(2024) is used. They simulated 36 selected atmospheric states based on 30 years of ERA5 re-analysis data at the nearest grid

point to the Belgian–Dutch offshore wind-farm cluster. Figure 4 depicts the inflow conditions (the time-average of the last390

four hours of the precursor simulations) as well as the power output per turbine, normalized by the power of a hypothetical

undisturbed turbine upstream, for the cases with an ABL height of 500 m. From Figure 4b it can be seen that the ABL is always

neutrally stratified, since the potential temperature ϑ remains constant dθ/dz = 0. The capping inversion strength ∆θ, and the

lapse rate in the free atmosphere aloft dθ/dz > 0 are varied.

The wind farm consists of 16 rows and 10 columns (NT = 160) of 10 MW IEA reference turbines (Bortolotti et al., 2019).395

The streamwise and spanwise spacings are 5D, with D = 198 m the turbine diameter. The turbines have hub heights of

zh = 119 m and in the study the thrust coefficient is fixed to CT = 0.88. The rows are counted in the streamwise direction

and labeled with capital letters in Figure 4b. It can be seen in Figure 4b how the blockage effect causes large reductions in

turbine power in the first rows. At the same time, the favorable pressure gradient improves power recovery in the last rows. The

significant local flow redirection related to blockage misaligns the turbine wakes with the downstream turbines on the sides of400
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Figure 4. Large eddy simulation data of Lanzilao and Meyers (2024): (a) potential temperature profile with θ0 = 288.15 K, averaged

horizontally in space and over the last 4 h of the precursor simulation, and (b) power output per turbine normalized by the power of an

‘undisturbed’ upstream turbine. In (a), the ABL height is indicated with a dashed gray line and a turbine is drawn with full black lines as a

reference.

the farm, resulting in a U-shaped trend in the power per row. In general, the resulting turbine power output varies significantly

with atmospheric stratification.

Of the 36 available cases, we will only consider the 9 cases with an ABL height of 500 m in this study, to isolate the effect

of stratification of the upper atmosphere from the height of the boundary layer. As we intend to demonstrate the framework’s

capability to quantify the uncertainty adequately for models of different fidelity, the APM is included as a model. However,405

an APM evaluation takes about 30 seconds, so 1000 model evaluations already require 8.3 core hours, compared to 0.83 core

minutes for 1000 wake-model evaluations of 0.05 seconds. Although the SMC algorithm allows performing the evaluations in

parallel, the total cost remains the same.

3.3 Prior choices depending on the dataset and models

An overview of the marginal priors for ϑ= {ϑb,ϑe} is given in Table 1. The measurement error covariance can be calculated410

from the 90-minute long turbulent power signals using the moving block bootstrap (Garcia et al., 2005). Since the upstream

velocity and potential temperature profiles are available from the LES, the inflow uncertainty is considered negligible. The

prior of the mean bias terms depends on the considered wind farm flow model in the adapted Bayesian framework. We know a

priori that the sensitivity of the predicted power by the wake model to the wake expansion rate is only nonzero for the upstream

turbines, which are not waked. Therefore, only the bias in the upstream and undisturbed rows of turbines δ0 can be non-zero415

based on the condition against confounding of the model bias with calibration parameters in Eq. (10). However, we find that

also requiring δ0 = 0 works best in practice based on a comparison of alternatives in Sect. 4.2. For the APM, the condition for

the best-fit interpretation of the model parameters in Eq. (10) directly requires that all mean bias terms δζ(i) are zero.
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Table 1. Prior distributions for the inverse uncertainty quantification of the wake model and the atmospheric perturbation model. Uniform

distributions on an interval [a,b] are abbreviated as Ub
a. The exponential distribution Expλ has a PDF p(x) = λ−1 exp(−x/λ) for x > 0. The

Dirac delta distribution Delta(a) has a PDF p(x) = δ(x− a). The filter length Lf and height of the first layer H1 are expressed in meters

and the spatial delay of the turbulent entrainment dτ in turbine rotor diameters.

