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Manuscript Title: Wind speed estimation using second-order sliding-mode observers:
simulation and experimental validation on a floating offshore wind turbine

Manuscript Number: wes-2025-206

Overall Response:
The authors would like to thank the esteemed editor-in-chief and reviewer for their invaluable
comments. We do appreciate the time the reviewer put into reviewing our paper. The paper
has been revised according to the reviewer’s comments.
The reviewer’s main suggestion pertains to integrating wind estimation with a controller. To
clarify our decision, the authors have deliberately chosen to focus exclusively on the observer
design in this work. Several key original contributions underpin this decision:

i) Rigorous observability analysis: To the best of our knowledge, this analysis has not
been explored in previous research, providing a solid theoretical foundation for the design
of our observer.

ii) A novel and promising observation solution: The observer solution proposed offers
significant advancements including:

• Adaptive gains: The proposed approach simplifies the tuning process by incor-
porating adaptive gains, which enhance flexibility and reduce the complexity of the
tuning process.

• Finite-time convergence: The system guarantees finite-time convergence thanks
to the theory of sliding mode, which is a important point.

• Robustness: The observer has been designed to be robust to model uncertainties
and external disturbances.

• Stability guarantee: The observer ensures stability, which is critical for the reliable
operation of the control system.

iii) Furthermore, the current work (not yet published) shows the efficiency of the closed-loop
system, which incorporates both the adaptive observer and adaptive controller, along with
a formal proof of the stability of the observer-based control approach.
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A marked-up version of the revised manuscript is attached at the end of this response letter.
Below, we provide a detailed, point-by-point response to each reviewer’s comments.

• The reviewer’s comment to the authors is presented in BLACK.

• Authors’ responses to the reviewer’s comments are presented in BLUE.

• Those parts of the paper that have been changed are addressed in the authors’ responses
and are presented in RED.

Response to Referee #1

The paper proposes a novel second order sliding mode observer (SOSMO) for wind estimation on
floating off shore wind turbines. Two methods are introduced and compared with the extended
Kalman filter (CD-EKF) available in ROSCO. Simulation studies with FAST and Turbsim show
that the SOSMO observers can produce wind estimates with smaller RMS error than those from
CD-EKF. The results are further validated on a FOWT in laboratory-scale software in the loop
experiments. Three wind profiles are considered and in each case the SOSMO observers again
achieve smaller RMS errors than CD-EKF.

The paper is clearly written and the motivation is clear. Some comments:

1. The reference for Lidar (Jena and Rajendran, 2015) is now rather dated. The use of Lidar
for WTC has been extensively investigated and was the subject of the IEA Wind Task 32.
The authors are recommended to view their publications on the utility of Lidar for turbine
control, available from https://zenodo.org/communities/ieawindtask32/about and
use these to provide a more contemporary assessment on the utility of Lidar for WTC.

Response: We thank the reviewer for the suggestion. Following this recommendation, we
agree that the literature review can be improved, specifically regarding Lidar-assisted wind
turbine control. We have therefore reviewed key publications from IEA Wind Task 32 and
incorporated several relevant and more recent references into the revised manuscript.
The updated text in the introduction now highlights contemporary findings regarding the
benefits and limitations of Lidar for control. These additions offer a more complete and
modern assessment of the role of Lidar in WTC.
The manuscript has been updated accordingly as follows:

LiDAR use. An advanced remote sensor-based method commonly used is light detec-
tion and ranging (LiDAR) which can sample the wind field upstream of the turbine to
provide a measurement of upstream wind speed (Harris et al., 2006; Shu et al., 2016).
A considerable amount of literature has demonstrated the potential of LiDAR-assisted
control for performance improvement and load mitigation in wind turbines such as (He
et al., 2025; Moldenhauer and Schmid, 2025; Li and Geng, 2024; Guo and Schlipf, 2023;
Mahdizadeh et al., 2021; Schlipf et al., 2023; Guo et al., 2023). Simley et al. (2020)
provide an overview of recent advances and open problems in the use of LiDAR for en-
hancing wind turbine operation and control. Despite the significant progress achieved in
this area, some practical limitations remain. One of the most apparent limitations is the
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cost and the maintenance demand of these systems (Jena and Rajendran, 2015; Woolcock
et al., 2023). LiDAR devices, particularly those used in offshore and floating structures,
are expensive to acquire and install, and their operation in harsh marine environments
imposes high standards on longevity, autonomous operation, and regular maintenance to
guarantee data quality. In addition, a primary technical limitation lies in the vulnerability
of LiDAR measurements to motion-induced errors. Floating platform motions distort the
LiDAR’s line of sight, introducing systematic biases and increased uncertainty in wind
speed estimation and also the apparent wind speed because of the LiDAR translation,
introducing systematic biases and increased uncertainty in wind speed estimation (Gräfe
et al., 2023). Such disturbances can lead to errors in real-time control. Moreover, LiDAR
measurements inherently suffer from limited correlation with the actual wind field impact-
ing the rotor, since wind is measured several rotor diameters upstream and evolves due to
turbulence, while volume averaging and point-wise sampling prevent reconstruction of the
exact rotor-scale wind field, introducing unavoidable uncertainty in the measured REWS
(Svenstrup and Thomsen, 2024).

2. The discussion of computation time is too brief, what does runtime refer to? The computa-
tion for the convergence time for each algorithm needs to be shown, to enable comparisons
of their suitability for real-time control implementation.

Response: We thank the reviewer for this comment.
We now explicitly state that the reported runtime refers only to the CPU time required
by each observer block, as measured using the MATLAB/Simulink Profiler (R2023a).
Although a full 800-s simulation takes for example x seconds of real time, the majority
of this cost arises from OpenFAST and other modules. The profiler allows isolating the
execution time of each observer, independent of the plant model, and the values reported
in the manuscript correspond solely to the computations performed inside each estimator.
To clarify this in manuscript, the following text is added (page 21 of the revised version):

4.4 Computational time

To assess the computational burden associated with each observer, the execution time of
every estimator block using the MATLAB/Simulink Profiler (R2023a) is measured. Im-
portantly, the reported run-time refers exclusively to the time required for the internal
computations of each observer. All measurements are obtained under identical conditions
(Sect. 4.1), ensuring fair comparison. The CD-EKF exhibited the longest run-time (18
ms), followed by the ASOSMO (11 ms) and the SOSMO (9 ms). These results reflect
the higher algorithmic complexity of the CD-EKF, as expected. The ASOSMO slightly
increases complexity with its adaptive gain mechanism, in contrast to the constant gain
used in the SOSMO (see Fig. 10).

To complement the discussion on computational time and to address the reviewer’s re-
quest, an additional study has been conducted to evaluate the robustness of each observer
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when initialized with different initial condition of estimators. The following text has been
added to page 18 of the revised version.

4.3 Monte Carlo analysis

In this experiment, the only quantity varied from run to run is the initial condition of
the observers. All other components of the simulation, including the turbulent wind field,
wave excitation, OpenFAST dynamics, and control inputs, are kept identical across all
MC realizations. Consequently, any observed variation in transient behavior is solely
attributable to different initial observer states. A set of N = 100 simulations is generated
by initializing the wind and rotor speed estimates within a uniform ±30% interval around
their true values. Three initialization scenarios are examined: (i) rotor speed initialization
error only, (ii) wind speed initialization error only, and (iii) simultaneous initialization
errors in both wind speed and rotor speed.

To compare the observers consistently, a window convergence time is used. Convergence
is declared when the worst-case estimation error across all MC runs remains within a
prescribed tolerance band for a continuous duration of Thold = 20 s. The thresholds are
chosen as εω = 0.2 rad/s for rotor speed and εv = 1.7 m/s for wind speed. The conver-
gence time for wind speed is defined as the earliest time at which every MC trajectory
satisfies the inequality ∆v ≤ εv for all t in a window of length Thold. rotor speed conver-
gence is defined analogously. Requiring convergence over the entire simulation would be
unnecessarily restrictive. Turbulent wind excitation, platform motion, and nonlinear aero-
dynamic effects naturally cause short-lived error fluctuations even after the estimator has
converged. The windowed criterion avoids misclassifying such fluctuations as divergence
and better reflects practical control requirements.

The resulting convergence times for SOSMO, ASOSMO, and CD–EKF across all scenarios
are reported in Table 2 and illustrated in Fig. 9. This metric captures the earliest time
after which all realizations remain within the prescribed bounds.

The error-band plots show the dispersion of estimation errors caused solely by changes
in initial observer states. In all scenarios, all observers converge. rotor speed errors
settle quickly because ω is directly measured, which justifies the smaller threshold εω.
wind speed estimation is more difficult because v is unmeasured and its dynamics are
unknown. As a result, wind speed error bands are wider and the threshold εv must be
larger.

From Fig. 9, it can be seen that the CD–EKF typically drives the estimation error toward
zero more rapidly during the initial transient. However, when applying the windowed con-
vergence criterion—which requires the estimates to remain within the prescribed bounds
for a continuous duration—the SOSMO achieves the shortest convergence times in most
scenarios. This difference arises because the adaptive law in the ASOSMO starts with
a conservative gain that increases only after sufficient excitation, leading to a slower ap-
proach to steady-state accuracy. In contrast, the SOSMO and CD–EKF employ fixed gains
or explicit covariance updates, allowing them to settle more quickly once the estimation
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(a) ∆ω0 only

(b) ∆v0 only

(c) ∆ω0 +∆v0

Figure 9: MC analysis with N = 100 realizations per scenario for the three initial-condition
error cases.

error enters the tolerance band. Overall, while the CD–EKF is fast in the early transient,
the SOSMO exhibits the most favorable worst-case convergence times under the robust-
ness metric used here, whereas the ASOSMO consistently requires longer convergence due
to its gain adaptation mechanism.
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Table 2: Convergence times for rotor speed and wind speed estimation under the three initial-
condition initialization scenarios. Each value corresponds to the earliest time at which all MC
realizations for N = 100 remain within the prescribed error bounds.

Rotor speed convergence times Wind speed convergence times

Scenario SOSMO ASOSMO CD–EKF SOSMO ASOSMO CD–EKF

∆ω0 only 0.65 3.79 1.70 2.80 13.16 6.96
∆v0 only 2.48 3.81 3.98 10.84 13.25 13.03
∆ω0 +∆v0 2.55 9.90 5.74 10.89 13.25 13.06

3. In the SIL experiments, the wind speed error is v − v̂, but I didn’t see an explanation of
how the actual wind speed v was obtained.

Response: Thank you for highlighting this point. The experimental setup is designed to
reproduce the coupled aero, hydro, servo, and elastic behavior of a floating wind turbine
under realistic physical disturbances. In the wave tank, the hydrodynamic effects, includ-
ing platform motions, mooring system dynamics, and wave-induced loads, are obtained
physically using the scaled prototype. Aerodynamic effects are emulated in real time
through a software-in-the-loop (SIL) implementation of OpenFAST. In this configuration,
OpenFAST computes the aerodynamic forces corresponding to a prescribed wind field,
and these forces are applied to the physical model via the six-component thrust generator
mounted on the tower.
Therefore, the inflow wind acting on the turbine is defined numerically. The wind signal
v(t) used in the SIL simulation is therefore the only wind field that determines the aero-
dynamic loads applied to the physical structure. For this reason, the reference wind speed
v(t) used in our analysis (including the computation of v(t)− v̂(t)) is taken directly from
the wind input provided to OpenFAST.
We have added a detailed explanation in Section 5 of the revised manuscript regarding
the SIL test setup and how the reference wind speed v(t) is defined in this environment,
and we have also included a new schematic (Fig. 12) to clearly illustrate the interaction
between the numerical OpenFAST modules and the physical wave-tank experiment.

