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Abstract. Wake steering is a promising control strategy for wind farm optimization, yet its effectiveness depends on the

accuracy of underlying aerodynamic and structural models. In this study, we evaluate the predictive capabilities of models

with varying fidelity for the IEA 22 MW reference turbine, considering both a single turbine and a two-turbine row with 5D

spacing under conventionally neutral atmospheric boundary layer conditions. Results are benchmarked against large-eddy sim-

ulations (LES). All models reproduced qualitative trends in power and, where applicable, loads as a function of yaw angle and5

downstream position, but there was a large spread in quantitative agreement. The dynamic wake meandering (DWM) model

implemented in Dynamiks gave very good predictions for mean power, acceptable results for blade and yaw bending Damage

Equivalent Loads (DELs), but heavily underpredicted the tower bottom DELs compared to LES. RANS results from Ellip-

Sys3D resolved asymmetric wake features, but with reduced magnitude, leading to increasing errors for power prediction with

increasing wake deflection. Steady-state engineering models (PyWake and Fuga) performed reasonably well for power predic-10

tion in the aligned cases but showed increasing errors under yaw misalignment. None of the engineering models reproduced

secondary steering. These findings highlight the limitations of the tested engineering and mid-fidelity models and emphasize

the need for improved treatment of wake asymmetry, veer effects, and meandering physics to enhance reliability in practical

optimization applications.

1 Introduction15

Wind turbines extract kinetic energy from the incoming wind flow, which creates wakes downstream of each turbine. These

wakes are characterized by a velocity deficit and increased turbulence intensity (TI) (Porté-Agel et al., 2020). If a turbine

is placed within the wake of another turbine, it produces less power than it would under undisturbed inflow conditions. In

addition, the elevated turbulence within the wake leads to higher relative loading on the downstream turbine compared to the

case of a simple reduction in wind speed without added turbulence. Furthermore, if only part of the downstream turbine is20

exposed to the wake, the structural loading can increase even further compared to a fully waked turbine (Herges et al., 2018).

Therefore, the relative placement of turbines is a key factor in wind farm design. More recently, different wind farm control

strategies have been proposed that can be used during the farm’s operation. These strategies aim to increase the total power
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output of the farm and/or reduce the structural loading on individual turbines or the farm as a whole (Kheirabadi and Nagamune,

2019).25

Static yaw control is one of the more promising control strategies that interests both industry and academia. The basic

principle of static yaw control is the deflection of the upstream wake away from the downstream turbine using a predefined

yaw misalignment angle to reduce the amount of waked inflow the second turbine experiences. This can potentially increase

the power production of the downstream turbine, but it can also negatively affect the loads on both turbines. Hence, the yaw

misalignment angle must be carefully chosen to ensure that the increase in power from the downstream turbine compensates30

for the loss in power of the upstream turbine, and that the changes in loading are acceptable (Meyers et al. (2022)). Indeed, how

exactly the turbine loading is affected by flow control methods such as static wake steering, how large the yaw offset should be,

and for which flow conditions does static flow control outperform other flow control methods, is still an active area of research.

To answer those questions, aerodynamic models that can represent the effect of yawed inflow on both the rotor and the wake

are necessary.35

From an aerodynamic perspective, the flow behind a yawed wind turbine is rather complex. The misaligned inflow leads

to a reduced thrust coefficient and a deflection of the wake, and the wake shape itself changes from circular to kidney-shaped

for large yaw angles (Schottler et al., 2018). Close analysis of the cross-flow field in the wake of a yawed wind turbine with

uniform inflow reveals two counter-rotating vortices at the top and bottom of the wake that lead to the deformation from a

circular to a curled wake as visualized experimentally and also numerically by Mikkelsen (2004) and Howland et al. (2016).40

However, Vollmer et al. (2016) showed that atmospheric stability and the associated veer strongly influence the curling strength.

They analyzed a single NREL 5 MW turbine under different stability conditions and yaw angles. For a yaw misalignment of

|γ|= 30◦ and at six rotor diameters downstream: (i) in a neutral boundary layer with around two degrees of veer over the rotor

disk, the kidney shape is still visible and the magnitude of the vertical deflection relative to the tower position is similar for

±30◦ yaw; (ii) in a stable boundary layer with about eight degrees of veer, the kidney shape is also visible, but the vertical45

deflection differs strongly between −30◦ and +30◦ yaw due to the strong veer; (iii) in a convective boundary layer, the wake

appears largely unaffected by the yaw misalignment.

The asymmetry of the wake with a streamwise and lateral deficit also affects the downstream turbine. Fleming et al. (2018)

demonstrated that the wake of a turbine aligned with the incoming wind and downstream of a yawed turbine also mildly deflects

and coined the term secondary wake steering. A likely cause of this is that, on average, the lateral components of the deflected50

wake of the upstream turbine lead the downstream turbine to de facto also see a yawed inflow. Fleming et al. (2018) further

noted that for a farm with multiple steered turbines, lateral deficits can also merge and further complicate the wake evolution.

At the early design stage of a wind farm, high-fidelity Computational Fluid Dynamics (CFD) simulations are generally not

computationally feasible for comparing flow control strategies or optimizing yaw setpoints. This limitation is particularly re-

strictive for load predictions, where time-series data from Large Eddy Simulations (LES) would be required. Time-averaged55

Reynolds-Averaged Navier–Stokes (RANS) simulations are more tractable for power predictions, yet even these remain in-

efficient for early-stage design studies. Nevertheless, for specific farm layouts, surrogate or reduced-order models trained on
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LES data have been successfully applied to wake steering and axial induction control (Hulsman et al., 2020; Debusscher et al.,

2022).

For non-specific layouts, however, more computationally efficient approaches are necessary. To this end, a range of engi-60

neering wake models have been developed in the literature. These can be broadly divided into two categories: (i) models that

rely on a symmetric circular wake description combined with a deflection model, sometimes with a projection into deflected

coordinates (Jiménez et al., 2010; Bastankhah and Porté-Agel, 2016; Shapiro et al., 2018; Liew et al., 2023), and (ii) models

that propose new deficit formulations explicitly accounting for wake curling (Martínez-Tossas et al., 2019; King et al., 2021;

Branlard et al., 2022). In addition, Zong and Porté-Agel (2020) introduced an iterative momentum-conserving wake superposi-65

tion method for streamwise and lateral deficits. Using the deflection model of Shapiro et al. (2018), they accurately reproduced

both primary and secondary steering effects for wind-tunnel test turbines. As an alternative to traditional engineering mod-

els, linearized RANS approaches have also been applied to wake modeling and, more recently, adapted to also model wake

deflection (Larsen et al., 2020).

To date, several publications have compared varying-fidelity models against high-fidelity CFD, LiDAR, and SCADA data.70

For example, Larsen et al. (2020) compared RANS, linearized RANS, DWM, and engineering model flow-field results with

LiDAR measurements for a standalone V52 turbine. In the FarmConners benchmark, Göçmen et al. (2022) conducted a series

of blind benchmark tests for wake steering, where lower-fidelity models were compared against both mean and time-series LES

and SCADA data for single- and multi-turbine wakes with yaw offsets. These comparisons were quantified in terms of power

predictions. The novelty of the present work lies in the level of detail of the comparison—covering flow, power, and loads—as75

well as in the breadth of models considered. Further, to date, in the literature, there are very few examples of a detailed load

validation of the DWM against LES or measurement data for very large turbines. For load comparison against measurements,

to the author’s knowledge, the largest turbine used is a 6MW (Bernard et al., 2024a). For load comparison against LES, there

are a few on the IEA 15MW turbines (Branlard et al. (2024); Rivera-Arreba et al. (2024)), but none on the IEA 22MW turbine.

