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Abstract.

The design and control of airborne wind energy systems requires fast, validated reduced-order models. Because aerodynamic

identification of soft, bridled kites is challenging, models that minimise the number of parameters to be identified can be

particularly valuable. This paper presents a reduced-order model for the translational dynamics of bridled kites, consisting of

a wing supported by multiple bridle lines. The kite is modelled as a point mass in a spherical reference frame aligned with the5

instantaneous tangential flight direction, referred to as the course reference frame. The angle of attack follows geometrically

from a constant angle between the wing chord and the bridle line system, under the assumption that the wing instantaneously

aligns with the pull direction, i.e., the rotational dynamics are neglected. The formulation retains gravitational and inertial

terms introduced by the curvilinear reference frame and applies a quasi-steady condition of zero path-aligned acceleration,

modelling the motion as a sequence of quasi-steady (trimmed) states that relate the trim speed and angle of attack. Model10

validation is based on public flight datasets from two different soft-wing kites and on dynamic simulations that cover higher

wing loadings. Results show that for low wing loadings typical of soft kites, the quasi-steady approximation reproduces the

dynamic trajectories with less than 1% deviation in mean reel-out power. For higher loadings and hard-wing kites, inertia

introduces substantial phase lag and amplitude damping, causing power deviations of up to 14%. Overall, the proposed model

provides a computationally efficient framework for analysing the translational dynamics of bridled kites. The formulation is15

well-suited to trajectory optimisation, parametric studies, and control design in airborne wind energy systems.

1 Introduction

Kites have a long history of use, ranging from recreational and cultural applications to military reconnaissance and atmospheric

research (Schmidt and Anderson, 2013). Their first serious applications in engineering emerged in the early 19th century,20

particularly in the field of meteorology, where tethered kites were employed to carry instruments at altitude for atmospheric

measurements. In all these early applications, the kite was designed to remain in static equilibrium, generating a lifting force

to compensate for its weight and that of the payload.
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It was not until the 1970s that the idea of dynamically flying a kite in crosswind manoeuvres began to emerge. This innova-

tion, eventually popularised through the development of kitesurfing, revealed a key insight: when flown crosswind, a kite can25

reach speeds several times greater than the ambient wind speed. This leads to a significant increase in aerodynamic forces and

thus energy potential.

In the aftermath of the 1970s energy crisis, which stimulated a global search for alternative renewable energy sources,

American engineer Miles Loyd recognised the potential of crosswind flight and proposed the use of crosswind-flying kites for

generating electricity (Loyd, 1980). In his seminal paper, he derived the fundamental equations governing crosswind flight and30

provided an initial estimate of the power potential of tethered wings for wind energy generation. His analysis demonstrated

that, under idealised conditions, airborne wind energy could extract significantly more power than conventional wind turbines

of the same size, highlighting the promise of the technology. However, the theory relied on highly simplified assumptions and

neglected several physical effects that were later shown to significantly limit the achievable power in practice (Diehl, 2013).

Since Loyd’s original proposal, and particularly in the past two decades, research into airborne wind energy has expanded35

rapidly. A wide range of modelling approaches have been developed to describe the flight dynamics of tethered wings, spanning

from low-fidelity point-mass models to high-fidelity simulations incorporating detailed structural and aerodynamic represen-

tations (Vermillion et al., 2021).

At the higher end of this spectrum, the kite is often modelled as a six-degree-of-freedom rigid body, and the tether is

discretised as a lumped mass–spring–damper chain to capture its dynamic behaviour (Fechner et al., 2015; Eijkelhof and40

Schmehl, 2022). These models provide detailed insight into coupled control dynamics but require increased computational

resources and large parameter sets (De Schutter et al., 2022). Moreover, the dynamics become less transparent, and intuitive

relations between key variables are harder to extract.

Simpler models, by contrast, typically represent the kite as a point mass and the tether as a straight line in quasi-static

equilibrium. In many of these formulations, the kite is assumed to fly at a constant lift-to-drag ratio, with aerodynamic forces45

aligned to the apparent wind direction (Schmehl et al., 2013; Vlugt et al., 2019; Schelbergen and Schmehl, 2020; Fechner and

Schmehl, 2013; Ranneberg et al., 2018).

A common assumption in these simplified models is that the motion of the kite can be described as quasi-steady. However, the

definition of quasi-steadiness varies across the literature. In some formulations, the inertial forces are assumed to be negligible

compared to aerodynamic forces and are therefore omitted entirely (Vlugt et al., 2019; Schelbergen and Schmehl, 2020). In50

others, only longitudinal and radial accelerations are neglected, while remaining accelerations are accounted for (Schmehl

et al., 2013). As a result, there remains a degree of ambiguity in how quasi-steady flight is modelled and interpreted.

This paper introduces a reduced-order formulation of the equations of motion for bridled kites, i.e. systems constrained by

a bridle line system. The formulation is developed in a spherical reference frame aligned with the course direction of the kite,

which provides a clearer and more intuitive expression of the relevant kinematic quantities. Within this frame, the quasi-steady55

condition emerges naturally as an implicit property of the system.

Commercial prototypes of bridled kites can be grouped into three main categories: (i) soft kites used in kitesurfing and

ground-steered power-generating systems (e.g., Beyond the Sea, SP80, Kitenergy), (ii) soft kites with a suspended control
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unit or onboard control surfaces (e.g., Airseas, Kitepower, SkySails Power, Toyota), and (iii) semi-rigid kites with ground-

based steering (e.g., Enerkíte). Figure 1 illustrates these prototypes. The present work primarily targets soft-wing kites, such60

as leading-edge inflatable designs, for which the identification of aerodynamic forces and moments is particularly challenging

due to structural flexibility and unconventional aerodynamic shapes (Sánchez-Arriaga et al., 2017).

Figure 1. Beyond the Sea, SP80, Kitenergy, Airseas, Kitepower, SkySails Power, Toyota, and Enerkíte (from left top to bottom right).

The remainder of this paper is organised as follows. Section 2 describes the actuation mechanisms of bridled kites and the

assumptions underlying the point-mass model. Section 3 derives the equations of motion in a spherical course-aligned frame,

and Sect. 4 introduces the quasi-steady simplification that follows from these equations. Section 5 compares the model against65

experimental data, while Sect. 6 examines quasi-steady flight behaviour and assesses the effect of increasing wing mass on the

validity of the assumption. Finally, Sect. 7 summarises the key findings and their implications for optimisation and performance

studies.

2 Actuation mechanisms and model assumptions

The control of bridled kites is typically achieved through the adjustment of bridle line geometry, either symmetrically, to70

adjust the pulling force and flight speed, or asymmetrically, to steer the kite. These actuation strategies directly affect the

orientation and magnitude of the aerodynamic force and thus the flight path of the kite. In this section, we describe the two

main mechanisms and discuss their implications for the assumptions that are used to build up a point mass model of a kite.
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2.1 Longitudinal Static Stability and Trim Condition

A key design requirement for bridled kites is longitudinal static stability (Breukels, 2011; Terink et al., 2011), meaning that75

small deviations in angle of attack generate restoring moments that return the kite to its equilibrium orientation. Such stability

ensures the existence of a unique trim angle of attack at which the net moment about the bridle point (B) vanishes, leading to

a statically stable equilibrium. In this state, the resultant force at the kite’s wing aligns with the resultant force at the bridle

point. For a massless kite, the wing force reduces to the aerodynamic force applied at the centre of pressure xcp, as illustrated

in Figure 2. When weight is included, the equilibrium is preserved by a shift in the trim angle of attack, ensuring that the80

combined aerodynamic and gravitational forces still align with the bridle resultant. Numerical simulations of symmetric kites

in virtual wind tunnels provide evidence of longitudinal static stability, consistently exhibiting convergence towards a unique

trim angle of attack at which the net moment about the bridle point vanishes (Poland and Schmehl, 2024b; Cayon et al., 2023;

Thedens and Schmehl, 2023), whilst experimental data confirms that the kite’s angle of attack remains relatively constant

during flight (Oehler and Schmehl, 2019; Schelbergen, 2024; Cayon et al., 2025).85
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Figure 2. Sideview of symmetric actuation for a schematic massless kite. The depower angle θd is defined positive in the counter-clockwise

direction. Here, Fb denotes the resultant force at the bridle/tether attachment point on the kite, including any loads transmitted by a kite

control unit (KCU), if present.