ϑe ϑb

ka kb Lf H1 aτ dτ δζ(i) σB,ζ(i)

U1
0 U0.1

0 U2000
500 U450

220 U1
0 U80

0 Delta(0) Exp0.1

The model parameters are given by ϑe = {ka,kb} for the wake model and by ϑe = {ka,kb,Lf ,H1,aτ ,dτ} for the APM.

Similar to previous work (Aerts et al., 2023), the wake expansion rate parameter ka gets a uniform prior over the unit interval,420

whereas kb gets a stronger uniform prior between 0 and 0.1. The filter length scale Lf is not taken smaller than the grid spacing

of 500 m and not larger than two times the current value in Devesse et al. (2024a). The allowable farm layer height H1 is

chosen slightly larger than the turbine tip height of 218 m and smaller than 90% of the ABL height of 500 m. The strength aτ

of the turbulent entrainment should be positive and is not expected to be more than 10 times larger than its current estimated

value of ≈ 0.1 (Devesse et al., 2024a). The spatial delay of the turbulent entrainment dτ should clearly be positive and cannot425

exceed the farm length of 80 turbine diameters.

4 Results and discussion

Before proceeding to a more practical demonstration of the framework with a wake model and an atmospheric perturbation

model, we demonstrate the consequences of not properly including model error in Sect. 4.1 based on an analytical example

using farm power. The inverse UQ analyses for the wake model and the APM are conducted based on the turbine power. In this430

manner, the model adequacy in representing wake, blockage, flow redirection, and pressure gradient effects can be assessed.

In Sect. 4.2, the adequacy of the Bayesian framework is verified for the wake model, which is expected to show large model

error and uncertainty for the blockage dataset, and the APM, which is expected to perform better. The posterior distributions

for both models are compared in Sect. 4.3. Lastly, the generalization of the results as well as the intended use of the framework

are discussed in Sect. 4.4. The posterior distributions are sampled on the wICE supercomputing platform of the VSC (Vlaams435

Supercomputer Centrum), using Sapphire Rapids nodes containing 2 Intel Xeon Platinum 8468 CPUs (48 cores each).

4.1 Consequences of neglecting model error in Bayesian UQ

To illustrate what goes wrong when the model error is not properly included in the Bayesian framework, we consider a simple

model for the farm power

Pf = ϑeNTP∞, (26)440
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where the empirical parameter ϑe represents the efficiency of the wind farm and P∞ is the power of a hypothetical undisturbed

turbine upstream. Although the efficiency is highly variable for the considered ND = 9 stratification regimes, the model pa-

rameter ϑe is assumed to be constant – as in all previous Bayesian UQ analyses of wind-farm flow model parameters. However,

since this assumption is clearly invalid in the present case, properly accounting for model error becomes essential.

4.1.1 Posterior distribution445

The Bayesian framework yields the following joint posterior distribution for the model parameter ϑ and the standard deviation

of the model error σB through Eq. (13)

p(ϑe,σB |D)∝ p(ϑe)p(σB)
ND∏

i=1

N
(
Pf,i/(NTP∞);ϑe,σ

2
T +σ2

B

)
. (27)

The uncertainty due to finite-time averaging σT is obtained for simplicity as the average of the bootstrap estimates σT,i for

each simulation. The marginal prior of the standard deviation of the model error is an exponential distribution p(σB) =450

λ−1 exp(−σB/λ) with mean λ= 0.1. The marginal prior of the wind speed reduction factor is a normal distribution with

mean µ0 and standard deviation σ0, that is, p(ϑe) =N (ϑe;µ0,σ
2
0) with µ0 = 0.5 and σ0 = 0.1.

