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Abstract.

The design and control of airborne wind energy systems requires fast, validated reduced-order models. Because aerodynamic
identification of soft, bridled kites is challenging, models that minimise the number of parameters to be identified can be
particularly valuable. This paper presents a reduced-order model for the translational dynamics of bridled kites, consisting of
a wing supported by multiple bridle lines. The kite is modelled as a point mass in a spherical reference frame aligned with the
instantaneous tangential flight direction, referred to as the course reference frame. The angle of attack follows geometrically
from a constant angle between the wing chord and the bridle line system, under the assumption that the wing instantaneously
aligns with the pull direction, i.e., the rotational dynamics are neglected. The formulation retains gravitational and inertial
terms introduced by the curvilinear reference frame and applies a quasi-steady condition of zero path-aligned acceleration,
modelling the motion as a sequence of quasi-steady (trimmed) states that relate the trim speed and angle of attack. Model
validation is based on public flight datasets from two different soft-wing kites and on dynamic simulations that cover higher
wing loadings. Results show that for low wing loadings typical of soft kites, the quasi-steady approximation reproduces the
dynamic trajectories with less than 1% deviation in mean reel-out power. For higher loadings and hard-wing kites, inertia
introduces substantial phase lag and amplitude damping, causing power deviations of up to 14%. Overall, the proposed model
provides a computationally efficient framework for analysing the translational dynamics of bridled kites. The formulation is

well-suited to trajectory optimisation, parametric studies, and control design in airborne wind energy systems.

1 Introduction

Kites have a long history of use, ranging from recreational and cultural applications to military reconnaissance and atmospheric
research (Schmidt and Anderson, 2013). Their first serious applications in engineering emerged in the early 19 century,
particularly in the field of meteorology, where tethered kites were employed to carry instruments at altitude for atmospheric
measurements. In all these early applications, the kite was designed to remain in static equilibrium, generating a lifting force

to compensate for its weight and that of the payload.
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It was not until the 1970s that the idea of dynamically flying a kite in crosswind manoeuvres began to emerge. This innova-
tion, eventually popularised through the development of kitesurfing, revealed a key insight: when flown crosswind, a kite can
reach speeds several times greater than the ambient wind speed. This leads to a significant increase in aerodynamic forces and
thus energy potential.

In the aftermath of the 1970s energy crisis, which stimulated a global search for alternative renewable energy sources,
American engineer Miles Loyd recognised the potential of crosswind flight and proposed the use of crosswind-flying kites for
generating electricity (Loyd, 1980). In his seminal paper, he derived the fundamental equations governing crosswind flight and
provided an initial estimate of the power potential of tethered wings for wind energy generation. His analysis demonstrated
that, under idealised conditions, airborne wind energy could extract significantly more power than conventional wind turbines
of the same size, highlighting the promise of the technology. However, the theory relied on highly simplified assumptions and
neglected several physical effects that were later shown to significantly limit the achievable power in practice (Diehl, 2013).

Since Loyd’s original proposal, and particularly in the past two decades, research into airborne wind energy has expanded
rapidly. A wide range of modelling approaches have been developed to describe the flight dynamics of tethered wings, spanning
from low-fidelity point-mass models to high-fidelity simulations incorporating detailed structural and aerodynamic represen-
tations (Vermillion et al., 2021).

At the higher end of this spectrum, the kite is often modelled as a six-degree-of-freedom rigid body, and the tether is
discretised as a lumped mass—spring—damper chain to capture its dynamic behaviour (Fechner et al., 2015; Eijkelhof and
Schmehl, 2022). These models provide detailed insight into coupled control dynamics but require increased computational
resources and large parameter sets (De Schutter et al., 2022). Moreover, the dynamics become less transparent, and intuitive
relations between key variables are harder to extract.

Simpler models, by contrast, typically represent the kite as a point mass and the tether as a straight line in quasi-static
equilibrium. In many of these formulations, the kite is assumed to fly at a constant lift-to-drag ratio, with aerodynamic forces
aligned to the apparent wind direction (Schmehl et al., 2013; Vlugt et al., 2019; Schelbergen and Schmehl, 2020; Fechner and
Schmehl, 2013; Ranneberg et al., 2018).

A common assumption in these simplified models is that the motion of the kite can be described as quasi-steady. However, the
definition of quasi-steadiness varies across the literature. In some formulations, the inertial forces are assumed to be negligible
compared to aerodynamic forces and are therefore omitted entirely (Vlugt et al., 2019; Schelbergen and Schmehl, 2020). In
others, only longitudinal and radial accelerations are neglected, while remaining accelerations are accounted for (Schmehl
et al., 2013). As a result, there remains a degree of ambiguity in how quasi-steady flight is modelled and interpreted.

This paper introduces a reduced-order formulation of the equations of motion for bridled kites, i.e. systems constrained by
a bridle line system. The formulation is developed in a spherical reference frame aligned with the course direction of the kite,
which provides a clearer and more intuitive expression of the relevant kinematic quantities. Within this frame, the quasi-steady
condition emerges naturally as an implicit property of the system.

Commercial prototypes of bridled kites can be grouped into three main categories: (i) soft kites used in kitesurfing and

ground-steered power-generating systems (e.g., Beyond the Sea, SP80, Kitenergy), (ii) soft kites with a suspended control
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unit or onboard control surfaces (e.g., Airseas, Kitepower, SkySails Power, Toyota), and (iii) semi-rigid kites with ground-
based steering (e.g., Enerkite). Figure 1 illustrates these prototypes. The present work primarily targets soft-wing kites, such
as leading-edge inflatable designs, for which the identification of aerodynamic forces and moments is particularly challenging

due to structural flexibility and unconventional aerodynamic shapes (Sdnchez-Arriaga et al., 2017).

Figure 1. Beyond the Sea, SP80, Kitenergy, Airseas, Kitepower, SkySails Power, Toyota, and Enerkite (from left top to bottom right).

The remainder of this paper is organised as follows. Section 2 describes the actuation mechanisms of bridled kites and the
assumptions underlying the point-mass model. Section 3 derives the equations of motion in a spherical course-aligned frame,
and Sect. 4 introduces the quasi-steady simplification that follows from these equations. Section 5 compares the model against
experimental data, while Sect. 6 examines quasi-steady flight behaviour and assesses the effect of increasing wing mass on the
validity of the assumption. Finally, Sect. 7 summarises the key findings and their implications for optimisation and performance

studies.

2 Actuation mechanisms and model assumptions

The control of bridled kites is typically achieved through the adjustment of bridle line geometry, either symmetrically, to
adjust the pulling force and flight speed, or asymmetrically, to steer the kite. These actuation strategies directly affect the
orientation and magnitude of the aerodynamic force and thus the flight path of the kite. In this section, we describe the two

main mechanisms and discuss their implications for the assumptions that are used to build up a point mass model of a kite.
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2.1 Longitudinal Static Stability and Trim Condition

A key design requirement for bridled kites is longitudinal static stability (Breukels, 2011; Terink et al., 2011), meaning that
small deviations in angle of attack generate restoring moments that return the kite to its equilibrium orientation. Such stability
ensures the existence of a unique trim angle of attack at which the net moment about the bridle point (B) vanishes, leading to
a statically stable equilibrium. In this state, the resultant force at the kite’s wing aligns with the resultant force at the bridle
point. For a massless kite, the wing force reduces to the aerodynamic force applied at the centre of pressure X, as illustrated
in Figure 2. When weight is included, the equilibrium is preserved by a shift in the trim angle of attack, ensuring that the
combined aerodynamic and gravitational forces still align with the bridle resultant. Numerical simulations of symmetric kites
in virtual wind tunnels provide evidence of longitudinal static stability, consistently exhibiting convergence towards a unique
trim angle of attack at which the net moment about the bridle point vanishes (Poland and Schmehl, 2024b; Cayon et al., 2023;
Thedens and Schmehl, 2023), whilst experimental data confirms that the kite’s angle of attack remains relatively constant

during flight (Oehler and Schmehl, 2019; Schelbergen, 2024; Cayon et al., 2025).