This is important because larger turbines are more sensitive to the influence of shear and veer.80

This paper aims to benchmark the whole toolchain of aerodynamic models developed at DTU against high-fidelity large

eddy simulations (LES) for the large IEA 22MW reference turbine for primary as well as secondary wake steering at different

angles, and also veered inflow for a conventionally neutral boundary layer (CNBL). The performance of the models is evaluated

for power and, for the dynamic models, also loads. The array of tested models, ranging from lower to higher fidelity, is

as follows: (i) the engineering models implemented in PyWake (Pedersen et al. (2023)) and Fuga (Ott et al. (2011)), (ii) a85

novel implementation of the Dynamic Wake Meandering (DWM) model in the open-source Dynamiks framework (Dynamiks

repository), and finally (iii) the Reynolds-Averaged Navier-Stokes (RANS) solver implemented in EllipSys3D (van der Laan

et al. (2024)).

Section 2 explains the setup and details the methodology used for all the models. Section 3 contains a detailed comparison

between the models in terms of power and loads where applicable. Finally, the conclusions are given in Sect. 5.90
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2 Methodology

This section describes the methodology behind the setup in Sect. 2.1 and all the models in the remaining section.

2.1 Setup

Two setups are considered. First, a single turbine with different prescribed yaw offset angles. Second, two turbines in a row

with two different yaw setpoints for the first turbine and no yaw offset angle for the second turbine. The main parameters of the95

IEA22 MW turbine are specified in Table 1, and additional details are described by Zahle et al. (2024). The coordinate system

is defined by the x-axis being aligned with the undisturbed flow direction at hub height, while the z-axis points upward. With

this convention, the sign of the yaw angle is opposite to the right-handedness of the coordinate system about the z-axis.

Turbine

Type IEA 22MW

Diameter D 284 m

Hub height hhub 170 m

Rotor tilt β 6◦

(a) Turbine properties

Setup 1

xWT1/D [0,0]

γWT1 [-30◦,-20◦,-10◦,0◦,10◦]

(b) Setup I

Setup 2

xWT1/D [0,0]

xWT2/D [5,0]

γWT1 [-30◦,0◦]

γWT2 [0◦,0◦]

(c) Setup II

Table 1. Turbine and setup properties.

2.2 LES

The LES results are obtained using EllipSys3D, a finite-volume incompressible Navier-Stokes solver initially developed by100

Michelsen (1992); Sørensen (1994), which solves the governing equations (including the potential temperature equation, as a

conventionally neutral boundary layer (CNBL) is used as inflow) with a finite volume method in general curvilinear coordinates

using a collocated grid. The pressure correction equation is solved with an extended SIMPLEC approach (Shen et al., 2003;

Kobayashi and Pereira, 1991) using Rhie/Chow interpolation. Time advancement uses a second-order three-level implicit

method with sub-iterations in each time step. Convective terms are discretised with a fourth-order central differencing scheme105

with a fourth-order dissipation term to reduce numerical instabilities (Wit and van Rhee, 2013). Sub-grid scale modelling is

achieved using the AMD model (Abkar et al., 2016).

The inflow for all cases is based on a CNBL generated using an LES precursor simulation, conducted in a domain with

size 16640× 16640× 3000 m, with grid resolution dx = dy = 4 m and dz = 20 m. The applied initial conditions are ground

temperature Twall = 288.15 K; an initial temperature profile constant until 600 m height with perturbations up to 100 m height110

to encourage breakdown into turbulence, then a linear gradient of 10−3 Km-1 above; geostrophic wind values U = 9.48 ms-1

and V =−0.59 ms-1; velocity profiles initialised with a log-law based profile with 600 m boundary layer height (Allaerts

and Meyers, 2015); Coriolis parameter fc = 1.1947× 10−4 s-1; and wall roughness z0 = 0.001 m. A wind direction controller
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(Sescu and Meneveau (2014)) is active in order to achieve aligned flow at turbine hub height (170 m). Rayleigh damping

is applied above a height of 2000 m (Klemp and Lilly, 1978). The precursor is run for 26 hours while the boundary layer115

develops, followed by a further period of 4500 s over which the three velocity components and temperature are extracted over

a cross-stream plane in the domain centre, which are used as inflow to the successor simulation. The inflow profile is visualized

in Fig. 1.

In the successor simulations, wind turbines are modelled using the actuator disc (AD) method (Mikkelsen, 2004), which is

fully coupled to the aero-servo-elastic solver HAWC2 (Larsen and Hansen, 2025) (which has a Timoshenko beam element-120

based multi-body formulation and hence can account for non-linear effects) through the Dynamiks coupling framework (Dy-

namiks repository). The velocity components are extracted along the positions of the three rotating blades in EllipSys3D and

passed to HAWC2, which calculates loads and deflections. These are transferred back to EllipSys3D and used to set the magni-

tude and position of the body forces that make up the AD. The AD body forces are applied in three overlapping 240◦ sections,

where forcing decreases from a maximum at the blade location to zero at the neighbouring blades, which means that non-125

uniform loading can be captured. The two-way nature of the coupling means that the interaction between loading, deflections,

and flow is also represented (Hodgson et al., 2021). HAWC2 also uses the DTU Wind Energy Controller, so the turbine varies

rotational speed and pitch in response to its loading.

Successor simulations are conducted in a domain with size 8520× 4970× 3000 m (30D× 17.5D× 10.6D), with a refined

region stretching from the inlet to 20D downstream, laterally extending 3D in each direction from the domain centreline,130

and from the ground to 4D in height. Within the refined region, the grid resolution is dx = dy = dz = D/32 (Hodgson et al.,

2023), and outside the cell size is stretched to the domain boundaries. The first turbine is placed 3.5D from the inlet, and for

the two-turbine setup, a second turbine is placed 5D behind the first. Each simulation has 900 s which are used as spin-up, and

the final 3600 s used for analysis.

2.3 RANS135

The RANS results are computed by PyWakeEllipSys v5.4 (DTU Wind and Energy Systems, 2025), which uses a steady-state

version of EllipSys3D. The k-ε-fP turbulence model (van der Laan et al., 2015b) is employed coupled with an atmospheric

boundary layer (ABL) inflow model including Coriolis forces and a simplified turbulent buoyancy source term that sets an ABL

height implicitly (van der Laan et al., 2024). The latter is used to represent the stratification of the ABL, where lowering the

ABL height results in a more stable ABL characterized by a larger wind shear and veer with respect to neutral conditions. The140

simplified turbulent buoyancy source term is only dependent on a prescribed Brunt-Väisälä frequency, N , leading to an inflow

model that does not require a temperature equation. The inflow is generated by a precursor simulation using EllipSys1D (van der

Laan and Sørensen, 2017); the results are compared with LES in Fig. 1. The hub height wind speed and turbulence intensity

based on k from LES (9.2 m/s and 3.8%) are obtained using a geostrophic wind speed G = 9.47 ms-1, andN = 1.22×10−3 s-1.