The tow angle λb is defined as the angle between the front bridle line direction and the straight line from the bridle attachment

point to the CP. In the current work, it is assumed that variation of the centre of pressure near the trim point is negligible,

implying that λb remains approximately constant for a given bridle geometry. This assumption is supported by experimental

observations, which show that for leading-edge inflatable (LEI) kites, the force distribution between front and rear bridle lines
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Figure 3. Tow angle λb as a function of wing angle of attack αw for the TU Delft V3 kite. Shaded regions represent the expected range for

the reel-in and reel-out phases, based on experimental measurements.

remains approximately constant for a fixed depower setting (Oehler et al., 2018; Oehler and Schmehl, 2019). To substantiate90

this assumption, Figure 3 plots the tow angle λb against the wing angle of attack αw for the TU Delft V3 kite, computed with

the Vortex Step Method (VSM), a validated lifting-line aerodynamic model (Cayon et al., 2023; Poland et al., 2025); shaded

bands indicate the measured reel-out (powered) and reel-in (depowered) ranges (Cayon et al., 2025). Across both regimes, λb

varies by less than 1◦. Thus, for a given bridle geometry, the approximation of a constant geometric angle θb is justified in the

present formulation. Nevertheless, this assumption needs to be re-evaluated for each specific kite design.95

Figure 3 also shows an apparent discontinuity near the zero-lift angle of attack, where the centre of pressure is mathematically

undefined. As this angle is approached, the centre of pressure shifts aft, producing a nose-down moment that can lead to a front

stall. This behaviour is not captured in the present formulation, as it is assumed that the kite is controlled to operate outside

this regime.

From Fig. 2, the wing angle of attack αw can be related to the bridle angle of attack αb by a constant geometric pitch angle100

θb,

αw = αb− θb, (1)

where θb can be expressed geometrically as a function of the tow angle λb and the depower angle θd alone,

θb = θd +λb. (2)
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2.2 Symmetric actuation to adjust aerodynamic loading105

The preceding discussion implies that the trim state of a bridled kite is uniquely determined by the bridle geometry and the

aerodynamic properties of the wing. Therefore, modifying the mean trim angle during operation requires a change in the bridle

configuration. In practical systems, this is achieved through symmetric actuation of the bridle lines, which alters both the tow

angle and the depower angle.

Depowering the kite corresponds to increasing the depower angle θd, thereby reducing the trim angle of attack at which the110

kite operates (see Figure 2). This reduction in angle of attack decreases both the lift-to-drag ratio and the resultant aerody-

namic force, leading to lower tangential flight speeds and reduced tether tension. The detailed aerodynamic consequences of

depowering will be derived in the following sections.

2.3 Asymmetric actuation to steer the kite in turns

While symmetric actuation is used to control the trim angle and flight speed, asymmetric actuation is employed to generate115

turning manoeuvres by inducing lateral forces and moments. To initiate a turn, a force must be generated perpendicular to both

the tether direction and the kite’s instantaneous velocity vector. This is achieved by rotating the aerodynamic lift vector towards

the centre of the turn. For rigid or semi-rigid wings, this is typically accomplished by physically rolling the wing with respect

to the tether axis (Candade, 2023). In contrast, soft kites often achieve this through a combination of body roll and asymmetric

deformation (Brown, 1993; Breukels, 2011; Paulig et al., 2013; Bosch et al., 2013; Cayon et al., 2023; Poland and Schmehl,120

2023).

Most bridled kites are designed to be directionally stable, i.e. they generate a restoring yawing moment in response to a

sideslip (Hur, 2005; Belloc, 2015; Poland et al., 2025). Unlike free-flying aircraft, a wing geometry that would appear unstable

about its centre of mass can still be stable once tethered, provided the bridle point is positioned appropriately. In arched kites

this typically requires placing the bridle further forward, which ensures that the aerodynamic force distribution produces a125

restoring yawing moment about the bridle point in response to a sideslip.

In asymmetrically deformed kites, the steering input increases the angle of attack on the inner side of the wing relative to

the outer side, generating both a side force and a roll moment. This asymmetry also produces an initial yawing moment that

starts the turn. As the kite moves laterally, a sideslip develops. For directionally stable kites, the resulting sideslip produces a

yawing moment that maintains the turn. For LEI kites, sideslip angles up to about 5◦ have been observed for Kitepower’s V9130

(Cayon et al., 2025). By contrast, in purely roll-driven steering, the roll induces a sideslip angle, which then generates a yawing

moment via directional stability.

As the kite turns, the outer wing tip experiences a higher apparent velocity and lower effective angle of attack, while the

inner wing tip experiences the opposite (Erhard and Strauch, 2013). This differential shortens the moment arm and produces

a yaw-damping effect that resists further rotation, leading to the observed near-linear relation between steering input and yaw135

rate (Erhard and Strauch, 2013; Fagiano et al., 2013):

ψ̇ = kusva. (3)
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The good agreement with this simplified turn-rate law indicates a quasi-steady yaw response, where the yawing moment

equilibrates rapidly and the yaw rate scales proportionally with the product of apparent wind speed and steering input.

3 Dynamic model formulation140

The preceding section outlined the aerodynamic behaviours and actuation mechanisms that govern bridled kites, highlighting

the existence of a unique trim condition and the ability to modify the flight state through symmetric and asymmetric inputs.

We assume that longitudinal and directional stability drive the wing rapidly towards equilibrium, and therefore, the kite can

be approximated as a point mass whose orientation is fixed relative to the force resultant at the bridle point. In this simplified

representation, the tow angle λb is assumed constant for a given bridle configuration, and the kite is assumed to remain aligned145

with the apparent wind during controlled flight. The kite’s motion is most naturally expressed in a spherical coordinate system

centred at the ground station, with components parallel and transverse to the (straight) tether.

3.1 Reference frame

The motion of the kite is described using the course reference frame (C-frame), illustrated in Fig. 4, which provides a natural

decomposition of the velocity into radial and tangential components. The C-frame origin is located at the ground station, with150

the unit vectors eχ, en, and er corresponding to the course, normal, and radial directions, respectively.

The tangential plane, denoted as τ , contains eχ and en, and is perpendicular to er. The course angle χ defines the orientation

of eχ within this plane, with χ= 0 corresponding to motion directly towards the zenith (van Deursen, 2024).

A complete description of the additional reference frames and coordinate transformations is provided in Appendix A.

3.2 Kinematic relationships in the course reference frame155

The translational motion of the kite can be described using Newton’s second law of motion, which states that the absolute

acceleration d2rk
dt2 of a point k is equal to the sum of all forces acting upon k, divided by its mass m:

d2rk

dt2
=

∑
Fk

m
. (4)

When analyzed in a rotating reference frame, additional terms appear in the acceleration, commonly referred to as fictitious or

inertial forces. Below, these quantities are derived in the chosen C-frame.160

3.2.1 Velocity

The position vector rk of a point k in the course reference frame is given by rer. Differentiating with respect to time and

applying the product rule yields,

drk

dt
=
dr

dt
er + r

der

dt
=




0

0

vr


 +ΩC × rk =




vτ

0

vr


 , (5)
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Figure 4. Schematic of the reference frames and aerodynamic angles used in the model. The wind reference frame is shown in black, the

azimuth–zenith–radial (AZR) reference frame in orange, and the course reference frame in blue.

where ΩC is the angular velocity of the course reference frame with respect to the inertial wind frame. The velocity vector can165

thus be written compactly as

vk =
drk

dt
= vτeχ + vrer. (6)

3.2.2 Angular velocity of the course reference frame

The C-frame, as explained in Sect. 3.1, is obtained through a sequence of three rotations characterized by the rotation parame-

ters ϕ, β and χ. Since angular velocities are additive, the course reference frame’s angular velocity vector Ω
C

is thus expressed170

as the sum of the individual rotation rates expressed along their respective axes,

Ω
C

= ϕ̇ez − β̇eϕ− χ̇er =




ϕ̇cosχcosβ− β̇ sinχ

ϕ̇sinχcosβ+ β̇ cosχ

ϕ̇sinβ− χ̇


 . (7)

This form, however, is not very convenient since the derivatives of the elevation β̇ and azimuth ϕ̇ are already dependent on

other kinematic quantities, which can be revealed by solving the system of equations of obtained by equating Ω
C
× rk from
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Eqs. (5) and (7),175

Ω
C
× rk = r




ϕ̇sinχcosβ+ β̇ cosχ

β̇ sinχ− ϕ̇cosχcosβ

0


 =




vτ

0

0


 , (8)

with the time derivatives of the position angles

ϕ̇=
vτ sinχ
r cosβ

, (9)

β̇ =
vτ cosχ

r
. (10)

