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Abstract. We quantify the accuracy of the temperature profiling from ground-based spectral infrared radiance observations

at AWAKEN. Results from pre-campaign tests and comparisons with in-situ ground-based and airborne sensors at AWAKEN

indicate that temperature profiles agree satisfactorily with traditional instruments for wind energy applications. The bias is

within a fraction of a degree and appears to be related to atmospheric stability. Root-mean-square differences from the reference

instruments are always smaller than a degree and are often well described by the online uncertainty estimation product. Height-5

to-height and site-to-site temperature differences are in excellent agreement with in-situ observations, which justifies the use

of temperature profilers to characterize static stability and spatial gradients of temperature.

1 Introduction

An accurate characterization of the atmospheric state is essential to understand the mechanisms that govern the conversion of

the flow of kinetic energy carried by the wind into mechanical and, ultimately, electrical power delivered to the grid by wind10

power plants. In fact, although wind energy represents a widely available resource and an established technology across the

U.S. and globally, it introduces new challenges to the global power system due to its intermittency and uncontrollability. This is

becoming a more pressing concern as the worldwide electricity demand grows by 4% annually, driven largely by electrification,

air conditioning needs, and data centers (International Energy Agency, 2025).

The volatility of wind power is inherently connected to the complex dynamics of the atmospheric boundary layer (ABL)15

in which wind turbines operate. The ABL state is extremely difficult to predict, and current wind resource models still have

significant biases (Lee and Fields, 2021; Bodini et al., 2024). A recent blind comparison of several turbine models attributed a

large portion of the uncertainty to incomplete information of the inflow conditions, especially when the ABL is stably stratified

(Doubrawa et al., 2020). Complexity of the wind field is further enhanced as the thermally stratified ABL interacts with even

modest terrain features (Mahrt et al., 2021; Radünz et al., 2024) or the turbines themselves (Krishnamurthy et al., 2025;20

Abraham et al., 2025).

Atmospheric stability not only plays a role in shaping the undisturbed wind profiles experienced by the turbines but also

governs the propagation of wind turbine wakes, with large implications on the overall efficiency and lifetime of the wind plant.

1

https://doi.org/10.5194/wes-2025-198
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



This influence of thermal stratification on wake morphology has been largely proved in numerical (e.g. Abkar and Porté-Agel

(2015)), lab-scale (e.g., Chamorro and Porté-Agel (2010)), and field-scale studies (e.g., Zhan et al. (2019)).25

The importance of atmospheric stability within the physics of wind energy prompted many experts to advocate for a more

comprehensive experimental characterization of the key quantities that govern the physics of the atmosphere, with particular

emphasis on those that carry information on the thermal state of the ABL, primarily temperature profiles (Veers et al., 2019;

Shaw et al., 2022).

Better knowledge of the temperature profiles around operating wind power plants could also help to elucidate a long-standing30

question about the effects of wind turbine wakes on local climate. Early coarse simulations of global weather patterns with

extremely large wind penetrations showed potential climate impacts (Keith et al., 2004; Wang and Prinn, 2010; Li et al., 2018;

Miller and Keith, 2018). However, experimental work using satellite-derived surface temperatures (Zhou et al., 2012, 2013;

Xia et al., 2016; Liu et al., 2023; Walsh-Thomas et al., 2012) or observations near the ground (Baidya Roy and Traiteur, 2010;

Rajewski et al., 2013; Smith et al., 2013; Moravec et al., 2018; Wu and Archer, 2021) highlighted temperature differences35

generally less than one degree that appear to be induced by turbines. The general consensus is that turbines cause surface

warming during nighttime stably stratified conditions, while daytime data draw a more uncertain picture. More recent meso-

and micro-scale CFD studies proposed sound physical explanations of the thermal effects of wind turbines (Xia et al., 2019;

Wu et al., 2023), especially thanks to the access to simulated vertical temperature profiles. However, observations of thermal

effects of wind turbines across multiple heights to support such hypotheses are still scarce.40

Finally, a more practical, nevertheless important use of temperature information for wind energy is the estimation of air

density profile across the turbine rotor span, which is essential to assess the energy yield and carry out power performance tests

of wind turbines (International Electrotechnical Commission, 2022).

Based on the former discussion, temperature profiling has been one of the foci of the American WAKE experimeNt (AWAKEN,

(Moriarty et al., 2024)), the largest experimental field campaign for wind energy conducted in the U.S. to date. At the AWAKEN45

site, temperature profiles were routinely measured through an innovative remote sensing tool, which combined the observations

from infrared spectrometers and historical radiosonde data to estimate vertical profiles of temperature throughout the ABL and

beyond. Specifically, spectrometers called ASSIST-II (Atmospheric Sounder Spectrometer by Infrared Spectral Technology,

(Michaud-Belleau et al., 2025)) by LRTech were deployed at several locations throughout the AWAKEN domain and recorded

the downwelling spectral infrared radiance at the ground level. The physical retrieval algorithm TROPoe (Tropospheric Re-50

motely Observed Profiling via optimal estimation, Turner and Blumberg (2019); Turner and Löhnert (2014); Adler et al. (2024))

was then used to estimate temperature profiles that matched the observed radiance. The combined ASSIST+TROPoe system

represents a thermodynamic profiler.

The AWAKEN project hosted the first large-scale deployment of thermodynamic profilers for wind energy research and in-

cluded extensive validation. The TROPoe methodology is briefly described in Section 2 while the following sections discuss the55

details of the validation process. In the pre-campaign phase, two identical thermodynamic profilers were installed side-by-side

to assess the magnitude of instrumental noise and calibration error (Section 3.2). The temperature estimated by the thermo-

dynamic profilers was also compared to observations from a nearby met masts to quantify the overall error across different
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heights, mainly in the surface layer (Section 3.3). Later on, during AWAKEN, temperature profiles from a thermodynamic

profiler were validated vs. radiosonde measurements, providing a comprehensive error quantification across the entire ABL60

(Section 4.2). Finally, differences in temperature between sites were compared to the same quantities observed by independent

and co-located surface met stations to assess the ability of temperature profiling to characterize the spatial heterogeneity of the

temperature field (Section 4.3). Key takeaways are provided at the end of each section, and overall conclusions are drawn in

Section 5.

2 Methods65

The temperature profiling method used at AWAKEN relies on the information on temperature and humidity profiles contained

in the downwelling infrared spectral radiance observed at the ground by the ASSIST. This information is then combined

with ancillary measurements (e.g., the cloud base height or CBH from a ceilometer) and used by TROPoe to estimate the

thermodynamic state that agrees with the observed infrared radiance and has the highest likelihood based on the current

observations and constrained by past climatology. The retrieved thermodynamic state includes the vertical temperature profile,70

as well as humidity and cloud properties, although we will focus on the first quantity in the present study. This section will

review the fundamentals of temperature profiling at AWAKEN. For a more detailed discussion, the reader is referred to Letizia

et al. (2025) and the references listed therein and below.