The roughness length is set lower than LES, z0 = 3× 10−5 m, to obtain a similar ABL height.145

The turbine is modeled as rigid using an actuator disc (Réthoré et al., 2014) with an analytic force distribution model

of Sørensen et al. (2020) that includes tangential forces and local effects of shear and veer. A precomputed lookup table
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controls the AD aerodynamic coefficients as a function of the disc-averaged wind speed using single AD simulations without

yaw and tilt (van der Laan et al., 2015a). The RANS simulations with the controller include a tilt angle of 6◦and optional yaw

angles.150

The numerical domain of the single turbine simulations is a Cartesian box with dimensions (Lx,Ly,Lz) = (1025D,1006D,25D).

The turbine is placed near the horizontal center, (x,y,z) = (0,0,zH), and the flow around the turbine is resolved using a re-

fined inner domain with dimensions: -5D < x < 20D, |y|< 3D,z < 3D using a minimum spacing of 16D and a first cell

height of D/200. A total of 12.6 million cells are used. The refined and outer domains of the two turbine case is 5D longer in

the streamwise and lateral directions, leading to a total of 22.4 million cells. The bottom boundary is a rough wall boundary155

condition (Sørensen et al., 2007). The inflow and top boundaries are inlet conditions at which the inflow profiles are prescribed

(hence the flow is lid-driven). The lateral boundaries are periodic, and the outlet is a boundary condition at which all gradients

in the streamwise direction are assumed to be zero.

2.4 DWM

The new implementation of the DWM in the open-source Dynamiks framework is accessible under Dynamiks repository and is160

heavily based on HAWC2Farm as benchmarked by Liew et al. (2023), but it is much more modular. The DWM implementation

in Dynamiks should not be confused with the older version implemented in HAWC2 itself (Larsen and Hansen, 2025).

Given a background flow Uambient, a turbulence box covering the wind farm Uturb, and an array of nWT wind turbines with

wake deficits (including the wake-added turbulence) ∆Ui, the velocity at any point in the domain is given by

U(x,t) = U ambient(x,t) +U turb(x,t) + fSuperposition
(
∆U1(x,t), . . . ,∆UnW T

(x,t)
)

(1)165

Different wake superposition methods are available in Dynamiks. This publication uses the root-of-summed-squares su-

perposition method with the rotor-averaged inflow velocity as a reference for the deficit calculation (Zong and Porté-Agel,

2020).

The base assumption behind the Dynamic Wake Meandering model is that a wind turbine wake behaves like a passive tracer

advected by the large-scale turbulence. The cutoff frequency for the turbulent structures is defined as structures larger than170

twice the local wake width, which was conjectured in Larsen et al. (2008) and subsequently full-scale validated in Larsen

and Lio (2025). Approximately each time step, the turbine emits a tracer particle that is then advected based on the filtered

background flow. In this publication, we use a spatial averaging filter with the local wake diameter Dw(x) on the background

flow field to get the advection velocity U advection for a particle k emitted from turbine j with the location xj,k

U advection,j,k =
navg∑

i=0

wiŨ(xj,k + Dw(x) ·∆xi) for k ∈ [1,nparticles] and j ∈ [1,nWT ] (2)175

where navg , wi, and ∆xi are the number, the weight, and the location of the stencil points for the spatial averaging filter.

Each particle has a wake deficit attached to it that is initialized with the deficit at the rotor when the particle was emitted,
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and the wake evolves as the particles move downstream. Different settings are available for the background flow Ũ , but the

settings that make the most sense are the local flow, including either all deficits or just the deficits upstream of the turbine from

which the particle was emitted. Note that since the veer is included in the background flow, this also leads to a deflection of the180

particles due to the veer.

The advection velocity is further processed if the turbine is yawed or tilted. At the moment, two deflection models are

available in Dynamiks, namely (i) the Hill Vortex model from Larsen et al. (2020), and (ii) the JiménezJiménez model from

Jiménez et al. (2010). In this publication, we use the Hill Vortex model because it gave better results than the JiménezJiménez

model, even when tuning the calibration parameter of the model for specific yaw angles. For the wake deflection with a yaw185

misalignment γ and a tilt angle θ, the model writes as follows

Ûadvection,j,k = Uadvection,j,k − 0.4 ·∆Uw,j,k




−cos(γ) · cos(θ)

sin(γ) · cos(θ)

sin(θ)


 (3a)

∆Uw,j,k =
2

R2
w

Rw∫

0

∆Uj(xk)rdr (3b)

where k indexes the particles belonging to turbine j with coordinates xj,k, and Rw is the wake expansion at the particle’s

location. For evaluating the advection velocity, the wake of the turbine from which the particle is emitted is excluded.190

The most commonly used wake deficit model in the DWM context is the Ainslie model. It is derived from the steady-state

RANS equations in cylindrical coordinates assuming: (i) symmetry with respect to rotation such that ∂
∂θ = 0 and Ũθ = 0, (ii)

that the shear layer between wake and freestream is thin such that the gradients of the mean flow fields are much bigger in

the radial than in the axial direction, (iii) that the pressure gradient in axial direction is zero which only holds in the far wake,

and (iv) that the Reynolds stresses can be modeled using a simple eddy viscosity model. The momentum equation in the axial195

direction and the mass conservation equation for a rotor-averaged inflow wind speed Urotor will then look as follows

Ũ
∂Ũ

∂x
+ Ṽr

∂Ũ

∂r
=

1
r

∂

∂r

(
νT r

∂Ũ

∂r

)
, (4a)

1
r

∂

∂r

(
rṼr

)
+

∂Ũ

∂x
= 0. (4b)

with the boundary conditions

∂Ũ(x,r)
∂r

∣∣
r=0

= 0, (5a)200

lim
r→∞

Ũ(x,r) = Urotor, (5b)

Ũ(0, r) = Ũ0(r). (5c)
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The initial velocity deficit at the rotor Ũ0(r) can be calculated from a BEM model or a simple actuator disk model. Dynamiks

has an interface to both HAWC2 and also the simple actuator disc turbines from PyWake. This publication uses the DWM model

in combination with HAWC2 only. Since the pressure term in the momentum equation is dropped, the wake expansion and205

accompanying velocity deceleration in the near wake are not captured. To counteract this, the output of the actuator model is

scaled before using it as an inlet boundary condition for the Ainslie model

Ũ0(r) = Urotor (1− (1 + fU )a(r̃)) (6a)

r = r̃

√
1− a

1− (1 + fR)a
(6b)

where Urotor is the rotor-averaged inflow wind speed, a(r̃) is the radially varying induction obtained from the acutator model,210

and fR = 1.1 and fU = 0.98 are the tuning parameters for the wake expansion and velocity deceleration. Keck et al. (2012)

claim that this makes the model accurate from 3D downstream.

The velocity deficit ∆Uj of the turbine j that is used in the superposition is then given by ∆Uj = Uamb,j − Ũj .