(a) Depower angle 3 = 0° (b) Depower angle 64 = 10°

Figure 2. Sideview of symmetric actuation for a schematic massless kite. The depower angle 4 is defined positive in the counter-clockwise
direction. Here, F', denotes the resultant force at the bridle/tether attachment point on the kite, including any loads transmitted by a kite

control unit (KCU), if present.

The tow angle )}, is defined as the angle between the front bridle line direction and the straight line from the bridle attachment
point to the CP. In the current work, it is assumed that variation of the centre of pressure near the trim point is negligible,
implying that \;, remains approximately constant for a given bridle geometry. This assumption is supported by experimental

observations, which show that for leading-edge inflatable (LEI) kites, the force distribution between front and rear bridle lines
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Figure 3. Tow angle Ay, as a function of wing angle of attack o, for the TU Delft V3 kite. Shaded regions represent the expected range for

the reel-in and reel-out phases, based on experimental measurements.

remains approximately constant for a fixed depower setting (Oehler et al., 2018; Oehler and Schmehl, 2019). To substantiate
this assumption, Figure 3 plots the tow angle A, against the wing angle of attack «, for the TU Delft V3 kite, computed with
the Vortex Step Method (VSM), a validated lifting-line aerodynamic model (Cayon et al., 2023; Poland et al., 2025); shaded
bands indicate the measured reel-out (powered) and reel-in (depowered) ranges (Cayon et al., 2025). Across both regimes, Ay,
varies by less than 1°. Thus, for a given bridle geometry, the approximation of a constant geometric angle 6, is justified in the
present formulation. Nevertheless, this assumption needs to be re-evaluated for each specific kite design.

Figure 3 also shows an apparent discontinuity near the zero-lift angle of attack, where the centre of pressure is mathematically
undefined. As this angle is approached, the centre of pressure shifts aft, producing a nose-down moment that can lead to a front
stall. This behaviour is not captured in the present formulation, as it is assumed that the kite is controlled to operate outside
this regime.

From Fig. 2, the wing angle of attack o, can be related to the bridle angle of attack oy, by a constant geometric pitch angle

O,
Oy — Oy — Gb, (1)
where 6}, can be expressed geometrically as a function of the tow angle A\, and the depower angle 64 alone,

Op =604+ . (2)
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2.2 Symmetric actuation to adjust aerodynamic loading

The preceding discussion implies that the trim state of a bridled kite is uniquely determined by the bridle geometry and the
aerodynamic properties of the wing. Therefore, modifying the mean trim angle during operation requires a change in the bridle
configuration. In practical systems, this is achieved through symmetric actuation of the bridle lines, which alters both the tow
angle and the depower angle.

Depowering the kite corresponds to increasing the depower angle 64, thereby reducing the trim angle of attack at which the
kite operates (see Figure 2). This reduction in angle of attack decreases both the lift-to-drag ratio and the resultant aerody-
namic force, leading to lower tangential flight speeds and reduced tether tension. The detailed aerodynamic consequences of

depowering will be derived in the following sections.
2.3 Asymmetric actuation to steer the kite in turns

While symmetric actuation is used to control the trim angle and flight speed, asymmetric actuation is employed to generate
turning manoeuvres by inducing lateral forces and moments. To initiate a turn, a force must be generated perpendicular to both
the tether direction and the kite’s instantaneous velocity vector. This is achieved by rotating the aerodynamic lift vector towards
the centre of the turn. For rigid or semi-rigid wings, this is typically accomplished by physically rolling the wing with respect
to the tether axis (Candade, 2023). In contrast, soft kites often achieve this through a combination of body roll and asymmetric
deformation (Brown, 1993; Breukels, 2011; Paulig et al., 2013; Bosch et al., 2013; Cayon et al., 2023; Poland and Schmehl,
2023).

Most bridled kites are designed to be directionally stable, i.e. they generate a restoring yawing moment in response to a
sideslip (Hur, 2005; Belloc, 2015; Poland et al., 2025). Unlike free-flying aircraft, a wing geometry that would appear unstable
about its centre of mass can still be stable once tethered, provided the bridle point is positioned appropriately. In arched kites
this typically requires placing the bridle further forward, which ensures that the aerodynamic force distribution produces a
restoring yawing moment about the bridle point in response to a sideslip.

In asymmetrically deformed kites, the steering input increases the angle of attack on the inner side of the wing relative to
the outer side, generating both a side force and a roll moment. This asymmetry also produces an initial yawing moment that
starts the turn. As the kite moves laterally, a sideslip develops. For directionally stable kites, the resulting sideslip produces a
yawing moment that maintains the turn. For LEI kites, sideslip angles up to about 5° have been observed for Kitepower’s V9
(Cayon et al., 2025). By contrast, in purely roll-driven steering, the roll induces a sideslip angle, which then generates a yawing
moment via directional stability.

As the kite turns, the outer wing tip experiences a higher apparent velocity and lower effective angle of attack, while the
inner wing tip experiences the opposite (Erhard and Strauch, 2013). This differential shortens the moment arm and produces
a yaw-damping effect that resists further rotation, leading to the observed near-linear relation between steering input and yaw

rate (Erhard and Strauch, 2013; Fagiano et al., 2013):

¥ = kuyv,. 3)
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The good agreement with this simplified turn-rate law indicates a quasi-steady yaw response, where the yawing moment

equilibrates rapidly and the yaw rate scales proportionally with the product of apparent wind speed and steering input.

3 Dynamic model formulation

The preceding section outlined the aerodynamic behaviours and actuation mechanisms that govern bridled kites, highlighting
the existence of a unique trim condition and the ability to modify the flight state through symmetric and asymmetric inputs.
We assume that longitudinal and directional stability drive the wing rapidly towards equilibrium, and therefore, the kite can
be approximated as a point mass whose orientation is fixed relative to the force resultant at the bridle point. In this simplified
representation, the tow angle A, is assumed constant for a given bridle configuration, and the kite is assumed to remain aligned
with the apparent wind during controlled flight. The kite’s motion is most naturally expressed in a spherical coordinate system

centred at the ground station, with components parallel and transverse to the (straight) tether.
3.1 Reference frame

The motion of the kite is described using the course reference frame (C-frame), illustrated in Fig. 4, which provides a natural
decomposition of the velocity into radial and tangential components. The C-frame origin is located at the ground station, with
the unit vectors e, ey, and e, corresponding to the course, normal, and radial directions, respectively.

The tangential plane, denoted as 7, contains e, and e,, and is perpendicular to e,. The course angle x defines the orientation
of e, within this plane, with x = 0 corresponding to motion directly towards the zenith (van Deursen, 2024).

A complete description of the additional reference frames and coordinate transformations is provided in Appendix A.
3.2 Kinematic relationships in the course reference frame

The translational motion of the kite can be described using Newton’s second law of motion, which states that the absolute

acceleration d;t’;k of a point k is equal to the sum of all forces acting upon k, divided by its mass m:
erk Fk
@z = @)
t m

When analyzed in a rotating reference frame, additional terms appear in the acceleration, commonly referred to as fictitious or

inertial forces. Below, these quantities are derived in the chosen C-frame.
3.2.1 Velocity

The position vector ry of a point %k in the course reference frame is given by re,.. Differentiating with respect to time and

applying the product rule yields,

0 vy
dry dr de, B
E—%er‘FT’E— 0| +Qcxre=]0], )

Ur Ur
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Figure 4. Schematic of the reference frames and aerodynamic angles used in the model. The wind reference frame is shown in black, the

azimuth—zenith-radial (AZR) reference frame in orange, and the course reference frame in blue.

where Q¢ is the angular velocity of the course reference frame with respect to the inertial wind frame. The velocity vector can
thus be written compactly as

dry
dt

Vi = = Ur€y + Ure;. (6)

3.2.2 Angular velocity of the course reference frame

The C-frame, as explained in Sect. 3.1, is obtained through a sequence of three rotations characterized by the rotation parame-
ters ¢, 3 and x. Since angular velocities are additive, the course reference frame’s angular velocity vector €2, is thus expressed

as the sum of the individual rotation rates expressed along their respective axes,
deosycos 3 — fsiny
Q. = e, — Pey, — xe, = qi)sinxcosﬁ—i—ﬁcosx . (7)
psin 3 —
This form, however, is not very convenient since the derivatives of the elevation ﬁ and azimuth (;S are already dependent on

other kinematic quantities, which can be revealed by solving the system of equations of obtained by equating €2, x ry from
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q.SsinxcosBJr/J”cosX Uy
Q. xXrg=r Bsinx—q.bcosxcosﬂ =10{, ®)
0
with the time derivatives of the position angles
. vrsiny
= 9
rcos3’ ©)
. UrCOSY
f=2roX (10)