2.1 Physics of radiation in the atmosphere

The spectral radiance observed at the ground, B, and the current thermodynamic state of the atmosphere are connected through75

the physics of infrared radiation. In fact, each layer in the column of air directly overhead the instrument emits infrared

radiation based on the local temperature and proportionally to the local absorption coefficient, which varies spectrally due to

the chemical-physical properties of various trace gases like water vapor and carbon dioxide. The volume of air between each

emitting layer and the observer at the ground, in turn, absorbs and scatters the downwelling emission, also based on the local

absorption coefficient. The latter is the physical parameter that quantifies the opaqueness of a medium to incident radiation and80

is highly dependent on the wavenumber, ν̃, of the radiation itself (Siegel, 1971). In general, more opaque wavenumber regions

will allow only emission close to the observer to reach the ground-based spectrometer. Conversely, transparent wavenumber

regions will let radiation emitted from higher altitudes be detected by the instrument. These properties are exploited to infer the

vertical distribution of temperature profiles based on the spectral behavior of the radiance passively measured at the ground.

TROPoe utilizes a spectrally-resolved and extensively validated radiative transfer model (Turner et al., 2004; Clough et al.,85

2005; Mlawer and Turner, 2016) to simulate the spectral radiance that is associated with a given temperature profile. The model

includes a detailed description of the physics of radiation and the molecular mechanisms that govern the absorption/emission

at different wavenumbers. The main task of the thermodynamic retrieval algorithm is then to solve the inverse radiative transfer

problem based on the observations, which is an ill-posed mathematical operation. The solution method for this challenging

problem is described next.90
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2.2 Fundamentals of TROPoe

Calculating the spectral radiance for a given temperature profile represents a complex but relatively established task; however,

the inverse problem is significantly more complex. Unlike other remote sensing instruments like lidars and radars, the ASSIST

is completely passive in the sense that it does not emit any electromagnetic pulse that could be used to perform ranging, for

instance, based on the time of flight. Instead, it observes only the radiation at the ground, while the estimation of the associated95

temperature profiles is done in a purely mathematical way by inverting the radiative transfer problem, which is an integral

equation. This can be seen as the impossible task of guessing the shape of a solid object by just looking at its shadow.

TROPoe uses optimal estimation techniques (Rodgers, 2000; Turner and Löhnert, 2014) that leverage the statistical informa-

tion on the temperature profiles collected by previous radiosonde launches to constrain the problem and converge to a unique

solution. Specifically, the mean and level-to-level covariance of temperature, T , and mixing ratio, r, at different heights, z, are100

compiled into the so-called prior. The use of optimal estimation not only facilitates the convergence of TROPoe to a realistic

solution, but also provides as an output the posterior covariance, which quantifies the uncertainty of the retrieval. The embed-

ded uncertainty quantification represents an advantage of TROPoe compared to regression or machine learning-based methods

for temperature profiling. Full details of TROPoe are given in Turner and Löhnert (2014); Turner and Blumberg (2019).

The process just described is depicted in Fig. 1, and it is generally more complex and computationally expensive than other105

techniques used to observe atmospheric quantities using in-situ or remote sensing devices. However, physical-iterative retrieval

frameworks like TROPoe have several advantages that more statistically-based retrieval methods do not (Maahn et al., 2020;

Letizia et al., 2025), such as the cited uncertainty estimation, a broader generality, and easier troubleshooting. Understanding

the limitations of temperature profiling is indeed crucial for an informed use of the data products. Therefore, the following

section discusses the possible sources of uncertainty associated with our temperature profiling.110

2.3 Sources of uncertainty

When discussing the accuracy in temperature profiles, it is important to distinguish between known and unknown uncertainties.

The former are included in the posterior covariance generated by TROPoe, the latter are not. The known error can be expressed

as (Rodgers, 2000):

x̂−x =

smoothing︷ ︸︸ ︷
(A− I)(x−xa)+

noise︷︸︸︷
Gϵ , (1)115

where:

– x̂ is the estimated state (i.e., estimated temperature profiles)

– x is the true state (i.e., real temperature profiles)

– I is the identity matrix

– A is the so-called averaging kernel or A-kernel, an important output of TROPoe120
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Figure 1. Workflow of temperature profiling. The green bands in the spectral radiance are those used for AWAKEN.

– G is the so-called gain matrix, an intermediate product of TROPoe

– ϵ is the noise on the observations (i.e., on the spectral radiance).

The known error is therefore the sum of the effect of smoothing and noise. The smoothing is a typical source of uncertainty in

optimal estimation-based atmospheric sounding. The retrieved profiles are, in fact, a smoothed version of reality with a vertical

resolution that is roughly equal to the height above the ground level. This makes temperature profiling more accurate close125

to the ground (where, for instance, wind turbines operate), and less accurate at the top of the boundary layer. In fact, sharp

temperature inversions that typically occur at the top of the ABL are often significantly smoothed out. Smoothing is the result

of incomplete information on the thermodynamic state in the spectral radiance that makes TROPoe partly reliant on the prior

statistics. However, the smoothing error is predictable and included in the posterior uncertainty.

The error due to noise, instead, comes from random, zero-mean fluctuations on the observed spectral radiance due to im-130

perfect hardware. Noise in the ASSIST is generally very small and is estimated in real-time by the instrument’s processing

software (Michaud-Belleau et al., 2025). The instrumental noise variance is included in TROPoe to calculate the posterior

uncertainty of the solution.

Unknown uncertainties can be generally attributed to instrumental biases and an imperfect radiative model. Regarding the

former, the 3σ bias in the spectral radiance is generally below 1% of the ambient black body emission (i.e., the highest emission135

typically observed in an atmospheric scene). This is ensured by online radiometric calibration, which was perfected throughout

the 30-year-long AERI program (Knuteson et al., 2004a, b; Mlawer and Turner, 2016), and has been verified (Turner et al.,

2025). These specifications translate into a 3σ bias in temperature of less than 1◦C.
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However, the most insidious error comes from the imperfect description of the physics in the radiative transfer model. In

fact, to make the model computationally efficient, TROPoe disregards some phenomena, such as atmospheric scattering. The140

physical constants in the model, for example, the spectral width of water vapor and carbon dioxide absorption lines, are also

affected by uncertainty. An online estimation of the radiative transfer model error is possible, but not practically viable at the

moment (Maahn et al., 2020).

Finally, prior radiosonde measurements used to constrain the calculation could be a source of bias if they are not represen-

tative of the observed climatology. This is relatively straightforward to diagnose (Maahn et al., 2020).145

3 Results from pre-campaign tests

3.1 Overview

Before AWAKEN, the three NREL ASSISTs were deployed at the NREL Flatirons Campus close to Boulder, CO, for testing

(Fig. 2). ASSIST 1 (Letizia, 2022b) and 2 (Letizia, 2022c) were co-located and operated for 97 days from May 18th to August

24th, 2022, providing an extensive record of observations that will be here used to assess the instrumental error (Section150

3.2) and the total error (Section 3.3). Additionally, 24 days of temperature profiles from ASSIST 3 (Letizia, 2022a) are also

available and will be occasionally used in Section 3.3. The 135-m M5 meteorological (met) mast (Clifton, 2014) is located on

the North-East side of the campus and collected thermodynamic and kinematic atmospheric data at 1 Hz, which represents our

main reference dataset. A second met mast, the 82-m M2 tower, is installed on the west side of the campus and was used as

a redundant measurement point, as discussed in Section 3.3. A Vaisala CL51 ceilometer (Hamilton, 2022) was also deployed155

at that time, approximately 425 m northwest of the ASSISTs, providing CBH to TROPoe. As indicated in Fig. 2, several wind

turbines are present on site and sporadically operated for research purposes. The local topography is characterized by a gentle

∼ 2% W-E down slope, resulting in 7 m of difference in elevation between the ASSIST 1 and 2 and the reference met tower. In

the following, temperature measurements will be compared based on the height above the local ground, thus assuming perfectly

terrain-following temperature profiles. Neglecting terrain effect at the site is, in fact, common for instrument inter-comparisons160

(Wang et al., 2015; Letizia et al., 2024).