A simple mixing length model is used for the eddy viscosity as developed by Keck et al. (2012). It consists of two terms

accounting for ambient and wake-induced turbulence, respectively215

νT = FambkambTIamb + Fwakekwake max

(
1
4
Dw(x)2|∂Ũ

∂r
|, 1

2
Dw(x)(1−min

r
(Ũ(x,r)))

)
(7)

where Dw(x) is the local wake diameter, TIamb is the turbulence intensity at the rotor, the parameters kamb = 0.0914 and

kwake = 0.0216, and finally

Famb(x) =





x
4 , for x < 4

1, for x≥ 4
and (8a)

Fwake(x) =





0.035, for x < 4

1− 0.965exp
[
−0.35

(
x
2 − 2

)]
, for x≥ 4

(8b)220

are filter functions that model the delay in turbulent wake diffusion due to entrainment and compensate for the non-

equilibrium turbulence close to the rotor. The influence of turbulence buildup and atmospheric shear, as described by Keck

et al. (2015), are not implemented yet.

For modeling the wake-added turbulence (WAT), a homogeneous and isotropic Mann box is used. The box size is given

by Lx×Ly ×Lz = [15D,D,D], the spatial discretization is Nx×Ny ×Nz = [1024,64,64]. The box uses periodic boundary225

conditions and the same advection speed as the background turbulence. The Mann box is fully defined by the anisotropy

parameter Γ = 0, the length scale L = D/16, and unit variance σ2 = 1. To obtain a unit variance, the box is rescaled to give

αϵ2/3 according to Mann (1994)
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σ2 ≈ 0.688αϵ2/3L2/3 (9)

where α is an empirical parameter and ϵ is the dissipation of TKE.230

The local velocity of the box is then multiplied by a scaling parameter kmt as first proposed by Madsen et al. (2010)

kmt(r) =
∣∣∣1− Ũ(r)

∣∣∣km1 +

∣∣∣∣∣
∂Ũ(r)

∂r

∣∣∣∣∣km2 (10)

where the tuning parameters km1 and km2 are adapted from Branlard et al. (2024) as

f(x̃,fmin,Dmin,Dmax,e) = fmin + (1− fmin)
(

x̃−Dmin

Dmax−Dmin

)e

(11a)

kdef(x) = 0.6f(x̃,0,0,2,1) (11b)235

kgrad(x) = 3.0f(x̃,0,0,12,0.65) (11c)

For the simulations presented in this paper, the LES precursor simulations are used to generate the background turbulence

and mean flow for the most direct comparison. The precursor inflow planes are stacked together, and the mean velocity at hub

height is the advection speed of the box. The wake-added turbulence box is computed as described above using one seed. As

in the LES simulations, the same HAWC2 setup file and controller are used for the structural turbine model.240

2.5 PyWake

Steady-state flow conditions for various prescribed yaw angles were simulated using PyWake (Pedersen et al., 2023). The

inflow conditions were selected to match the hub-height wind speed and turbulence intensity obtained from LES results. The

simulation does not include blockage effects and propagates downstream a wake deficit modeled using the Supergaussian model

with the recalibration according to Blondel (2023). Wake-generated turbulence is added on top of the prescribed background245

turbulence intensity using the model from Crespo and Hernández (1996). A root-of-summed-squares superposition method

is used to combine multiple wakes. The wake deflection is modeled using the JiménezJiménez model with β = 0.1 (Jiménez

et al., 2010), an engineering wake deflection model empirically derived from LES data, which accounts for lateral displacement

of wakes due to turbine yaw.

2.6 Fuga250

The turbine wake evolution is modeled using a fast linearized CFD solver based on the Reynolds-Averaged Navier-Stokes

(RANS) equations with an eddy viscosity closure. Fuga (Ott et al., 2011; Ott and Nielsen, 2014) assumes that the forcing from

the turbine is small relative to the background shear flow and applies a first-order perturbation expansion. The governing equa-

tions are solved efficiently using a mixed spectral formulation, where a Fourier transform in the horizontal directions reduces
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the system to a set of decoupled ordinary differential equations in the vertical coordinate. Lookup tables are precomputed and255

reused to account for different turbine positions and forcing without solving the full equations for each new case.

Non-linear effects of yaw-induced wake deflection are captured by adapting a linearization technique (Ott et al., 2019;

Larsen et al., 2020). This involves a curvilinear coordinate transformation in which the transverse direction is shifted by a

small displacement λ(x,y,z), such that the new transverse coordinate ý = y−λ remains constant along streamlines. This

transformation effectively removes the wake deflection in the new coordinates, only allowing it to be recovered upon returning260

to the original space. The displacement λ is computed from the lateral velocity field and the background streamwise velocity

and stored as an additional lookup table.

The inflow conditions were designed to match the mean wind profile obtained from LES simulations, using a target wind

speed at hub height of Uhub = 9.2 m/s and a prescribed surface roughness length of z0 = 0.001 m. These conditions are used

to define the background velocity profile U0(z) and the eddy viscosity K(z) via Monin-Obukhov similarity theory, with the265

stability function for momentum ϕm(z/L) set for neutral conditions.

Since Fuga is linear by definition, wake superposition is also linear. This means the results of superimposed deflected wakes

might be slightly affected by breaking the assumption of null deflection at the wind turbine rotor. In our case, the downstream

turbine is not yawed, so the effect of this simplification on the resulting wind fields is negligible.

3 Results270

The sections contain a comparison of the inflow profiles in Sect. 3.1, the results for the single turbine setup in Sect. 3.2, and

finally the results for the two-turbine setup in Sect. 3.3.

3.1 Inflow

Care is taken to closely match the inflow profiles for the different models’ mean velocity, inflow direction, and turbulence

intensity. Figure 1 shows the results at the inlet of the domain.275

The wind direction controller in the LES precursor setup did not fully converge, so there is a slight offset in the wind

direction at hub height of ∆ϕ =−0.5◦. Averaged over the rotor disk, this becomes ∆ϕ = 0.4◦. This offset in wind direction

was applied in the remaining model simulations to ensure consistency between the setups. Half a degree of wind direction

offset corresponds to roughly three degrees of yaw steering; hence, it was important to include it. Since Fuga and PyWake do

not model veer, the wind direction remains constant with height.280

For the comparison of the turbulence intensity (TI) to LES, total and streamwise formulations are used for RANS and the

DWM, respectively:

TI =

√
2/3k

Uref
=

√
1/3(σ2

U + σ2
V + σ2

W )
Uhub

(12a)

TIu =
σU

Uhub
(12b)
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.285

For the RANS model, the inflow turbulence is isotropic, which does not correspond to reality. This means the RANS model

underpredicts the streamwise TI, but the total TI is close to the LES profile, since the TKE is fitted to match the LES. Hence,

the total TI is used for comparison with LES for the RANS model. For the DWM model, only the streamwise part of the TI is

fully approximated; hence, the streamwise TI is used for comparison to LES.

0.8 1.0
Utot/Uhub

0.5

0.0

0.5

(z
z h

ub
)/D

5 0 5
 [deg]

0.025 0.050 0.075
TI

TI
TIU

LES RANS DWM Fuga PyWake

Figure 1. Comparison of inflow profiles from different models matched to the LES

precursor.