Using these expressions, the rotation vector Ω
C

can now be expressed as a function of the tangential and radial speeds vτ , vr,180

the course angle χ and the course angle rate χ̇,

Ω
C

=




vτ

r sinχcosχ− vτ

r sinχcosχ
vτ

r sin2χ+ vτ

r cos2χ
vτ

r sinχtanβ− χ̇


 =




0
vτ

r

vτ

r sinχtanβ− χ̇


 . (11)

3.2.3 Acceleration

The acceleration in the C-frame can be obtained by differentiating Eq. (5) with respect to time, applying the product rule once

more,185

d2rk

dt2
=
d2r

dt2
er + 2

dr

dt

der

dt
+ r

d2er

dt2
,

which can be expanded and rewritten in terms of the rotation velocity Ω
C

and the position vector rk as,

d2rk

dt2
=
d2rk

dt2

∣∣∣∣
R

+ 2Ω
C
× drk

dt

∣∣∣∣
R

+Ω
C
× (Ω

C
× rk) +

dΩ
C

dt
× rk. (12)

Equation (12) shows that the absolute acceleration of k in the C-frame is the summation of the relative acceleration
(

d2rk
dt2

∣∣∣
R

)
,

the Coriolis acceleration
(
2Ω

C
× drk

dt

∣∣
R

)
, the centrifugal acceleration (Ω

C
× (Ω

C
× rk)), and the Euler acceleration

(
dΩ

C

dt × rk

)
,190

with

d2rk

dt2

∣∣∣∣
R

=




0

0

v̇r


 , (13)

2Ω
C
× drk

dt

∣∣∣∣
R

=




2 vτ vr

r

0

0


 , (14)
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195

Ω
C
× (Ω

C
× rk) =




0
v2

τ

r sinχtanβ− vτ χ̇

−v2
τ

r


 , (15)

dΩ
C

dt
× rk =




v̇τ

r − vτ vr

r2

0
d
dt

(
vτ

r sinχtanβ− χ̇
)


×




0

0

r


 =




v̇τ − vτ vr

r

0

0


 . (16)

Substituting in Eq. (12), results in the absolute acceleration d2rk
dt2 in terms of the course reference frame state variables,

d2rk

dt2
=




v̇τ + vτ vr

r
v2

τ

r sinχtanβ− vτ χ̇

v̇r − v2
τ

r


 . (17)200

3.3 External forces

The external forces acting on the kite are the aerodynamic force Fa, the weight of the kite Fg and the tether force Ft. These

forces must be expressed in terms of the C-frame in accordance to the last section.

3.3.1 Gravity force

The most straightforward force is the weight of the kite Fg, which has a constant direction. Using the transformation T
C←W

205

from Eq. (A4), Fg is expressed in the C-frame,

Fg =−mgez =−mg




cosχcosβ

sinχcosβ

sinβ


 , (18)

where m is the kite mass and g is the gravitational acceleration.

3.3.2 Aerodynamic Force

The aerodynamic force Fa is composed of drag and lift, both defined relative to the apparent wind vector va. Drag D is aligned210

with va by definition, while lift L is perpendicular to it. Although asymmetric deformation of the kite can generate side forces,

these are not explicitly modelled here; instead, their effect is captured through a control-induced aerodynamic roll angle ϕa.

The aerodynamic force can thus be written as

Fa = D+L. (19)
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Decomposing the apparent wind vector in the C-frame yields215

va =




va,χ

va,n

va,r


 =




vw,χ− vτ

vw,n

vw,r − vr


 , (20)

The drag force is then

D =
1
2
ρSCD(αw)va




va,χ

va,n

va,r


 . (21)

Lift is assumed to act in the plane normal to va, and its direction is determined by the aerodynamic roll angle ϕa. This angle

accounts for both the control-induced roll (e.g., via asymmetric deformation or physical roll of the wing) and the roll induced220

by the kite control unit. The lift vector is expressed as:

L =
1
2
ρSCL(αw)v2

a eL, (22)

eL =
1

vava,τ




−vava,n sinϕa− va,χva,r cosϕa

vava,χ sinϕa− va,nva,r cosϕa

v2
a,τ cosϕa


 , (23)

where va,τ =
√
v2

a,χ + v2
a,n is the component of the apparent wind in the tangential plane. The derivation of the lift direction

is provided in Appendix D1.225

The wing angle of attack αw is obtained under the assumptions that the kite remains aligned with the apparent wind and that

the pitch angle between the wing chord and the resultant force at the bridle point is constant (see Appendix D2).

The aerodynamic coefficients CL(αw) and CD(αw) are obtained by interpolating aerodynamic polar curves. The sideslip

angle is not explicitly modelled, but its effect on the total aerodynamic lift is assumed negligible, based on prior numerical

and experimental studies showing only minor degradation at the small sideslip angles observed during flight (Viré et al., 2022;230

Cayon et al., 2023; Poland et al., 2025).

3.3.3 Tether Force

A realistic tether can only be loaded axially and therefore deforms due to gravity, aerodynamic drag, and inertial forces. For

this simplified model, a straight, inelastic and inertia-free tether is assumed. The effective weight and drag of the tether acting

on the kite are obtained from a quasi-static equilibrium by enforcing moment balance at the ground station, which implies that235

kite tangential accelerations are not included in the tether model. A schematic of the force components is shown in Fig. 5.

The net tether force at the kite is obtained from a moment balance about the ground station, incorporating the effects of

tether weight and aerodynamic drag. The drag force is approximated as acting at the kite in the direction of the apparent wind

velocity (Vlugt et al., 2019).

11

https://doi.org/10.5194/wes-2025-205
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 5. Free body diagram of a straight, axially loaded tether in a spherical coordinate frame.

This yields the following expressions for the tangential and normal components of the tether force at the kite:240

Ft,τ =− 1
2ρtgr cosχcosβ+ 1

8ρCD,cdtrva(vw,χ− vτ ), (24)

Ft,n =− 1
2ρtgr sinχcosβ+ 1

8ρCD,cdtrvavw,n. (25)

The radial component is:

Ft,r =−Ftg − ρtgr sinβ+ 1
8ρCD,cdtrva(vw,r − vr). (26)

The full derivation is provided in Appendix D3.245

3.4 Equations of motion

Having defined the absolute acceleration and the external forces in the C-frame, the translational dynamics of a tethered kite

follow from Newton’s second law,

m
d2rk

dt2
= Fext = Fa +Ft +Fg. (27)

The model is formulated as a system of differential–algebraic equations (DAEs):250

ẋ = f(x,z,u) =
[
vr

vτ cosχ
r

vτ sinχ
r cosβ

χ̇ v̇r v̇τ

]
, (28)

0 = g(x,z,u) = m
d2rk

dt2
−Fext. (29)
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Here, x, z, and u denote the differential states, algebraic states, and control inputs, respectively

x =
[
r β ϕ χ vr vτ

]
, (30)

z =
[
v̇τ χ̇ Ft,g

]
, (31)255

u =
[
v̇r us up

]
. (32)

In this work, us is the steering input (actuation that primarily sets the aerodynamic roll and thereby the course rate χ̇), and up

is the depower input (actuation that changes the geometric pitch θb and thus affects the angle of attack αw).

4 Quasi-steady equilibrium

In the context of crosswind flight, the quasi-steady state is defined as the trimmed condition arising from the instantaneous260

balance of forces and moments acting on the system. As the kite’s orientation relative to the wind changes along its trajectory,

the trim condition evolves with its position and motion direction in the wind window.

4.1 Definition and Assumptions

To illustrate the governing balance in its simplest form, we first consider an idealised case in which the kite is positioned at

the centre of the wind window (ϕ= 0, β = 0), with no tether dynamics included. In this scenario, the tangential acceleration265

v̇τ depends only on the tangential speed vτ , motion direction χ, reeling speed vr, and control inputs (depower up and steering

us). The governing equation reduces to

mv̇τ = 1
2ρSva [CL(αw)cosϕa(vw − vr)−CD(αw)vτ ]−mg cosχ. (33)

The same interpretation applies at any position, although the explicit form of the aerodynamic terms is more complex.

Plotting v̇τ as a function of vτ in Fig. 6 shows that it typically crosses zero at two points. These crossings correspond to270

candidate quasi-steady equilibria defined by

v̇τ = 0. (34)

However, only the equilibrium that satisfies the local stability criterion

∂v̇τ

∂vτ
< 0 (35)

is physically relevant. At this stable equilibrium, any perturbation in vτ is counteracted by the aerodynamic forces. An increase275

in vτ reduces the angle of attack, rotating the resultant force rearward and producing a decelerating tendency. A decrease in vτ

has the opposite effect.