180 Using these expressions, the rotation vector {2, can now be expressed as a function of the tangential and radial speeds v, v,

the course angle y and the course angle rate x;,

“=sin y cos x — 2= siny cosx 0
Q.= 2z 5in® x + 2= cos? x = L - (1n
“rsinytan 3 — x “sinytan 8 —x

3.2.3 Acceleration

The acceleration in the C-frame can be obtained by differentiating Eq. (5) with respect to time, applying the product rule once

185 more,
Pr.  &Pr n 2dr de, n d?e,
= —5€r = r )
dt? dt? dt dt dt?

which can be expanded and rewritten in terms of the rotation velocity {2, and the position vector ry as,

d2rk d2rk drk ds}
= 20, X — Q. x (9, x —< X1y 12
az " | e | e (8 xri) + == > (12
Equation (12) shows that the absolute acceleration of k in the C-frame is the summation of the relative acceleration ( d;t‘;k R),

190  the Coriolis acceleration (20, x k| &) the centrifugal acceleration (€2, x (€2 x ry)), and the Euler acceleration (% X rk>,
with
d2rk
_ , 13
az |, (13)
(8
drk o
2, x —| = 14
C dt R O I ( )
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Q. x(Q, xrK) = %sinxtanﬁ—vTX ) (15)
v2
T
o b o [or =
dtc X T = 0 x |o| = 0 ) (16)
%("T—Tsinxtanﬂ—j{) r 0
Substituting in Eq. (12), results in the absolute acceleration d;trgk in terms of the course reference frame state variables,
'l'/' + Vr Uy
d’ry 02 . o .
a2 Fsinytan —vx| - (a7
P
N

s

3.3 External forces

The external forces acting on the kite are the aerodynamic force F,, the weight of the kite F'; and the tether force F;. These

forces must be expressed in terms of the C-frame in accordance to the last section.
3.3.1 Gravity force

The most straightforward force is the weight of the kite F,, which has a constant direction. Using the transformation T, _,

from Eq. (A4), Fy is expressed in the C-frame,

cos x cos 3
F, = —mge, = —mg |sinycos3| , (18)
sin 3

where m is the kite mass and g is the gravitational acceleration.
3.3.2 Aerodynamic Force

The aerodynamic force F', is composed of drag and lift, both defined relative to the apparent wind vector v,. Drag D is aligned
with v, by definition, while lift L is perpendicular to it. Although asymmetric deformation of the kite can generate side forces,
these are not explicitly modelled here; instead, their effect is captured through a control-induced aerodynamic roll angle ¢, .

The aerodynamic force can thus be written as

F,=D+L. (19)

10
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Decomposing the apparent wind vector in the C-frame yields
Vg, Vi, — Ur
Va = Van | — Vw,n i (20)
Ua,r Vw,r — Ur
The drag force is then
1 fox
D= §PSCD(OZW)U(;, Van | - (21)
Va,r

Lift is assumed to act in the plane normal to v, and its direction is determined by the aerodynamic roll angle ¢,. This angle
accounts for both the control-induced roll (e.g., via asymmetric deformation or physical roll of the wing) and the roll induced

by the kite control unit. The lift vector is expressed as:

1 2
L= ip‘S’CL(on)vaeL7 (22)
1 —VqVa,n sin ¢a - va,xva,r Cos ¢a
e; = VaVa,x SN Qg — Vg nVa,r COSPq | » 23)
VaVa,r '
Vg, COS Py

where v, r = 4/ vg’X + w2, is the component of the apparent wind in the tangential plane. The derivation of the lift direction
is provided in Appendix D1.

The wing angle of attack «, is obtained under the assumptions that the kite remains aligned with the apparent wind and that
the pitch angle between the wing chord and the resultant force at the bridle point is constant (see Appendix D2).

The aerodynamic coefficients C,(a,) and Cp (e, ) are obtained by interpolating aerodynamic polar curves. The sideslip
angle is not explicitly modelled, but its effect on the total aerodynamic lift is assumed negligible, based on prior numerical
and experimental studies showing only minor degradation at the small sideslip angles observed during flight (Viré et al., 2022;
Cayon et al., 2023; Poland et al., 2025).

3.3.3 Tether Force

A realistic tether can only be loaded axially and therefore deforms due to gravity, aerodynamic drag, and inertial forces. For
this simplified model, a straight, inelastic and inertia-free tether is assumed. The effective weight and drag of the tether acting
on the kite are obtained from a quasi-static equilibrium by enforcing moment balance at the ground station, which implies that
kite tangential accelerations are not included in the tether model. A schematic of the force components is shown in Fig. 5.
The net tether force at the kite is obtained from a moment balance about the ground station, incorporating the effects of
tether weight and aerodynamic drag. The drag force is approximated as acting at the kite in the direction of the apparent wind

velocity (Vlugt et al., 2019).

11
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Figure 5. Free body diagram of a straight, axially loaded tether in a spherical coordinate frame.

This yields the following expressions for the tangential and normal components of the tether force at the kite:

F, .= —%ptgrcosxcosﬁ + %pCD’Cdtrva(vw,X —Ur), (24)

Fyn= f%ptgr sin y cos 3 + %pC’D,Cdtmavw,n. 25)
The radial component is:

Fy, =—Fig— pigrsin B+ £pCp cdirva (vw » — vy). (26)
The full derivation is provided in Appendix D3.

3.4 Equations of motion

Having defined the absolute acceleration and the external forces in the C-frame, the translational dynamics of a tethered kite
follow from Newton’s second law,

d2rk
m
dt?

= Foe = F.+F, +F,. Q7

The model is formulated as a system of differential-algebraic equations (DAEs):

. VrCOSY  UrsSiny
x =1f(x,z,u) = |v,

X .’r‘ .T ) 28
r rcos X v (28)
d2
0=g(x,z,u) = m% —Foxt. (29)

12
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Here, x, z, and u denote the differential states, algebraic states, and control inputs, respectively

x=[r 6 ¢ x v v (30)
2=lir X Fig, 31
u= [br Ug up} . (32)

In this work, u is the steering input (actuation that primarily sets the aerodynamic roll and thereby the course rate x), and u,,

is the depower input (actuation that changes the geometric pitch 6, and thus affects the angle of attack ay).

4 Quasi-steady equilibrium

In the context of crosswind flight, the quasi-steady state is defined as the trimmed condition arising from the instantaneous
balance of forces and moments acting on the system. As the kite’s orientation relative to the wind changes along its trajectory,

the trim condition evolves with its position and motion direction in the wind window.
4.1 Definition and Assumptions

To illustrate the governing balance in its simplest form, we first consider an idealised case in which the kite is positioned at
the centre of the wind window (¢ = 0, 8 = 0), with no tether dynamics included. In this scenario, the tangential acceleration
¥, depends only on the tangential speed v, motion direction x;, reeling speed v,, and control inputs (depower u,, and steering

us). The governing equation reduces to
mo, = %pSva [CL (o) co8 g (v — vr) — Cp (o )vr] — mgcos x. (33)

The same interpretation applies at any position, although the explicit form of the aerodynamic terms is more complex.
Plotting v, as a function of v, in Fig. 6 shows that it typically crosses zero at two points. These crossings correspond to

candidate quasi-steady equilibria defined by
o =0. (34)

However, only the equilibrium that satisfies the local stability criterion
00,
ov,

<0 (35)

is physically relevant. At this stable equilibrium, any perturbation in v, is counteracted by the aerodynamic forces. An increase
in v reduces the angle of attack, rotating the resultant force rearward and producing a decelerating tendency. A decrease in v.-
has the opposite effect.