Inflow

Wind at hub height Uhub 9.2 ms-1

Turbulence intensity TIhub 4%

Wall roughness z0 0.001 m

Coriolis parameter fc 1.1947× 10−4 s-1,

Boundary layer height δBL 900 m

Table 2. Inflow properties

3.2 Setup I: A single wind turbine290

First, a visual comparison of the model predictions through horizontal slices of the streamwise velocity at hub height for the

fully aligned case and the misaligned case with γ =−30◦ is shown in Fig. 2. For both the aligned and the misaligned cases, the

prediction of the far wake deficit and wake recovery rate seems reasonably well captured by all the models. For the near wake,

there is more variation. The RANS model is close to the LES. The DWM model overpredicts the deficit close to the rotor per

the boundary conditions for the deficit model, which neglect the gradual pressure recovery after the rotor, but is close to the295

LES mean from about 2D onwards. The linearized RANS solution from Fuga underpredicts the deficit in the near wake but

starts to agree well with LES from about 5D onwards. At first glance, the velocity field at the rotor location in Fuga suggests

that the turbine yaws in the wrong direction. However, this is simply an artifact of how the turbine forcing is implemented in

Fuga: it uses a non-yawed disk that applies forcing in both the longitudinal and transversal directions. When looking further
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upstream from the turbine, the blockage pattern shows that the rotation occurs in the correct direction. Finally, the engineering300

model implemented in PyWake predicts the flow deceleration behind the rotor due to wake expansion accurately in terms of

magnitude, but the transition from near to far wake comes too late, and the deficit starts to agree with the LES from about 6D

onwards. Since the mean wind direction misalignment over the rotor disk points downward and the wake moves upwards due

to tilt in an area where the mean veer also points downwards, the wake should deflect a bit even in the aligned case. Fuga and

PyWake do not model the veer, so they can only model the part of that effect related to the mean wind direction misalignment.305
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Figure 2. Time-averaged streamwise velocity at hub height for all models for (left) the aligned and (right) the yawed case with γ =−30◦.

Moving on to the TI, the RANS, PyWake, and DWM fields are compared to the LES fields; the results from Fuga are not

shown since it does not predict TI. As explained in Sect. 3.1, differing TI formulations are used for the DWM and RANS/Py-

Wake. The top plots of Fig. 3 depict the total turbulence intensity TI for the mean LES, RANS, and PyWake predictions. As

expected, RANS overpredicts TI as compared to LES, but surprisingly, the overprediction is less pronounced for the yawed

case, even though the deficit magnitude predictions are similar between the two. The WAT model in PyWake heavily overpre-310
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dicts the TI as compared to LES and RANS. The bottom plots of Fig. 3 show the streamwise turbulence intensity TIu for the

mean LES and DWM predictions. With the updated WAT model, at hub height, the DWM predictions are very close to the

ones from LES, both in the near and far wake, even for the deflected case. The high TI region due to the tip and root vortices

in the near wake persists for a bit longer in the LES than in the DWM. However, since the WAT formulation does not consider

shear, below and above hub height, the TI is under- and overpredicted, respectively.315
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Figure 3. Turbulence intensity (TI) at hub height across five columns: (I)-(III) total TI from LES, RANS and PyWake, and (IV-V) streamwise

TI from LES and the DWM model. On the (left) is the aligned case, and on the (right) is the yawed case with γ =−30◦.

To gauge more accurately how well the wake deflection is captured for different yaw misalignment angles, a wake tracking

algorithm was run on the (time-averaged) flow fields for all models. The Constant Area wake center tracking algorithm from

the SAMWICH Toolbox was run on the streamwise velocity fields. Other simpler wake-tracking algorithms were tested, but
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they performed unreliably due to the asymmetry of the wake due to veer and curling. The waketracking algorithm identifies

velocity deficit isocontours and looks for the contour line that roughly corresponds to the rotor area. Then a weighted average320

over said area is used to calculate the wake center (yWC,zWC) as

yWC =
∫∫

y∆U(x,y,z)dydz∫∫
∆U(x,y,z)dydz

and (13a)

zWC(x) =
∫∫

z∆U(x,y,z)dydz∫∫
∆U(x,y,z)dydz

. (13b)

Figure 4 shows the streamwise velocity of the full wake at five diameters downstream, along with the results from the wake

tracking algorithm for all models. The variation in wake deficit shape shows that the wake center is a rather diffuse concept325

for asymmetric time-averaged wakes and cannot fully capture all effects at play in the complex flow field. For example, at that

location, as will be shown in Fig. 5, while the RANS model underpredicts the wake deflection according to the wake tracking

algorithm, it captures all the wake asymmetry due to yaw and veer. In contrast, at that specific location, the DWM model and

PyWake give the closest estimate of the wake center as compared to LES, but the wake shape looks completely different. As

we shall see later, for the inflow conditions presented here, that works mostly for the power predictions since the rotor mean330

velocity in the wake is still well matched. However, for the load predictions, matching the actual shape of the wake deficit

becomes more important.
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Figure 4. Streamwise time-averaged velocity at 5D downstream for all models for (top) zero, and (bottom) minus thirty degrees yaw

misalignment. The white circles outline the rotor of the upstream turbine.

Figure 5 shows the location of the wake center determined by the wake tracking algorithm for all models and yaw angles.

14

https://doi.org/10.5194/wes-2025-200
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



1.0
0.8
0.6
0.4
0.2
0.0
0.2

= 0 , = 6= 0 , = 6= 0 , = 6= 0 , = 6= 0 , = 6

1.0
0.8
0.6
0.4
0.2
0.0
0.2

= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6

1.0
0.8
0.6
0.4
0.2
0.0
0.2

(y
y t

ur
b)

/D

= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6

1.0
0.8
0.6
0.4
0.2
0.0
0.2

= 20 , = 6= 20 , = 6= 20 , = 6= 20 , = 6= 20 , = 6

0 2 4 6 8 10 12 14
(x xturb)/D

1.0
0.8
0.6
0.4
0.2
0.0
0.2

= 30 , = 6= 30 , = 6= 30 , = 6= 30 , = 6= 30 , = 6

0.3
0.2
0.1
0.0
0.1
0.2
0.3

= 0 , = 6= 0 , = 6= 0 , = 6= 0 , = 6= 0 , = 6

0.3
0.2
0.1
0.0
0.1
0.2
0.3

= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6

0.3
0.2
0.1
0.0
0.1
0.2
0.3

(z
z t

ur
b)

/D
= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6= 10 , = 6

0.3
0.2
0.1
0.0
0.1
0.2
0.3

= 20 , = 6= 20 , = 6= 20 , = 6= 20 , = 6= 20 , = 6

0 2 4 6 8 10 12 14
(x xturb)/D

0.3
0.2
0.1
0.0
0.1
0.2
0.3

= 30 , = 6= 30 , = 6= 30 , = 6= 30 , = 6= 30 , = 6

LES RANS DWM Fuga PyWake

Figure 5. Wake center position in (left) horizontal and (right) vertical as obtained from the wake-tracking algorithm of the time-averaged

flow field for all models and yaw angles (γ) at veer of ϕ = 6◦.