The effect of gravity appears as a vertical offset in Fig. 6. When the kite ascends (χ= 0◦), the gravitational component

opposes the motion. To maintain equilibrium, the aerodynamic force must rotate forward, requiring an increase in the trim
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Figure 6. Tangential acceleration v̇τ as a function of the tangential speed vτ and angle of attack αw, for different course angles χ. Results

shown for the Kitepower V9 kite. A negative slope near the equilibrium confirms local stability.

angle of attack. Conversely, during descent (χ= 180◦), gravity assists the motion, allowing the force vector to rotate backward280

and reducing the required trim angle. Because the trim angle of attack and tangential speed are linked by the aerodynamic

equilibrium, a higher αw corresponds to a lower vτ , and vice versa. Consequently, changes in the gravitational component

along the course lead to different equilibrium speeds, even under the quasi-steady assumption. The characteristic acceleration

and deceleration in flight patterns typically attributed to gravity are thus captured implicitly within the quasi-steady solution,

without the need for explicit modelling of dynamic inertial effects.285

These observations support an interpretation of the kite dynamics as continuously converging toward a moving quasi-steady

state, defined by the instantaneous position, motion direction, and control inputs. When aerodynamic forces dominate and the

wing loading (m/S) is sufficiently small, this convergence is rapid enough to approximate the motion as a sequence of quasi-

steady states. This assumption is further examined in Sect. 6.3, where dynamic and quasi-steady simulations are compared

across a range of wing loadings.290

This treatment differs from earlier implementations, where inertial accelerations were sometimes omitted entirely (Vlugt

et al., 2013; Schelbergen and Schmehl, 2020), or where tangential and radial accelerations were assumed negligible compared

to aerodynamic contributions (Schmehl et al., 2013). In contrast, the present formulation retains the inertial terms and defines

the quasi-steady equilibrium through the condition of zero tangential acceleration, corresponding to the trimmed state of the

kite.295

However, for practical implementation, we also assume the radial acceleration imposed by the winch, v̇r, to be negligible.

This simplification, adopted in earlier quasi-steady models, is justified by the relatively small winch acceleration (Schmehl

et al., 2013).
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4.2 Quasi-steady equations of motion

Following the definition of quasi-steady equilibrium, the dynamic DAE system in Eq. (28) can be reduced by eliminating the300

differential states associated with the radial and tangential accelerations, v̇r and v̇τ . The resulting state vectors are

xqs =
[
r β ϕ χ

]
, (36)

zqs =
[
vτ χ̇ Ftg

]
, (37)

uqs =
[
vr us up

]
, (38)

where xqs contains the remaining position and orientation variables, zqs the algebraic variables associated with tangential305

speed, course rate, and tether force, and uqs the control inputs. The reduced quasi-steady formulation is thus expressed as a

semi-explicit DAE system of index 1:

dxqs

dt
= f(xqs,zqs,uqs),

0 = g(xqs,zqs,uqs),
(39)

where f describes the reduced differential kinematics and g enforces instantaneous force balance.

The quasi-steady formulation is independent of the time history: at each instant the state is obtained from the algebraic force310

balance g(x,z,u) = 0 at the current position and inputs. By contrast, the dynamic formulation is history-dependent and must

be solved as an initial-value problem.

5 Validation of quasi-steady model

The quasi-steady model is validated using flight data from two kites of different sizes: the TU Delft V3 kite (Poland and

Schmehl, 2024a) and the V9 kite from Kitepower (Cayon et al., 2024), with publicly available datasets that enable repro-315

ducibility. Key parameters of the two systems are summarised in Table C1. Notably, the V3 system was equipped with a kite

control unit (KCU) whose mass was approximately twice that of the wing, which is atypical for properly scaled systems and is

expected to influence the dynamics and feasibility of the quasi-steady assumption.

The validation is conducted by imposing the measured flight trajectories as inputs to the quasi-steady model. At each

recorded time step, the measured position (r,β,ϕ), course angle χ and rate χ̇, radial speed vr, and wind speed vw are pre-320

scribed as inputs. The quasi-steady model is then used to compute the corresponding tangential speed vτ , tether force Ftg, and

required steering input us, which are compared to the measurements.

It is important to note that the wind speed used in the quasi-steady reconstruction differs between the two cases. For the

V3 kite, the wind speed was estimated using an extended Kalman filter (EKF) specifically tailored for soft kites (Cayon

et al., 2025). In contrast, the V9 case used lidar measurements taken around 200m upwind of the kite and interpolated to325

the kite height. However, the lidar data is subject to 1-minute temporal averaging, which smooths out short-term fluctuations.

Conversely, the EKF reconstruction for the V3 flight may also struggle to resolve rapid wind changes. As a result, even if
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the model perfectly reproduced the underlying physics, discrepancies between the predicted and measured quantities may still

arise due to limitations in wind and state estimation.

5.1 Aerodynamic identification330

Aerodynamic modelling of flexible kites remains one of the most challenging aspects of kite design. The arched geometry

and extensive recirculation zones induced by the unconventional leading-edge inflatable (LEI) airfoils complicate accurate

aerodynamic simulation. Recent wind tunnel experiments with the V3 kite have demonstrated that neither CFD simulations nor

simplified models based on lifting-line theory can reliably reproduce the aerodynamic behaviour of these kites. In particular,

both the magnitude and slope of the drag coefficient are consistently underestimated, suggesting that neither parasitic nor335

induced drag components are captured adequately by current modelling approaches (Poland et al., 2025). Moreover, these

discrepancies do not yet account for structural deformations, which further increase the gap between simulation and reality.

Experimental observations have revealed significant deformation of the three-dimensional kite geometry, including bending of

the inflatable struts, which directly affects aerodynamic performance. Additional phenomena such as trailing edge flutter and

bridle line vibrations also contribute to deviations in aerodynamic characteristics.340

Given these complexities, purely simulation-based aerodynamic identification often fails to accurately represent the true

behaviour of deformable kites. Consequently, a semi-empirical approach combining both simulation data and experimental

measurements is adopted to achieve a more reliable aerodynamic characterisation.

Experimental data obtained during flight tests allow the estimation of the mean lift and drag coefficients corresponding to

three representative flight states: (i) powered and straight flight during reel-out, (ii) powered and steered flight during reel-out,345

and (iii) depowered flight during reel-in. The baseline aerodynamic polars are first computed using the vortex step method, a

validated lifting-line-based model (Cayon et al., 2023; Poland et al., 2025), suitable for low aspect ratio and curved geometries,

and second-order polynomial fits are applied to both the lift and drag curves. Subsequently, for each of the three representative

states, a parasitic drag offset is added to the drag curve such that the corresponding CL–CD polar intersects the experimentally

identified coefficients for that state (see Fig. 7).350

The lift coefficient is modelled as a second-order polynomial function of the angle of attack

CL(αw) = CL,0 +CL,1αw +CL,2α
2
w. (40)

The drag coefficient incorporates both the baseline drag curve and empirical corrections to account for control-induced effects.

It is expressed as

CD(αw,up,us) = CD,0 +CD,1αw +CD,2α
2
w +CD,pup +CD,sus, (41)355

where up and us are the depower and steering control inputs, respectively. The terms CD,p and CD,s introduce multiplicative

corrections to capture the increase in drag associated with depower and steering, while CD,0 accounts for a baseline parasitic

drag offset, representing the drag observed in straight powered flight. The polynomials for the TU Delft V3 kite can be found

in Appendix C.
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Figure 7. Aerodynamic polar diagram showing CL versus CD for the TUDELFT V3 kite. The baseline curve is obtained from VSM

simulations, with a quadratic fit applied. Semi-empirical corrections are introduced to match three experimentally identified flight states.

Finally, the aerodynamic roll angle ϕa is empirically characterised as a linear function of the steering input us, based on360

flight test data

ϕa = kϕ,sus. (42)

The resulting modified polars incorporate both the baseline aerodynamic behaviour and empirical corrections derived from

flight tests, effectively accounting for the drag contributions of the bridle lines, KCU, and onboard turbine.

Similar correction strategies have been successfully employed in previous quasi-steady kite modelling studies (Vlugt et al.,365

2019; Schelbergen and Schmehl, 2020), offering a practical compromise between model fidelity and computational tractability.

5.2 Comparison with experimental data

With the identified aerodynamic polars, assumed linearly dependent on steering and depower inputs, the quasi-steady model

is used to retrace the force, tangential speed, and steering input required to sustain each measured state. This enables a direct

comparison between the model predictions and experimental measurements at each point along the flown trajectory, under the370

assumption of instantaneous aerodynamic equilibrium.