The effect of gravity appears as a vertical offset in Fig. 6. When the kite ascends (y = 0°), the gravitational component

opposes the motion. To maintain equilibrium, the aerodynamic force must rotate forward, requiring an increase in the trim

13



280

285

290

295

https://doi.org/10.5194/wes-2025-205 WIND

Preprint. Discussion started: 17 October 2025 e WE\ ENERGY
Auth 2025. BY 4.0 Li .
© Y Or(S) O 5 CC O reense european academy of wind energy S C I E N C E

6000
4000
S
‘s 2000
g
-
i 0
— x: 90.0°
~2000 x: 0.0°
x: 180.0°
20 30 40 50 60 75 100 125 150 175 200 225

v, (ms™) a ()

Figure 6. Tangential acceleration ¥, as a function of the tangential speed v, and angle of attack a.,, for different course angles x. Results

shown for the Kitepower VO kite. A negative slope near the equilibrium confirms local stability.

angle of attack. Conversely, during descent (x = 180°), gravity assists the motion, allowing the force vector to rotate backward
and reducing the required trim angle. Because the trim angle of attack and tangential speed are linked by the aerodynamic
equilibrium, a higher o, corresponds to a lower v, and vice versa. Consequently, changes in the gravitational component
along the course lead to different equilibrium speeds, even under the quasi-steady assumption. The characteristic acceleration
and deceleration in flight patterns typically attributed to gravity are thus captured implicitly within the quasi-steady solution,
without the need for explicit modelling of dynamic inertial effects.

These observations support an interpretation of the kite dynamics as continuously converging toward a moving quasi-steady
state, defined by the instantaneous position, motion direction, and control inputs. When aerodynamic forces dominate and the
wing loading (m/S) is sufficiently small, this convergence is rapid enough to approximate the motion as a sequence of quasi-
steady states. This assumption is further examined in Sect. 6.3, where dynamic and quasi-steady simulations are compared
across a range of wing loadings.

This treatment differs from earlier implementations, where inertial accelerations were sometimes omitted entirely (Vlugt
et al., 2013; Schelbergen and Schmehl, 2020), or where tangential and radial accelerations were assumed negligible compared
to aerodynamic contributions (Schmehl et al., 2013). In contrast, the present formulation retains the inertial terms and defines
the quasi-steady equilibrium through the condition of zero tangential acceleration, corresponding to the trimmed state of the
kite.

However, for practical implementation, we also assume the radial acceleration imposed by the winch, ©,., to be negligible.
This simplification, adopted in earlier quasi-steady models, is justified by the relatively small winch acceleration (Schmehl

etal.,, 2013).
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4.2 Quasi-steady equations of motion

Following the definition of quasi-steady equilibrium, the dynamic DAE system in Eq. (28) can be reduced by eliminating the

differential states associated with the radial and tangential accelerations, v, and v.. The resulting state vectors are

xe=[r 8 ¢ x| (36)
qu:{”Ur X th}a (37
e = v s ) (38)

where x4y contains the remaining position and orientation variables, z,s the algebraic variables associated with tangential
speed, course rate, and tether force, and ugs the control inputs. The reduced quasi-steady formulation is thus expressed as a

semi-explicit DAE system of index 1:

dxgs

o = (ke Zasy Ugs), (39)

0 = g(Xqgs,Zqgs, Ugs),
where f describes the reduced differential kinematics and g enforces instantaneous force balance.
The quasi-steady formulation is independent of the time history: at each instant the state is obtained from the algebraic force
balance g(x,z,u) = 0 at the current position and inputs. By contrast, the dynamic formulation is history-dependent and must

be solved as an initial-value problem.

5 Validation of quasi-steady model

The quasi-steady model is validated using flight data from two kites of different sizes: the TU Delft V3 kite (Poland and
Schmehl, 2024a) and the V9 kite from Kitepower (Cayon et al., 2024), with publicly available datasets that enable repro-
ducibility. Key parameters of the two systems are summarised in Table C1. Notably, the V3 system was equipped with a kite
control unit (KCU) whose mass was approximately twice that of the wing, which is atypical for properly scaled systems and is
expected to influence the dynamics and feasibility of the quasi-steady assumption.

The validation is conducted by imposing the measured flight trajectories as inputs to the quasi-steady model. At each
recorded time step, the measured position (7, 3, ¢), course angle x and rate Yy, radial speed v, and wind speed vy, are pre-
scribed as inputs. The quasi-steady model is then used to compute the corresponding tangential speed v, tether force Fi,, and
required steering input us, which are compared to the measurements.

It is important to note that the wind speed used in the quasi-steady reconstruction differs between the two cases. For the
V3 kite, the wind speed was estimated using an extended Kalman filter (EKF) specifically tailored for soft kites (Cayon
et al., 2025). In contrast, the V9 case used lidar measurements taken around 200m upwind of the kite and interpolated to
the kite height. However, the lidar data is subject to 1-minute temporal averaging, which smooths out short-term fluctuations.

Conversely, the EKF reconstruction for the V3 flight may also struggle to resolve rapid wind changes. As a result, even if
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the model perfectly reproduced the underlying physics, discrepancies between the predicted and measured quantities may still

arise due to limitations in wind and state estimation.
5.1 Aerodynamic identification

Aerodynamic modelling of flexible kites remains one of the most challenging aspects of kite design. The arched geometry
and extensive recirculation zones induced by the unconventional leading-edge inflatable (LEI) airfoils complicate accurate
aerodynamic simulation. Recent wind tunnel experiments with the V3 kite have demonstrated that neither CFD simulations nor
simplified models based on lifting-line theory can reliably reproduce the aerodynamic behaviour of these kites. In particular,
both the magnitude and slope of the drag coefficient are consistently underestimated, suggesting that neither parasitic nor
induced drag components are captured adequately by current modelling approaches (Poland et al., 2025). Moreover, these
discrepancies do not yet account for structural deformations, which further increase the gap between simulation and reality.
Experimental observations have revealed significant deformation of the three-dimensional kite geometry, including bending of
the inflatable struts, which directly affects aerodynamic performance. Additional phenomena such as trailing edge flutter and
bridle line vibrations also contribute to deviations in acrodynamic characteristics.

Given these complexities, purely simulation-based aerodynamic identification often fails to accurately represent the true
behaviour of deformable kites. Consequently, a semi-empirical approach combining both simulation data and experimental
measurements is adopted to achieve a more reliable aerodynamic characterisation.

Experimental data obtained during flight tests allow the estimation of the mean lift and drag coefficients corresponding to
three representative flight states: (i) powered and straight flight during reel-out, (ii) powered and steered flight during reel-out,
and (iii) depowered flight during reel-in. The baseline aerodynamic polars are first computed using the vortex step method, a
validated lifting-line-based model (Cayon et al., 2023; Poland et al., 2025), suitable for low aspect ratio and curved geometries,
and second-order polynomial fits are applied to both the lift and drag curves. Subsequently, for each of the three representative
states, a parasitic drag offset is added to the drag curve such that the corresponding C'p,—C'p polar intersects the experimentally
identified coefficients for that state (see Fig. 7).

The lift coefficient is modelled as a second-order polynomial function of the angle of attack
Or(aw) =Cpo+Criay +Croal. (40)

The drag coefficient incorporates both the baseline drag curve and empirical corrections to account for control-induced effects.

It is expressed as
CD (awvupaus) = C'D,() + CD,law + CD,2CV\2;V + CVD,pup + CD,susa (41)

where u,, and u, are the depower and steering control inputs, respectively. The terms Cp ;, and Cp s introduce multiplicative
corrections to capture the increase in drag associated with depower and steering, while C'p o accounts for a baseline parasitic
drag offset, representing the drag observed in straight powered flight. The polynomials for the TU Delft V3 kite can be found
in Appendix C.
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Figure 7. Aerodynamic polar diagram showing Cr, versus Cp for the TUDELFT V3 kite. The baseline curve is obtained from VSM

simulations, with a quadratic fit applied. Semi-empirical corrections are introduced to match three experimentally identified flight states.