For the lateral deflection due to yaw misalignment, all models capture at least the right sign for the deflection, but otherwise,

there is a large spread in the results. RANS underpredicts the lateral deflection for all simulated angles except for the positive335

deflection angle γ = 10◦, where it mildly overpredicts the deflection as compared to LES in the far wake. The authors speculate

that this might be due to shortcomings of the turbulence model in the near wake, which are more amplified in yawed versus

non-yawed flow. Averaged over all deflection angles, the DWM model using the Hill Vortex deflection model and a spatial

averaging filter for the particle advection gives the closest results to LES. Fuga, a linearized RANS model, predicts lateral

deflection values similar to those of the RANS model, with a stronger underprediction of the deflection for negative yaw340

angles. Finally, the PyWake model using the JiménezJiménez model gives more mixed results with no clear trend. For the

largest yaw angle, both for the DWM and the PyWake results, the shape of the lateral deflection line is more curved in the near

than the far wake, as compared to LES. The difference in vertical deflection shows an even larger spread between models than

the lateral deflection. LES and RANS show similar trends with an upward deflection in the near wake and an up- or downward

deflection in the far wake, depending on how substantial the yaw misalignment is. The vertical deflection in the DWM model345

is only driven by the tilt, and hence it shows a steady upward deflection, either under- or overpredicting as compared to LES

in the far wake, with decent agreement in the near wake. Fuga predicts a downward deflection even for the non-yawed case
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for two reasons: (i) Fuga does not include the tilt deflection yet, and (ii) likely an overdiffusion of the wake in the vertical

direction. A Gaussian filter is applied to the Fuga predictions to get some turbulence mixing, since the turbulence closure in

Fuga only considers vertical shear effects, and this filter is potentially too strong, leading the wake to diffuse too quickly (Ott350

and Nielsen, 2014). PyWake, similar to the DWM model, also predicts a steady upward projection of the wake, which is not

visible in the LES reference data. Finally, there is potentially some coupling between the lateral and vertical deflection of the

wake since the wake-averaged veer increases with height. Only the models that model veer can capture this.

To finish the discussion of the mean results for the single wake case, Fig. 6 shows the normalized power error of a hypothet-

ical waked turbine for different downstream positions compared to LES. There are two types of hypothetical waked turbines:355

(i) ghost turbines whose loading is evaluated by running a standalone HAWC2 simulation using the wake planes as input and

including the HAWC2 induction model, and (ii) actuator disks whose loading is evaluated by calculating the rotor-averaged

velocity in the wake plane and then passing it through a power curve. For the DWM, the ghost turbines should give mostly the

same results as if the turbine was actually placed there because the same induction model is used. However, for the LES, the

induction is obtained by coupling the flow and the structural solver, so the ghost turbines and the real turbines will not yield360

the same results, but the trends should still be the same. A more detailed comparison between a ghost and a real turbine for

the LES simulations will be given in Sect. 3.3. The aggregated errors are also shown on the side and at the bottom of the plot.

As a general trend for all models, the error decreases with downstream distance for the aligned case, higher yaw angles lead

to larger error, and for the yawed cases, the power tends to be underpredicted in the far wake. For the aligned case, the RANS

model shows small far-wake errors of ∼10%, whereas underpredicted wake deflection in the misaligned cases increases the365

far-wake relative error to ∼25%, yielding an overall error across all cases of about 20%. Of all the models, the DWM shows

the smallest total error, just shy of 10 %, and the maximum error hovers around 15 %. Fuga shows errors up to 300% in the

near wake (note the y-axis scaling, see the figure caption for more explanation); for the aligned case, the far wake prediction

error is below 10 %, but for the non-aligned cases, the error in the far wake maxes out at about 30%. Finally, the results from

PyWake are off by up to 150 % in the near wake, but from 4D onwards, the error decreases to a maximum of around 25 % for370

all cases, even without modeling the veer.

The instantaneous wake and turbine loading properties will be presented for the LES and the DWM predictions since these

are the only two models that predict dynamic results and not just mean properties.

A wake-tracking algorithm was applied to instantaneous flow slices at various downstream locations to dynamically compare

the wake behavior of the turbine. Figure 7 presents the power spectral density (PSD) and time series of the wake centerline375

displacement for the aligned case at five rotor diameters downstream.

For the Dynamic Wake Meandering (DWM) model, two results are shown: the output from the wake-tracking algorithm

applied to the flow field and the actual positions of the wake-defining particles, representing the "true" wake center as defined

by the model. The particle-based wake center exhibits less motion than the one inferred from the tracking algorithm. This

highlights the ambiguity and sensitivity of defining a wake center, especially when working with instantaneous flow slices.380

No scientific consensus on the root cause of wake meandering has been reached in the literature, according to Yang and

Sotiropoulos (2019). Several plausible mechanisms have been proposed: (i) advection by large-scale inflow structures - the
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Figure 6. Relative power error ϵ = (P −PLES)/PLES as compared to LES for the first turbines as well as for several ghost turbines placed

at different locations in the wake. For the first turbine, the LES reference is a HAWC2 turbine, and then a HAWC2 ghost turbine is used for

the waked turbines. Results for all yaw angles and models are presented. The aggregated error is given by ϵRMS =
∑√

ϵ2. A symlog scale

is used for the y-axis, which means that up to |ϵ|< 0.5 the scale is linear and then it becomes logarithmic.

core assumption behind the DWM model, (ii) shear layer instability, akin to vortex shedding seen in flow past bluff bodies, and

(iii) wake-to-wake interactions, when multiple turbines are present.
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In the PSD plot, the cutoff frequency fC identified by Larsen et al. (2008) and Larsen and Lio (2025) - above which385

vortices are considered too small to influence wake meandering - is indicated. Also shown is the Strouhal number range

St = fD
Uhub

∈ [0.2,0.4], where shear layer instabilities and wake interactions have been reported in the literature.

Compared to the LES reference, the DWM model predicts less movement of the wake centerline, especially in the vertical

direction. From the plots, it is clear that the LES and DWM signals are correlated. The correlation is stronger for the lateral

wake deflection, likely because at five diameters downstream, the mean wake center deflection of the DWM is closer to the one390

from LES in the lateral than in the vertical direction (see 5). Nevertheless, despite its simplicity, the DWM model captures the

overall amplitude of the meandering and the ratio between lateral and vertical wake oscillations reasonably well for this setup.