5 Experimental results

The proposed observers have been experimentally validated on a SIL setup at École Cen-
trale Nantes, France. The experimental platform consists of a 1/32-scale semi-submersible
FOWT, based on the OC4-DeepCwind concept, deployed in the wave tank of the LHEEA
Laboratory (LHEEA Laboratory, 2025). The physical model includes the floating plat-
form, tower, and mooring system and is instrumented with motion-tracking markers and
load sensors, as shown in Fig. 10. This setup provides realistic hydrodynamic excitation
through physical wave generation and platform motion.
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Figure 11: Experimental SIL test setup of the 5 MW 1/32-scale semi-submersible OC4
FOWT at École Centrale Nantes (Aslmostafa et al., 2026).
The overall SIL architecture is illustrated in Fig. 12. In this hybrid configuration, the hy-
drodynamic processes, wave excitation, viscous and radiation loads, mooring-line forces,
and the resulting platform dynamics are reproduced physically in the wave tank. Conse-
quently, the corresponding hydrodynamic modules of OpenFAST (HydroDyn, MAP++,
MoorDyn or FEAMooring, ElastoDyn), highlighted in the blue dashed region of Fig. 12,
are disabled in the numerical simulation. Instead, the measured 6 degrees of freedom
platform and tower-top motions from the Qualisys system are imposed as inputs to the
real-time numerical model (Bonnefoy et al., 2024). It should be noted that aerodynamic
loads are computed numerically. In other words, a modified real-time implementation of
OpenFAST runs, where the wind field is prescribed numerically and the aerodynamic mod-
ules (InflowWind, AeroDyn, ServoDyn), highlighted in the red dashed region of Fig. 12,
remain active. At each iteration of the SIL loop, the solver receives the measured motions
and computes the instantaneous aerodynamic thrust corresponding to the imposed wind
field. This thrust is then applied to the physical model by a tower-top actuator system
(Fig. 11), enabling consistent aero-hydro coupling during the experiment.
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Figure 12: Schematic of the modules in the SIL architecture. The figure is inspired by
Bonnefoy et al. (2024) and National Renewable Energy Laboratory (2023). The hydro-
dynamic and structural modules (blue dashed region) are disabled, as the corresponding
processes are reproduced physically in the wave tank, while the aerodynamic modules
(red dashed region) remain active and compute real-time aerodynamic loads using the
prescribed wind field and measured platform motions.

In the SIL setup, the inflow wind field is numerically prescribed in OpenFAST. Based
on this inflow and the instantaneous platform and rotor conditions, OpenFAST computes
the corresponding REWS vr(t), which is used as the reference signal for evaluating the
estimation error.This approach allows the observer to be tested under realistic platform
motions and hydrodynamic conditions, i.e., under realistic physical disturbances.

4. The use of rotor speed to estimate wind speed has been investigated for quite some time,
see for example the survey in Soltani, et al Estimation of REWS: A Comparison, TCST
2013 https://doi.org/10.1109/TCST.2013.2260751 Due to their highly stochastic na-
ture, all wind estimates requires low pass filtering before they can be used for control
purposes. Indeed, it is clear from Figure 11-13 that all three estimation methods filter the
wind. The important question is how well they preserve the portion of the spectrum that
is useful for control, and RMS error may not be a good measure for this.

Response: We thank the reviewer for this comment. We agree that using RMS-based
metrics alone may not sufficiently capture estimator performance.
To address this point and strengthen the analysis, we have extended the performance
evaluation by introducing additional complementary metrics in both the time-domain
statistical metrics and frequency domains. These metrics provide a fairer comparison
among the considered estimation methods.

Let x(k) denote the true signal (either rotor speed ω(k) or wind speed v(k)), x̂(k) its
estimate, and e(k) = x̂(k)− x(k) the estimation error {e(k)}Nk=1 at sample k = 1, . . . , N .

1. Root Mean Square Error (RMSE)
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The root mean square error is defined as

RMSE =

√√√√ 1

N

N∑
k=1

e(k)2.

2. Mean estimation error

The mean error (or bias) µe that indicates systematic over- or underestimation is given
by µe = E[e] ≈ 1

N

∑N
k=1 e(k).

3. Variance of estimation error

The variance of the estimation error σ2e that measures how much the error fluctuates
around its mean. It is a measure of the noise level or spread of the error.is

σ2e = Var(e) ≈ 1

N − 1

N∑
k=1

(
e(k)− µe

)2
.

4. Mean Square Error (MSE)

The mean square error (MSE) which combines both variance and bias into a single scalar
is defined as

MSE = E[e2] ≈ 1

N

N∑
k=1

e(k)2.

Using µe and σ2e one can write MSE = σ2e + µ2e.

6. Power Spectral Density (PSD) of the Error

The (one-sided) power spectral density (PSD) of the estimation error which shows how the
error energy is distributed across frequencies is denoted by Se(f), where f is frequency.
As a theoretical continuous-time quantity, the PSD is defined via the finite-time Fourier
transform of e(t) as

Se(f) = lim
T→∞

1

T

∣∣∣∣∫ T

0
e(t) e−j2πft dt

∣∣∣∣2 .
In practice, Se(f) is estimated from the sampled error sequence e(k) using Welch’s method,
as implemented in Matlab’s pwelch function.

Following Soltani et al., we plot the frequency-weighted PSD

f · Se(f),
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Figure 16: Power spectral density (PSD) of the REWS estimation error in three test cases.

7. Error Distribution and Gaussian Fit

To further characterize the estimation error, we plot the empirical probability distribution
of e(k) as a normalized histogram and compare it with a Gaussian probability density
function

pGauss(e) =
1√
2π σe

exp

(
−(e− µe)

2

2σ2e

)
,

using the sample mean µe and variance σ2e .
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(a) Case #1

(b) Case #2

(c) Case #3

Figure 17: Comparison of the distribution and probability density function (PDF) of the REWS
estimation error in three test cases.

Table 5: Time-domain statistical performance metrics for CD-EKF, SOSMO, and ASOSMO
across three experimental test cases, evaluated for rotor speed ωr and REWS vr.
Case Variable Method RMSE E[e] σ2e E[e2]

Case 1

ωr

CD-EKF 9.00× 10−2 −1.29× 10−2 7.93× 10−3 8.09× 10−3

SOSMO 5.90× 10−2 1.42× 10−3 3.48× 10−3 3.48× 10−3

ASOSMO 1.14× 10−1 −6.64× 10−3 1.30× 10−2 1.30× 10−2

vr

CD-EKF 1.89 5.54× 10−1 3.25 3.56
SOSMO 1.76 3.02× 10−1 3.02 3.11
ASOSMO 1.84 2.41× 10−1 3.32 3.38

Case 2

ωr

CD-EKF 6.74× 10−2 −4.82× 10−3 4.53× 10−3 4.55× 10−3

SOSMO 2.40× 10−2 1.68× 10−5 5.75× 10−4 5.74× 10−4

ASOSMO 4.49× 10−2 −2.80× 10−3 2.00× 10−3 2.01× 10−3

vr

CD-EKF 1.22 7.87× 10−1 8.66× 10−1 1.49
SOSMO 9.93× 10−1 3.08× 10−1 8.92× 10−1 9.86× 10−1

ASOSMO 1.02 4.56× 10−1 8.41× 10−1 1.05

Case 3

ωr

CD-EKF 7.52× 10−2 −2.98× 10−3 5.65× 10−3 5.66× 10−3

SOSMO 4.27× 10−2 6.36× 10−4 1.83× 10−3 1.83× 10−3

ASOSMO 5.20× 10−2 −7.48× 10−5 2.70× 10−3 2.70× 10−3

vr

CD-EKF 1.72 9.57× 10−1 2.04 2.96
SOSMO 1.49 5.98× 10−1 1.85 2.21
ASOSMO 1.49 5.96× 10−1 1.88 2.23
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Figure 18: Comparison of normalized error metrics for the three REWS estimation methods:
CD–EKF, SOSMO, and ASOSMO, evaluated over three representative wind cases. All metrics
are normalized with respect to the CD–EKF baseline.

5. Ultimately, the real test of a wind speed estimate is its utility for WTC, and this aspect
of REWs has been extensively investigated in several recent papers, notably Guo, F. et al
Evaluation of lidar-assisted wind turbine control under various turbulence characteristics,
WES 2023 https://doi.org/10.5194/wes-8-149-2023 and the cited WES paper by
Moldenhauer 2025. These papers discussed many features of wind estimation and filtering
for their implementation within control methodologies. The wind estimation methods
were then combined with novel control methodologies to deliver improved WTC control
for turbine fatigue load reduction.

Response: We thank the reviewer for highlighting the importance of assessing wind speed
estimation in the context of wind turbine control (WTC). We agree that recent studies,
such as Guo et al. (2023) and Moldenhauer et al. (2025), provide valuable insights into
how REWS estimation and preview filtering influence closed-loop load reduction.
In the present manuscript, however, we deliberately focus on the observer design problem
and on establishing a robust and computationally efficient wind speed estimator. This
choice is motivated by the following key contributions, which we believe are meaningful
on their own: (i) a rigorous observability analysis for estimating wind speed from rotor
speed measurements in the considered setting; and (ii) the introduction and validation
of constant-gain and adaptive second-order sliding-mode observers featuring finite-time
convergence, straightforward tuning, and robustness/stability guarantees without model
linearization.
Furthermore, the current work of the authors (not yet published) shows the efficiency
of the closed-loop system, which incorporates both the adaptive observer and adaptive
controller, along with a formal proof of the stability of the observer-based control approach.
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6. Overall, the study is interesting and well presented, but the contribution is rather limited
in scope and insufficient for a strong journal like WES. In its present form, it would be well
suited to a conference presentation like WESC or Torque. If the authors wish to extend
their work, they may consider combining SOSMO wind estimation with WTC methods
(possibly combining it with Lidar) and demonstrating improvements in some aspects of
turbine control performance.

Response: We respectfully thank the reviewer for this perspective. While the present work
does not investigate a full wind turbine control loop, its contribution is focused. To the
best of the authors’ knowledge, this is the first study to conduct a formal observability
analysis for estimating wind speed from rotor speed in the FOWT context, a question
that is rarely addressed in the literature despite its conceptual importance.
Furthermore, the paper introduces two novel observer architectures, a constant-gain and
an adaptive second-order sliding-mode observer, that provide robust, non-linear, model-
insensitive wind speed estimation without requiring linearization or covariance tuning.
The observers also offer finite-time convergence properties and significantly reduced com-
putational burden, which are highly desirable for real-time offshore applications.
The objective of this manuscript is to establish a solid and rigorous estimation frame-
work, validated through both high-fidelity OpenFAST simulations and SIL experiments.
We believe that this constitutes a meaningful step forward and an independent scientific
contribution aligned with the scope of Wind Energy Science.
Nevertheless, we appreciate the reviewer’s suggestion, and as noted above, integration of
the proposed estimators into full WTC schemes represents a direction for future work.
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Response to Referee #2

General comments

The article is overall well-written and structured. It is commendable to have a theoretical study
of the observer as well as an experimental evaluation. Addressing the three turbine operational
regimes is also of interest. A few elements could be improved and a few parts would benefit
from more details as suggested below. In particular, more details on the tuning of the observers
would be welcome so that the community can more easily reproduce and compare results. The
prospect of connecting the observers with a control strategy in the future is interesting and
would nicely complement this work.
Response: We thank the reviewer for the assessment of the manuscript and for the construc-
tive comments. Below, we respond to the reviewer’s remarks point by point and indicate the
corresponding clarifications and additions made in the revised manuscript.