Finally, the aerodynamic roll angle ¢, is empirically characterised as a linear function of the steering input us, based on

flight test data
¢a = k¢,sus- (42)

The resulting modified polars incorporate both the baseline aerodynamic behaviour and empirical corrections derived from
flight tests, effectively accounting for the drag contributions of the bridle lines, KCU, and onboard turbine.
Similar correction strategies have been successfully employed in previous quasi-steady kite modelling studies (Vlugt et al.,

2019; Schelbergen and Schmehl, 2020), offering a practical compromise between model fidelity and computational tractability.
5.2 Comparison with experimental data

With the identified aerodynamic polars, assumed linearly dependent on steering and depower inputs, the quasi-steady model
is used to retrace the force, tangential speed, and steering input required to sustain each measured state. This enables a direct
comparison between the model predictions and experimental measurements at each point along the flown trajectory, under the
assumption of instantaneous aerodynamic equilibrium.

Figure 8 shows segments of two representative flights, comparing measured and estimated tangential speed and tether force,
as well as pitch relative to the radial direction and aerodynamic roll, against the corresponding pitch and roll relative to the
radial direction calculated by the EKF (Cayon et al., 2025), which employs a discretised tether model rather than the simplified

model used here.
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Figure 8. Validation of the quasi-steady model against flight data from two kite systems. For TU Delft V3 kite (one cycle) and Kitepower

VO kite (two cycles), the figure compares measured and reconstructed tangential speed, tether force, and steering input.

In the reel-out phase, the temporal response of the model is good, with the predicted peaks in tangential speed and tether
force aligning closely with those measured. However, the estimated values appear noisier—particularly for the V9 kite—and
some peaks are overestimated. The kite pitch with respect to the radial direction agrees well in both trend and magnitude with
the estimations obtained from a discretised tether model. In contrast, the roll is compared against the aerodynamic roll, which
accounts for both the KCU-induced roll and the kite side-force, and therefore yields higher values during turning manoeuvres
than those estimated by the EKF. For the V3 kite, which was equipped with an unusually heavy KCU relative to its size, several
states cannot be resolved in a quasi-steady manner—especially on the lower part of the figure-eight, where the kite exits the
turn and begins to climb. This explains the gaps observed in the corresponding estimations.

In the reel-in phase, the model reproduces the behaviour of the measured quantities reasonably well, provided that the de-
power setting is adjusted to yield a lift coefficient consistent with the values inferred from measurements. Under this condition,
the magnitude variation of the tether force and tangential speed are in line with the measurements, although small discrepancies

remain. Here, both the pitch and the aerodynamic roll align well with the EKF estimations, as the KCU primarily affects the

pitch axis during reel-in.
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The transition from reel-in to reel-out remains the most challenging phase for the model. In this regime, the predicted
tether force often overshoots the measurements. These deviations arise from two main factors: the kite undergoes dynamic
manoeuvres that violate the quasi-steady assumption, and the tether can exhibit significant sag under low tension, followed
by a rapid transition to high tension that is not well captured by the simplified straight-line tether model. Together, these
effects reduce the model’s accuracy during this phase. For the VO kite, this behaviour appears at the beginning of the reel-out
phase—immediately after transition—because of how the masks are defined, but it effectively corresponds to the first turn into
reel-out.

The purpose of this comparison is to assess whether the overall behaviour and magnitude are consistent, rather than to
achieve a direct point-by-point match, since the state variables used to reconstruct the quasi-steady equilibrium carry noise and
inaccuracies. Moreover, the wind is not measured directly at the kite, but either with lidar or estimated through an EKF, both

of which introduce additional uncertainties.

6 Analysis of Quasi-steady and Dynamic Flight Behaviour

This section investigates the behaviour of crosswind flight through a combination of quasi-steady parametric analyses and
dynamic simulations. The quasi-steady framework is first used to explore how kite position and reeling strategy influence
performance metrics such as tangential speed and power extraction. Subsequently, dynamic simulations are employed to assess

the validity of the quasi-steady approximation, highlighting the role of inertia and its impact on flight response.
6.1 Influence of Kite Position on Quasi-steady Tangential Speed

The position of the kite within the wind window, that is, its azimuth and elevation relative to the wind direction, significantly
influences the aerodynamic forces and resulting tangential velocity. As the kite moves away from the centre of the wind
window, the component of the wind velocity perpendicular to the wing surface decreases. Consequently, the tangential speed
v, required to achieve a quasi-steady equilibrium (v, = 0) diminishes, since a lower apparent wind angle relative to the wing
reduces the required flight speed to maintain the trim angle of attack.

This behaviour is illustrated in Fig. 9, which shows the non-dimensional tangential speed factor A = v, /v,, as a function
of the azimuth, elevation, and course angles, under the assumption of straight flight (x = 0). As seen in Fig. 9a, the tangential
speed decreases with the elevation of the kite, and as the elevation increases, the dependency on the course angle becomes
greater, mostly due to the aerodynamic force getting closer to the weight. The tangential speed is maximal at y = 180°, where
gravity assists the motion, and minimal at xy = 0°, where it opposes it.

A similar dependency is observed with respect to the azimuth angle ¢, where increasing misalignment reduces the tangential
speed. The combined effect of azimuth and course angles shifts the location of maximum tangential speed. As shown in
Fig. 9b, for ¢ = 0°, the maximum occurs at y = 180°, but as ¢ increases, both the maximum and minimum shift toward
x = 270°, where the kite points more directly into the centre of the wind window. This shift results from the interplay between

the wind incidence angle and the tangential projection of gravity, which together influence the equilibrium speed.
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Figure 9. Isolines of elevation and azimuth angles as a function of the tangential speed factor A and the course angle x for v, = 0. Results

shown for the Kitepower V9 kite.

6.2 Optimal Reel-out Strategy

The reeling speed plays a major role in determining both the tether force and the harvested power. It is well-known that, for

a simplified crosswind operation at the centre of the wind window and neglecting gravity, the optimal reeling speed is a fixed

1
3

within the wind window—while still neglecting gravity—the optimal reeling factor becomes dependent on both elevation and

fraction of the wind speed, originally derived by Loyd (1980) to be v, = zv,,. Extending this result to arbitrary positions

azimuth, and is given by (Schmebhl et al., 2013)
Uw
Ur,opt = 5 cos ¢ cos 3. (43)

This positional dependency reflects the reduction in crosswind efficiency with increasing elevation 3 and off-centre azimuth ¢.
These trends, now accounting for both gravitational effects and course angle, are illustrated in Fig. 10. The results show that
maximum reeling speeds are obtained near xy = 180°, where gravity assists the motion and increases tether force, whereas the
optimal reeling factor decreases with increasing elevation or azimuth due to reduced tangential speed and diminished tether
loading. From Fig. 10, one can observe a consistent relationship between the optimal reeling speed and the corresponding
tether force across different positions. This motivates the analytical derivation—under the assumption of quasi-steady flight
and neglecting gravity—of a direct expression linking the two, given the lift and drag coefficients of the wing, which can be
obtained with the simplified equations derived in Schmehl et al. (2013),
F, =2pSCrv2, , |1+ (CL>2
Cp

r,0pt

: (44)
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VO kite.

This relation suggests a practical control strategy in which the winch reeling speed is regulated as a function of the measured

tether force (Berra and Fagiano, 2021; Hummel et al., 2024). Since F} inherently captures the combined influence of wind speed

and kite position, this enables an implicit, adaptive reeling control scheme without the need for precise wind measurements or

position-dependent logic. The inclusion of gravitational effects alters the force equilibrium and shifts the aerodynamic trim,
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Figure 11. Instantaneous optimal reeling speed as a function of the tether tension for different conditions. Results shown for the Kitepower

VO kite.
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leading to deviations from the idealised relation in Eq. (44). This displacement is illustrated in Fig. 11, where the optimal
reeling speed is plotted as a function of tether tension for multiple positions and orientations the wind window for different
wind speeds. Nonetheless, for the wing loadings typical of soft kites, the deviation introduced by gravity remains relatively
small, allowing the analytical relation in Eq. (44) to serve as an effective basis for reeling control.