Finally, Fig. 8 shows the relative error of the Damage Equivalent Loads (DELs) computed for the selected moments over

the entire simulation period for the ghost turbines placed in the wake of the freestanding turbine. The DELs were computed

for the blade root flapwise moments, the tower bottom foreaft moments, and the tower top yaw bending moments. Those load395

channels were selected based on comparison with the literature. The errors for the DELs for the blade root bending moment

max out at around 20 % with larger errors for smaller yaw angles or the fully aligned case. For the tower bottom foreaft DELs,

the error also increases with smaller yaw angles and is largest for the aligned case, with a maximum relative error of around 60

%. The predictions for yaw bending moment at the top of the tower are very accurate and increase with increasing yaw angles,

but the errors remain below around 10 %.400

While the accuracy for the DWM for the prediction of the blade root moments and the yaw bending moment is satisfactory,

the tower bottom moment predictions are very far off and warrant further investigation. In literature, similar comparisons

between LES and DWM simulation results for the tower bottom foreaft DEL show the same trend. Branlard et al. (2024) plot

the ratio of the tower DELs between the second and first row turbine for two IEA 15MW turbines placed 7D apart in stable and

neutral conditions. For the stable case, the ratio between the DELs for the LES is similar to the ones presented for the LES here.405

In the paper, the DWM underpredicts the ratio by about 20 %, whereas in the case presented here, the DWM underpredicts the

ratio by about 40 %. Likewise, Hanssen-Bauer et al. (2023) and Hanssen-Bauer et al. (2025) analyze a row of four NREL 5

MW turbines spaced 7.5D apart, both below and above rated conditions. Below rated conditions with a turbulence intensity

(TI) of around 4.6 %, all DWM models underpredict the tower bottom DELs of the waked turbines by roughly 50%. Above

rated conditions with a TI of 5%, the underprediction is about 30 % for the second-row turbine and increases up to nearly410

100 % for the third and fourth rows. For the below-rated case, additional turbulence intensities of 9 and 12 % were tested:

at 9 % TI, the tower DELs were underpredicted by roughly 10 %, while at 12 % TI they were predicted with reasonable

accuracy. Furthermore, comparison between different DWM implementations and measurements on a large 6MW offshore

wind turbine showed underprediction of up to 7-35% for tower tilt moments and up to 23% underprediction for tower torsion,

which are different but related load channels (Bernard et al., 2024b). In this paper, the DEL for the second row turbine at 7.5D415

is underpredicted by about 50 %. While the prediction error for the tower bottom foreaft DEL is larger than the reference cases

in literature, it is plausible that the increase in error is due to the increase in size of the turbine.
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Figure 7. Time series and Power Spectral Density (PSD) of the time-series of the wake centers of the LES and the DWM predictions at 5D

downstream for the aligned case. The top left side shows the lateral, and the top right side shows the vertical wake displacement. The time

series for the (middle) lateral and the (vertical) deflection are plotted. For the DWM, the PSD of the waketracking algorithm applied to the

output flow slices and the actual wake particle position are shown. A rolling filter with a width of 20 time steps is applied for the averaged

results.
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Figure 8. Relative prediction error of the (ghost) turbine DELs evaluated with the DWM inflow as compared to the ghost turbines run with

the LES inflow. The results are shown for (left) flapwise blade loads at the root, (middle) fore-aft tower loads at the bottom of the tower, and

(right) yaw bending loads at the top of the tower. The errors are also evaluated for all yaw angles from top to bottom; see the plot labeling. At

x/D = 0, a real DWM turbine is compared to a real LES turbine, and at x/D > 0, DWM ghost turbines are compared to LES ghost turbines.
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3.3 Setup II: Two aligned turbines

The results for the second setup with two turbines spaced 5D apart are shown in this section. This setup has been added to see

how the ghost turbines compare with an actual turbine for the LES, and to see if the models can capture the secondary steering.420

Figure 9 shows the mean flow fields for the aligned and the steered case with a yaw offset of γ =−30◦. Qualitatively, all

models capture the increase in the wake deficit for the second turbine and the asymmetry of the wake of the second turbine

due to the partial wake of the upstream turbine. However, the DWM, Fuga, and PyWake predictions do not capture any further

deflection of the wake of the second turbine due to secondary steering, since they do not model the lateral velocity deficit that

produces the steering. Initially, in the DWM model, the velocity deficit from the Ainslie model was projected according to the425

yaw and tilt misalignment of the rotor, which led to some secondary steering; however, this led to a strong underprediction

of the streamwise velocity deficits. Projecting the velocity deficit only according to the local flow deflection angle was also

trialed, but this leads to a minimal lateral velocity deficit, which does not sufficiently steer the wake of the downstream turbine.

Figure 10 shows the relative error in the predicted mean power for three cases: the first turbine, the waked second turbine at

x = 5D, and a ghost turbine at x = 10D. In this setup, results are presented for both real and ghost turbines.430

For the first-row ghost turbine with LES inflow planes, the errors are about 10 % for the aligned case and 3 % for the yawed

case. This indicates that the induction model in HAWC2 does not fully capture the inflow complexity. For the second-row ghost

turbine, the aligned case error decreases to 5 %, while the yawed case error increases to 20 %. This increase suggests that the

induction model becomes less accurate for more complex inflows, which is expected.

When comparing the real second-row turbine instead of the ghost turbine, the differences are smaller for the aligned case.435

Hence, the conclusions from the previous section remain valid for the other models as well. In the yawed case, all models

previously overpredicted the power compared to LES. However, the errors are smaller relative to the real turbine, meaning that

the apparent overprediction against the ghost turbine was partly an artifact of the ghost representation.

For the third-row turbine, compared again against an LES ghost turbine, all models underpredict the power, likely partially

due to not capturing the secondary steering. Yet, as seen for the second row, the lower-fidelity models may in fact be closer to440

the “true” LES behavior than suggested by the ghost turbine comparison alone.

Finally, the total RMS error (shown in the right and bottom panels of Fig. 10) is smaller than in the ghost-only case. This is

mainly because the power underprediction for the second turbine is less severe when compared to the real turbine, and because

the dataset now contains fewer yawed cases, where all models generally perform worse.

In the previous section, three DEL channels in the DWM were compared to LES, where the tower bottom flapwise bending445

moments deviated by up to 50 % at five diameters downstream. Figure 11 now shows the DEL prediction errors for the second

setup with two turbines, again including both real and ghost turbine results from the LES.

In contrast to the power predictions, where ghost turbines tended to overpredict relative to the real turbine, the loads show

the opposite trend: ghost turbines underpredict the DELs compared to the real turbine.

For the blade root flapwise DEL, the prediction errors remain in the same order of magnitude, whether the LES reference450

is the ghost or the real turbine. For the tower bottom moments, however, the DWM error increases to roughly 75 %, since the
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Figure 9. Time-averaged streamwise velocity at hub height for all models for (left) the aligned and (right) the yawed case with γ =−30◦.

LES ghost turbine itself deviates by about 25 % from the LES real turbine for this channel. For the tower-top yaw DEL, the

sign of the error in the DWM remains unchanged regardless of whether the ghost or the real turbine is used as reference.

Overall, because loads are more complex than power predictions, there is no simple one-to-one relationship between the

DWM accuracy relative to ghost and real turbines in the LES.455

Finally, Fig. 12 shows the load spectra of the second turbine for the aligned case. Qualitatively, the spectra look similar

between LES and DWM, with the highest peak at 1P and 3P for blade/yaw and tower loads, respectively. However, the peak

magnitude is underpredicted in the DWM as compared to LES. The underprediction is larger for higher frequencies, i.e. 2P ,

22

https://doi.org/10.5194/wes-2025-200
Preprint. Discussion started: 20 October 2025
c© Author(s) 2025. CC BY 4.0 License.



x/D=0

-0.2
0.0
0.2
0.4
1.0
2.0
4.0

=
0

x/D=5 x/D=10 All x

RM
S 

er
ro

r a
gg

re
ga

te
d 

ov
er

 x
/D

   
  

0 2 4 6

-0.2
0.0
0.2
0.4
1.0
2.0
4.0

=
30

0 2 4 6 0 2 4 6 0 2 4 6

-0.2
0.0
0.2
0.4
1.0
2.0
4.0

Al
l 

RMS error aggregated over Total RMS

To
ta

l R
M

S

LES RANS DWM Fuga PyWake
HAWC2 ghost turbine RANS LUT Velocity + Power curve

Figure 10. Relative power error compared to LES for the first two turbines of the setup and a ghost turbine placed at 10D. Results for two

yaw angles and all models are presented. The dotted bars are HAWC2 ghost turbines, and the bars with circles are obtained from rotor-

averaged values plus the power curve.