The climate at the site is typically semi-arid, with sunny conditions 70% of the daytime, which generally produces a markedly

diurnal cycle of atmospheric stability. Wind conditions are significantly affected by the diurnal cycle, and also by the presence

of the Rocky Mountains to the west that often channelize the flow, creating strong winds (Hamilton and Debnath, 2019). The

data collected by the M5 met tower confirm these behaviors during the present campaign. In accordance with previous studies165

of the site (Aitken et al., 2014; Hamilton and Debnath, 2019), the atmospheric stability is classified based on the gradient

Richardson number, Ri, evaluated between 3 and 122 m, using the ranges reported in Table 1. The hourly distribution of

stability shows a clear daily cycle (Fig. 3a), also reflected in the daily-averaged temperature signals at different heights above

the ground (Fig. 3b). The wind rose is also shown in Fig. 3c.

Temperature profiles were retrieved using TROPoe v0.12 (Turner, 2025), which ingested the spectral radiance from the170

ASSIST at selected bands as the main observations. The prior used to facilitate the convergence of TROPoe includes ensemble
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Figure 2. Map of the NREL Flatirons Campus in 2022. The size of the turbine rotors is to scale.

Ri range Stability class Symbol

≥ 0.25 Stable S

[0.03,0.25) Neutral-stable NS

[−0.03,0.03) Neutral N

[−0.25,−0.03) Neutral-unstable NU

<−0.25 Unstable U
Table 1. Stability classes based on the Richardson number calculated between 3 and 122 m.

means and level-to-level covariances of temperature and mixing ratio profiles from 1811 radiosonde launches in the Denver

area. The lowest CBH from the ceilometer is also assimilated by TROPoe to enhance the accuracy of the solution in cloudy

scenarios (Turner and Löhnert, 2014).

TROPoe profiles are quality-controlled by rejecting data above the base of optically thick clouds, with root-mean square175

between the observed and predicted radiance larger than RMSA>5, or with convergence parameter, γ > 1 (see Letizia et al.

(2025) for details). Clouds detected when the TROPoe estimate for the liquid water path is less than 5 g m−2 are considered

optically thin and thus bypassed. Table 2 reports the overall TROPoe temperature statistics for ASSIST 1 in terms of data avail-

ability after quality control, mean uncertainty (σT ), mean vertical resolution (δz), and cumulative degrees of freedom (CDFs).
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Figure 3. Climate statistics during the pre-AWAKEN campaign test from M5: occurrence of stability as a function of time of the day, based on

the Richardson number between 3 and 122 m (S=stable, NS=neutral-stable, N=neutral, NU=neutral-stable, U=unstable) (a); daily-averaged

temperature at different heights, where the shaded region represents the 95% confidence interval (b); wind rose at 74 m (c). Precipitation and

wake events are excluded.

The latter is a measure of the information content below the selected height (see Turner and Löhnert (2014)). Uncertainty and180

vertical resolution increase with height, while most of the information content is confined close to the surface. This is a typical

behavior of atmospheric sounding based on ground-based passive observations (Turner and Löhnert, 2021).

z [m] Data availability [%] σT [◦C] δz [m] CDFs

10 90 0.08 28 0.95

100 90 0.21 168 1.94

1000 87 0.58 1589 3.42
Table 2. Mean statistics on the TROPoe temperature retrieval statistics of TROPoe temperature retrieval for ASSIST #1 based on 12,927

temperature profiles derived from data collected during the pre-campaign test.

Temperature profiles are generated every 10 minutes as a trade-off between temporal resolution and computational costs. To

achieve this, TROPoe extracted the nearest in time spectral radiance collected by the ASSISTs at a sampling rate of ∼ 14 s.185

The radiative transfer model is non-linear, so using high-frequency observation rather than, for instance, 10-minute-averaged

ones, prevents the ingestion of non-realistic spectral radiances that can occur when averaging several sky scenes with different

radiative properties. This is typical of scattered cloudy conditions. One drawback of using ASSIST data collected at the native

sampling rate is that the noise is not averaged out, as it would occur by using time-averaged radiances. Therefore, the noise in

the spectral radiances is removed through a Principal Component Analysis filter (Turner et al., 2006).190
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Furthermore, the use of high-frequency data implies that the observed profiles include a significant turbulent contribution.

To understand the behavior of turbulence at the site, we calculated the directional, daily-averaged, 10-minute second order

moments of both temperature and wind speed in the form of temperature standard deviation (
√

T ′,2) and turbulence intensity

(TI) from 1-Hz met tower data (Fig. 4). The inner circle of the polar plot corresponds to nighttime, while the outer one

corresponds to daytime. In other words, radial variations of the quantity indicate a diurnal cycle, and departures from axial195

symmetry represent the effects of wind direction. Both
√

T ′,2 and TI show the expected diurnal cycle with larger fluctuations

during the day (i.e., unstable conditions), although directional effects are also important. In particular, the temperature standard

deviation plot at 3 m (Fig. 4a) reveals consistently large fluctuations during night hours and especially for WSW winds. A TI

peak for the same time/direction is not evident. The fluctuations occurred with periods of several minutes and are confined

close to the surface, which is reminiscent of the gravity wave events documented by Sun et al. (2015). Further investigation is200

beyond the scope of this work; however, the effect of turbulent fluctuations on the temperature differences observed at different

sites is discussed in Section 3.3.

3.2 Exploring instrumental error: side-by-side test

In this section, we discuss the temperature differences observed between the co-located ASSIST 1 and 2. The comparison is

important to assess the instrumental error. In fact, subtracting the temperature estimated by TROPoe for the two independent205

instruments leads to a theoretically perfect cancellation of the smoothing and radiative model errors in TROPoe. What is left

is the effect of bias in the measurements (which would translate into a mean temperature difference) and noise (which would

translate into a random, zero-mean temperature difference). By applying the general TROPoe posterior uncertainty (Eq. 1) to

the temperature difference, we get:

∆T̂ = T̂2− T̂1 = G(ϵ2− ϵ1), (2)210

where we have taken advantage of the equivalent TROPoe settings for both units to eliminate the smoothing error and isolate

a common G matrix. Since instrumental noise, ϵ, is assumed to have zero mean, the theoretical mean of ∆T̂ is 0. We can

safely assume negligible correlation between the instrumental noise of independent units, so that the predicted covariance of

the temperature differences is:

S∆T̂ = G(Sϵ,1 + Sϵ,2)GT , (3)215

where Sϵ is the covariance of the instrumental noise for each instrument, a nearly diagonal matrix that is estimated by the

ASSIST online. The instrument-to-instrument error standard deviation that we will use next, σ∆T̂ , is then simply the square

root of the diagonal S∆T̂ .