It is important to note that while the analytical expression represents the instantaneous reeling speed that maximises power
extraction, it does not necessarily correspond to the optimal reel-out speed over a full pumping cycle. The cycle-averaged
optimum depends not only on the reel-out phase but also on the duration, dynamics, and efficiency of the reel-in phase.
Consequently, an effective reeling strategy must take into account the full cycle for optimal power generation (Luchsinger,

2013).
6.3 Dynamic Response in Crosswind Trajectories

To analyse the system response along prescribed flight paths, the kite motion is parametrised using a scalar path coordinate s(t),
which evolves in time. This formulation enables all state variables to be expressed as functions of s and its time derivatives,
simplifying the comparison between dynamic and quasi-steady responses. The resulting velocity and acceleration components
are derived analytically in terms of s, $, and s. The current parametrisation defines the kite trajectory on the wind window
(elevation and azimuth) independently of its radial position, which makes it possible to specify the reeling strategy separately
from the angular path. The complete formulation, including the path speed and kinematic derivatives in spherical coordinates,
is provided in Appendix B.

Two representative trajectories are considered for crosswind flight in the W -frame. The first corresponds to a circular path,
while the second describes a Lissajous figure-eight. In both cases, the trajectory is parametrised by a shape parameter s and
time ¢, allowing all state variables to be expressed as functions of ¢, s, its derivatives $, §, the steering input u,, and the tether

force Fy4. A constant reel-out speed is assumed for clarity of comparison between the dynamic responses,
r(t) =70+ v.t. (45)

The trajectories are defined as:

— Circular path:

8= et S sin(s), 6= e+ 5F cos(s). (46)
— Lissajous figure-eight:

g+ = sin(as) 6=+ 50 cos(s). 47)

where A¢ and Af denote the horizontal and vertical amplitudes of the patterns, respectively, and ¢. and (3. the center position

of the pattern.
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Figure 12. Parametrized helix and figure of eight patterns.

Two integration schemes are applied. In the dynamic scheme, for each time step, the path acceleration §, the tether force
F,4, and the steering input u, are obtained by solving the force equilibrium given the current state (s, $), and are subsequently

integrated to update s and s. This is written as a differential-algebraic equation (DAE) system in semi-explicit form,

d |s $

dt |5 |s|’
(48)
0= g (S,S.), (§7th7us)
. ——
T z
where the algebraic constraint g enforces instantaneous force balance along the prescribed trajectory.
In contrast, the quasi-steady scheme assumes that the tangential acceleration vanishes, i.e. ¥, = 0, such that s need not be
computed. In this case, only the path speed s is obtained from the force equilibrium, and s is advanced using a single integration
step. The system reduces to an algebraic-differential formulation:

d

—5=35,
dt

(49)
0=g| (), (5 Fiy,us)
T
where the algebraic equation determines the steady-state value of $ consistent with force equilibrium at each point along the
trajectory.

Figures 13 and 14 compare dynamic, quasi-steady and inertia-free simulations of a parameterized trajectory across four
representative kite configurations, covering typical mass and aerodynamic characteristics of both soft and rigid wings: two
soft kites (TU Delft V3 (Poland and Schmehl, 2024a) and Kitepower V9) and two rigid wings (AP2 (Malz et al., 2019) and a
100 kW MegAWES (optimized)). The soft kite models correspond to systems used as validation in section 5, flying figure-of-
eight trajectories with reeling speeds and dimensions representative of their real-world operation. In contrast, the rigid wings

are simulated under idealised yet representative flight conditions, following circular trajectories with fixed radius and constant

23



490

495

https://doi.org/10.5194/wes-2025-205
Preprint. Discussion started: 17 October 2025
(© Author(s) 2025. CC BY 4.0 License.

WIND
ENERGY
SCIENCE

eawe)

european academy of wind energy

reeling speed that are optimized based on maximum reel-out power generation. The angle between kite and tether is chosen
such that the trim angle of the kite corresponds to The details of the aerodynamic characteristics, kite sizes and weights, and

flown trajectories can be found in Appendix C.
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Figure 13. Comparison between dynamic and quasi-steady simulations for the TU Delft V3 and Kitepower V9 soft-kite configurations.
The two subplots on the left show the kite trajectories in terms of azimuth and elevation, with colour indicating the tangential speed v .
Results are shown for both the dynamic and quasi-steady cases. The four time series on the right represent one full flight loop and display the
evolution of tangential speed v,, normalised tether force (Ft7g), steering input (us), and angle of attack (a.w). The normalisation of tether

force is performed with respect to the mean.

The results in Figure 13 show that for both the V3 and V9 soft kites, the quasi-steady approximation closely matches the
dynamic simulation. For the V9 kite, the dynamic, quasi-steady, and inertia-free simulations are nearly indistinguishable in
both mean values and time evolution, showing only a slight phase lag of the dynamic response relative to the quasi-steady
and inertia-free results. For the V3 kite, the mean values of velocity and tether force remain comparable to those in the quasi-
steady simulation (see Table 1), but the temporal evolution exhibits larger deviations, with higher maximum speeds and a more
damped tether-force behaviour. The dynamic simulation of the V3 also reveals stronger oscillations in the angle of attack, likely
due to an oversized KCU, whereas the oscillations for the V9 remain below 2°. This difference is further reflected in the greater

roll of the lift vector observed for the V3. Overall, the quasi-steady approximation reproduces the main dynamic behaviour of
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Figure 14. Comparison between dynamic and quasi-steady simulations for the AP2 and MegAWES 100 kW rigid wing systems. The two

subplots on the left show the kite trajectories in terms of azimuth and elevation, with colour indicating the tangential speed v-. Results are

shown for both the dynamic and quasi-steady cases. The four time series on the right represent one full flight loop and display the evolution

of tangential speed v, normalised tether force (F',4), aerodynamic roll angle (¢, ), and angle of attack (). The normalisation of tether

force is performed with respect to the mean.

Table 1. Comparison between dynamic and quasi-steady simulations for the four kite configurations analysed. All values are expressed as

percentage differences relative to the dynamic simulations, except for the phase shift which is given in degrees.

Kite Wing loading AP (%) AF‘t,min/max (%) A'U-r,min/max (%) Aq)UT,min / max (O)
TU Delft V3 1.83 -0.77 43.26/-14.72 -2.21/6.68 -9.67/-9.98
Kitepower V9 2.00 -0.4 3.22/-2.99 -1.26/ 1.67 -5.63/-5.87
AP2 12.27 -9.38 -8.95/-3.74 -15.18 /4.60 -51.84/-51.10
MegAWES 100 kW 30.00 -12.00 -11.85/-3.25 -21.88/8.33 -74.33 /-63.56

both kites with minor discrepancies in phase and amplitude, and with negligible differences in average power—below 1 % for

both cases.
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The results for the rigid wings, shown in Figure 14, display more pronounced deviations between the dynamic and quasi-
steady simulations than observed for the soft kites. In addition to a clear phase lag, a significant amplitude attenuation is
evident in the dynamic trajectories. This damping effect is particularly pronounced in the minima of tangential velocity and
tether tension. The quasi-steady model, which neglects tangential acceleration v.-, compensates the weight with a steep increase
in angle of attack to maintain equilibrium, resulting in sharp oscillations. In contrast, the dynamic simulations maintain a more
gradual evolution of the aerodynamic state, with a smoother variation in angle of attack. This reflects the system’s limited
capacity to respond instantaneously due to its larger inertia.

The phase lag is substantially greater than for the soft kites, with the maximum tangential speed and tether tension shifted
by more than 70° in the worst-case scenario (see Table 1). This delay, combined with the reduced amplitude of oscillations
observed in the dynamic simulations, leads to significant deviations in the predicted power output: —7.0% for the AP2 wing
and —13.9% for the MegAWES 100 kW system. Interestingly, the damping of these oscillations results in a higher overall
power estimate in the dynamic model compared to the quasi-steady prediction. This behaviour can be attributed to the kite’s
inertia, which allows it to ascend without requiring the excessively high angle of attack demanded by the quasi-steady model.
As a result, the dynamic system remains closer to an aerodynamically optimal state throughout the trajectory. These findings
highlight the growing importance of incorporating dynamic effects at higher wing loadings, where quasi-steady assumptions
become increasingly inadequate for accurate performance evaluation and control design.

For the inertia-free assumption, the discrepancies are even more pronounced. The delay in both tangential speed and tether
force relative to the dynamic simulation increases further, while the predicted roll input remains unrealistically small throughout
the cycle. In this case, the maximum angles of attack are also reduced, since only the weight needs to be balanced and inertial
loads are absent.