We can examine the effect of neglecting model uncertainty by comparing the conditional posterior p(ϑe|σB ,D) with σB = 0

and with σB equal to the mode of the marginal posterior p(σB |D). For this simple example, the conditional posterior of the

model parameter ϑe is a normal distribution p(ϑe|σB ,D) =N (ϑe;µND
,σ2

ND
) with mean µND

and variance σ2
ND

, equal to455

µND
=
σ2

0

∑ND

i=1Pf,i/(NTP∞) +σ2
Mµ0

NDσ2
0 +σ2

M

, (28)

σ2
ND

=
σ2

0σ
2
M

NDσ2
0 +σ2

M

, (29)

with σ2
M = σ2

B+σ2
T the total variance. Note that by increasing the number of measurementsND, the posterior indeed converges

to a point mass, in this case centered at the sample mean. Given enough data and for λ sufficiently large, the mode of p(σB |D)

converges to
√
s2−σ2

T , where s2 is the sample variance. Consequently, the estimated model error variance will capture the460

remaining variance in the data. If one assumes that σB = 0 when there is non-negligible model uncertainty, Eq. (28) and (29)

show that the posterior mean µND
is biased and the uncertainty σND

underestimated. This is demonstrated for the example at

hand in Figure 5a, as the posterior distribution obtained by neglecting the model error is highly overconfident. Also note that

the SMC samples of the marginal posterior p(ϑe|D) agree very well with the analytical conditional posterior p(ϑe|σB ,D) with

σB equal to
√
s2−σ2

T .465

4.1.2 Posterior predictive distribution

The posterior predictive distribution for a new measurement Pf,new is given by

p(Pf,new|D) =N (Pf,new/(NTP∞);µND
,σ2

B +σ2
T +σ2

ND
). (30)
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Figure 5. Comparison of the results of Bayesian UQ with and without the inclusion of model error EB : (a) posterior distribution, and

(b) posterior predictive distribution. The data and SMC samples of the distributions are given as histograms and the analytically obtained

probability density functions as full lines.

The posterior predictive variance consists of the model variance, the measurement variance, and the propagated posterior

parameter variance. If the model error is not included in the analysis, the posterior predictive underestimates the variance of470

the data both by neglecting σ2
B and underestimating σ2

ND
. Figure 5b shows that in the current example, the data do not seem

plausible under the posterior predictive that neglects model error, rendering such a Bayesian analysis inadequate. The proper

inclusion of model error through our framework yields an adequate posterior predictive and Bayesian analysis. Although the

current example exhibits exceptionally large model uncertainty, most if not all of the current wind farm flow models have

non-negligible model error, and Bayesian UQ analyses of such models that neglect model error will suffer similar issues.475

4.1.3 Implications for stochastic flow models

Current stochastic wake models are obtained by propagating the posterior of the parameters – obtained by ignoring model

error – through the model (Zhang and Zhao, 2020), they only account for the uncertainty on their parameters due to limited

calibration data, and do not capture the uncertainty due to varying unmodeled physics, such as stratification effects, time-

resolved turbulence, and so forth. Given enough data (here only 9 observations), they will therefore significantly underestimate480

the variability of the true process, as demonstrated in Figure 5b. Moreover, in the limit of infinite data such ‘stochastic’ models

will in fact become deterministic as seen in Eq. (29) and (30) with σND
→ 0 and σB = 0. Therefore, truly stochastic wind

farm flow models should include both the posterior parameter uncertainty, quantified in p(ϑe|D), and the model uncertainty,

quantified in ΣB in the framework.
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Figure 6. Comparison of the turbine power from LES with the posterior predictive distributions for (a) the wake model and (b) the atmo-

spheric perturbation model. The mean power is shown as a solid line, with shaded regions indicating one standard deviation above and below

the mean. The mean and standard deviation of the model outputs M(ϑe,φ) for the posterior samples of ϑe are shown as well after adding

the measurement error EM . The reference data points are also plotted as individual dots.