To test the validity of this framework, we retrieved more than 10,000 temperature profiles through TROPoe from both

ASSISTs and calculated statistics of the temperature difference, ∆T̂ , at each height up to 2000 m above ground level. The220

results are shown in Fig. 5 in terms of bias (i.e., mean difference) (a), Root Mean Square (RMS) of temperature difference

(b), and probability of exceeding the 95% TROPoe confidence interval (c.i.) predicted by TROPoe (c) as a function of height.
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Figure 4. Directional, daily-averaged standard deviation of temperature (a-d) and turbulence intensity (TI) (e-h) at different heights: 3 m

(a,e); 38 m (b,f); 87 m (c,g); 122 m (d,h). The areas with transparent fills have a 95% confidence interval larger than 0.1◦C or 10% for

temperature standard deviation and TI, respectively.

The bias is extremely small (< 0.02◦C) and practically irrelevant for most applications, which validates the assumption of

negligible instrumental bias. The RMS of ∆T̂ is below 0.3◦C, and exhibits a gradual monotonic trend with height, except for a

peak close to the surface; these bias and RMS results agree with Turner et al. (2025). The error model based on TROPoe (σ∆T̂225

from Eq. 3 and red line in the figure) is in fair agreement with the observations (black line). The trend as a function of height

is well-captured, but the theory underestimates the error below 100 m and overestimates it above. This discrepancy may come

from either an imperfect estimation of the noise from the ASSIST and/or noise that violates the assumption of Gaussianity used
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Figure 5. Vertical profiles of statistics of temperature differences between ASSISTs 1 and 2, ∆T̂ : mean (a); RMS (b); probability of exceed-

ing the 95% TROPoe c.i. (c). The PDFs of temperature difference at selected heights are provided as insets with equal axes in (c). The shaded

area in (a) and (b) represents the 95% statistical c.i., while in (c) represents the PDFs with the largest and smallest TROPoe uncertainty.

by TROPoe. To further explore the ability of theory to predict the distribution of ∆T̂ , we plot the probability of ∆T̂ exceeding

the 95% c.i. obtained from Eq. 3 and assuming a Gaussian distribution (i.e., the probability that ∆T̂ /∈ ±1.96 σ∆T̂ ). Close230

to the ground, where theory underestimates the standard deviation of ∆T̂ , there is up to 30% probability of finding a value

outside the c.i., which is significantly larger than the expected 5%. The corresponding real histogram (gray) and Gaussian fit

(black line) of the probability density function (PDF) at z = 10 m shows a leptokurtic behavior of ∆T̂ not captured by TROPoe

theory (red line) that always assumes Gaussianity. The model predicts fairly the bulk of variability around 0, but the likelihood

of large and extreme ∆T̂ events is clearly underpredicted at this height. Moving to z = 1000, we see an opposite behavior:235

the mean uncertainty estimation by Eq. 3 is too conservative, with real values more peaked around 0 than predicted. These

opposite trends cancel out at z = 100, where the prediction of TROPoe is spot on.

The main takeaways of this section are:

1. TROPoe temperature retrievals from two identical ASSISTs show negligible bias and an RMS of < 0.3◦C of difference,

the latter being predicted fairly well by TROPoe uncertainty product.240

11

https://doi.org/10.5194/wes-2025-198
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



2. Random uncertainty from both the met data and TROPoe estimate spikes and departs from Gaussianity in the lowest 20

m, with TROPoe slightly underpredicting its magnitude.

3.3 Quantification of total error near the surface: comparison with met tower

Now that the instrument-to-instrument error has been documented and proven to be negligibly biased and predictable for

common applications, in this section, we focus on a more comprehensive characterization of the total error. This includes245

contributions from smoothing, forward model, and prior, in addition to the error due to instrumental noise. The total error

of the temperature profiles is quantified through a comparison with the temperature readings of the Resistance Temperature

Detector (RTD) probes installed on the M5 tower. Specifically, the temperature profile is reconstructed by combining the

absolute temperature measured at 3 m and differential temperature measurements between 3 and 38, 38 and 87, and 87 and 122

m. The use of differential temperature measurement is advantageous because it maximizes the sensitivity of the probe, allowing250

the gain applied to the raw signal and thus error amplification to be reduced. Resulting temperatures at 4 heights (3, 38, 87, and

122 m) have a reported uncertainty of 0.1◦C (St.Martin et al., 2016) which we interpret as a 1σ value. Temperature probes are

housed inside a radiation shield with active ventilation capabilities. However, during this campaign, some ventilation fans were

not active. Therefore, the temperature readings from the unaspirated sensors on M5 were corrected for radiative error using the

method by Nakamura and Mahrt (2005) and the M2 tower (which was aspirated) as a reference (see Appendix A for details).255

The high-frequency temperature time series from M5 collected at 1 Hz are downsampled through a rolling average to match

the sampling rate of the ASSIST (14 seconds), then linearly interpolated in time on the TROPoe time grid (one profile every

10 minutes). TROPoe data is interpolated linearly in z to match the met tower heights. No attempt is made to time-shift either

dataset to account for the advection across the 440-m distance between the two instruments, mainly because the dataset also

encompasses wind direction where the two instruments are not aligned with the wind. Differences in temperatures due to spatial260

decorrelation of turbulent thermal structures in space are, therefore, an additional source of random "representativeness" error

in the data and will be discussed separately.

Figure 6 shows three illustrative time series from both met probes and TROPoe at all available heights. The first was recorded

during the passage of a cold front that caused a drop in temperature of about 15◦C in 20 minutes. TROPoe detects the dras-

tic temperature change with excellent agreement when compared to M5, indicating the ability of our ground-based passive265

temperature profiling method to work robustly in dynamic atmospheric environments.

The second time series corresponds to an overcast event (see cloud height on the top panel) that disrupted the typical diurnal

thermal cycle. Discrepancies during the coldest hours with low clouds are within a fraction of a degree. This is an early indica-

tion that temperature estimates close to the surface are minimally affected by clouds that, as we mentioned, represent a major

challenge for temperature profiling using passive spectral infrared methods. The accuracy of TROPoe in this case is remark-270

able, considering that low clouds have a powerful emission in the infrared region that may have obscured the thermodynamic

information.
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Figure 6. Selected time series of temperature from M5 and TROPoe at different heights: 3 m (a); 38 m (b); 87 m (c); 122 m (d). The CBH is

shown in (e). The light gray lines represent the met tower observations at all heights and are superposed to evaluate the ability of TROPoe to

match vertical temperature gradients.

The third and possibly more insightful time series corresponds to a sequence of hot, clear-sky days. Here, the differences

between TROPoe and the met tower appear more systematic, with a consistent warm bias at night and a cold bias during the

day, the latter being less evident at the lowest height.275

Figure 7 offers a more quantitative insight into the temperature differences over the entire dataset. Linear fits at different

heights (Fig. 7 a,b,c,d) show R2 above 0.98, very small bias, RMS < 1◦C, and, interestingly, a slope slightly less than one

at all heights. Rather than being a statistical artifact (e.g., slope dilution (Frost and Thompson, 2000)), this is more likely

an indication that either TROPoe is underestimating the diurnal variation of temperature compared to M5, or the effect of a

residual error in the correction of the radiative error of M5 (see Appendix A). This is also consistent with the diurnal bias seen280

in Fig. 6.