Despite these discrepancies, a key dynamic behaviour observed in the soft kite simulations persists in the rigid-wing cases:
the kite accelerates or decelerates whenever the quasi-steady tangential velocity intersects the dynamic trajectory. This demon-
strates that the dynamic state remains attracted to the quasi-steady solution, with the system continuously responding in its
direction. While the convergence is not instantaneous, due to increased inertia in the rigid configurations, the dynamic model
still reveals a tendency to track the quasi-steady state. This shared behaviour across all kite types supports the interpretation of
the quasi-steady solution as a moving target towards which the system naturally evolves. This supports the use of quasi-steady

models as predictive tools, provided their limitations are recognised in the context of higher wing loading configurations.

7 Conclusions

This work presents a simplified model for the translational dynamics of bridled kites, relevant to airborne wind energy and
ship propulsion applications. The model assumes that the kite rapidly achieves a trimmed aerodynamic state due to its low
rotational inertia relative to the aerodynamic forces and moments. This justifies a point-mass formulation without enforcing a
constant angle of attack, allowing the aerodynamic forces to be resolved based on the instantaneous trim condition. As a result,

the model provides a more intuitive understanding of the interplay between angle of attack and kite speed, which underpins the
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physical basis of crosswind flight. Specifically, a more orthogonal wind incidence necessitates a higher flight speed to maintain
equilibrium, explaining the structure of the wind window and the high energy potential of crosswind motion.

The model is developed in the course reference frame, a spherical coordinate system aligned with the kite’s tangential
velocity. This facilitates an intuitive decomposition of velocity and acceleration into radial and tangential components, enabling
a clear analysis of inertial effects. Within this framework, the quasi-steady condition is naturally defined as a state of zero
tangential acceleration, which corresponds to a continuously adapting trim state. The decomposition also provides physical
insight into the inertial forces experienced by the kite as it moves along a spherical path and turns within the constraints
imposed by the tether, making it possible to interpret these fictitious forces meaningfully even in a quasi-steady framework.

A key insight from the model is that the kite’s weight is the primary factor influencing the trim angle of attack. In the absence
of changes to bridle geometry or control input, variations in the gravitational force component along the flight path directly
alter the force balance. As the kite moves with the direction of gravity, the trim angle of attack decreases, requiring a higher
flight speed to sustain equilibrium—even within a quasi-steady framework.

Validation against experimental data from two different kite systems demonstrates the applicability of the model, particularly
in replicating the locations of maximum and minimum tangential speeds. This suggests that soft kites generally operate near a
quasi-steady regime during crosswind flight. However, accurate estimation of aerodynamic polar curves remains essential. Due
to the complex and deformable nature of soft kites, numerical methods frequently underpredict drag. To address this, empirical
corrections were applied to the simulated aerodynamic coefficients based on flight data.

Comparative analyses of quasi-steady and dynamic models for reel-out trajectories reveal the influence of kite inertia. For
wing loadings representative of soft kites, the quasi-steady approximation remains valid. However, with increasing mass,
deviations become more pronounced, highlighting the limits of the quasi-steady approach for heavier systems.

Despite its strengths, the model exhibits several limitations. Firstly, the model neglects rotational dynamics, assuming that
the kite instantaneously reaches equilibrium. Secondly, the tether is modeled as a straight, inertia-free element. While this
simplifies computations, it introduces inaccuracies during low-tension manoeuvres, especially when tether sag becomes non-
negligible.

Future extensions of this work will focus on trajectory optimisation and path planning, leveraging the computational effi-
ciency of the quasi-steady framework. A more realistic representation of the reeling speed (e.g. dependent on the tether force)
should also be incorporated, which can be readily achieved thanks to the independent parametrisation of the tangential plane
and radial direction. Moreover, the impact of the simplified tether model should be analysed, as an improved representation
may be particularly relevant for simulating low-tether-force scenarios such as during reel-in.

In conclusion, the proposed model offers a computationally efficient yet physically grounded framework for analysing bri-
dled kite dynamics, particularly under crosswind flight. Its scope is primarily soft, bridled kites such as leading-edge inflatable
designs, where point-mass modelling provides a practical alternative to high-fidelity rigid-body approaches; for rigid-wing sys-
tems, models with explicit aerodynamic moment identification remain more appropriate. The present formulation is devised

for optimisation applications and control design of lightweight bridled kites.
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Code availability. The code will be made available in the final production version.

Appendix A: Reference frames and transformations

In addition to the course reference frame described in Sect. 3.1, two additional frames are introduced to define the kite’s

position and orientation: the wind reference frame (/) and the azimuth-zenith-radial reference frame (AZ R).
Wind reference frame (W)

The W-frame is a Cartesian reference frame with its origin at the ground station O¢. The e, unit vector aligns with the mean
wind direction at a reference height, while e, points vertically upward from the Earth’s surface. Effects of the Earth’s rotation

on the kite’s motion are neglected in this frame, treating it as inertial.
Azimuth-Zenith-Radial reference frame (AZR)

The AZ R-frame is a rotating reference frame in which the position of the kite is expressed using spherical coordinates (¢, 3,7),
where ¢ is the azimuth angle, (3 is the elevation angle, and r is the radial distance.
The elevation angle [ is measured between the (e.,e,)-plane and ry, while the azimuth angle ¢ is measured between the

(e, e;)-plane and r. The position of the kite is thus given by
Iy = re;. (A1)

The transformation from the W -frame to the AZ R-frame is obtained through two sequential rotations:

™

Tzrew =Ry (5 - ﬂ) R, <¢+ g) ) (A2)

where Ry () and R, (+) denote standard rotation matrices.
Transformation from C-frame to W-frame

The C-frame is obtained by rotating the AZ R-frame around the radial direction e, by an angle 5 — x;, aligning e, with the

tangential velocity:

To azr =Re (g - X) . (A3)

The total transformation from the W -frame to the C'-frame reads:

Tchw = TC«—AZRTAZR<—W . (A4)
Appendix B: Path parametrization framework

Let R(s) be the parametrisation of the position vector ry of a point &, such that

r(t) = R(s(t)). B1)
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This implies that simulating the motion of k along a prescribed trajectory reduces to solving for the time-dependent path

coordinate s(t). Differentiating with respect to time yields

dry  dR ds

-k _ e B2
dt  ds dt’ (B2)
and taking the dot product of both sides with dR./ds gives
dr;, dR  ds||dR|]?
i i | R B3
dt ds dt| ds (B3)
By definition of the dot product, and since d;t’“ and dR are aligned,
dI‘k dR dI‘k
—_— — B4
i v [ ®
Substituting this into the earlier expression, we obtain the path speed
) v
§= o, (B5)
(el
where vy, = H dri ] is the magnitude of the kite velocity.
B1 Parametrisation in the AZR Frame
Let the spherical coordinates (¢, 3,r) of the kite position be expressed as
p=9¢(s(t)), B=p(s(t), r=rd). (B6)
The position vector becomes R.(s) = re,, and its derivative is
dR dr de,
—=—e, . B7
ds  ds. o ds (B7)
where Using the angular velocity of the AZR-frame,
de, do s
— =0 Q =—e,— —ey, B8
s AZR X T, AZR = €: = € (B8)
the derivative becomes
IR rde r ? cos 3
i, ag
ds | Tds : (B9)
dr
ds 8.7

Thus, the norm is

2 2 2
V@) e ) e ()
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B2 Velocity Components

The radial velocity can be written as

dr
ds

Given v, = \/v2 + 02 = H

2
vy = 81 \/(25) + <df> cos? 3.

B3 Kinematic Derivatives

Ur =

From Egs. (10) and (9), the course angle can be expressed by

(bcosﬂ
s

The course rate is given by the chain rule

tany =

de d* dg (dp\? ..
dx d—d’d—ﬁc%ﬁ—d—fwcosﬁ—d—f(d—f) sin 3

e 2 2
" (%) + (%) costo

The radial acceleration becomes

. d?r 2 dr .
Uy = —58°+ —38,
ds? ds

and the tangential acceleration reads
dr 1. A
. — 27 . A e
Ur (s s —&—sr) \/>+ 287“\/Z,
with
AN A
A=|—+— —
(ds) +(ds cos” 5,

dg d?p d¢d2¢ ¢\~ dp
A= [ds d32+d 752 © 08’3 — < > dcosﬁsmﬂ]

Appendix C: System description and path parameters

This appendix serves to describe all the input parameters used in the presented results and simulations.
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Table C1. Main system parameters of the simulated kites. Angle of attack «., in radians. 6; denotes the geometric pitch angle between the
wing chord and the tether axis, as imposed by the bridle configuration (see Eq. (2)). Aerodynamic characteristics of the Kitepower V9 kite

are not disclosed for confidentiality reasons.