Figure 8 shows segments of two representative flights, comparing measured and estimated tangential speed and tether force,

as well as pitch relative to the radial direction and aerodynamic roll, against the corresponding pitch and roll relative to the

radial direction calculated by the EKF (Cayon et al., 2025), which employs a discretised tether model rather than the simplified

model used here.375
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Figure 8. Validation of the quasi-steady model against flight data from two kite systems. For TU Delft V3 kite (one cycle) and Kitepower

V9 kite (two cycles), the figure compares measured and reconstructed tangential speed, tether force, and steering input.

In the reel-out phase, the temporal response of the model is good, with the predicted peaks in tangential speed and tether

force aligning closely with those measured. However, the estimated values appear noisier—particularly for the V9 kite—and

some peaks are overestimated. The kite pitch with respect to the radial direction agrees well in both trend and magnitude with

the estimations obtained from a discretised tether model. In contrast, the roll is compared against the aerodynamic roll, which

accounts for both the KCU-induced roll and the kite side-force, and therefore yields higher values during turning manoeuvres380

than those estimated by the EKF. For the V3 kite, which was equipped with an unusually heavy KCU relative to its size, several

states cannot be resolved in a quasi-steady manner—especially on the lower part of the figure-eight, where the kite exits the

turn and begins to climb. This explains the gaps observed in the corresponding estimations.

In the reel-in phase, the model reproduces the behaviour of the measured quantities reasonably well, provided that the de-

power setting is adjusted to yield a lift coefficient consistent with the values inferred from measurements. Under this condition,385

the magnitude variation of the tether force and tangential speed are in line with the measurements, although small discrepancies

remain. Here, both the pitch and the aerodynamic roll align well with the EKF estimations, as the KCU primarily affects the

pitch axis during reel-in.
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The transition from reel-in to reel-out remains the most challenging phase for the model. In this regime, the predicted

tether force often overshoots the measurements. These deviations arise from two main factors: the kite undergoes dynamic390

manoeuvres that violate the quasi-steady assumption, and the tether can exhibit significant sag under low tension, followed

by a rapid transition to high tension that is not well captured by the simplified straight-line tether model. Together, these

effects reduce the model’s accuracy during this phase. For the V9 kite, this behaviour appears at the beginning of the reel-out

phase—immediately after transition—because of how the masks are defined, but it effectively corresponds to the first turn into

reel-out.395

The purpose of this comparison is to assess whether the overall behaviour and magnitude are consistent, rather than to

achieve a direct point-by-point match, since the state variables used to reconstruct the quasi-steady equilibrium carry noise and

inaccuracies. Moreover, the wind is not measured directly at the kite, but either with lidar or estimated through an EKF, both

of which introduce additional uncertainties.

6 Analysis of Quasi-steady and Dynamic Flight Behaviour400

This section investigates the behaviour of crosswind flight through a combination of quasi-steady parametric analyses and

dynamic simulations. The quasi-steady framework is first used to explore how kite position and reeling strategy influence

performance metrics such as tangential speed and power extraction. Subsequently, dynamic simulations are employed to assess

the validity of the quasi-steady approximation, highlighting the role of inertia and its impact on flight response.

6.1 Influence of Kite Position on Quasi-steady Tangential Speed405

The position of the kite within the wind window, that is, its azimuth and elevation relative to the wind direction, significantly

influences the aerodynamic forces and resulting tangential velocity. As the kite moves away from the centre of the wind

window, the component of the wind velocity perpendicular to the wing surface decreases. Consequently, the tangential speed

vτ required to achieve a quasi-steady equilibrium (v̇τ = 0) diminishes, since a lower apparent wind angle relative to the wing

reduces the required flight speed to maintain the trim angle of attack.410

This behaviour is illustrated in Fig. 9, which shows the non-dimensional tangential speed factor λ= vτ/vw as a function

of the azimuth, elevation, and course angles, under the assumption of straight flight (χ̇= 0). As seen in Fig. 9a, the tangential

speed decreases with the elevation of the kite, and as the elevation increases, the dependency on the course angle becomes

greater, mostly due to the aerodynamic force getting closer to the weight. The tangential speed is maximal at χ= 180◦, where

gravity assists the motion, and minimal at χ= 0◦, where it opposes it.415

A similar dependency is observed with respect to the azimuth angle ϕ, where increasing misalignment reduces the tangential

speed. The combined effect of azimuth and course angles shifts the location of maximum tangential speed. As shown in

Fig. 9b, for ϕ= 0◦, the maximum occurs at χ= 180◦, but as ϕ increases, both the maximum and minimum shift toward

χ= 270◦, where the kite points more directly into the centre of the wind window. This shift results from the interplay between

the wind incidence angle and the tangential projection of gravity, which together influence the equilibrium speed.420
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Figure 9. Isolines of elevation and azimuth angles as a function of the tangential speed factor λ and the course angle χ for vr = 0. Results

shown for the Kitepower V9 kite.

6.2 Optimal Reel-out Strategy

The reeling speed plays a major role in determining both the tether force and the harvested power. It is well-known that, for

a simplified crosswind operation at the centre of the wind window and neglecting gravity, the optimal reeling speed is a fixed

fraction of the wind speed, originally derived by Loyd (1980) to be vr = 1
3vw. Extending this result to arbitrary positions

within the wind window—while still neglecting gravity—the optimal reeling factor becomes dependent on both elevation and425

azimuth, and is given by (Schmehl et al., 2013)

vr,opt =
vw
3

cosϕcosβ. (43)

This positional dependency reflects the reduction in crosswind efficiency with increasing elevation β and off-centre azimuth ϕ.

These trends, now accounting for both gravitational effects and course angle, are illustrated in Fig. 10. The results show that

maximum reeling speeds are obtained near χ= 180◦, where gravity assists the motion and increases tether force, whereas the430

optimal reeling factor decreases with increasing elevation or azimuth due to reduced tangential speed and diminished tether

loading. From Fig. 10, one can observe a consistent relationship between the optimal reeling speed and the corresponding

tether force across different positions. This motivates the analytical derivation—under the assumption of quasi-steady flight

and neglecting gravity—of a direct expression linking the two, given the lift and drag coefficients of the wing, which can be

obtained with the simplified equations derived in Schmehl et al. (2013),435

Ft = 2ρSCRv
2
r,opt

[
1 +

(
CL

CD

)2
]
. (44)
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Figure 10. Isolines of elevation and azimuth angles as a function of the instantaneous optimal reeling factor. Results shown for the Kitepower

V9 kite.

This relation suggests a practical control strategy in which the winch reeling speed is regulated as a function of the measured

tether force (Berra and Fagiano, 2021; Hummel et al., 2024). Since Ft inherently captures the combined influence of wind speed

and kite position, this enables an implicit, adaptive reeling control scheme without the need for precise wind measurements or

position-dependent logic. The inclusion of gravitational effects alters the force equilibrium and shifts the aerodynamic trim,

Figure 11. Instantaneous optimal reeling speed as a function of the tether tension for different conditions. Results shown for the Kitepower

V9 kite.
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leading to deviations from the idealised relation in Eq. (44). This displacement is illustrated in Fig. 11, where the optimal440

reeling speed is plotted as a function of tether tension for multiple positions and orientations the wind window for different

wind speeds. Nonetheless, for the wing loadings typical of soft kites, the deviation introduced by gravity remains relatively

small, allowing the analytical relation in Eq. (44) to serve as an effective basis for reeling control.

It is important to note that while the analytical expression represents the instantaneous reeling speed that maximises power

extraction, it does not necessarily correspond to the optimal reel-out speed over a full pumping cycle. The cycle-averaged445

optimum depends not only on the reel-out phase but also on the duration, dynamics, and efficiency of the reel-in phase.

Consequently, an effective reeling strategy must take into account the full cycle for optimal power generation (Luchsinger,

2013).

6.3 Dynamic Response in Crosswind Trajectories

To analyse the system response along prescribed flight paths, the kite motion is parametrised using a scalar path coordinate s(t),450

which evolves in time. This formulation enables all state variables to be expressed as functions of s and its time derivatives,

simplifying the comparison between dynamic and quasi-steady responses. The resulting velocity and acceleration components

are derived analytically in terms of s, ṡ, and s̈. The current parametrisation defines the kite trajectory on the wind window

(elevation and azimuth) independently of its radial position, which makes it possible to specify the reeling strategy separately

from the angular path. The complete formulation, including the path speed and kinematic derivatives in spherical coordinates,455

is provided in Appendix B.