Specific comments

1. Throughout the document, “wind speed” is mentioned as-is when it is (most likely) free-
wind speed (a.k.a. free-flow wind speed) that the authors want to estimate. Given that
turbines have an induction zone with altered wind properties, it should be specified in
the introduction (and abstract, possibly title too) that this study addresses free wind
throughout.

Response: We thank the reviewer for pointing out the importance of distinguishing be-
tween the free-stream wind and the wind speed acting on the rotor. We clarify that the
objective of this work is to estimate the REWS rather than the free-stream wind speed,
and this terminology is now used consistently throughout the revised manuscript, as is
common in wind speed estimation studies (e.g. Soltani et al. (2013); Moldenhauer and
Schmid (2025)).
In the revised manuscript, Eq. (1) now explicitly uses the free-stream (upstream) wind
speed v∞, following standard aerodynamic references, whereas the aerodynamic torque
and the remaining equations use the REWS vr. These two wind speed quantities are now
clearly defined in Sect. 2.1 on page 5 as follows:

Wind turbines harness the kinetic energy of the wind to generate mechanical power
through aerodynamic interaction between the wind and the rotating blades. The the-
oretical power available in the wind stream is given by

Pwind =
1

2
ρπR2

��v
3v3∞ (1)

where ρ is the air density, R is the rotor radius, and v is the wind speed upstream of the
rotor v∞ denotes the free-stream (upstream) wind speed (Burton et al., 2011). However,
only a portion of this energy can be converted into mechanical power owing to fundamental
aerodynamic limits, such as reported by Betz’s law (Manwell et al., 2009). The efficiency
of this conversion is described by the power coefficient Cp, which quantifies the fraction of
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the wind’s kinetic energy that is captured by the rotor. As a consequence, aerodynamic
power Pa and torque τa read as

Pa =
1

2
ρπR2Cp (λ, β)��v

3v3r (2)

τa =
Pa

ωr
(3)

where ωr is the rotor speed, vr denotes the rotor–effective wind speed, and the power
coefficient Cp(λ, β) is a nonlinear function of the tip-speed ratio λ and the blade pitch
angle β, as depicted in Fig. 1.

2. line 43: motion not only distorts the lines of sight but also the apparent wind speed
because of the lidar translation.

Response: We thank the reviewer for this helpful observation.The sentence on line 43 has
been updated accordingly (on page 2, as below:

Floating platform motions distort the LiDAR’s line of sight, introducing systematic biases
and increased uncertainty in wind speed estimation and also the apparent wind speed
because of the LiDAR translation, introducing systematic biases and increased uncertainty
in wind speed estimation (Gräfe et al., 2023).

3. 90: specify motivation for proposing a 2nd-order observer instead of first-order one.

Response: We appreciate the reviewer’s comment. The manuscript now clarifies that the
motivation for adopting a second-order sliding mode instead of a first-order one stems
from the need for a continuous correction signal in FOWT applications, where rapidly
varying aerodynamic and structural loads amplify the effects of the discontinuous injection
inherent to first-order sliding modes. Second-order formulations, such as the supertwisting
algorithm, retain the finite-time convergence of sliding-mode designs while significantly
reducing chattering through a continuous control action. This rationale has been explicitly
incorporated into the revised text on page 4 as follows:

Observer based on sliding mode theory. Among observer-based approaches, slid-
ing mode observers (SMOs) have attracted significant attention due to their inherent
robustness to uncertainties and disturbances, which are particularly prevalent in offshore
environments. The idea of SMO is one of driving the estimated states to properly chosen
constraints (the sliding manifold) in finite time and then maintaining the sliding mode for
all subsequent times so that the state estimation errors are driven to zero, thus exploiting
the main features of the sliding mode: its insensitivity to external and internal distur-
bances matched to the control and finite-time reaching transient. Unlike KFs, which rely
heavily on accurate statistical models and noise characteristics, SMOs exploit the sys-
tem’s nonlinear structure and discontinuous logic to force estimation errors to converge in
finite time (Ma et al., 2024). This makes them well-suited for FOWTs, where system dy-
namics are often poorly known and subject to unpredictable perturbations. Furthermore,
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recent studies have demonstrated the potential of higher-order sliding mode observers to
achieve estimation even in the presence of uncertainties, while reducing the negative effect
(chattering) induced by discontinuity appearing in the correction term. However, these
insensitivity/robustness properties come at a cost, the so-called chattering (Levant, 2010),
resulting from a high-frequency switching signal and the inevitable presence of unmod-
eled dynamics. These limitations have motivated higher-order sliding-mode formulations,
which reduce chattering by enforcing that the sliding variable and its time derivatives, up
to system relative degree (Isidori, 1989), converge to zero, thereby improving accuracy.
One of the most popular techniques specifically designed for this purpose is the so-called
supertwisting algorithm (Levant, 1993), which is a second-order sliding mode algorithm.
It generates a robust, continuous observer while driving a sliding variable of relative degree
one to the second-order sliding mode in finite time.

4. 142: specify that omega is replaced by lambda and its expression from (4).

Response: Thank you for the comment. We have added a sentence clarifying that ωr is
replaced using ωr = (λ vr)/R obtained from Eq. (4).

5. 179: delta(t) having no influence on observability: is it a strong assumption? Can its
validity be checked somehow? Consider elaborating on this.

Response: Thank you for the comment. This assumption is standard and it is not strong
one by a practical point of view. Numerical evaluations based on experimantal/OpenFAST
data also confirm that the observability criterion is satisfied independently of δ(t).

6. 186: lambda is now lambda(omega,v), consider aligning and stabilizing your notation
across equations.

Response: Thank you for this comment. In the observability analysis, we now explicitly
write λ = λ(ωr, vr) in order to emphasize its dependence on the rotor speed and the
REWS, in accordance with Eq. (4). For the remainder of the paper, we keep the shorthand
notation λ for readability, and we have added a short clarification to state this convention
right after Eq. (4).

7. 188–189: consider reformulating or correcting the first sentence.

Response: We have revised the sentence to improve clarity on page 9 as

The previous property is evaluated if Φδ(t)=0 can be inverted that is a very hard task
Checking whether Φδ(t)=0 is invertible is difficult in practice; It is why therefore, the
previous definition can be reformulated by the next equivalent one.

8. 197–198: several steps are skipped from “det(...) not equal to 0” to “partial derivative of
y-dot wrt v not equal to zero”, which may confuse readers. Agree with (15).
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Response: Thank you for this comment. We have now added a short explanation showing
how the Jacobian structure leads to the requirement that only ∂ẏ/∂vr 6= 0 must hold.
This clarification has been inserted directly before Eq. (15) on page 9 as follows

Applying Eq. (13) to Eq. (14), it is obvious that the first line of the Jacobian ∂Φ/∂x

equals [1 0].

The Jacobian of Φ with respect to the state vector x reads

∂Φ

∂x
=


∂y

∂ωr

∂y

∂vr

∂ẏ

∂ωr

∂ẏ

∂vr

 =


1 0

∂ẏ

∂ωr

∂ẏ

∂vr

 . (15)

Therefore, the generic observability condition det(∂Φ/∂x) 6= 0 is equivalent to requiring
that ∂ẏ/∂vr 6= 0.

9. 216: “double integrator”: consider introducing this choice with more justification.

Response: We thank the reviewer for this comment. In response, a clarification has been
added to the manuscript explaining why the dynamics in Eq. (20) can be classified as
a perturbed double–integrator system. After the coordinate transformation, the state
variables become (z1, z2) = (y, ẏ), which yields ż1 = z2. The remaining dynamics enter
solely through the second equation as an additive term that aggregates model uncer-
tainties, nonlinear aerodynamic effects, and disturbances. This produces the canonical
chain–of–integrators structure widely used in nonlinear control, where the system behaves
as two cascaded integrators driven by an uncertain but bounded input. Such a structure
directly motivates the adoption of finite–time robust observers such as the supertwisting
algorithm. The following sentence has been added to the manuscript to make this explicit:

It should be noted that the structure in Eq. (20) corresponds to a perturbed double-
integrator system. Indeed, the coordinate transformation in Eq. (17) yields z1 = y and
z2 = ẏ, so that ż1 = z2. All model uncertainties and unmeasured effects appear as an
additive term in the second equation, namely ż2 = F(·). Therefore, the linear part of the
dynamics corresponds to the standard chain-of-integrators form.

10. 216: “supertwisting”: if that name can help get a better understanding, consider explain-
ing it.

Response: We thank the reviewer for this comment. The term “supertwisting” originates
from the classical twisting algorithm in sliding-mode control. The twisting algorithm is
a second-order sliding-mode method whose behavior is commonly interpreted in a phase-
plane framework involving the sliding variable and its derivative, resulting in a character-
istic twisting motion around the sliding manifold (Levant, 1993).
The supertwisting algorithm, a name introduced by Levant (2003), can be viewed as an ex-
tension of the twisting concept. It is a second-order sliding-mode algorithm that achieves
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finite-time convergence of the sliding variable without requiring explicit measurement of
its derivative, while preserving robustness and significantly reducing chattering.

11. 221: “Assumptions 1–4”: shouldn’t this be 1–3 instead?

Response: Thank you for catching this. You are correct that only Assumptions 1–3 are
stated. We have now corrected the text.

12. 227: Proof of Theorem 1 is central to the theoretical study, yet difficult to understand
because too concise in my opinion. It is unclear how the delta(t) term comes back into
play to ensure the claimed robustness, especially because this term was set to zero in
several steps of the reasoning. It would benefit from further development, perhaps in an
appendix. Response: Thank you for your remark. We are fully aware with you and have
strongly modified the proof in order to improve the understanding of this important point.
Thus, the proof of Theorem 1 in the revised version reads now as (see page 11)
Proof of Theorem 1. The observer (22) has been designed for the system (20) in the
ẑ-state space; the gain Lφ1 tuning is based on the bound of F(·). From there, the writing
of the observer (22) must be made in the x̂-state space. With this objective, consider
z = Φ(x,u) that gives

ż =
∂Φ

∂x
ẋ+

∂Φ

∂u
u̇ (26)

So, one has

A · z +

[
0

F

]
=
∂Φ

∂x
f(x,u) +

∂Φ

∂u
u̇+

∂Φ

∂x
∆(t) (27)

By considering non-perturbed and perturbed terms in the two state spaces, one has

A · z =
∂Φ

∂x
f(x,u) +

∂Φ

∂u
u̇ and

[
0

F

]
=
∂Φ

∂x
∆(t) (28)

From ẑ = Φ(x̂,u), an observer of (22) in the x̂-state space reads as

˙̂x =

[
∂Φ

∂x̂

]−1

·
(
˙̂z − ∂Φ

∂u
u̇

)

=

[
∂Φ

∂x̂

]−1

·

(
A ẑ +

[
γ1(·)

γ2(·)

]
− ∂Φ

∂u
u̇

)

=

[
∂Φ

∂x̂

]−1

·
(
A ẑ − ∂Φ

∂u
u̇

)
+

[
∂Φ

∂x̂

]−1

·

[
γ1(·)

γ2(·)

] (29)

From the left-hand side term of (28), the previous system reads as

˙̂x = f(x̂,u) +

[
∂Φ

∂x̂

]−1

·

[
γ1(·)

γ2(·)

]
(30)
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that is the form of system displayed in Theorem 1. Given that system (22) is an observer
of (20) under condition (23), then system in (29) is an observer for (8) if condition (25) is
fulfilled with a1 = 1.5 and a2 = 1.1.