Before digging into the possible cause of the observed discrepancies, an important question is: "How well does the TROPoe

posterior uncertainty product capture the observed differences?". To this aim, we visualize histograms of temperature dif-

ferences at all heights (Fig. 7 e,f,g,h) and superpose the expected error Gaussian PDF obtained by combining TROPoe+M5

uncertainties. The real PDF of ∆T (gray bars) is minimally biased and arguably Gaussian, especially above 3 m (the black285
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Figure 7. Statistical quantification of the temperature differences between TROPoe and M5 at different heights: (a-d) linear regression; (e-h)

histograms, where the shaded red area indicates the error PDF using the minimum and maximum combined TROPoe+M5 uncertainty. 3 m

(a,e); 38 m (b,f); 87 m (c,g); 122 m (d,h).

line is the Gaussian fit). However, the standard deviation is 3 to 5 times larger than the predicted uncertainty, indicating an

additional source of error in the dataset. Having excluded the instrumental bias or an under-predicted noise in Section 3.2,

we are left with two main candidate sources of uncertainty: the spatial separation between the ASSIST location and M5 and

the radiative transfer model (the prior was confirmed to match the observed climatology and thus ruled out as a source of

uncertainty).290

The error due to spatial separation is associated with the spatial decorrelation of turbulence. Its magnitude can be estimated

through the temperature structure function, defined as the variance of the temperature difference as a function of space. For an

ergodic, horizontally homogeneous field, this reads:

DT (r,z) = (T (x)−T (x+ r))2, (4)

where the overbar indicates time average (in our case, over the standard 10-minute window), r is the separation along a certain295

direction, and x is a reference point in space. A direct application of Eq. 4 would require the placement of multiple sensors

at different locations. For the sake of simplicity, it is customary to instead use Taylor’s frozen turbulence hypothesis (Taylor,

1938), which de Silva et al. (2015) showed to work well up to separation distances as large as the boundary layer height

in neutral conditions. Han and Zhang (2022) showed that Taylor’s hypothesis fails to replicate spatial structure temperature

functions under unstable conditions and for short separations, while it works well in other conditions. Here we use Taylor’s300
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Figure 8. Estimated standard deviation due to spatial separation (lines) as a function of distance from M5 and stability at different heights,

and corresponding RMS of temperature difference from ASSISTs 1 and 3 (triangles). Known TROPoe and met tower uncertainty has been

removed from the RMS to isolate the residual component. 3 m (a); 38 m (b); 87 m (c); 122 m (d).

hypothesis to calculate the structure function based on temperature time series from the met tower up to separations of 440 m

in all atmospheric conditions, which, based on the cited references, should represent an acceptable approximation of Eq. 4 for

most of the cases. To maximize realism in the estimation of the spatial error between TROPoe and the met tower, we calculate

the structure function of the temperature data downsampled to the ASSIST sampling rate of 14 s. Furthermore, we restrict the

analysis to cases where the ASSIST and the met tower are aligned within 20◦ from the mean wind direction and to TI values305

smaller than 50% (Stull, 1988).

Figure 8 shows the standard deviation of the temperature differences based on the (square-rooted) time-based structure

function at different heights and stabilities. The choice to cluster data in this function is inspired by the classical scaling

of structure functions (Wyngaard et al., 1971; Wyngaard, 1973), which relates this statistical parameter mainly to stability

and height. The structure function is seen to generally decrease with height and increase in unstable conditions, where more310

turbulence is expected. In our dataset, it also increases moving from neutral to stable, which is likely connected to the nighttime

temperature oscillations whose signature appears in Fig. 4.

On the same figure, we report the residual RMS of temperature difference TROPoe vs. M5 after subtracting the known

TROPoe+M5 uncertainty for ASSIST 1 (placed 440 m away from M5) and ASSIST 3 (placed 66 m away). If spatial variability

were the only cause of the residual discrepancy, we would expect a match with the value estimated from the structure function315

at the corresponding distance, height, and stability. Although some trends do match (the highest RMS occur in stable and

unstable conditions), the residual variability of ∆T far exceeds the estimated spatial component for most of the bins. An even

stronger piece of evidence that the discrepancies between TROPoe and met are not only turbulence-driven is that the error does

not decrease moving from ASSIST 1 (440 m away) to ASSIST 3 (only 66 m away). The fact that some additional source of

uncertainty other than turbulence is contributing to fatten the PDF of ∆T is also suggested by the cyclical (thus not random,320

as turbulence would be) difference observed in Fig. 6 for clear-sky conditions.
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Figure 9. Random forest permutation feature importance of several atmospheric parameters as a descriptor of the temperature difference

between TROPoe and M5.

After ruling out spatial variability as the only contributor to the temperature difference, we focus on describing the residual

errors as a function of the atmospheric conditions. An objective way to assess the relevance of a set of inputs in describing a

target parameter is the importance ranking through random forest permutations. We apply the framework described in Letizia

et al. (2024) to the description of ∆T as a function of the atmospheric quantities in Fig. 9 for separate heights. The Richardson325

number (viz., stability) emerges as the most important parameter that describes the temperature differences. This confirms that

the diurnal error pattern seen above is ubiquitous in the dataset.

To understand the magnitude of what appears to be a stability-dependent bias, we evaluate mean temperature profiles from

TROPoe, M5, and M2 at the native heights for the different stability classes. Care has been taken to ensure that only periods

when all three sources are available are included. Figure 10 shows the mean profiles, along with their 95% statistical c.i. The330

stability-dependent bias between TROPoe and M5 is more severe at higher z and for unstable and stable conditions. Neutral and

near-neutral conditions show a bias that is within the statistical uncertainty. Compelling evidence that the observed difference

is an actual bias and not an instrumental error from the met sensors or the effect of persistent thermal inhomogeneity is the

excellent agreement between M5 and M2. To sum up, the present analysis highlights a stability-dependent bias that is always

less than 1◦C and is mostly positive in stable conditions (TROPoe warmer than met towers) and negative during unstable335

conditions (TROPoe colder than met towers, except very close to the ground). Differences of this magnitude are similar to

what was reported by previous studies (Blumberg et al., 2015; Klein et al., 2015; Bianco et al., 2024).

To conclude this section, we discuss the accuracy of temperature profiling in capturing vertical temperature gradients and

hence the static stability of the surface layer. We first look at the linear regression between the vertical temperature gradient,

∆T∆z−1, evaluated from M5 vs. TROPoe at height pairs (Fig. 11). The highest agreement is observed for the combination340

of heights that result in larger gradients (i.e., close to the ground or for large vertical spacing), with R2 values of 0.88. The

agreement is slightly worse than what was reported for the LABLE experiment (Klein et al., 2015), although that study only

included temperature gradients in the ±0.01◦C m−1 range and had a smaller distance between the thermodynamic profiler

and the reference instrument (the radiosonde launch station was 300 m away from the spectrometer). Poorer scores occur for
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Figure 10. Mean temperature profiles for different stabilities: 6112 stable profiles (a); 862 neutral-stable profiles (b); 210 neutral profiles (c);

394 neutral-unstable profiles (d); 3314 unstable profiles (e).

height combinations where ∆T∆z−1 is small, which is expected for a constant level of random error or unexplained variance345

between the two variables. Also, at short vertical separations, the finite vertical resolution of the TROPoe grid begins to play a

significant role.