Two representative trajectories are considered for crosswind flight in the W -frame. The first corresponds to a circular path,

while the second describes a Lissajous figure-eight. In both cases, the trajectory is parametrised by a shape parameter s and

time t, allowing all state variables to be expressed as functions of t, s, its derivatives ṡ, s̈, the steering input us, and the tether

force Ftg . A constant reel-out speed is assumed for clarity of comparison between the dynamic responses,460

r(t) = r0 + vrt. (45)

The trajectories are defined as:

– Circular path:

β = βc +
∆φ
2

sin(s), ϕ= ϕc +
∆φ
2

cos(s). (46)

– Lissajous figure-eight:465

β = βc +
∆β
2

sin(2s), ϕ= ϕc +
∆ϕ
2

cos(s). (47)

where ∆ϕ and ∆β denote the horizontal and vertical amplitudes of the patterns, respectively, and ϕc and βc the center position

of the pattern.
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Figure 12. Parametrized helix and figure of eight patterns.

Two integration schemes are applied. In the dynamic scheme, for each time step, the path acceleration s̈, the tether force

Ftg , and the steering input us are obtained by solving the force equilibrium given the current state (s, ṡ), and are subsequently470

integrated to update ṡ and s. This is written as a differential-algebraic equation (DAE) system in semi-explicit form,

d

dt


s
ṡ


 =


ṡ
s̈


 ,

0 = g


(s, ṡ)︸ ︷︷ ︸

x

, (s̈,Ftg,us)︸ ︷︷ ︸
z




(48)

where the algebraic constraint g enforces instantaneous force balance along the prescribed trajectory.

In contrast, the quasi-steady scheme assumes that the tangential acceleration vanishes, i.e. v̇τ = 0, such that s̈ need not be

computed. In this case, only the path speed ṡ is obtained from the force equilibrium, and s is advanced using a single integration475

step. The system reduces to an algebraic-differential formulation:

d

dt
s= ṡ,

0 = g


 (s)︸︷︷︸

x

, (ṡ,Ftg,us)︸ ︷︷ ︸
z




(49)

where the algebraic equation determines the steady-state value of ṡ consistent with force equilibrium at each point along the

trajectory.

Figures 13 and 14 compare dynamic, quasi-steady and inertia-free simulations of a parameterized trajectory across four480

representative kite configurations, covering typical mass and aerodynamic characteristics of both soft and rigid wings: two

soft kites (TU Delft V3 (Poland and Schmehl, 2024a) and Kitepower V9) and two rigid wings (AP2 (Malz et al., 2019) and a

100 kW MegAWES (optimized)). The soft kite models correspond to systems used as validation in section 5, flying figure-of-

eight trajectories with reeling speeds and dimensions representative of their real-world operation. In contrast, the rigid wings

are simulated under idealised yet representative flight conditions, following circular trajectories with fixed radius and constant485
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reeling speed that are optimized based on maximum reel-out power generation. The angle between kite and tether is chosen

such that the trim angle of the kite corresponds to The details of the aerodynamic characteristics, kite sizes and weights, and

flown trajectories can be found in Appendix C.
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Figure 13. Comparison between dynamic and quasi-steady simulations for the TU Delft V3 and Kitepower V9 soft-kite configurations.

The two subplots on the left show the kite trajectories in terms of azimuth and elevation, with colour indicating the tangential speed vτ .

Results are shown for both the dynamic and quasi-steady cases. The four time series on the right represent one full flight loop and display the

evolution of tangential speed vτ , normalised tether force (F t,g), steering input (us), and angle of attack (αw). The normalisation of tether

force is performed with respect to the mean.

The results in Figure 13 show that for both the V3 and V9 soft kites, the quasi-steady approximation closely matches the

dynamic simulation. For the V9 kite, the dynamic, quasi-steady, and inertia-free simulations are nearly indistinguishable in490

both mean values and time evolution, showing only a slight phase lag of the dynamic response relative to the quasi-steady

and inertia-free results. For the V3 kite, the mean values of velocity and tether force remain comparable to those in the quasi-

steady simulation (see Table 1), but the temporal evolution exhibits larger deviations, with higher maximum speeds and a more

damped tether-force behaviour. The dynamic simulation of the V3 also reveals stronger oscillations in the angle of attack, likely

due to an oversized KCU, whereas the oscillations for the V9 remain below 2°. This difference is further reflected in the greater495

roll of the lift vector observed for the V3. Overall, the quasi-steady approximation reproduces the main dynamic behaviour of
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Figure 14. Comparison between dynamic and quasi-steady simulations for the AP2 and MegAWES 100 kW rigid wing systems. The two

subplots on the left show the kite trajectories in terms of azimuth and elevation, with colour indicating the tangential speed vτ . Results are

shown for both the dynamic and quasi-steady cases. The four time series on the right represent one full flight loop and display the evolution

of tangential speed vτ , normalised tether force (F t,g), aerodynamic roll angle (ϕa), and angle of attack (αw). The normalisation of tether

force is performed with respect to the mean.

Table 1. Comparison between dynamic and quasi-steady simulations for the four kite configurations analysed. All values are expressed as

percentage differences relative to the dynamic simulations, except for the phase shift which is given in degrees.

Kite Wing loading ∆P (%) ∆Ft,min/max (%) ∆vτ,min/max (%) ∆Φvτ,min/max (◦)

TU Delft V3 1.83 -0.77 43.26 / -14.72 -2.21 / 6.68 -9.67 / -9.98

Kitepower V9 2.00 -0.4 3.22 / -2.99 -1.26/ 1.67 -5.63 / -5.87

AP2 12.27 -9.38 -8.95 / -3.74 -15.18 / 4.60 -51.84 / -51.10

MegAWES 100 kW 30.00 -12.00 -11.85 / -3.25 -21.88/ 8.33 -74.33 / -63.56

both kites with minor discrepancies in phase and amplitude, and with negligible differences in average power—below 1 % for

both cases.
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The results for the rigid wings, shown in Figure 14, display more pronounced deviations between the dynamic and quasi-

steady simulations than observed for the soft kites. In addition to a clear phase lag, a significant amplitude attenuation is500

evident in the dynamic trajectories. This damping effect is particularly pronounced in the minima of tangential velocity and

tether tension. The quasi-steady model, which neglects tangential acceleration v̇τ , compensates the weight with a steep increase

in angle of attack to maintain equilibrium, resulting in sharp oscillations. In contrast, the dynamic simulations maintain a more

gradual evolution of the aerodynamic state, with a smoother variation in angle of attack. This reflects the system’s limited

capacity to respond instantaneously due to its larger inertia.505

The phase lag is substantially greater than for the soft kites, with the maximum tangential speed and tether tension shifted

by more than 70◦ in the worst-case scenario (see Table 1). This delay, combined with the reduced amplitude of oscillations

observed in the dynamic simulations, leads to significant deviations in the predicted power output: −7.0% for the AP2 wing

and −13.9% for the MegAWES 100 kW system. Interestingly, the damping of these oscillations results in a higher overall

power estimate in the dynamic model compared to the quasi-steady prediction. This behaviour can be attributed to the kite’s510

inertia, which allows it to ascend without requiring the excessively high angle of attack demanded by the quasi-steady model.

As a result, the dynamic system remains closer to an aerodynamically optimal state throughout the trajectory. These findings

highlight the growing importance of incorporating dynamic effects at higher wing loadings, where quasi-steady assumptions

become increasingly inadequate for accurate performance evaluation and control design.

For the inertia-free assumption, the discrepancies are even more pronounced. The delay in both tangential speed and tether515

force relative to the dynamic simulation increases further, while the predicted roll input remains unrealistically small throughout

the cycle. In this case, the maximum angles of attack are also reduced, since only the weight needs to be balanced and inertial

loads are absent.