13. Eq. (31)–(32): specify the variables to tune and initialize, along with guidance on selecting
appropriate values, so the community can reproduce and compare results.

Response: Thank you for this comment. To address this concern, we have clarified the
tunable and initialization parameters associated with the adaptive gain laws, together
with guidance on their roles and selection. Specifically, an explanatory paragraph has been
added immediately after the adaptive-gain equations to describe the design parameters
and their influence on the observer behavior. In addition, a dedicated subsection has been
included in the simulation section to explicitly report the numerical values.

After adaptive-gain equations:

with ψ =
d

dt
(ωr − ω̂r), where α > 0 and ε > 0 are design parameters of the adaptive

law. The parameter ε defines the target accuracy of the rotor speed estimation, while α
governs the adaptation rate of the observer gains. The constants k1(0) > 0 and k2(0) > 0

denote the initial values of the adaptive gains.
The adaptation mechanism operates according to the following principle: (i) when the
estimation error exceeds the target accuracy, i.e., |ωr − ω̂r| > ε, the observer gains are
increased to improve convergence; and (ii) when the estimation accuracy is sufficient, the
gains are decreased to avoid unnecessary amplification of measurement noise.

In simulation results Section:
4.1 Simulation set-up
The simulation environment integrates Matlab/Simulink 2023a for implementing the ob-
servers with OpenFAST (Jonkman et al., 2009), which simulates the high-fidelity aero-
hydro-servo-elastic model of the FOWT. Each test is run for 800 s under identical wind
and wave conditions, with a fixed sampling time of 0.0125 s. Although the observer design
is based on the reduced-order model in Eq. (24), all 24 degrees of freedom available in
OpenFAST are activated to ensure a comprehensive evaluation under realistic conditions.
Realistic turbulent inflow wind fields are generated using TurbSim (Jonkman, 2009) based
on the IEC Kaimal turbulence model, with a mean wind speed of 18 m s−1. A logarith-
mic mean wind profile is employed, resulting in vertical wind shear across the rotor disk.
The inflow is prescribed as a full-field turbulent wind to OpenFAST, such that the aero-
dynamic loads are computed using the spatially varying wind field. For analysis and
validation purposes, REWS is considered, while the underlying aerodynamic response
is influenced by the full-field inflow. Irregular wave conditions are modeled using the
HydroDyn module (Jonkman et al., 2014). The incident wave field is prescribed as a
stochastic irregular process with a significant wave height of 3.25 m. Hydrodynamic loads
acting on the floating platform are computed using the built-in potential-flow formula-
tion in HydroDyn, based on precomputed WAMIT data. This formulation accounts for
linear wave-excitation forces, hydrostatic restoring forces, and radiation effects through

19



convolution-based memory terms. The hydrodynamic model is fully coupled with the
aero-servo-elastic dynamics in OpenFAST, such that wave-induced platform motions in-
teract with the aerodynamic response of the rotor. Both wind and wave conditions are
illustrated in Fig. 3. The observer parameters design have been fine-tuned to achieve
the best performance as follows: for the constant-gain SOSMO in Eq. (24), the coeffi-
cients are set following (Levant, 2003) to a1 = 1.5 and a2 = 1.1, and the gain is selected
as Lφ1 = 0.01; for the adaptive-gain observer (ASOSMO) in Eqs. (32)–(33), the design
parameters are chosen as α = 10−4 and ε = 10−3, with initial values k1(0) = 0.1 and
k2(0) = 10−4.

14. 271: it should be mentioned that the simulation result is in zone (III) and that other
regimes are covered in the experimental section.

Response: Thank you for this suggestion. We have clarified the operating regime of the
simulations by adding the following sentence at the beginning of Sect. 4 on page 14:

In this section, the performances of the proposed wind speed observers are evaluated and
compared with the CD-EKF used in ROSCO, which is described in Appendix A. All
simulations are conducted on the NREL 5 MW FOWT, supported by a semi-submersible
platform. The simulation study in this section is conducted in the above-rated operating
regime (Region III). Other operating regimes are covered in the experimental validation
section (Sect. 5).

15. 276: is there vertical shear in the TurbSim wind? More details on the model fidelity would
be appreciated. Same for the hydrodynamic part.

Response: Yes. The turbulent inflow wind fields are generated with TurbSim as full-field
wind inputs based on the IEC Kaimal model, and we include vertical shear by applying a
logarithmic mean wind profile across the rotor disk. As a result, the aerodynamic loads in
OpenFAST are computed from a spatially varying wind field (including shear and turbu-
lence), while the performance evaluation is reported in terms of the REWS derived from
that full-field inflow.
Regarding model fidelity, all 24 degrees of freedom of OpenFAST are enabled (aero-servo-
elastic + platform dynamics) to ensure a high-fidelity benchmark. For the hydrodynamics,
irregular waves are simulated using HydroDyn with a potential-flow formulation based on
precomputed WAMIT data. This includes linear wave excitation, hydrostatic restoring,
and radiation effects (via convolution/memory terms), fully coupled with the aero-servo-
elastic system such that wave-induced platform motions affect the aerodynamic response.
We have expanded Sect. 4.1 to explicitly state these wind-shear and hydrodynamic-
modeling choices and to clarify how they contribute to the overall simulation fidelity.

16. 307: lower cost: this is supported by metrics given later in 4.2 so this statement comes
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too early. Consider moving it.

Response: We agree that the statement regarding lower computational cost could state
later. The sentence has been revised to focus solely on estimation accuracy, and the
discussion of computational cost has now been moved to Sect. 4.4, where it is explicitly
supported by quantitative execution-time metrics.
The revised sentence now reads as
The findings demonstrate illustrate the efficacy of sliding mode-based observers in enhanc-
ing estimation accuracy. while preserving a lower computational cost.

17. 311: “under varying wind scenarios”: what are these? Only one main scenario appears in
4.1.

Response: Thank you for the comment. The sentence has therefore been removed to avoid
any ambiguity.

18. Overall comment on section 4: to capture the inherent stochastic aspect of (simulated)
wind and assess sensivitiy to model fidelity, more scenarios would need to be run, possibly
using other wind generation models. This would illustrate how SOSMO and ASOSMO
compare to CD-EKF and provide a statistical view of the performance. The authors
could consider a separate publication focused solely on simulation results to achieve these
purposes. Section 4 is valuable but would benefit from more content. More generally, it
raises the question of whether Section 4 has an added value and if Section 5 might suffice
on its own, thereby freeing space for more details in other sections.

Response: We thank the reviewer for this comment regarding the scope and added value
of Section 4. To address this concern, we have added a new dedicated Monte Carlo (MC)
analysis subsection in Section 4, which quantifies sensitivity to initialization errors and
introduces a convergence-time metric. This MC analysis provides a statistical measure
and complements the deterministic simulation cases by enabling a controlled comparison
between SOSMO, ASOSMO, and CD–EKF under identical operating conditions. As such,
Section 4 now offers added value beyond Section 5.

19. Section 5: a diagram alongside Fig.10 would help clarify which parts are experimental and
which are simulated, especially since the observer is in SIL but also a part of the turbine
response is provided through OpenFAST. Additionally, it would be useful to indicate the
differences between this setup and one where only the observer is in SIL/HIL (i.e. without
the turbine response provided by a model.

Response: Thank you for this comment. In the revised manuscript, a new schematic di-
agram (Fig. 12) has been added alongside Fig. 10, and Section 5 has been expanded to
clearly distinguish which components of the system are reproduced experimentally and
which are simulated numerically.
The experimental setup is designed to reproduce the coupled aero–hydro–servo–elastic
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behavior of a floating offshore wind turbine under realistic conditions. In the wave tank,
hydrodynamic effects, including wave excitation, platform motions, and mooring-system
dynamics, are reproduced physically using a scaled prototype. In contrast, aerodynamic
effects are computed numerically in real time through a software-in-the-loop (SIL) imple-
mentation of OpenFAST.

5 Experimental results

The proposed observers have been experimentally validated on a SIL setup at École Cen-
trale Nantes, France. The experimental platform consists of a 1/32-scale semi-submersible
FOWT, based on the OC4-DeepCwind concept, deployed in the wave tank of the LHEEA
Laboratory (LHEEA Laboratory, 2025). The physical model includes the floating plat-
form, tower, and mooring system and is instrumented with motion-tracking markers and
load sensors, as shown in Fig. 10. This setup provides realistic hydrodynamic excitation
through physical wave generation and platform motion.

Figure 11: Experimental SIL test setup of the 5 MW 1/32-scale semi-submersible OC4
FOWT at École Centrale Nantes (Aslmostafa et al., 2026).
The overall SIL architecture is illustrated in Fig. 12. In this hybrid configuration, the hy-
drodynamic processes, wave excitation, viscous and radiation loads, mooring-line forces,
and the resulting platform dynamics are reproduced physically in the wave tank. Conse-
quently, the corresponding hydrodynamic modules of OpenFAST (HydroDyn, MAP++,
MoorDyn or FEAMooring, ElastoDyn), highlighted in the blue dashed region of Fig. 12,
are disabled in the numerical simulation. Instead, the measured 6 degrees of freedom
platform and tower-top motions from the Qualisys system are imposed as inputs to the
real-time numerical model (Bonnefoy et al., 2024). It should be noted that aerodynamic
loads are computed numerically. In other words, a modified real-time implementation of
OpenFAST runs, where the wind field is prescribed numerically and the aerodynamic mod-
ules (InflowWind, AeroDyn, ServoDyn), highlighted in the red dashed region of Fig. 12,
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remain active. At each iteration of the SIL loop, the solver receives the measured motions
and computes the instantaneous aerodynamic thrust corresponding to the imposed wind
field. This thrust is then applied to the physical model by a tower-top actuator system
(Fig. 11), enabling consistent aero-hydro coupling during the experiment.

MAP++, MoorDyn,
or FEAMooring

External
Conditions

Applied
Loads

Wind Turbine

ServoDyn

ElastoDyn

InflowWind AeroDyn

Wind-Inflow
Aero-
dynamics

Control System & Actuators

Rotor
Dynamics

Drivetrain
Dynamics

Power
Generation

Nacelle Dynamics

Tower Dynamics

Platform Dynamics

Mooring Dynamics

HydroDyn

Waves &
Currents

Hydro-
dynamics

Numerical simulation

Physical wave tank

Figure 12: Schematic of the modules in the SIL architecture. The figure is inspired by
Bonnefoy et al. (2024) and National Renewable Energy Laboratory (2023). The hydro-
dynamic and structural modules (blue dashed region) are disabled, as the corresponding
processes are reproduced physically in the wave tank, while the aerodynamic modules
(red dashed region) remain active and compute real-time aerodynamic loads using the
prescribed wind field and measured platform motions.

In the SIL setup, the inflow wind field is numerically prescribed in OpenFAST. Based
on this inflow and the instantaneous platform and rotor conditions, OpenFAST computes
the corresponding REWS vr(t), which is used as the reference signal for evaluating the
estimation error.This approach allows the observer to be tested under realistic platform
motions and hydrodynamic conditions, i.e., under realistic physical disturbances.

20. Sections 4–5: clarify why the figures show rotor speed estimations while the observers are
described as using rotor speed measurements as input (therefore not requiring estimation).