3P , and 6P . Since the tower bottom loads have the highest energy at 3P , the underprediction of the signal energy at higher

frequencies in the DWM is consistent with the underprediction of the DEL for said channel.460
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tower, and (right) yaw bending loads at the top of the tower. The errors are evaluated for two yaw angles, see the labeling of the plot.

10 3 10 2 10 1 100 101

f [Hz]

101

103

105

107

109

PS
D 

M
be

nd
in

g [
(N

m
)2 ]

f1P f2Pf3P f6PfC

10 3 10 2 10 1 100 101

f [Hz]

100

102

104

106

108

1010

PS
D 

M
be

nd
in

g [
(N

m
)2 ]

f1P f2Pf3P f6PfC

10 3 10 2 10 1 100 101

f [Hz]

100

102

104

106

108

1010

PS
D 

M
be

nd
in

g [
(N

m
)2 ]

f1P f2Pf3P f6PfC
LES DWM

Figure 12. Load spectra for the waked turbine at 5D downstream of the upstream turbine for different yaw misalignment angles. The DELs

are for (left) flapwise blade loads at the root, (middle) fore-aft tower loads at the bottom of the tower, and (right) yaw bending loads at the

top of the tower.

4 Discussion

The comparison between models of different fidelity revealed consistent trends but also systematic discrepancies that point to

model limitations.
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The RANS model qualitatively captured asymmetric wake effects due to veer and yawed inflow, lateral velocity deficits, and

secondary steering, but the magnitude of these effects was underpredicted. This led to growing errors in power prediction with465

increasing yaw angles, and an underprediction of wake deflection due to veer, even for the aligned case.

The DWM gave the most accurate power predictions overall, mainly due to the good performance of the wake deflection

model, but it did not capture wake asymmetry. Since the inflow conditions tested here only produced moderate veer and

curling, the accuracy is expected to decrease under more strongly sheared or curled conditions. For turbine loading, blade and

yaw bending moments were predicted with reasonable accuracy, but tower bottom loads showed large errors (up to about 75 %470

in DEL for the second setup). These discrepancies are likely linked to neglecting non-axisymmetric wake effects in the Ainslie

model, the underprediction of wake meandering, and simplifying assumptions in the DWM turbulence treatment.

Using a uniform spatial averaging filter for meandering may contribute to the underprediction of the wake meandering

unrelated to shortcomings in the model hypothesis. Comparison of the PSD of the wake center line with and without the

filter enabled reveal that this filter tends to overdampen for certain frequencies. Hence, a more advanced filter could improve475

the performance. For example, in FastFarm, a non-uniform spatial averaging filter based on the Jinc function is implemented

(FastFarm).

For the wake asymmetry, alternative modeling approaches have been proposed in the literature. Branlard et al. (2022) intro-

duced the Curled Wake model in the DWM framework implemented in FastFarm, which can predict not only lateral velocity

deficits but also reproduce some of the curling in the wake. However, for this specific case, a preliminary implementation of480

the curled wake model in-house reproduced the curling of the wake from about 5D onwards, whereas in the LES dataset, the

curling is only visible up to about 5D for the single turbine case and a yaw misalignment of γ =−30◦. Further, the curled

wake model does not capture the effect of veer on the wake shape, which is more important, since if there is no wake deflection,

accurately predicting the wake shape becomes more important. More broadly, fast mid-fidelity wake models that capture the

combined effects of veer, shear, and yaw on both power and loads remain an important development area. Potential candidates485

include fast 3D parabolic solvers (Mittal et al., 2017), simple wake deformation models (Abkar et al., 2018), and data-driven

surrogates trained on high-fidelity data (Andersen and Murcia Leon, 2023; Schøler et al., 2024).

Additionally, even though the DWM implementation in Dynamiks uses the updated WAT model from Branlard et al. (2024),

the TI in the wake is missing key features: (i) the effect of shear on the TI is not modeled hence the TI is correct at hub height

but under- or overpredicted at the top and bottom the wake, respectively, (ii) accumulation of the TI in the farm is not correctly490

captured. Keck et al. (2015) has proposed improvements for both these problems by connecting the wake TI to the Reynolds

stress in the wake and shear in the inflow, but they are not implemented in Dynamiks yet. The plan for the future is to improve

based on his work. If a non-axisymmetric deficit model is implemented as suggested in the previous paragraph, then the first

problem would also be much easier to solve.

Among the steady-state engineering models, the Supergaussian wake model in PyWake using the JiménezJiménez model for495

deflection gave similar accuracy to RANS in the far wake. Inclusion of veer-induced deflection similar to the DWM and case-

specific retuning of the near-wake region could potentially improve the results further. Fuga performed similarly to PyWake

in the far wake but showed errors up to 300 % in the near wake and overall slightly larger errors than PyWake for all cases,
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despite modeling more of the physics. Including tilt deflection and potentially modifying the Gaussian smoothing applied to

the wake could improve the results.500

Finally, the DWM, Fuga, and PyWake do not model lateral velocity deficits and thus cannot capture secondary steering. This

leads to flawed results for yaw setpoint optimization. A straightforward improvement could be to include a lateral velocity

deficit term following Zong and Porté-Agel (2020).

5 Conclusions

This study compared power and load predictions for wake steering on a solitary IEA 22 MW turbine and a two-turbine row505

with 5D spacing, using models of varying fidelity under neutral ABL conditions. Overall, all models reproduced the qualitative

power and load variation trends with yaw angle and downstream position. Quantitatively, however, substantial differences in

accuracy were observed. The DWM provided the most accurate power predictions but heavily underestimated tower bottom

loads for various reasons. RANS captured asymmetric wake effects but underpredicted their magnitude, leading to errors in

power prediction. Steady-state engineering models (PyWake and Fuga) produced reasonable predictions in the far wake for all510

yaw angles, but could benefit from small model-specific improvements. None of the engineering models reproduced secondary

steering since the lateral velocity deficits were not modeled. Several suggestions for further improvements to the models have

also been discussed. The improvements focus on capturing wake asymmetry due to non-uniform inflow, mean wake deflection,

and lateral velocity deficits, as well as better capturing the main physics behind wake meandering.

The main takeaway is that while the presented models can capture broad trends for the neutral boundary layer case presented515

here, their quantitative accuracy is limited for the aforementioned reasons. For practical applications, this means that optimiza-

tion strategies relying on the tested models should be applied cautiously, especially for yaw offsets larger than 10 degrees.

Further, the results may become less reliable in cases with stronger veer.
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