We finally assess the difference in Ri-based stability classification when using M5 vs. TROPoe data. The Richardson number

from TROPoe uses temperature and moisture content from TROPoe, while wind gradients are still necessarily from M5. Table

3 shows, for each stability class defined from the Richardson number using M5, the percentage distribution of stability classes350

derived from the Richardson number using TROPoe. Both Ri values are evaluated between 3 m and 122 m. This contingency

table shows good agreement for the stable and unstable classes (83% and 97% hits, respectively). More discrepancies are

observed for neutral and near-neutral conditions. These classes are also the narrowest in terms of Ri range and those with the

lowest occurrence, thus more sensitive to differences in lapse rate. TROPoe is shown to have an unstable bias compared to M5.

For instance, 11% of unstable occurrences according to M5 are identified as stable by TROPoe, which is consistent with the355

cold bias at 122 m seen in Fig. 10e. An imperfect removal of the overheating (Appendix A) due to solar radiation (the probe at

122 m is not aspirated) may also have contributed to the apparent unstable bias.

M5

TROPoe
S NS N NU U

S 83 4 0 0 11

NS 7 47 11 13 19

N 0 3 28 33 33

NU 0 1 1 28 68

U 0 0 0 1 97
Table 3. Percentage contingency table of stability classification based on Richardson number from either M5 (rows) and TROPoe (columns).
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Figure 11. Linear regression between vertical temperature gradients from different height pairs: 3 and 38 m (a); 3 and 87 m (b); 3 and 122

m (c); 38 and 87 m (d); 38 and 122 m (e) 87, and 122 m (f).

The main takeaways of this section can be summarized as follows:

1. ASSIST+TROPoe performs satisfactorily at all the heights and conditions we tested for what could be considered general360

wind energy and meteorological applications, with an overall RMS of temperature difference with the met tower of less

than 1◦C and negligible overall bias.

2. The RMS of temperature differences could not be fully explained in terms of TROPoe and met tower uncertainty esti-

mates and spatial decorrelation of thermal turbulence.

3. We identified a stability-dependent bias of less than 1◦C that deserves further investigation.365

4. ASSIST+TROPoe is confirmed to be remarkably accurate in identifying static stability of the surface layer, particularly

for very stable and unstable conditions.
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4 Results from AWAKEN

4.1 Overview

The AWAKEN experiment is a multi-institutional experimental campaign with the goal of investigating the interactions be-370

tween the atmospheric boundary layer and land-based wind plants. It took place from 2023 to 2025 in northern Oklahoma,

U.S. The reader is referred to Moriarty et al. (2024) and references therein for more details regarding the instrument layout and

science goals.

Temperature profiling was an essential asset at AWAKEN and used the network of sensors shown in Fig. 12. This included

three ASSISTs (South, Middle, and North) strategically placed to capture atmospheric conditions throughout the experimental375

domain. Each ASSIST was co-located with a surface met station (Goldberg, 2023e, f, g). Additional temperature profiling was

conducted through radiosondes launched from the north-most site (Keeler et al., 2023).

Figure 12. Map of the instruments used for temperature profiling and wind turbines at AWAKEN.

TROPoe was run with the same setup described in Section 3.1 and using a CBH from the three ceilometers (Hamilton, 2023;

Zhang et al., 2023b, a) plus the lidar (Shippert et al., 2023) indicated on the map in blue. To account for the spatial variability of
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Figure 13. Data availability at AWAKEN.

cloud cover, the CBH for each ASSIST site is estimated as the average CBH from all available sources weighted by the inverse380

of the respective distance. The data availability of all input instruments and TROPoe retrievals is shown in Fig. 13. Overall,

roughly one year of temperature profiles is available from all combined sites.

4.2 Quantification of error in whole ABL: comparison with radiosondes

The goal of this section is to quantify TROPoe’s total error and the accuracy of the uncertainty estimate across the ABL.

To this aim, we compare TROPoe retrievals at the North site with observations from radiosondes at AWAKEN. Radiosondes385

were launched in different phases from May 17 to August 22, 2022, at site H. The radiosonde model is the Vaisala RS-90

with an accuracy of temperature measurement of 0.15◦C (Holdridge, 2020). The nominal schedule included 5 launches at

02:30, 05:30, 08:30, 11:30, and 23:30 UTC aimed at probing the nocturnal ABL. Out of the 198 available radiosonde launches,

116 have concurrent TROPoe retrievals and are used in this analysis. The comparison is carried out vs. radiosonde profiles

downsampled at the ASSISTs sampling rate (14 s), both at the native resolution vertical and also on "TROPoe-smoothed" as390

done by (Blumberg et al., 2017). It can be proven (Letizia et al., 2025) that smoothing high-resolution profiles using TROPoe

averaging kernel and prior theoretically eliminates the smoothing error and isolates the noise contribution.

All profiles and error statistics are shown in Fig. 14. The bias (Fig. 14a) peaks at the surface, where it reaches the modest

value of 0.2◦C, which is smaller than what reported by previous similar studies (Blumberg et al., 2015; Klein et al., 2015;

Blumberg et al., 2017; Turner and Blumberg, 2019; Turner and Löhnert, 2021). By looking at the temperature difference map395

in Fig. 14e, it appears that the cold bias close to the surface is due to persistent patches of negative temperature differences in

the lowest 100 m associated with positive difference aloft that occurred for specific launches. Finally, smoothing the radiosonde

profiles has little impact on bias.

The RMS of temperature difference (continuous black line in Fig. 14b) shows a peak at the surface (0.9◦C) and a monotonic

positive trend above 100 m. Values of the RMS in the range of heights considered are in line with the several references400
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Figure 14. Vertical profiles of statistics of temperature differences between TROPoe at North site and radiosondes, ∆T : mean (a), RMS (b);

all temperature profiles from radiosondes; (c) all temperature profiles from TROPoe at the North site (d); all temperature differences (e).

Shaded areas in (a) and (b) correspond to the 95% c.i. of the statistics for unsmoothed profiles.

(Blumberg et al., 2015; Klein et al., 2015; Turner and Blumberg, 2019), except for the high value at the surface. This high

RMS close to the ground is also due to the bias just discussed. The TROPoe total uncertainty estimate (continuous red line

in Fig. 14b) amplified with the radiosonde (small) uncertainty captures remarkably well the trend of RMS above 100 m,

although with an average 20% underestimation. This may be due to the effect of spatial decorrelation at the distance between

the two instruments (4 km at the ground). RMS difference with smoothed radiosonde profiles (dashed black line in Fig. 14b)405

is expectedly lower than the total RMS due to the removal of the smoothing error, with TROPoe’s noise-only+radiosonde

uncertainty estimate being off by 40 %, in part due to the persistent bias, which is not smoothed out.