Despite these discrepancies, a key dynamic behaviour observed in the soft kite simulations persists in the rigid-wing cases:

the kite accelerates or decelerates whenever the quasi-steady tangential velocity intersects the dynamic trajectory. This demon-520

strates that the dynamic state remains attracted to the quasi-steady solution, with the system continuously responding in its

direction. While the convergence is not instantaneous, due to increased inertia in the rigid configurations, the dynamic model

still reveals a tendency to track the quasi-steady state. This shared behaviour across all kite types supports the interpretation of

the quasi-steady solution as a moving target towards which the system naturally evolves. This supports the use of quasi-steady

models as predictive tools, provided their limitations are recognised in the context of higher wing loading configurations.525

7 Conclusions

This work presents a simplified model for the translational dynamics of bridled kites, relevant to airborne wind energy and

ship propulsion applications. The model assumes that the kite rapidly achieves a trimmed aerodynamic state due to its low

rotational inertia relative to the aerodynamic forces and moments. This justifies a point-mass formulation without enforcing a

constant angle of attack, allowing the aerodynamic forces to be resolved based on the instantaneous trim condition. As a result,530

the model provides a more intuitive understanding of the interplay between angle of attack and kite speed, which underpins the

26

https://doi.org/10.5194/wes-2025-205
Preprint. Discussion started: 17 October 2025
c© Author(s) 2025. CC BY 4.0 License.



physical basis of crosswind flight. Specifically, a more orthogonal wind incidence necessitates a higher flight speed to maintain

equilibrium, explaining the structure of the wind window and the high energy potential of crosswind motion.

The model is developed in the course reference frame, a spherical coordinate system aligned with the kite’s tangential

velocity. This facilitates an intuitive decomposition of velocity and acceleration into radial and tangential components, enabling535

a clear analysis of inertial effects. Within this framework, the quasi-steady condition is naturally defined as a state of zero

tangential acceleration, which corresponds to a continuously adapting trim state. The decomposition also provides physical

insight into the inertial forces experienced by the kite as it moves along a spherical path and turns within the constraints

imposed by the tether, making it possible to interpret these fictitious forces meaningfully even in a quasi-steady framework.

A key insight from the model is that the kite’s weight is the primary factor influencing the trim angle of attack. In the absence540

of changes to bridle geometry or control input, variations in the gravitational force component along the flight path directly

alter the force balance. As the kite moves with the direction of gravity, the trim angle of attack decreases, requiring a higher

flight speed to sustain equilibrium—even within a quasi-steady framework.

Validation against experimental data from two different kite systems demonstrates the applicability of the model, particularly

in replicating the locations of maximum and minimum tangential speeds. This suggests that soft kites generally operate near a545

quasi-steady regime during crosswind flight. However, accurate estimation of aerodynamic polar curves remains essential. Due

to the complex and deformable nature of soft kites, numerical methods frequently underpredict drag. To address this, empirical

corrections were applied to the simulated aerodynamic coefficients based on flight data.

Comparative analyses of quasi-steady and dynamic models for reel-out trajectories reveal the influence of kite inertia. For

wing loadings representative of soft kites, the quasi-steady approximation remains valid. However, with increasing mass,550

deviations become more pronounced, highlighting the limits of the quasi-steady approach for heavier systems.

Despite its strengths, the model exhibits several limitations. Firstly, the model neglects rotational dynamics, assuming that

the kite instantaneously reaches equilibrium. Secondly, the tether is modeled as a straight, inertia-free element. While this

simplifies computations, it introduces inaccuracies during low-tension manoeuvres, especially when tether sag becomes non-

negligible.555

Future extensions of this work will focus on trajectory optimisation and path planning, leveraging the computational effi-

ciency of the quasi-steady framework. A more realistic representation of the reeling speed (e.g. dependent on the tether force)

should also be incorporated, which can be readily achieved thanks to the independent parametrisation of the tangential plane

and radial direction. Moreover, the impact of the simplified tether model should be analysed, as an improved representation

may be particularly relevant for simulating low-tether-force scenarios such as during reel-in.560

In conclusion, the proposed model offers a computationally efficient yet physically grounded framework for analysing bri-

dled kite dynamics, particularly under crosswind flight. Its scope is primarily soft, bridled kites such as leading-edge inflatable

designs, where point-mass modelling provides a practical alternative to high-fidelity rigid-body approaches; for rigid-wing sys-

tems, models with explicit aerodynamic moment identification remain more appropriate. The present formulation is devised

for optimisation applications and control design of lightweight bridled kites.565
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Code availability. The code will be made available in the final production version.

Appendix A: Reference frames and transformations

In addition to the course reference frame described in Sect. 3.1, two additional frames are introduced to define the kite’s

position and orientation: the wind reference frame (W ) and the azimuth-zenith-radial reference frame (AZR).

Wind reference frame (W)570

The W -frame is a Cartesian reference frame with its origin at the ground station OG. The ex unit vector aligns with the mean

wind direction at a reference height, while ez points vertically upward from the Earth’s surface. Effects of the Earth’s rotation

on the kite’s motion are neglected in this frame, treating it as inertial.

Azimuth-Zenith-Radial reference frame (AZR)

TheAZR-frame is a rotating reference frame in which the position of the kite is expressed using spherical coordinates (ϕ,β,r),575

where ϕ is the azimuth angle, β is the elevation angle, and r is the radial distance.

The elevation angle β is measured between the (ex,ey)-plane and rk, while the azimuth angle ϕ is measured between the

(ex,ez)-plane and rk. The position of the kite is thus given by

rk = rer. (A1)

The transformation from the W -frame to the AZR-frame is obtained through two sequential rotations:580

T
AZR←W

= Rx′

(π
2
−β

)
Rz

(
ϕ+

π

2

)
, (A2)

where Rx′(·) and Rz(·) denote standard rotation matrices.

Transformation from C-frame to W -frame

The C-frame is obtained by rotating the AZR-frame around the radial direction er by an angle π
2 −χ, aligning eχ with the

tangential velocity:585

T
C←AZR

= Rr

(π
2
−χ

)
. (A3)

The total transformation from the W -frame to the C-frame reads:

T
C←W

= T
C←AZR

T
AZR←W

. (A4)

Appendix B: Path parametrization framework

Let R(s) be the parametrisation of the position vector rk of a point k, such that590

rk(t) = R(s(t)). (B1)
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This implies that simulating the motion of k along a prescribed trajectory reduces to solving for the time-dependent path

coordinate s(t). Differentiating with respect to time yields

drk

dt
=
dR
ds

ds

dt
, (B2)

and taking the dot product of both sides with dR/ds gives595

drk

dt
· dR
ds

=
ds

dt

∥∥∥∥
dR
ds

∥∥∥∥
2

. (B3)

By definition of the dot product, and since drk

dt and dR
ds are aligned,

drk

dt
· dR
ds

=
∥∥∥∥
drk

dt

∥∥∥∥
∥∥∥∥
dR
ds

∥∥∥∥ . (B4)

Substituting this into the earlier expression, we obtain the path speed

ṡ=
vk∥∥dR
ds

∥∥ , (B5)600

where vk =
∥∥drk

dt

∥∥ is the magnitude of the kite velocity.

B1 Parametrisation in the AZR Frame

Let the spherical coordinates (ϕ,β,r) of the kite position be expressed as

ϕ= ϕ(s(t)), β = β(s(t)), r = r(t). (B6)

The position vector becomes R(s) = rer, and its derivative is605

dR
ds

=
dr

ds
er + r

der

ds
. (B7)

where Using the angular velocity of the AZR-frame,

der

ds
= ΩAZR× r, ΩAZR =

dϕ

ds
ez −

dβ

ds
eϕ, (B8)

the derivative becomes

dR
ds

=




r dϕ
ds cosβ

r dβ
ds

dr
ds




ϕ,β,r

. (B9)610

Thus, the norm is

∥∥∥∥
dR
ds

∥∥∥∥ =

√(
dr

ds

)2

+ r2
(
dβ

ds

)2

+ r2
(
dϕ

ds

)2

cos2β. (B10)
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B2 Velocity Components

The radial velocity can be written as

vr =
dr

ds
ṡ. (B11)615

Given vk =
√
v2

τ + v2
r =

∥∥dR
ds

∥∥ ṡ, we obtain the tangential speed

vτ = ṡr

√(
dβ

ds

)2

+
(
dϕ

ds

)2

cos2β. (B12)

B3 Kinematic Derivatives

From Eqs. (10) and (9), the course angle can be expressed by

tanχ=
ϕ̇cosβ
β̇

(B13)620

The course rate is given by the chain rule

χ̇=
dχ

ds
ṡ, (B14)

where

dχ

ds
=

d2ϕ
ds2

dβ
ds cosβ− dϕ

ds
d2β
ds2 cosβ− dϕ

ds

(
dβ
ds

)2

sinβ
(

dβ
ds

)2

+
(

dϕ
ds

)2

cos2β
. (B15)

The radial acceleration becomes625

v̇r =
d2r

ds2
ṡ2 +

dr

ds
s̈, (B16)

and the tangential acceleration reads

v̇τ =
(
ṡ2
dr

ds
+ s̈r

)√
A+

1
2
ṡr

Ȧ√
A
, (B17)

with

A=
(
dβ

ds

)2

+
(
dϕ

ds

)2

cos2β, (B18)630

Ȧ= 2ṡ

[
dβ

ds

d2β

ds2
+
dϕ

ds

d2ϕ

ds2
cos2β−

(
dϕ

ds

)2
dβ

ds
cosβ sinβ

]
. (B19)

Appendix C: System description and path parameters

This appendix serves to describe all the input parameters used in the presented results and simulations.
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Table C1. Main system parameters of the simulated kites. Angle of attack αw in radians. θt denotes the geometric pitch angle between the

wing chord and the tether axis, as imposed by the bridle configuration (see Eq. (2)). Aerodynamic characteristics of the Kitepower V9 kite

are not disclosed for confidentiality reasons.