4.2 Adequacy of the Bayesian framework485

We now turn to the analysis of the wake model and the APM with turbine power data. Since the posterior distribution is

intractable for those cases, we use the parallelized sequential Monte Carlo algorithm implemented in UMBRA to sample it

(Sect. 2.3). The SMC algorithm yields 1920 samples of the joint posterior distribution of ϑe and ϑb after convergence. In

addition, we generate a sample of the posterior predictive distribution for each sample of the posterior so that the adequacy of

the Bayesian framework can be assessed by comparing the posterior predictive samples with the observations (Sect. 2.2.2).490

Figure 6 compares the means and standard deviations of the posterior predictive samples of each turbine with the distribution

of the LES reference data for both the wake model and the APM. To isolate model uncertainty from (epistemic) parameter

uncertainty and measurement uncertainty, we also show the posterior predictive obtained from the same posterior of the model

parameters, but with {σB,ζ(i)}NT
i=1 set to zero. Figure 6a shows that the wake model exhibits substantial model uncertainty for

this dataset. In the first turbine rows, the model uncertainty is inflated because of the significant bias due to wind-farm blockage.495

Further downstream, the large model uncertainty stems form the U-shaped power variations caused by flow redirection and

the enhanced power recovery due to the favorable pressure gradient, which the wake model fails to capture. Notably, the data

appear implausible under the posterior predictive without model error, underscoring the importance of properly accounting for

model uncertainty. Figure 6b shows that the APM yields considerably lower model uncertainty, as it successfully incorporates

blockage, flow redirection and pressure gradient effects. However, consistent with previous findings (Devesse et al., 2024b), the500

APM underestimates blockage effects in the first rows, which inflates model uncertainty for those turbines. Since the reference

data are deemed plausible under the posterior predictive distributions of both models, the Bayesian framework proves to be

adequate.
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Figure 7. Comparison of the turbine power data from LES with the posterior predictive distribution for the wake model when the mean bias

terms µB,i are estimated together with the model parameters. In (a) all mean bias terms are estimated with the constraint that there sum

is zero, whereas in (b) only the bias on the upstream turbines is estimated. The mean power is shown as a solid line, with shaded regions

indicating one standard deviation above and below the mean. The reference data points are also plotted as individual dots.

To avoid overestimating model uncertainty caused by systematic model mismatch, one could also estimate the mean model

bias. However, this bias must be constrained to ensure model parameter identifiability, either by enforcing unbiased predicted505

farm power in Eq. (9) or by trivially satisfying the condition against confounding of the model bias with model parameters

in Eq. (10). One approach is to relax the condition for the ‘best-fit’ parameter interpretation in Eq. (10), as illustrated in

Figure 7a for the wake model. This allows identifying the mean bias δ0 in the first turbine rows due to blockage, resulting

in lower estimated model uncertainty. However, to compensate for this bias and still match farm power, the calibrated wake

model systematically underestimates turbine power downstream. Alternatively, we can relax the constraint that predicted farm510

power must be unbiased, as shown in Figure 7b for the wake model. This yields the exact same calibration (and posterior

of the model parameters) as when the mean bias for the upstream turbines is not estimated, since upstream power contains

no information about the model parameters. Nevertheless, as Figure 6b shows, even flow models that have parameters that

influence the predicted blockage effect can exhibit bias, leading to inflated uncertainty estimates for these models. Therefore,

we recommend excluding mean model bias to enable the objective comparison of model uncertainty between different flow515

models, even though the estimated model uncertainty is conservative.

4.3 Model comparison with quantified model and parameter uncertainty

The Bayesian UQ framework can be used to perform objective model comparison with quantified parameter and model un-

certainty given a reference dataset. In Sect. 4.3.1, the posterior distributions of the model parameters are presented for the

wake model and the atmospheric perturbation model. The posterior distribution of the parameters describing the model error520

distribution are compared for both models in Sect. 4.3.2.
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Figure 8. Joint posterior probability density of the parameters in the wake expansion rate kw = kaI + kb. For each parameter, the median is

given together with the 2.5% and 97.5% quantiles, expressed as relative deviations from the median.