Response: We thank the reviewer for this remark. Although rotor speed is directly mea-
sured and used as an input to the observer, it is also reconstructed internally in order to
explicitly verify the convergence properties of the observer. In the proposed framework,
convergence of the reconstructed rotor speed ω̂r toward the measured rotor speed ωr is a
necessary condition for correct rotor-effective wind speed estimation.
Owing to the nonlinear coupling between rotor speed and wind speed in the aerodynamic
torque expression, once ω̂r → ωr, observability of the reduced-order model ensures that
the wind speed estimate also converges, i.e., v̂r → vr.
The observer therefore does not estimate rotor speed to compensate for missing mea-
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surements, but rather to verify convergence and to validate the estimation mechanism.

21. 321: thrust generation by the fans and the connection with OpenFAST could be better
explained, possibly with a diagram.

Response: We thank the reviewer for this helpful comment. In the revised manuscript,
we have improved the textual explanation in Section 5 by explicitly describing the real-
time interaction between OpenFAST and the experimental setup. In particular, we now
clearly state that aerodynamic loads are computed numerically within OpenFAST from
the prescribed wind field and the measured platform motions, and that the resulting
aerodynamic thrust is applied to the physical model through the nacelle-mounted fan
system. The measured structural motions are then fed back to OpenFAST, closing the
aero–hydro coupling loop.

22. Fig 11: ASOSMO exhibits what appears to be a transient response in [0;50] s. Are
performance metrics calculated excluding the transients (for all algorithms)?

Response: Thank you for this insightful observation.
The transient behavior observed for the ASOSMO during the initial time corresponds
to the gain adaptation phase inherent to the adaptive supertwisting structure. During
this short period, the observer gains are adjusted online to reach appropriate values that
balance convergence speed and robustness, while avoiding excessive gain overestimation
that could negatively affect performance.
It is important to note that this transient has a limited impact on the REWS estimation,
which is the main variable of interest in this study. The initial time window was selected
to ensure stable and reliable estimation behavior. To further assess the sensitivity to the
choice of the initial time, an additional MC analysis investigating different initial transient
durations has been added in Section 4.3 on page 18.
Regarding the performance metrics, all quantitative results are computed over the same
time interval for all three observers. This ensures a fair and consistent comparison. More-
over, the performance metrics are calculated only for the REWS, not for the rotor speed,
in accordance with the primary objective of the paper.

23. 357–358: while no covariance matrix tuning is necessary, consider adding details on the
tuning of the observers for a fair comparison.

Response: Thank you for this suggestion. In the revised manuscript, we added explicit
details on the tuning/parameter selection of the proposed observers to ensure a fair com-
parison with the CD-EKF. Specifically, in the newly added on page 14 as
4.1 Simulation set-up
The observer parameters design used in the simulations are specified as follows: for the
constant-gain SOSMO in Eq. (24), the coefficients are set following (Levant, 2003) to
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a1 = 1.5 and a2 = 1.1, and the gain is selected as Lφ1 = 0.01; for the adaptive-gain
observer (ASOSMO) in Eqs. (32)–(33), the design parameters are chosen as α = 10−4 and
ε = 10−3, with initial values k1(0) = 0.1 and k2(0) = 10−4.

In addition, we expanded the description of the CD-EKF to clarify its tuning require-
ments. In the CD-EKF results/discussion part as
The practical implementation of the CD-EKF requires careful tuning of the process-noise
and measurement-noise covariance matrices Q and Rm, which constitute the main design
parameters of the filter, as well as linearization of the system dynamics. In the present
formulation (see Appendix A), this corresponds to tuning four parameters, namely the
diagonal entries of Q associated with the rotor speed state, the turbulent wind compo-
nent, and the mean wind component, together with the measurement-noise variance Rm.
These parameters are selected based on sensor characteristics, turbulence modeling con-
siderations, and empirical adjustments to ensure filter stability and satisfactory estimation
performance.
As commonly reported in the literature, the estimation performance of EKF-based ap-
proaches is sensitive to the choice of these covariance parameters. Moreover, no system-
atic or universal tuning procedure exists for their selection, which represents a well-known
practical limitation of Kalman-filter-based methods, particularly for highly nonlinear and
uncertain systems such as FOWT.

24. 362–363: “system stability and reduced fatigue loads” is this implicitly about a feedfoward
control strategy? Can the proposed estimation strategy provide a prediction of free wind
speed in the next seconds?

Response: Thank you for this remark. The present work focuses on estimating the instan-
taneous REWS using second-order sliding-mode observers. We do not design or implement
a specific feedforward control strategy in this paper, and the proposed observers do not
provide an explicit prediction of the free-stream wind speed in the next seconds; they
estimate the current REWS from the measured rotor speed.
Our statement about “improved system stability and reduced fatigue loads” is intended
to refer to the potential benefits when the proposed wind speed estimator is integrated
into suitable control schemes (for example, pitch and/or torque control).

Technical corrections

Suggested modifications: (square brackets for insertion, double dash for removal)
Response: We thank the reviewer for the careful reading of the manuscript. We appreciate these
helpful technical corrections. All suggested modifications have been addressed in the revised
version of the manuscript.

1. 100: “a software-in-the-loop [setup] located in LHEEA lab” → X

2. 117: “such as Betz’s law” > “reported by Betz’s law” → X
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3. 127: “taking into account -for- blade” → X

4. 134: “control vector [u]” → X

5. 139: “unknown[, which] gives” → X

6. 188: “-It is why- However, the previous” → Thank you for highlighting this point. While
we agree that the phrase “It is why” was inappropriate, we found that “However” intro-
duced an unintended contrast. To maintain a smoother flow and preserve the intended
meaning, we opted “Therefore.”

7. 204: “-one- transformation” → X

8. 214: “cannot” → X

9. 249: “-phenomenon-” → X

10. 254: “large enough” → X

11. Sections 4–5: consider making figures that use the full width of the pages and possibly
with increased height. → Thank you for this suggestion. Although full-page figures were
technically possible, we chose to keep them in a single-column width (based on WES
guidelines) because the manuscript contains a large number of results (especially after
revised version).

12. 303: “-The- both” → X

13. 306: “the findings -demonstrate- illustrate the efficacy” → X

14. 354: “-validated- evaluated” → X

Concluding Remarks

We again thank the reviewers for their valuable insights. We believe the manuscript has been
significantly improved in response to these comments.

Sincerely,
Authors
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Abstract. Rotor-effective wind speed (REWS) estimation is crucial for the control and performance optimization of floating

offshore wind turbines (FOWTs). This paper introduces a robust estimation framework based on second-order sliding-mode

observers (SOSMOs), developed in both constant-gain and adaptive versions. The observers are developed using a reduced-

order dynamic model and validated in the OpenFAST simulation environment when all degrees of freedom are activated.

Their performances are compared with the continuous-discrete extended Kalman filter (CD-EKF) used in the reference open-5

source controller (ROSCO). The proposed approach is assessed under stochastic wind/wave conditions through OpenFAST

simulations and further validated experimentally using a scaled software-in-the-loop (SIL) setup. Simulation results indicate

that the proposed observers perform comparably to the CD-EKF in terms of estimation accuracy, while offering robustness,

simpler implementation, and reduced computational complexity.

1 Introduction10

The increasing global demand for electricity has necessitated the exploration of sustainable energy solutions, with offshore

wind energy emerging as a key contributor. As the scale and penetration of wind energy continue to grow, the technology is

pushed into new scientific and engineering challenges related to atmospheric flow uncertainty, turbine dynamics, and wind plant

control and integration (Veers et al., 2019). Floating offshore wind turbines (FOWTs) offer access to vast, underutilized wind

resources located in deep waters, which account for approximately 80 % of the global offshore wind potential, as reported by15

(Global Wind Energy Council, 2022). Compared with fixed-bottom turbines, FOWTs benefit from stronger and more consistent

winds; however, the floating structure introduces additional degrees of freedom, such as platform motions, which can cause

negative damping and exacerbate power fluctuations. In extreme cases, this instability could lead to system failure. Conse-

quently, conventional strategies developed for onshore wind turbines are not sufficiently effective for floating ones. Therefore,

advanced estimation and monitoring approaches are required to support the stability and efficiency of FOWTs (McCoy et al.,20

2024; Stockhouse et al., 2024).

The operation of wind turbines is typically divided into four regions based on the prevailing wind speed (Stockhouse et al.,

2024). In Region I (below the cut-in wind speed), the turbine sits idle waiting for the wind speed to increase, as the available

wind energy is insufficient to operate the turbine. In Region IV (above the cut-out wind speed), the turbine also stops operating
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to prevent potential damage. In contrast, power generation occurs in Region II and Region III, each employing distinct control25

strategies. In Region II, the objective is to maximize the power coefficient to optimize energy capture whereas in Region III,

the objective is to keep the power at its nominal value. Indeed, maintaining power at its rated level is essential to protect the

turbine ensure its longevity and operational stability.

In the operation of FOWTs, accurate information about wind speed is a fundamental requirement for control system design,

real-time monitoring, and ensuring the safe and efficient performance of the turbine (Soltani et al., 2013). Wind speed infor-30

mation serves multiple critical functions depending on the control strategy employed. For example, in Region II, wind speed

is used to compute the optimal rotor speed reference based on the desired tip-speed ratio whereas in Region III, it plays a

central role in blade pitch control action (Stockhouse et al., 2024). Furthermore, wind speed measurements are a key input for

feed-forward control algorithms. The quality of wind speed information thus has a direct impact on the overall performance

and longevity of FOWTs.35

Different methods exist in the literature regarding wind speed measurement or estimation on FOWTs, including sensor-based,

observer-based, and neural network-based approaches.

LiDAR use. An advanced remote sensor-based method commonly used is light detection and ranging (LiDAR) which can

sample the wind field upstream of the turbine to provide a measurement of upstream wind speed (Harris et al., 2006; Shu

et al., 2016). A considerable amount of literature has demonstrated the potential of LiDAR-assisted control for performance40

improvement and load mitigation in wind turbines such as (He et al., 2025; Moldenhauer and Schmid, 2025; Li and Geng,

2024; Guo and Schlipf, 2023; Mahdizadeh et al., 2021; Schlipf et al., 2023; Guo et al., 2023). Simley et al. (2020) provide an

overview of recent advances and open problems in the use of LiDAR for enhancing wind turbine operation and control. Despite

the significant progress achieved in this area, some practical limitations remain. One of the most apparent limitations is the

cost and the maintenance demand of these systems (Jena and Rajendran, 2015; Woolcock et al., 2023). LiDAR devices, par-45

ticularly those used in offshore and floating structures, are expensive to acquire and install, and their operation in harsh marine

environments imposes high standards on longevity, autonomous operation, and regular maintenance to guarantee data quality.

In addition, a primary technical limitation lies in the vulnerability of LiDAR measurements to motion-induced errors. Floating

platform motions distort the LiDAR’s line of sight, introducing systematic biases and increased uncertainty in wind speed

estimation and also the apparent wind speed because of the LiDAR translation, introducing systematic biases and increased50

uncertainty in wind speed estimation (Gräfe et al., 2023). Such disturbances can lead to errors in real-time control. Moreover,

LiDAR measurements inherently suffer from limited correlation with the actual wind field impacting the rotor, since wind is

measured several rotor diameters upstream and evolves due to turbulence, while volume averaging and point-wise sampling

prevent reconstruction of the exact rotor-scale wind field, introducing unavoidable uncertainty in the measured REWS (Sven-

strup and Thomsen, 2024). These limitations highlight the need for alternative or enhanced wind speed estimation techniques55

that are accurate, sensorless, and therefore more cost-effective.