TU Delft V3 Kitepower V9 Ampyx AP2 100 kW MegAWES

Wing mass mw [kg] 14.2 62 36.8 444

KCU mass mkcu [kg] 22 31.6 N/A N/A

Wing projected area A [m2] 19.75 46.85 3 15.44

Tether diameter dt [mm] 10 14 2.5 10

Coeffs CL (CL,0,CL,1,CL,2) (0.17, 5.69,−10.78) – (0.55, 5.04,−5.27) (0.3, 6.96,−2.889)

Coeffs CD (CD,0,CD,1,CD,2) (0.14,−0.18, 1.79) – (0.05,−0.04, 1.10) (0.01, 0.06, 0.39)

Actuation CD coeffs (kp,ks) (0.01, 0.04) – N/A N/A

Reel-out tether–wing pitch angle θt [deg] 9 – – –

Reel-in tether–wing pitch angle θt [deg] 31 – N/A N/A

System characteristics

The parameters in Table C1 define the aerodynamic and geometric properties of each kite configuration considered. Mass,635

area, and tether diameter are directly specified, while lift and drag polynomials are expressed as second-order functions of the

angle of attack. For the TU Delft V3 and Kitepower V9 kites, additional actuation-dependent drag terms are included. The

tether–wing pitch angle θt, imposed by the bridle geometry, is listed separately for reel-in and reel-out phases when applicable.

Path characteristics

Table C2. Path parameters. Figure-eight requires both azimuth width ∆ψ and elevation height ∆β. Circular paths require only one angular

span (set the unused one to N/A).

Parameter TU Delft V3 Kitepower V9 Ampyx AP2 100 kW MegAWES

Path type (circle / fig-8) fig-8 fig-8 circle circle

Azimuth center ϕc [deg] 0 0 0 0

Elevation center βc [deg] 32 28 25 25

Azimuth width ∆ψ [deg] 20 40 14 12

Elevation height ∆β [deg] 10 20 14 12

Initial radius r0 [m] 200 220 400 600

Reel-out speed vr [m/s] 1 1.5 3.6 3.14
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The path definitions in Table C2 specify the spatial loops used in the simulations. Figure-eight trajectories are characterized640

by both an azimuthal span and an elevation span, while circular trajectories are defined by a single angular extent. The center

angles (ψc,βc) determine the mean positioning of the loop relative to the wind direction, and the initial tether length r0 fixes

the loop’s radius. The imposed reel-out velocity vr completes the definition of each trajectory.

Appendix D: Force component derivations

D1 Derivation of Lift Direction Vector eL645

This appendix presents the derivation of the unit lift vector eL, expressed in the C-frame. The lift vector is orthogonal to the

apparent wind velocity va, and its orientation within the plane normal to va is determined by the aerodynamic roll angle ϕa.

Since drag is aligned with the apparent wind direction by definition, the drag unit vector is

eD =
va

∥va∥
=

1
va




va,χ

va,n

va,r


 . (D1)

To define eL, we first identify a basis for the plane orthogonal to va. This is achieved by constructing a rotated frame A650

whose eχ′ -axis is aligned with −va. The (en′ ,er′)-plane is then orthogonal to the wind vector.

The transformation from the C-frame to the A-frame consists of a rotation by −χa around er (aerodynamic heading),

followed by a rotation by γa around the intermediate en′ axis (aerodynamic flight path angle).

The transformation matrix is

TA←C =




cosγa cosχa −cosγa sinχa sinγa

sinχa cosχa 0

−sinγa cosχa sinγa sinχa cosγa


 . (D2)655

Expressing va in both reference frames yields



va

0

0


 =




cosγa cosχa −cosγa sinχa sinγa

sinχa cosχa 0

−sinγa cosχa sinγa sinχa cosγa







va,τ

va,n

va,r


 (D3)

Solving for the aerodynamic heading χa and aerodynamic pitch γa from the radial and normal axis in Eq. (D3) we obtain

tanχa =−va,n

va,χ
, (D4)

tanγa =
va,r

va,τ
. (D5)660
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The unit vectors en′ and er′ , which span the plane perpendicular to va, are found by applying the transformation matrix and

simplifying

en′ =
1
va,τ




−va,n

va,χ

0


 , (D6)

er′ =
1

vava,τ




−va,χva,r

−va,nva,r

v2
a,τ


 . (D7)

The aerodynamic roll angle ϕa defines the orientation of eL within the (en′ ,er′)-plane. By definition, ϕa = 0 corresponds665

to lift aligned with er′ , and positive ϕa induces a clockwise rotation (right-hand turn) from the kite’s perspective.

The lift direction is thus given by

eL =−sinϕa en′ + cosϕa er′ . (D8)

Substituting the expressions for en′ and er′ , we obtain

eL =
1

vava,τ




vava,n sinϕa− va,χva,r cosϕa

−vava,χ sinϕa− va,nva,r cosϕa

v2
a,τ cosϕa


 . (D9)670

This is the final expression for the lift direction vector in the C-frame, used in the main formulation of the aerodynamic force

in Sect. 3.3.2.

D2 Derivation of Angle of Attack αw

We assume the kite remains aligned with the apparent wind va. The angle of attack αw is then obtained from the pitch angle

between the total force at the bridle point Fb and the aerodynamic symmetry plane, corrected by the constant geometric pitch675

offset θb.

Let Πn denote the plane orthogonal to en′ (i.e. spanned by eχ and er). The bridle force is projected onto Πn as

Fproj = Fb−
(
Fb · en

)
en. (D10)

The in-plane orientation of Fproj defines the resultant force angle of attack αf ; consistent with the C-frame component ordering

(χ,n,r), we write680

αb = atan2
(
Fproj ·e′χ,−Fproj ·e′r

)
. (D11)

Finally, the effective angle of attack follows as

αw = αb− θb. (D12)
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D3 Derivation of Tether Force Components

This appendix provides the full derivation of the tether force components acting at the kite, based on a moment balance about685

the ground station. Two models for tether drag are considered: a distributed drag model and a simplified lumped approximation.

The tether is assumed to be straight and inertia-free, and only carries axial load. The net moment about the ground station

must vanish

0 = rk ×Fk +Mg +MD, (D13)

where690

Fk =−Ft, (D14)

⇒ rk ×Ft = Mg +MD. (D15)

Let ρt be the linear mass density of the tether. The differential gravitational force acting on a tether segment of length dl is

dFg =−ρtgez dl =−ρtg




cosχcosβ

sinχcosβ

sinβ


dl. (D16)

Taking the moment about the ground station and integrating along the tether length gives695

Mg =

r∫

0

r(l)× dFg, with r(l) = ler, (D17)

=

r∫

0




0

0

l


× dFg, (D18)

=
ρtgr

2

2




sinχcosβ

−cosχcosβ

0


 . (D19)

Assuming the total tether drag acts as a point force at the kite in the direction of the apparent wind (Vlugt et al., 2019), the

lumped drag force becomes700

Dt =
1
8
ρdtrCD,cvava. (D20)

The resulting moment is

MD = rk ×Dt =
1
8
ρdtr

2CD,cva




−vw,n

vw,χ− vτ

0


 . (D21)
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Inserting Mg and MD into the moment balance and solving for Ft, the components of the tether force at the kite are

Ft =




Ft,τ

Ft,n

Ft,r


 =−ρtgr




1
2 cosχcosβ
1
2 sinχcosβ

sinβ


 + 1

8ρCD,cdtrva




vw,χ− vτ

vw,n

vw,r − vr


 +




0

0

−Ftg


 . (D22)705

If the tether behaves as a linear elastic spring, the radial ground station force is given by

Ftg,r = kt(r− lt), (D23)

where kt is the tether stiffness and lt the unstretched tether length.
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