4.3.1 Posterior distribution of the model parameters

Figure 8 shows one- and two-dimensional histograms of the joint posterior distribution of the wake model parameters, based

on samples generated with SMC in UMBRA and visualized with Corner (Foreman-Mackey, 2016). A comparison between

the marginal posterior and prior distributions reveals that the parameters are well-identified. Notably, the posterior median of525

ka (0.52) exceeds its standard reference value of 0.384 (Niayifar and Porté-Agel, 2016), while kb is estimated to be nearly

zero. In rows A and B, where turbines are not affected by wakes, the mean posterior wake expansion rate kw = kaI + kb is

approximately 0.018 – given an ambient turbulence intensity of 0.039 – compared to 0.019 based on the same turbulence

intensity I and literature values for ka and kb. In the downstream rows, the mean posterior wake expansion rate increases to

around 0.073 due to wake-added turbulence, compared to a literature-based value of 0.064 using the same local turbulence530

intensity. This suggests that wake recovery in waked turbine rows is overestimated to compensate for the favorable pressure

gradient influencing the background flow field. Although the estimated wake expansion rate in the upstream rows is consistent

with earlier results, the local wind speed is largely overestimated by the wake model, which makes the comparison invalid.

Figure 9 shows the samples of the joint posterior distribution of the APM parameters, which are all well identified. Compared

to standard values, the posterior median of ka is lower (0.32) and that of kb is higher (0.0125), resulting in a larger mean wake535

expansion rate in rows A–B (kw ≈ 0.027) and a similar rate in the downstream rows (kw ≈ 0.064), given the same turbulence

intensities. The increased upstream wake expansion rate suggests the need for further investigation into turbine wakes under

blockage conditions (see e.g. Ndindayino et al., 2025). The estimated filter length scale Lf is smaller than the value used in

Devesse et al. (2024a), but slightly larger than in Stipa et al. (2023). The relatively high uncertainty in Lf is attributed to

the limited sensitivity of the turbine power to changes in filter width between 500 m to 640 m. The first-layer height H1 is540

estimated to be close to twice the turbine hub height, consistent with findings from a previous parameter study (Allaerts and
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Figure 9. Joint posterior probability density of the parameters in the atmospheric perturbation model. For each parameter, the median is

given together with the 2.5% and 97.5% quantiles, expressed as relative deviations from the median.

Meyers, 2019). The estimated strength of the wind-farm added momentum flux aτ reaches the upper bound of its prior, roughly

ten times its current value, and its spatial delay dτ is larger than previously fitted. This discrepancy across the model chain

indicates that the parameterization of the added momentum flux requires further refinement. In the pressure-based coupling of

the wake model to the height-averaged RANS equations, noticeable increases in turbine power only occur for aτ values near545

one. Thus, the strong added momentum flux downstream helps replicating the observed power increase in rows N to P (cf.

Figure 6b).
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Table 2. Summary statistics of the marginal posterior distributions of the model error standard deviation σB,ζ(i) for the wake model (WM)

and the atmospheric perturbation model (APM). For each parameter, the median is given together with the 2.5% and 97.5% quantiles,

expressed as relative deviations from the median.