Neural-networks based methods. Alternatively, some recent studies rely on neural network-based methods for wind speed

estimation and forecasting (Zhang et al., 2024; Sierra-García and Santos, 2021; Pan et al., 2022). These methods typically re-

quire an offline training phase using large datasets that must accurately represent the system’s operating conditions (Chen and
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Han, 2022). However, deep learning models behave like black boxes, offering limited interpretability and making it difficult to60

guarantee and formally prove stability or robustness of the closed-loop system. Additionally, the generalization of these models

to unseen conditions remains a significant challenge.

Another research direction focuses on observer-based wind speed estimation methods, such as the Kalman filter family and

immersion and invariance (I&I) estimators. In this context, the present work investigates robust nonlinear observer designs

based on sliding mode theory, after briefly reviewing the main observer-based approaches relevant to this study.65

Kalman filter solution. Another widely adopted alternative is the Kalman filter (KF) and its variants. In (Soltani et al., 2013),

both linear and nonlinear KFs are used for wind speed REWS estimation. The simulation results also showed that the perfor-

mance of nonlinear KF is better than the other at the transient state for the reason that the time response of nonlinear KF is

much smaller than that of linear KF. KFs provide model-based state estimation by integrating a system’s dynamic equations

with available sensor measurements. In wind turbine applications, they have been employed to estimate wind speed REWS by70

combining turbine output data with linear aerodynamic models (Boukhezzar and Siguerdidjane, 2011). However, since wind

turbine systems are inherently nonlinear, standard KFs do not perform well in dynamic operating conditions. To address this,

extended Kalman filters (EKFs) have been developed to handle nonlinearities more effectively. A wind speed REWS esti-

mation method based on EKF was introduced in (Song et al., 2017) to improve the efficiency of wind turbine operation. By

integrating this algorithm with optimal tip-speed ratio tracking, the study demonstrated enhanced control of maximum power75

output. This paper reported that the proposed method could raise annual energy output by around 0.8 %. In (Hernández et al.,

2014), the application of an EKF for wind speed REWS estimation was demonstrated using real experimental data. This study

is particularly noteworthy, as it validates the reliability of the EKF-based estimation method with real-world operating data.

Furthermore, some studies, such as (Chen et al., 2025; Knudsen et al., 2011), use an indirect method for wind speed REWS

estimation. In these approaches, aerodynamic torque is first estimated, allowing then the estimation of wind speed REWS. In80

(Kim et al., 2024), two methods of wind speed REWS estimation are used and compared. The first one is based on the drive-

train model using measured rotor speed, pitch angle, and generator torque as inputs, and the second one involves applying the

estimated wind speed using a 3D look-up table and is compared with a continuous-discrete extended Kalman filter (CD-EKF).

Despite their widespread use, EKF-based methods for estimating wind speed REWS have several limitations that restrict their

applicability in FOWTs. One key challenge lies in the tuning of process and measurement noise covariance matrices, which85

is often heuristic and lacks a systematic procedure. Improper tuning can lead to divergence (Chen et al., 2025; Song et al.,

2017). Additionally, EKFs require approximation of the model around operating points, making them sensitive to variations in

system dynamics and reducing their accuracy in highly nonlinear or time-varying conditions. This is particularly problematic

in FOWTs, where platform motions introduce significant nonlinearity. Furthermore, the EKF also suffers from poor robust-

ness to model mismatch and unmodeled dynamics, which are common in offshore environments. Finally, the formal proof of90

stability of the closed-loop including KF/EKF solutions is not trivial. These drawbacks highlight the need for more robust,

model-insensitive alternatives for wind speed REWS estimation.

Immersion and invariance (I&I) estimators. Another class of observer-based wind speed estimation methods is based on

immersion and invariance (I&I) theory. I&I estimators exploit invariance principles to construct observers with guaranteed
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convergence properties (Ortega et al., 2013; Soltani et al., 2013). In Brandetti et al. (2022), a wind speed estimator embed-95

ded in a tip-speed ratio tracking control scheme was analyzed using a simplified, linearized aerodynamic model. The authors

showed that this scheme is inherently ill-conditioned, in the sense that uncertainty in the power coefficient directly leads to

biased wind speed estimates through the power balance equation. In particular, even small variations in power coefficient were

shown to cause a systematic bias in the estimated effective wind speed. Unlike that work, the present study relies on a nonlinear

aerodynamic model and is validated using the high-fidelity OpenFAST simulator, where power coefficient inherently differs100

from its true physical value due to modeling approximations. As a result, the use of robust estimation approaches becomes

necessary to mitigate the practical impact of such model uncertainties on wind speed estimation accuracy.

Observer based on sliding mode theory. Among observer-based approaches, sliding mode observers (SMOs) have attracted

significant attention due to their inherent robustness to uncertainties and disturbances, which are particularly prevalent in off-

shore environments. The idea of SMO is one of driving the estimated states to properly chosen constraints (the sliding manifold)105

in finite time and then maintaining the sliding mode for all subsequent times so that the state estimation errors are driven to

zero, thus exploiting the main features of the sliding mode: its insensitivity to external and internal disturbances matched to

the control and finite-time reaching transient. Unlike KFs, which rely heavily on accurate statistical models and noise charac-

teristics, SMOs exploit the system’s nonlinear structure and discontinuous logic to force estimation errors to converge in finite

time (Ma et al., 2024). This makes them well-suited for FOWTs, where system dynamics are often poorly known and sub-110

ject to unpredictable perturbations. Furthermore, recent studies have demonstrated the potential of higher-order sliding mode

observers to achieve estimation even in the presence of uncertainties, while reducing the negative effect (chattering) induced

by discontinuity appearing in the correction term. However, these insensitivity/robustness properties come at a cost, the so-

called chattering (Levant, 2010), resulting from a high-frequency switching signal and the inevitable presence of unmodeled

dynamics. These limitations have motivated higher-order sliding-mode formulations, which reduce chattering by enforcing that115

the sliding variable and its time derivatives, up to system relative degree (Isidori, 1989), converge to zero, thereby improving

accuracy. One of the most popular techniques specifically designed for this purpose is the so-called supertwisting algorithm

(Levant, 1993), which is a second-order sliding mode algorithm. It generates a robust, continuous observer while driving a

sliding variable of relative degree one to the second-order sliding mode in finite time. For example, in (Barambones et al.,

2021), the authors estimated aerodynamic torque to be used as a reference in calculating the turbine’s optimal rotor speed for120

maximizing wind power capture.

Although numerous studies in the field of FOWTs assume perfect knowledge of wind speed, the current paper proposes the

use of a second-order sliding mode observer (SOSMO) structure for wind speed REWS estimation, applied to FOWTs. Fur-

thermore, the proposed solution includes an adaptive second-order sliding mode observer (ASOSMO) that is a novelty in the

context of wind turbines. Indeed, tuning SMOs/SOSMOs remains a persistent challenge, as it typically requires prior knowl-125

edge of the bounds of perturbations, the use of adaptation laws to evaluate the gain (as shown in (Plestan et al., 2010) for

adaptive sliding mode control) allows to obtain very performant solutions requiring reduced tuning effort and limited knowl-

edge of the model. It is important to notice that, in the sequel, a formal analysis of observability is made to verify that the wind

estimation can be evaluated from the single measurement of the rotor speed; it is rarely made in the context of (FO)WTs.
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In the sequel, the approach is validated through simulations using the National Renewable Energy Laboratory (NREL) 5 MW130

FOWT within the OpenFAST simulation framework (Jonkman et al., 2009), and its performance is compared with the CD-EKF

implemented in the reference open-source controller (ROSCO) (Abbas et al., 2022). It is also evaluated on a software-in-the-

loop (SIL) setup located in LHEEA lab, Nantes, France and dedicated to reduced-scale model of a FOWT.

The main contributions and original points of the present paper are summarized as follows

– A numerical method for observability analysis is proposed by supposing that the estimated variable is the wind

speed REWS and the single measured variable is the rotor speed.

– Then, observers based on sliding mode theory are proposed for wind speed REWS estimation, from a single

measurement that is the rotor speed, and are compared to a CD-EKF used in ROSCO.

– Two SOSMOs are designed: a constant-gain structure and an adaptive-gain one (allowing dynamic tuning of the

gain without any information on the system uncertainties and perturbations).

– The observers are developed using a reduced-order model but validated within the OpenFAST simulator when all

degrees of freedom of the FOWT are activated.

– Experimental validation is conducted using a scaled SIL test setup replicating realistic wind and wave conditions.
135

This paper is organized as follows: Sect. 2 presents the reduced-order dynamic model of the FOWT; Sect. 3 develops the

proposed SOSMOs, including observability analysis, observer formulation, and adaptive gain design; Sect. 4 reports simulation

studies and comparative evaluations with the CD-EKF under different wind conditions; Sect. 5 describes the experimental140

validation using a SIL setup; and Sect. 6 concludes by summarizing the main findings and outlining directions for future

research.

2 Observation-oriented model

The present study focuses on the NREL 5-MW FOWT OC4, which is supported by a semi-submersible floating platform and

simulated using OpenFAST (Jonkman et al., 2009).145

2.1 Aerodynamic and drive-train modeling

Wind turbines harness the kinetic energy of the wind to generate mechanical power through aerodynamic interaction between

the wind and the rotating blades. The theoretical power available in the wind stream is given by

Pwind =
1

2
ρπR2

��v
3v3∞ (1)
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where ρ is the air density, R is the rotor radius, and v is the wind speed upstream of the rotor v∞ denotes the free-stream150

(upstream) wind speed (Burton et al., 2011). However, only a portion of this energy can be converted into mechanical power

owing to fundamental aerodynamic limits, such as reported by Betz’s law (Manwell et al., 2009). The efficiency of this con-

version is described by the power coefficient Cp, which quantifies the fraction of the wind’s kinetic energy that is captured by

the rotor. As a consequence, aerodynamic power Pa and torque τa read as

Pa =
1
2ρπR

2Cp (λ,β)��v
3v3r (2)155

τa =
Pa

ωr
(3)

where ωr is the rotor speed, vr denotes the REWS, and the power coefficient Cp(λ,β) is a nonlinear function of the tip-speed

ratio λ and the blade pitch angle β, as depicted in Fig. 1.

The tip-speed ratio is defined as

λ=
ωrR

�vvr
(4)160

For readability, the notation λ is used to represent λ(ωr,vr) unless explicitly stated otherwise.

Figure 1. Power coefficient Cp with respect to tip-speed ratio λ and blade pitch angle β (Sarbandi et al., 2025).

2.2 Reduced-order observation-oriented model of a FOWT

The full-order FOWT model includes a high number of degrees of freedom (24), taking into account for blade and tower

bending modes, platform pitch and surge motions, and mooring dynamics. While this comprehensive model captures detailed

turbine behavior, its complexity makes it unsuitable for control design and real-time estimation. Therefore, a reduced-order165

model is used for observer development. The equation of motion for the rotor speed ωr is given by

ω̇r =
1

J
(τa −ngτg)+ δ(t), (5)
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where J is the equivalent rotational inertia, τa and τg respectively denote the aerodynamic and generator torques, ng is the

gearbox ratio, and δ(·) captures unmodeled dynamics and disturbances.