The presence of a persistent temperature anomaly at heights where wind turbines operate at AWAKEN led to the hypothesis

that the observed bias could be caused by wake effects. Turbine wakes are known to generate turbulence that warms up the air

below the rotor height and cools down the region above it (Wu et al., 2023) by diminishing the lapse rate in stable conditions.410

What we see in Fig. 14e, especially for launches #25 to #75, is compatible with wake effects affecting disproportionally more

the radiosonde. The launch site is indeed downstream of the North site where the ASSIST operates (based on the prevalent

wind direction), and therefore in the wake of more turbines.

Early evidence that wake effects may have played a role is provided in Fig. 15 that shows the temperature difference TROPoe-

sondes averaged from the ground to wind turbine hub height as a function of mean wind direction and wind speed in the turbine415

layer. The sign of the temperature difference is highly dependent on wind direction, with negative values occurring mostly for

SSW winds and positive values for SE. Even if the complexity of the wind plant layout around both sites does not allow for an
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Figure 15. Mean temperature difference TROPoe-sondes below hub height as a function of wind direction and wind speed in the turbine

layer. The regions of the turbine power curve are also marked.

easy estimate of wake effects, the directionality of the temperature difference is a strong indication that site-specific conditions

(wakes or terrain), rather than instrumental or TROPoe errors, are causing the bias.

We can summarize the main results of this section as follows:420

1. Temperature profiles are negligibly biased compared to radiosondes, and the random uncertainty is predicted fairly well

by TROPoe.

2. Persistent temperature differences compatible with terrain or wake effects in the lowest 200 m contributed to increasing

the RMS of temperature differences close to ground.

4.3 Ability to capture spatial gradients: comparison with surface met sensors425

At AWAKEN, each ASSIST was co-located with a surface met station, which offers a unique opportunity to quantify the ability

of temperature profiles to capture spatial gradients of temperature near the ground. For this comparison, we use temperature

data collected by HMP45C Vaisala platinum resistance temperature detectors installed at 2 m above the ground level. The

sensors have an average 1σ uncertainty of 0.25◦C (Campbell Scientific, 2007) and are shielded but not actively ventilated. We

did not apply any correction for the radiative bias due to the absence of a reliable reference sensor.430

The met data are provided natively as a 1-minute average, which is a slower response than that of the ASSIST, so what is

shown next will include some representativeness error due to the different sampling rates. In the first place, we characterize

the difference between the met and TROPoe output interpolated to 2 m at the same site. The comparison is shown in Fig. 16.

The agreement is excellent with an R2 of 1 to double-digit precision. The slope is consistently less than one, similar to what

we found in the pre-campaign test (Fig. 7). Diurnal overheating of the met sensors could also have contributed to reducing the435
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Figure 16. Statistical quantification of the temperature differences between TROPoe and met stations at the same site at 2 m: (a-c) linear

regression; (d-f) histograms, where the shaded red area indicates the error PDF using the minimum and maximum combined TROPoe+M5

uncertainty. South site (a,d); Middle site (b,e); North (c,f). site.

slope. Positive biases of about half a degree are seen at the South and Middle sites, while the North site is unbiased. The South

ASSIST was the one that showed a much smaller bias with the M5 met tower (Section 3.2). These South and Middle ASSISTs

were also the very same used for the side-by-side comparison (Section 3.2), where they showed a negligible bias between each

other. Given the pre-campaign results and the fact that the met and ASSIST were co-located at AWAKEN, we speculate that

there may be ∼ 0.5◦C bias in some met sensors. The histograms of temperature differences (Fig. 16, bottom) suggest that the440

warm bias at the South and Middle sites is pretty consistent, and not due to isolated outliers. It also proves that the uncertainty

estimate of TROPoe+met agrees well with the variability seen in the observations (TROPoe uncertainty was, on average, larger

at AWAKEN than in the pre-campaign test, mostly due to the different climatologies).

After assessing that TROPoe performs remarkably well in capturing both the surface temperature and its uncertainty at

AWAKEN, we move to a more challenging task: quantifying site-to-site temperature gradients. In fact, being a smaller quan-445

tity than the absolute temperature, it is more sensitive to inaccuracies. Figure 17 shows the comparison of the temperature
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Figure 17. Statistical quantification of the differences between the site-to-site temperature gradients from TROPoe and met stations at 2 m:

linear regression (a-c); histograms (d-f), where the shaded red area indicates the error PDF using the minimum and maximum combined

TROPoe+M5 uncertainty. Middle - South (a,d); North - South (b,e); North - Middle (c,f).

differences from one site to the other observed through TROPoe and the met. The linear regression shows expectedly poorer

metrics than the previous comparison of absolute temperatures, but the agreement remains good. TROPoe can explain be-

tween 67% and 86% of the spatial variability of temperature, which is remarkable considering that temperature differences

hardly exceed 2◦C and detection is done at a relatively high sampling rate (14 s). The agreement of the predicted uncertainty450

in the site-to-site gradient, ∆(∆T ), in Fig. 17d-f, is also satisfactory. The previously observed bias in absolute temperature

contributes to shifting the peak of the PDF, but the variability is predicted well by TROPoe+met uncertainty at all sites.

Finally, to check if biases are still dependent on stability as we documented in the pre-campaign test, we calculate the mean

temperature difference at the same site, ∆T , and difference in site-to-site gradient, ∆(∆T ), for five stability classes. Stability

classes are based on the Obukhov length detected by sonics at the nearby sites A2 and A5 (Pekour, 2022a, b) and using the table455

proposed by Krishnamurthy et al. (2021). As seen from the violin plots in Fig. 18a-c, the differences in absolute temperature

do have a mild dependence on stability. The more stable, the warmer the bias in TROPoe vs met, which is consistent with the
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Figure 18. Violin plot of the difference in temperature (a-c) and site-to-site gradient (d-f) between TROPoe and met stations at 2 m for

different stabilities: South site (a); Middle site (b); North site (c); Middle - South (d); North - South (e); North - Middle (f). The white dot

and the number are the mean value, while the box spans the interquartile range.

pre-campaign results. This dependence is not present when looking at the differences of site-to-site gradients (Fig. 18d-f). This

seems to indicate that stability-driven biases in temperature profiles are consistent among different instruments and cancel out

when taking the difference.460

To conclude the analysis of the AWAKEN dataset and showcase the capabilities of the network of thermodynamic profilers

in capturing relevant atmospheric phenomena, we take a close look at an interesting gravity wave event. The wave was likely

the result of a bore generated by a thunderstorm located NW of the AWAKEN site, which created gravity waves that traveled

across the instrumented domain on August 5th, 2023, from 10:40 to 11:20 UTC (just before sunrise). The event was detected by

several permanent weather stations (National Weather Service, 2023; Newsom et al., 2023). The signature of the gravity wave465

appears most clearly in the reflectivity map of the weather radar in Vance, OK (National Weather Service, 2023). Snapshots

of radar reflectivity are shown in Fig. 19, along with corresponding surface temperatures from all AWAKEN met stations

(Goldberg, 2023a, b, c, d, e, f, g). We observe an increase in temperature at all sites during the passage of the bore, followed

by a drop after 11:18 UTC as the cold air associated with the storm moves in.