[%] σB,0 σB,1 σB,2 σB,3

WM 27+11%
−10% 8.6+12%

−10% 4.6+11%
−11% 6.1+5%

−5%

APM 4.9+13%
−12% 5.1+13%

−11% 6.1+12%
−11% 2.8+6%

−6%

4.3.2 Comparison of the quantified model uncertainty

Table 2 summarizes the marginal posteriors of the model error standard deviations for both wind farm flow models. It is

clear that the rather large uncertainties σB,ζ(i) for the wake model are caused by the unobserved or unmodeled variations in550

atmospheric stratification in this dataset. In general, the model uncertainty is smaller for the APM, as the standard deviations of

the model error σB,ζ(i) are smaller. Because the APM captures the blockage effect, the model uncertainty on upstream turbines

is reduced by a factor 5.5 for this dataset. In addition, variations in upstream blockage are better estimated as the uncertainty

of the turbines with one waking turbine is lowered by a factor 1.5. Only the model uncertainty for turbines with two upstream

waking turbines is larger. In fact, it is seen in Figure 6 that the deviations from the predicted power are larger in rows E and F.555

In contrast, the model uncertainty σB,3 for turbines farther downstream is a factor 2.2 lower than for the wake model. This is

because the APM adequately models the increase in power in later rows due to the inclusion of the favorable pressure gradient

and the wind-farm added momentum flux. Note that the uncertainty on σB,3 is smaller than on the other bias variances. This

is because σB,3 is associated with 100 turbines, while the others are associated with 20 only. Thus, its epistemic uncertainty is

further reduced by a factor
√

5.560

4.4 Generalization of the obtained results

A natural question that arises when calibrating models is to what extent the resulting performance generalizes to other datasets.

Since physics-based wind farm flow models are expected to generalize well to other farm lay-outs, wind speeds, and wind

directions, we expect that the performance should generalize well when varying those conditions. In that case the posterior

distribution of the empirical parameters p(ϑe|D) can be used together with the quantified model error distribution to obtain565

a stochastic wind farm flow model. However, for unobserved or unmodeled conditions ψ′, we cannot expect a proper gen-

eralization, since the bias of the flow model can only (partially) be reduced by altering the empirical model parameters ϑe.

Consequently, the results of the uncertainty quantification depend largely on the resemblance between the distribution of these

unobserved conditions in the considered data p(ψ′) and their true distribution ptrue(ψ′). In this case, we have by no means

covered the true distribution ptrue(ψ′) – even if we intended to consider only atmospheric stratification effects in CNBLs with570

an ABL height of 500 m. Similarly, the posteriors of the model parameters likely depend on the ABL height. As such, the

obtained results are specific to the dataset considered and are intended only as an illustration of the methodology. However,
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we showed that the methodology does allow for objective model comparison with quantified model and parameter uncertainty

given a benchmark dataset.

5 Summary and outlook575

Bayesian UQ leverages data to quantify the uncertainty of model parameters and the model itself by updating a prior distri-

bution that characterizes the available knowledge before having seen the data, to a posterior distribution. In this manuscript,

we examined the use of Bayesian UQ for (1) obtaining stochastic wind farm flow models through Bayesian calibration, and

(2) objective model comparison with quantified parameter and model uncertainty. As both applications require that model

inadequacy is properly taken into account, the model inadequacy formulation in a previously developed Bayesian UQ frame-580

work (Aerts et al., 2023) was improved. The framework was demonstrated with engineering models for wind-farm atmosphere

interaction using a large-eddy simulation dataset for wind-farm blockage due to atmospheric gravity waves. In doing so, the

framework was tested for delineated data with a large anticipated model uncertainty, as current engineering models face dif-

ficulties in representing those effects. In contrast to earlier studies, we used a parallelized sequential Monte Carlo algorithm

based on likelihood tempering to speed up the approximation of the posterior, though at a similar computational cost. This585

complete workflow is made available in a Python toolbox coined Uncertainty Modeling toolbox for Bayesian data Re-Analysis

(UMBRA) which can be used together with WAYVE (Devesse et al., 2023) and the Wind-Farm API (Quick et al., 2024).