The control vector u consists of the generator torque and the blade pitch angle u= [τg β]⊤, the used input depending on170

the operating region (Aslmostafa et al., 2025). In Region II, control is primarily achieved by adjusting the generator torque τg ,

with blade pitch angle fixed at β = 0. In contrast, Region III control is dominated by blade pitch β actuation, with the generator

torque τg held constant at its rated value, i.e., τg = τ∗g .

The objective in this paper is to design an observation solution allowing the estimation of the wind speed REWS �vvr from the

measurement of the rotor speed ωr. The wind speed here is viewed as a time-varying parameter whose dynamics are unknown175

that, which gives

�̇vv̇r = fv(t), (6)

fv(t) being an unknown bounded function. To summarize, Using ωr = (λvr)/R from Eq. (4) together with Eqs. (5)–(6), the

observer-based model reads as

 ω̇r

�̇vv̇r

 =


1

J

(
ρπR3

��v
2v2r

2λ
Cp(λ,β)−ngτg

)
0


︸ ︷︷ ︸

f(x,u)

+

 δ(t)

fv(t)


︸ ︷︷ ︸

∆(t)

(7)180

the objective being to estimate �vvr from the measurement of ωr in spite of ∆(·). The system can be written in observation-

oriented form

ẋ = f(x,u)+∆(t)

y = h(x)
(8)

with x= [ωr �vvr]
⊤ the state vector, h(x) = ωr the measured output and u= [τg β]⊤.

Remark 1. The modeling of Cp(λ,β) has been intensively made (Castillo et al., 2023). In this study, an exponential model is185

used that approximates the power coefficient and reads as

Cp(λ,β)≈ a(λ,β)β+ b(λ,β), (9)

where the coefficients a and b are defined as

a=−c0c2 exp(−c4λ−1
1 ),

b= c0(c1λ
−1
1 − c3)exp(−c4λ−1

1 ), (10)190

with

λ−1
1 =

1

λ+ c5β
− c6
β3 +1

7



and c0 = 0.5, c1 = 73.5, c2 = 0.4, c3 = 5, c4 = 13.125, c5 = 0.08, c6 = 0.0035.

Remark 2. In the case of FOWT, platform motions and mooring dynamics are not taken into account in Eq. (8). The proposed

estimation methods in the paper are developed on this simplified system and can then be applied to floating (or not) offshore (or195

not) wind turbines. In the sequel, the observation solutions for estimating the wind speed REWS �vvr are validated by supposing

that only the rotor speed ωr is measured, and through two separate steps: first using the full-order OpenFAST simulator, and

then the experimental setup. This two-stage evaluation emphasizes the observer’s robustness versus simplification of the model.

3 Supertwisting-based observer200

Ideally, to achieve high performance in the state/parameter estimation, having an accurate model of the system is a key point.

However, modeling the exact dynamics of FOWTs is highly challenging. Therefore, it is crucial to develop estimation methods

that are sufficiently robust against system perturbations and modeling uncertainties. In this section, a robust observer based on

the supertwisting algorithm (Levant, 1993) is presented for estimating wind speed REWS by using rotor speed measurement;

this observer is based on the reduced-order model presented in the previous section. Additionally, the novelty of the proposed205

estimation algorithm lies in the fact that the gains are dynamically adapted, allowing an easier tuning.

Assumption 1. The wind speed REWS �vvr(t) is assumed to be unmeasured and dynamically unknown. Nevertheless, �vvr(t)

remains bounded and positive for all t≥ 0, such that

0< �vvr(t)< Vmax ∀t≥ 0, (11)

where Vmax > 0 is a constant that represents an upper bound within the turbine’s operational regions.210

Given the uncertain nature of the system described in Eq. (8), an observer inspired by (Shtessel et al., 2014) is proposed.

However, the first step is to analyze the observability of Eq. (8) in the operational domain, possibly detecting singularities.

3.1 Observability analysis

This section is detailing the numerical procedure for the analysis of the observability of the system in Eq. (8). Denote the

operating domain O ⊂ IR4 in which x= [ωr �vvr]
⊤ and u= [τg β]⊤ are physically evolving. All the results detailed in the215

rest of the paper are verified only in this domain.

Assumption 2. The perturbation term δ(t) and its derivative are bounded. Furthermore, δ(t) has no influence on the system

observability.

Given the previous assumption, the observability analysis developed in the sequel is made for the system in Eq. (8) without

perturbation, i.e. δ(t) = 0. The generic observability analysis is defined as follows.220

Definition 1. (Krener and Respondek, 1985) Consider the system given by Eq. (8) with x= [ωr �vvr]
⊤ and u= [τg β]⊤

evolving in the operating domain O and suppose Assumption 2 is fulfilled. Consider that δ(t) = 0. The system formulated in

8



Eq. (8) is locally observable if

Φδ(t)=0 =

y
ẏ


δ(t)=0

=


ωr

1

J

(
ρπR3

��v
2v2r

2λ(ωr,�vvr)
Cp(λ(ωr,�vvr),β)−ngτg

)
 (12)

is a state coordinate transformation, i.e. z =Φ(ωr,�vvr,β,τg) is invertible on O.225

The previous property is evaluated if Φδ(t)=0 can be inverted that is a very hard task Checking whether Φδ(t)=0 is invertible

is difficult in practice; It is why therefore, the previous definition can be reformulated by the next equivalent one.

Definition 2. Consider the system given by Eq. (8) with x= [ωr �vvr]
⊤ and u= [τg β]⊤ evolving in the operating domain O

and suppose Assumption 2 fulfilled. The system is said generically observable on O if

det

[
∂Φδ(t)=0

∂x

]
̸= 0 (13)230

with

Φδ(t)=0 =

y
ẏ


δ(t)=0

=


ωr

1

J

(
ρπR3

��v
2v2r

2λ(ωr,�vvr)
Cp(λ(ωr,�vvr),β)−ngτg

)
 (14)

Applying Eq. (13) to Eq. (14), it is obvious that the first line of the Jacobian ∂Φ/∂x equals [1 0].

The Jacobian of Φ with respect to the state vector x reads235

∂Φ

∂x
=


∂y

∂ωr

∂y

∂vr

∂ẏ

∂ωr

∂ẏ

∂vr

=


1 0

∂ẏ

∂ωr

∂ẏ

∂vr

 . (15)

Therefore, the generic observability condition det(∂Φ/∂x) ̸= 0 is equivalent to requiring that ∂ẏ/∂vr ̸= 0.

Observability condition. The system defined by Eq. (8) is locally observable if the following condition is fulfilled

∂ẏ

∂�vvr
̸= 0 ⇐⇒ ∂Cp

∂�vvr
· �vvr +3Cp(λ(ωr,�vvr),β) ̸= 0 (16)

240

In the simulation sections, the previous condition in Eq. (16) will be numerically and experimentally evaluated in realistic

operating conditions.

3.2 Observer design

Consider the system defined by Eq. (8) that is locally observable. As a consequence, the transformation

z =

 z1

z2

=

 y

ẏ

=Φ(ωr,�vvr,β,τg) (17)245
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is a state coordinate one transformation, i.e. the state vector x= [ωr �vvr]
⊤ can be expressed as a function of z1, z2, τg and β,

i.e.

x=

 ωr

�vvr

=Φ−1(z1,z2,β,τg) (18)

Furthermore, from the state coordinate transformation given in Eq. (17), one gets

ż1 = z2

ż2 = ω̈r =
d

dt

[
ρπR3

��v
2v2r

2Jλ
Cp(λ,β)

]
− ng
J
τ̇g + δ̇(t)

(19)250

that can be rewritten as

ż =

 ż1

ż2

=

 0 1

0 0


︸ ︷︷ ︸

A

z+

 0

F(·)

 (20)

with (replacing ωr and β with the state coordinate transformation in Eq. (18))

F(·) = d

dt

[
ρπR3

��v
2v2r

2Jλ
Cp(λ,β)

]
− ng
J
τ̇g + δ̇(t) (21)

It should be noted that the structure in Eq. (20) corresponds to a perturbed double-integrator system. Indeed, the coordinate255

transformation in Eq. (17) yields z1 = y and z2 = ẏ, so that ż1 = z2. All model uncertainties and unmeasured effects appear

as an additive term in the second equation, namely ż2 = F(·). Therefore, the linear part of the dynamics corresponds to the

standard chain-of-integrators form.

Assumption 3. The time derivatives of the control inputs (i.e., β̇ and τ̇g) are bounded over the operating domain O. The

function F(·), which involves �̇vv̇r and δ̇(t), is unknown but is assumed to be bounded over O.260

Given that the function F(·) is not well-known, it can not cannot appear in the observer. A solution for the observation of

the system defined by Eq. (20) is a robust one proposed by (Levant, 2003). Thus, consider the canonical form Eq. (20) that is a

perturbed uncertain double integrator. From (Levant, 2003), the supertwisting-based observer reading as

˙̂z1 = ẑ2 +L
1/2
ϕ1

a1 |z1 − ẑ1|1/2 sign(z1 − ẑ1)︸ ︷︷ ︸
γ1(z1, ẑ1)

˙̂z2 = Lϕ1
a2 sign(z1 − ẑ1)︸ ︷︷ ︸
γ2(z1, ẑ1)

(22)

with a1 and a2 constant values fixed as suggested in (Levant, 2003), a1 = 1.5 and a2 = 1.1 and265

Lϕ1 >
∣∣∣F(z1,z2,β, β̇, τg, τ̇g, t)

∣∣∣ (23)

ensures ẑ = [ẑ1 ẑ2]
⊤ → [z1 z2]

⊤ in a finite time in spite of the perturbations and uncertainties.
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Theorem 1. Consider the system in Eq. (8) and Assumptions 1-3 fulfilled. Suppose that it is locally observable in the sense of

Definition 1. So, the system (with Φ defined by Eq. (17))

˙̂x=

 ˙̂ωr

��̂̇v ˙̂vr

= f(x̂,u)+

[
∂Φ

∂x̂

]−1

·

L1/2
ϕ1
a1|ωr − ω̂r|1/2 sign(ωr − ω̂r)

Lϕ1
a2 sign(ωr − ω̂r)

 (24)270

is an observer of Eqs. (7)-(8) with a1 and a2 constant values fixed as suggested in (Levant, 2003), a1 = 1.5 and a2 = 1.1, and

the constant Lϕ1
such that

Lϕ1 >

∣∣∣∣∣ ddt
[
ρπR3

��v
2v2r

2Jλ
Cp(λ,β)

]
− ng
J
τ̇g + δ̇(t)

∣∣∣∣∣ (25)

Proof of Theorem 1. The observer (22) has been designed for the system (20) in the ẑ-state space ; the gain Lϕ1
tuning is275

based on the bound of F(·). From there, the writing of the observer (22) must be made in the x̂-state space. With this objective,

consider z =Φ(x,u) that gives

ż =
∂Φ

∂x
ẋ+

∂Φ

∂u
u̇ (26)

So, one has

A ·z+

 0

F

=
∂Φ

∂x
f(x,u)+

∂Φ

∂u
u̇+

∂Φ

∂x
∆(t) (27)280

By considering non-perturbed and perturbed terms in the two state spaces, one has

A ·z =
∂Φ

∂x
f(x,u)+

∂Φ

∂u
u̇ and

 0

F

=
∂Φ

∂x
∆(t) (28)

From ẑ =Φ(x̂,u), an observer of (22) in the x̂-state space reads as

˙̂x =

[
∂Φ

∂x̂

]−1

·
(
˙̂z− ∂Φ

∂u
u̇

)

=

[
∂Φ

∂x̂

]−1

·

A ẑ+

 γ1(·)

γ2(·)

− ∂Φ

∂u
u̇


=

[
∂Φ

∂x̂

]−1

·
(
A ẑ− ∂Φ

∂u
u̇

)
+

[
∂Φ

∂x̂

]−1

·

 γ1(·)

γ2(·)


(29)

From the left-hand side term of (28), the previous system reads as285

˙̂x= f(x̂,u)+

[
∂Φ

∂x̂

]−1

·

 γ1(·)

γ2(·)

 (30)

that is the form of system displayed in Theorem 1. Given that system (22) is an observer of (20) under condition (23), then

system in (29) is an observer for (8) if condition (25) is fulfilled with a1 = 1.5 and a2 = 1.1.
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3.3 Adaptive observer gain

A drawback of the proposed approach is that the term Lϕ1
is difficult to carefully tune, because determining the bound of290 ∣∣∣∣∣ ddt

[
ρπR3

��v
2v2r

2Jλ
Cp(λ,β)

]
− ng
J
τ̇g + δ̇(t)

∣∣∣∣∣ (31)

is a very hard task that could give an overestimation and then induce chattering phenomenon. A solution consists in using an

adaptive version of the supertwisting-based observer (Mirzaei et al., 2022) allowing to have an online tuning of the observer,

thanks to the evaluation on only the estimation error of ωr. The principle is the following

– if the estimation error of ωr is large, it could be due to too small gains versus the uncertainties/perturbations effects.295

Then, gain adaptation law is defined in order to increase the gains of the observers;

– in the opposite case, i.e. if the estimation error of ωr is small, it means that the observer gains are enough large large

enough. Then, gain adaptation law is defined in order to reduce them.