The temperature overshoot is poorly understood when relying solely on surface temperature observations. The picture be-470

comes much clearer when we include the temperature profiles (Fig. 20). We can readily identify a stably stratified surface layer

before 10:50 UTC that is suddenly disrupted as the bore quickly wipes through. The disruption takes the form of an initial

surface warming, whereas the layers of air aloft rapidly cool down. The warming event occurs first at the South and Middle

25

https://doi.org/10.5194/wes-2025-198
Preprint. Discussion started: 15 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 19. Snapshots of radar reflectivity and corresponding surface temperature from met stations during the wave passage on August 5th,

2023.

site, and then, about 10 minutes later, at the North site, which is consistent with the W-E travel direction of the bore. After

11:20 UTC, the entire boundary layer at all sites eventually experiences the cold air. This is similar to a bore event observed475

by Haghi et al. (2019) with an AERI system. Another publication based on near-surface observations showed that nocturnal

warming events associated with synoptic-scale cold fronts are common in Oklahoma (Nallapareddy et al., 2011). In our case

study, we are likely observing a similar phenomenon, but as a result of a thunderstorm outflow.

To summarize, in this section, we learned that:

1. ASSIST+TROPoe temperatures agree extremely well with the measurements from surface stations at AWAKEN, with a480

nearly perfect R2 and a bias of < 0.5◦C, which is mostly site-dependent and weakly proportional to stability.

2. The TROPoe uncertainty estimate describes well the observed differences with the met stations.

3. The network thermodynamic profilers at AWAKEN is a reliable tool to describe spatial gradients of temperature.

5 Conclusions

We documented the accuracy of temperature profiling methods used at AWAKEN through a four-stage validation exercise.485

We focused on temperature profiles obtained through the physical retrieval algorithm TROPoe and based on spectral radiance

observations of ASSIST passive spectrometers.

First, we compared the difference in temperature profiles between two thermodynamic profilers sitting side-by-side. The

bias is negligible and the random error is fairly predicted by TROPoe theory, except very close to the ground, where the tails

of the temperature difference distributions are underpredicted.490
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Figure 20. Time-height temperature maps from TROPoe at AWAKEN during a frontal passage on August 5th, 2023: North site (a); Middle

site (b); South site (c). The dots are colored according to the temperature from the met station at the respective site.

Second, we assessed the difference between temperature profiles from one thermodynamic profiler and a nearby met mast

up to 122 m above the ground. We saw an excellent agreement (R2 > 0.98, negligible bias, and RMS difference of less than

1◦C). However, the temperature differences could not be explained solely as the sum of the TROPoe uncertainty estimate, the

met sensors’ nominal uncertainty, and the spatial decorrelation of thermal turbulence. Indeed, we identified a < 1◦C stability-

dependent bias whose analysis will be the subject of future work. We also verified the ability of temperature profiles to classify495

the static stability of the lower ABL, finding 83% and 97% hits for stable and unstable conditions, respectively.

Third, we compared temperature profiles at AWAKEN with 100+ radiosonde observations, reporting a < 0.2◦C bias below

2000 m and an RMS that follows the TROPoe prediction quite satisfactorily and never exceeds 1◦C below 1000 m.

Finally, we compared the site-to-site temperature gradients at AWAKEN from temperature profiles and surface met station,

finding a remarkable accuracy (R2 between 0.67 and 0.86, bias of 0.5◦C and RMS well predicted by TROPoe) even for those500

small quantities.

In general, we confirmed that the combination of passive infrared spectrometers and physical retrievals allows for a fast,

cost-effective, unsupervised, and continuous thermodynamic scanning of the lower atmosphere with traceable uncertainty.

These results advocate for a wider use of this temperature profiling technique for wind energy and meteorology applications.

Researchers will continue to improve the accuracy of temperature profiling to further reduce or explain the small but de-505

tectable differences with met tower observations. Future development efforts will also focus on making temperature profiling
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computationally and logistically less expensive, as well as expanding the data product to gas concentration profiles and cloud

properties.

Code availability. The codes used for the data analysis are available at https://github.com/StefanoWind/ASSIST_analysis. The TROPoe

processor is available at https://github.com/StefanoWind/TROPoe_processor. TROPoe is available on Docker at https://hub.docker.com/r/510

davidturner53/tropoe.

Data availability. All data is available on the Wind Data Hub at the URLs provided in the references.

Appendix A: Correction of radiative error in temperature sensors

Lack of aspiration in the temperature sensors is known to cause overheating, especially in high solar radiation and low wind

speed conditions (Huwald et al., 2009). During the pre-campaign tests, the temperature sensors on M5 at the heights of 38, 87,515

and 122 m suffered from a failure in the aspiration system. However, temperature sensors on the M2 tower had operational

ventilators for the whole duration of the experiment. Given the homogeneity of thermal conditions at the site, the average

temperature difference between M5 and M2 was used as a proxy for the overheating due to solar radiation. This error has been

subsequently corrected using the method proposed by Nakamura and Mahrt (2005) and tuned for the present site conditions.

First, the presence of radiative overheating was assessed by calculating mean temperature differences (interpolated) at 38520

m as a function of global horizontal irradiance (GHI) and mean horizontal wind speed (U ). The trends of the mean temper-

ature differences, ∆T (M5-M2), can be seen in Fig. A1a. For GHI> 0 (daytime), there is a statistically significantly higher

temperature at M5, which increases for low wind speed. This is consistent with the presence of radiative overheating at M5.

Interestingly, the highest temperature differences occur for moderate rather than high GHI. We speculate that for high GHI, nat-

ural convection (not captured in the mean horizontal wind speed) may have contributed to cooling down the sensors. Negative525

GHI (nighttime) conditions are also showing a slight warming that could not be explained.

As suggested by Nakamura and Mahrt (2005), we estimate the overheating as a function of the scaling parameter:

X =
GHI

ρcp T U
, (A1)

where ρ and cp are the mean density and specific heat capacity of dry air. This quantity represents the ratio of radiative heating

by the sun to the convective cooling by the wind. Figure A1b shows the 10-minute and binned mean temperature difference530

vs. the scaling parameter and the associated linear fit. The slope of the linear fit is fairly close to the one provided in the

original paper (434.76 vs. 373.40), hinting at a similar heat transfer physics between the M5 sensors and those of Nakamura

and Mahrt (2005). Still, the linear fit could explain only 32% of the variance in the data, which suggests that other effects may

have played a role (wind direction, spatial inhomogeneity, etc). The linear correction in Fig. A1b based on 10-minute averaged
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Figure A1. Summary of the aspiration correction: mean temperature difference M5-M2 at 38 m for different global horizontal irradiances

and mean horizontal wind speeds, where the shaded area represents the 95% c.i. (a); linear fit of radiative error vs. overheating scaling

parameter (b).

temperatures, wind speed, and GHI was applied to all M5 data and contributed to an average ∼ 0.2◦C drop in peak daytime535

temperature and a ∼ 10 - 15% reduction in RMS of the temperature difference between TROPoe and M5.
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