TU Delft V3 Kitepower V9 Ampyx AP2 100 kW MegAWES
Wing mass m., [kg] 14.2 62 36.8 444
KCU mass micu [kg] 22 31.6 N/A N/A
Wing projected area A [m?] 19.75 46.85 3 15.44
Tether diameter d; [mm] 10 14 2.5 10
Coeffs Cr, (Cr1,0,CrL,1,CL,2) (0.17, 5.69, —10.78) - (0.55,5.04, —5.27) (0.3, 6.96, —2.889)
Coeffs Cp (Cp,0,Cp,1,Cp,2) (0.14, —0.18,1.79) - (0.05, —0.04, 1.10) (0.01, 0.06, 0.39)
Actuation Cp coeffs (ky, ks) (0.01, 0.04) - N/A N/A
Reel-out tether—wing pitch angle 0, [deg] 9 - - -
Reel-in tether—wing pitch angle 0, [deg] 31 - N/A N/A

System characteristics

635 The parameters in Table C1 define the aerodynamic and geometric properties of each kite configuration considered. Mass,
area, and tether diameter are directly specified, while lift and drag polynomials are expressed as second-order functions of the
angle of attack. For the TU Delft V3 and Kitepower V9 Kkites, additional actuation-dependent drag terms are included. The

tether—wing pitch angle 6,, imposed by the bridle geometry, is listed separately for reel-in and reel-out phases when applicable.

Path characteristics

Table C2. Path parameters. Figure-eight requires both azimuth width At and elevation height AS. Circular paths require only one angular
span (set the unused one to N/A).

Parameter TU Delft V3 Kitepower V9 Ampyx AP2 100 kW MegAWES
Path type (circle / fig-8) fig-8 fig-8 circle circle
Azimuth center ¢. [deg] 0 0 0 0
Elevation center 3. [deg] 32 28 25 25
Azimuth width At [deg] 20 40 14 12
Elevation height A [deg] 10 20 14 12

Initial radius r¢ [m] 200 220 400 600
Reel-out speed v, [m/s] 1 1.5 3.6 3.14
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The path definitions in Table C2 specify the spatial loops used in the simulations. Figure-eight trajectories are characterized
by both an azimuthal span and an elevation span, while circular trajectories are defined by a single angular extent. The center
angles (1., 3.) determine the mean positioning of the loop relative to the wind direction, and the initial tether length r( fixes

the loop’s radius. The imposed reel-out velocity v, completes the definition of each trajectory.
Appendix D: Force component derivations

D1 Derivation of Lift Direction Vector ey,

This appendix presents the derivation of the unit lift vector ey, expressed in the C-frame. The lift vector is orthogonal to the
apparent wind velocity v, and its orientation within the plane normal to v, is determined by the aerodynamic roll angle ¢,.

Since drag is aligned with the apparent wind direction by definition, the drag unit vector is

Va,x
Vo 1 D1
eD = = —_— v
Vol va | "
/Uar

)

To define e, we first identify a basis for the plane orthogonal to v,. This is achieved by constructing a rotated frame .4
whose e,-axis is aligned with —v,. The (e, ,e,)-plane is then orthogonal to the wind vector.

The transformation from the C-frame to the A-frame consists of a rotation by —y, around e, (aerodynamic heading),
followed by a rotation by ~, around the intermediate e, axis (aerodynamic flight path angle).

The transformation matrix is

COS7VqCOSXq —COSYaSINXq SIN7Yg
Tacc = sin COS Xa 0o |- (D2)

—Sin7Y,CosXs  SinY,siny,  COS87Y,

Expressing v, in both reference frames yields

Va COSYqCOSXq  —COSYeSiNXe SiN7Yg| |Va,r
0= sin xq COS Xa 0 Van (D3)
0 —siny,cosX,  sinygsinx,  CO8Vq| |Va,r

Solving for the aerodynamic heading x, and aerodynamic pitch v, from the radial and normal axis in Eq. (D3) we obtain

tany, = —Ua’n, (D4)
Va,x
Va,r
tanvy, = ——. (D5)
a,T
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The unit vectors e, and e,~, which span the plane perpendicular to v, are found by applying the transformation matrix and

simplifying
*Ua.,n
1

en/ - /Ua,X ) (D6)

Va,r

0
1 _’Ua,xvam

e, = _’Uamva,r (D7)

VqVa,r 9

Ua,r

The aerodynamic roll angle ¢, defines the orientation of e;, within the (e,, e, )-plane. By definition, ¢, = 0 corresponds
to lift aligned with e,~, and positive ¢, induces a clockwise rotation (right-hand turn) from the kite’s perspective.

The lift direction is thus given by
e; = —singg e, + cosdg e, . (DY)
Substituting the expressions for e,,; and e,r, we obtain

1 Uava,n sin Qsa - Ua,xva,r COSs dja

VaVa,r

er = —VqVa,x sin (yba — Va,nVa,r COS d)a . (D9)

v2 _cosdq

a,T
This is the final expression for the lift direction vector in the C-frame, used in the main formulation of the aerodynamic force
in Sect. 3.3.2.

D2 Derivation of Angle of Attack o,

We assume the kite remains aligned with the apparent wind v,. The angle of attack «, is then obtained from the pitch angle
between the total force at the bridle point F'}, and the aerodynamic symmetry plane, corrected by the constant geometric pitch
offset 6y,

Let II,, denote the plane orthogonal to e, (i.e. spanned by e, and e,.). The bridle force is projected onto II,, as
Fproj = Fb - (Fb : en) €n. (DlO)

The in-plane orientation of F,,; defines the resultant force angle of attack o; consistent with the C-frame component ordering

(x,n,T), we write
ap = atan2(Fpo; e\, = Fproj -el). (D11)
Finally, the effective angle of attack follows as

Ay = ab_eb- (D12)

33



685

690

695

700

https://doi.org/10.5194/wes-2025-205 WIND

Preprint. Discussion started: 17 October 2025 —~ ENERGY
(© Author(s) 2025. CC BY 4.0 License. e we \ SCIENCE

® european academy of wind energy
m

D3 Derivation of Tether Force Components

This appendix provides the full derivation of the tether force components acting at the kite, based on a moment balance about
the ground station. Two models for tether drag are considered: a distributed drag model and a simplified lumped approximation.
The tether is assumed to be straight and inertia-free, and only carries axial load. The net moment about the ground station

must vanish

0=r; XFk-l-Mg-i-MD, (D13)
where

F.=-F,, (D14)
= rpxF,=M,+Mp. (D15)

Let p; be the linear mass density of the tether. The differential gravitational force acting on a tether segment of length dl is
cos xcos 3
dF, = —pige.dl = —pig | sinycos3 | dl. (D16)
sin 3
Taking the moment about the ground station and integrating along the tether length gives

r

M, = [ r(l) xdF,, withr(l)=le,, (D17)
0
r [0
:/ 0| xdFy, (D18)
011
sin y cos 8
:ptgr —cosxcosf| - (D19)
0

Assuming the total tether drag acts as a point force at the kite in the direction of the apparent wind (Vlugt et al., 2019), the

lumped drag force becomes
1
D, = gpdtrCD’cvava. (D20)

The resulting moment is

*vw,n
1
MD =Ti X Dt = gpdtTQCD,cva Vw,x — U7 | - (DZI)
0
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Inserting My and Mp into the moment balance and solving for F¢, the components of the tether force at the kite are

F- %cosxcosﬂ Vi — Vr 0
Fy=|F,| =—pwr % sinycosf | + %pC’D,cdtrva Vw.n +1 0 |. (D22)
Fir sin 3 Vy,r — U —Fiy

If the tether behaves as a linear elastic spring, the radial ground station force is given by
th,r = kt(’l" — lt), (D23)

where k; is the tether stiffness and /; the unstretched tether length.
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