With a simple example model for wind farm power, the consequences of not properly including model error in Bayesian

UQ are illustrated. On the one hand, the posterior distribution of the model parameters is overconfident and biased when the

model error is neglected. In that case, a posterior predictive check also shows that the Bayesian analysis is inadequate. Hence,590

the proper inclusion of model error is also important when one is only interested in the posterior distribution of the flow model

parameters. On the other hand, current stochastic flow models, which only propagate the posterior distribution of the model

parameters through the model (Zhang and Zhao, 2020), may significantly underestimate the variability of the true process

that the model aims to represent, as soon as there is non-negligible model error. Moreover, in the limit of infinite data such

‘stochastic’ models will, in fact, become deterministic. The presented framework properly includes the model error so that the595

posterior distribution of the model parameters and the model uncertainty are adequately quantified, also in the limit of infinite

data. Since most if not all of the current wind farm flow models have non-negligible model error, Bayesian UQ analyses that

neglect model error will suffer similar issues.

The adequacy of incorporating model error on turbine power predictions within the Bayesian framework was also assessed.

A posterior predictive check using the blockage dataset revealed that the framework is adequate for both a standard wake600

model, which does not capture wind-farm blockage effects and has large model error, and for an atmospheric perturbation

model (APM), which does capture those effects. By requiring that the calibrated model is unbiased on the farm power (Aerts

et al., 2023) and that the calibration parameters are to be interpreted as ‘best-fit’ parameters (Plumlee, 2017), the mean bias

on each turbine is a priori considered to be zero. By doing so, the current approach does not suffer from confounding of
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calibration parameters with model inadequacy (Brynjarsdóttir and O’Hagan, 2014). Although the quantified model uncertainty605

is more conservative as a result, the model uncertainty can be objectively compared for different wind farm flow models.

The Bayesian UQ of the wake model and APM showed that the framework can be used for objective model comparison with

quantified parameter and model uncertainty given a reference dataset. The posterior distribution of the model parameters is

significantly updated with respect to the prior distribution, indicating that the parameters are well identified. The uncertainty of

the parameters characterizes the remaining uncertainty due to the limited amount of data, and it is seen that the relative uncer-610

tainties of the model parameters are inversely related to their sensitivity. Posterior correlations and inconsistencies between the

posterior modes throughout the model chain may inform modelers of the parts that need to be further improved. For the APM,

the estimated wake expansion rate in the upstream turbine rows is higher than the rate derived from standard parameter values

(Niayifar and Porté-Agel, 2016), while in the downstream rows, they align closely. This encourages further research on turbine

wakes under blockage conditions (e.g. Ndindayino et al., 2025). A comparison of the quantified model uncertainties shows615

that the APM exhibits substantially lower uncertainty than the wake model. This applies both to the upstream turbines, which

are subject to significant blockage effects, and to the downstream turbines, which benefit from the favorable pressure gradient

across the farm in the considered dataset. Incorporating parameter uncertainty into model uncertainty quantification enables a

more robust assessment of model performance under specific atmospheric conditions, which is relevant for applications such

as production forecasting and wind-farm flow control.620

Further research may use the method to formally compare the model-form uncertainty for wind farm flow models of different

complexity given a benchmark dataset. In addition, the parameter and model uncertainty quantified in the posterior can inform

robust wind farm flow control and layout optimization. When using the framework with operational farm data, the uncertainty

on the inflow conditions can also be incorporated using a similar approach to the hierarchical stochastic prior. In doing so,

the model uncertainty may also be separated from the uncertainty in the inflow conditions. Lastly, further research into the625

accuracy of approximate Bayesian inference methods, such as the Laplace approximation, variational methods, and Gaussian

process emulators, in this setting is also of interest to reduce the computational cost of the methodology.

Code and data availability. The large-eddy simulation dataset for wind-farm blockage and atmospheric gravity waves in conventionally

neutral boundary layers that is used in this work is publicly available (https://doi.org/10.48804/LRSENQ). The code for the wake model and

atmospheric perturbation model are available in the Python package WAYVE (https://gitlab.kuleuven.be/TFSO-software/wayve). The code630

used to perform the Bayesian uncertainty quantification with a parallelized sequential Monte Carlo algorithm is made available in a Python

package coined UMBRA: Uncertainty Modeling toolbox for Bayesian data Re-Analysis (https://gitlab.kuleuven.be/TFSO-software/umbra).

Appendix A: Including local flow redirection in the wake-model coupling in WAYVE

The reduction of the streamwise velocity due to blockage is accompanied by both an increase in the ABL height and a span-

wise velocity increase directed away from the centerline of the farm. Hence, the background flow is bidirectional and can be635
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formulated as

U b(x) = ∥Ub(x)∥2
(
cosθb(x,y) sinθb(x,y) 0

)⊤
. (A1)

Since the height-averaged ABL equations solved in the APM do provide a spanwise velocity perturbation, it is expected that a

bidirectional wake model will perform better.

Lanzilao and Meyers (2024) derived their wake-merging method for a heterogeneous background velocity field characterized640

by changes in direction and magnitude. By assuming that the wake only affects the velocity component perpendicular to the

rotor and not the velocity component parallel to it that may develop downstream, they arrive at the recursion formula

Uk(x) = (Uk−1(x) ·e⊥,k)[1−Wk(Xk(x))]e⊥,k + (Uk−1(x) ·e∥,k)e∥,k, (A2)

with e⊥,k = (cosθk,sinθk,0),e∥,k = (−sinθk,cosθk,0) and U0(x) = U b(x). Since the wakes are transported by the mean

flow, they introduce a local coordinate system Xk(x) = (Xk(x),Yk(x),Zk(x)) that is oriented along the streamlines of the645

background flow field

Xk(x) =

x∫

xk

cosθb(x̄,y)dx̄+

y∫

yk

sinθb(x, ȳ)dȳ, (A3)

Yk(x) =−
x∫

xk

sinθb(x̄,y)dx̄+

y∫

yk

cosθb(x, ȳ)dȳ, (A4)

Zk(x) = z− zh,k. (A5)

Since engineering models are mostly designed to be as cheap as possible (for efficient AEP evaluations, layout optimization650

and wind-farm flow control), it is desirable to circumvent the two integrations per turbine over the whole wake center line.

Therefore, we take a similar approach as Stipa et al. (2024) to reduce computational costs – albeit with another wake merging

method. They argue that the scale at which the local wind direction changes is much larger than the turbine wake scale which

allows ignoring the advection of wake deficits. If additionally, all turbines are aligned with the background flow,

θk = θb(xk) (A6)655

U b(xk) ·e⊥,k = ∥U b(xk)∥2, (A7)

wake deflection through yaw misalignment can be neglected. The assumption of slowly varying background wind direction

compared to the wake scale allows setting θb(x,y)≈ θb(xk,yk) in the integrals such that

Xk(x) =




cosθb(xk) sinθb(xk) 0

−sinθb(xk) cosθb(xk) 0

0 0 1


(x−xk). (A8)
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With these analytical solutions to the integrals, the recursion formula can be made fully explicit. After some matrix manip-660

ulations

Uk(x) =
[
e⊥,k e∥,k

]

(Uk−1(x) ·e⊥,k)[1−Wk(Xk(x))]

Uk−1(x) ·e∥,k


 (A9)

=
[
e⊥,k e∥,k

]

e⊤⊥,k[1−Wk(Xk(x))]

e⊤∥,k


Uk−1(x), (A10)

it is found that (Devesse et al., 2024a)

U(x) =

(
Nt∏

k=1

Bk(x)

)
U b(x), (A11)665

with

Bk(x) = e⊥,ke⊤⊥,k[1−Wk(Rk(x−xk))] +e∥,ke⊤∥,k, (A12)

and Rk the rotation matrix defined in Eq. (A8). With a vectorized implementation, the bidirectional wake-merging method has

a similar computational cost as the unidirectional method.
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