So, the observer in Eq. (24) is replaced by its adaptive version reading as (Mirzaei et al., 2022)

˙̂x=

 ˙̂ωr

��̂̇v ˙̂vr

= f(x̂,u)+

[
∂Φ

∂x̂

]−1

·

 k1 |ωr − ω̂r|1/2 sign(ωr − ω̂r)

k2 sign(ωr − ω̂r)

 (32)300

with

k̇1 =


α

|ψ|+ ε
, if |ωr − ω̂r|> ε,

−k1, if |ωr − ω̂r| ≤ ε,

(33)

k̇2 =


α

2 |ωr − ω̂r|1/2
, if |ωr − ω̂r|> ε,

−k2, if |ωr − ω̂r| ≤ ε.

(34)

with ψ =
d

dt
(ωr − ω̂r), where α > 0 and ε > 0 are design parameters of the adaptive law. The parameter ε defines the target

accuracy of the rotor speed estimation, while α governs the adaptation rate of the observer gains. The constants k1(0)> 0 and305

k2(0)> 0 denote the initial values of the adaptive gains.

The adaptation mechanism operates according to the following principle: (i) when the estimation error exceeds the target

accuracy, i.e., |ωr− ω̂r|> ε, the observer gains are increased to improve convergence; and (ii) when the estimation accuracy is

sufficient, the gains are decreased to avoid unnecessary amplification of measurement noise.

In Fig. 2, the overall estimation framework is illustrated. The rotor speed ωr is the only measured signal, whereas the310

generator torque τg and the blade pitch angle β serve as known control inputs. These quantities are used within a reduced-

order, observation-oriented model (Sect. 2), upon which three estimators are implemented: the SOSMO, its adaptive version

ASOSMO, and the CD-EKF. Each estimator provides estimates of both the wind speed REWS �̂vv̂r and the rotor speed ω̂r. The

CD-EKF serves as a benchmark for assessing the performance of the proposed sliding-mode estimators.
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u

SOSMO (Eq. (24))

ASOSMO (Eqs. (32)–(34))

CD-EKF (Appendix A)

Estimators

ωr

ω̂r

v̂r

Figure 2. Overview of the estimator architecture proposed in this work, in which the rotor speed ωr is the only measured signal. The outputs

v̂r and ω̂r denote the estimated REWS and rotor speeds, respectively.

4 Simulation results315

In this section, the performances of the proposed wind speed observers are evaluated and compared with the CD-EKF used

in ROSCO, which is described in Appendix A. All simulations are conducted on the NREL 5 MW FOWT, supported by a

semi-submersible platform. The simulation study in this section is conducted in the above-rated operating regime (Region III).

Other operating regimes are covered in the experimental validation section (Sect. 5).

320

4.1 Simulation set-up

The simulation environment integrates Matlab/Simulink 2023a for implementing the observers with OpenFAST (Jonkman

et al., 2009), which simulates the high-fidelity aero-hydro-servo-elastic model of the FOWT. Each test is run for 800 s under

identical wind and wave conditions, with a fixed sampling time of 0.0125 s. Although the observer design is based on the

reduced-order model in Eq. (5), all 24 degrees of freedom available in OpenFAST are activated to ensure a comprehensive325

evaluation under realistic conditions.

Realistic turbulent inflow wind fields are generated using TurbSim (Jonkman, 2009) based on the IEC Kaimal turbulence

model, with a mean wind speed of 18 m s−1. A logarithmic mean wind profile is employed, resulting in vertical wind shear

across the rotor disk. The inflow is prescribed as a full-field turbulent wind to OpenFAST, such that the aerodynamic loads

are computed using the spatially varying wind field. For analysis and validation purposes, REWS is considered, while the330

underlying aerodynamic response is influenced by the full-field inflow. Irregular wave conditions are modeled using the Hy-

droDyn module (Jonkman et al., 2014). The incident wave field is prescribed as a stochastic irregular process with a significant

wave height of 3.25 m. Hydrodynamic loads acting on the floating platform are computed using the built-in potential-flow

formulation in HydroDyn, based on precomputed WAMIT data. This formulation accounts for linear wave-excitation forces,

hydrostatic restoring forces, and radiation effects through convolution-based memory terms. The hydrodynamic model is fully335
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coupled with the aero-servo-elastic dynamics in OpenFAST, such that wave-induced platform motions interact with the aero-

dynamic response of the rotor. Both wind and wave conditions are illustrated in Fig. 3. The observer parameters design have

been fine-tuned to achieve the best performance as follows: for the constant-gain SOSMO in Eq. (24), the coefficients are

set following (Levant, 2003) to a1 = 1.5 and a2 = 1.1, and the gain is selected as Lϕ1 = 0.01; for the adaptive-gain observer

(ASOSMO) in Eqs. (32)–(34), the design parameters are chosen as α= 10−4 and ε= 10−3, with initial values k1(0) = 0.1340

and k2(0) = 10−4.
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Figure 3. Environmental conditions used in the simulations: turbulent wind speed (top) generated by TurbSim, and irregular wave elevation

(bottom) generated by the HydroDyn module.

In the first case, the following observers are compared: SOSMO based on supertwisting in Eq. (24), its adaptive version in

Eqs. (32)–(34), and CD-EKF used in the ROSCO.

4.2 Results and analysis

Prior to evaluating the performances of observers, the system’s observability is verified from Eq. (16). Figure 4 illustrates the345

evolution of the Eq. (16). Its consistently nonzero behavior confirms that Φ is invertible, thereby ensuring observability of the

nonlinear system under stochastic wind conditions.

0 100 200 300 400 500 600 700 800

Time [s]

-0.01

0

0.02

0.04

Figure 4. Time evolution of the observability condition given in Eq. (16).

With the observability condition satisfied in Fig. 4, the estimation performance of the three observers in Fig. 2 is subsequently

assessed.
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4.2.1 Second-order sliding mode observer (SOSMO)350

Figure 5 shows the rotor speed and wind speed estimation results for the SOSMO. Despite its relatively simple structure,

the SOSMO achieves acceptable estimation performance. A notable property in Fig. 5 is the filtering effect of the SOSMO

compared with the measured wind speed.
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Figure 5. Rotor speed (above) and wind speed (bottom) estimation results of SOSMO defined in Eq. (24).

4.2.2 Adaptive second-order sliding mode observer (ASOSMO)

Figure 6 presents the rotor speed and wind speed estimation results of the ASOSMO. The distinguishing feature of ASOSMO355

is its ability to adapt observer gains online, which enhances robustness against model uncertainties and time-varying operating

conditions. Unlike the previous SOSMO that relies on fixed gains, ASOSMO continuously adjusts its gains based on real-time

system behavior, reducing the dependence on accurate prior model knowledge. As illustrated in Fig. 7, the adaptive gains

evolve dynamically during the estimation process, responding effectively to state variations.

4.2.3 Continuous-discrete extended Kalman filter (CD-EKF)360

Figure 8 shows the results for the CD-EKF used in ROSCO. This method achieves smooth and accurate estimates. However,

its implementation is more complex, requiring careful tuning of covariance matrices and linearization of system dynamics,

which can be computationally demanding and sensitive to modeling errors. Figure 8 presents the rotor speed and wind speed

estimation results obtained using the CD-EKF. Under the considered operating conditions, the CD-EKF provides smooth

estimates of both quantities and serves as a widely adopted benchmark in wind turbine control applications. The practical365

implementation of the CD-EKF requires careful tuning of the process-noise and measurement-noise covariance matrices Q

and Rm, which constitute the main design parameters of the filter, as well as linearization of the system dynamics. In the

present formulation (see Appendix A), this corresponds to tuning four parameters, namely the diagonal entries of Q associated
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Figure 6. Rotor speed (above) and wind speed (bottom) estimation results of ASOSMO defined in Eqs. (32)–(34).
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Figure 7. Evolution of adaptation gains k1 (top) and k2 (bottom) in the ASOSMO Eqs. (32)–(34).

with the rotor speed state, the turbulent wind component, and the mean wind component, together with the measurement-noise

varianceRm. These parameters are selected based on sensor characteristics, turbulence modeling considerations, and empirical370

adjustments to ensure filter stability and satisfactory estimation performance.

As commonly reported in the literature, the estimation performance of EKF-based approaches is sensitive to the choice of

these covariance parameters. Moreover, no systematic or universal tuning procedure exists for their selection, which represents

a well-known practical limitation of Kalman-filter-based methods, particularly for highly nonlinear and uncertain systems such

as FOWT.375

A comparative evaluation of all three observers is presented in Table 1. The table reports the wind speed estimation ac-

curacy of the three observers under a turbulent wind scenario. The performance metric used is the root mean square error
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Figure 8. Rotor speed (above) and wind speed (bottom) estimation results of CD-EKF.

of the estimation error (i.e., ���v− v̂vr − v̂r). The Both sliding mode-based estimators demonstrate improved precision, with

RMSE values of 0.66 and 0.67, respectively, in contrast to the CD-EKF method, which has an RMSE of 0.77. The SOSMO

method demonstrates a relative reduction of approximately 14 % in wind speed RMSE when compared with CD-EKF, whereas380

ASOSMO exhibits a reduction of about 13 %. The findings demonstrate illustrate the efficacy of sliding mode-based observers

in enhancing estimation accuracy. while preserving a lower computational cost.

Table 1. Comparison of wind speed REWS root mean square estimation error (RMSE) for different estimators.

Estimator RMSE of wind speed estimation

SOSMO 0.66

ASOSMO 0.67

CD-EKF 0.77

Note. Lower values indicate better estimation performance.

Overall, while all three observers are capable of delivering reliable estimations, the SOSMO offers a balance between

simplicity and performance. ASOSMO introduces adaptive capability with limited system knowledge, and CD-EKF, though

robust, involves a more complex design process. In this context, both the constant-gain and adaptive versions of the SOSMO385

are considered practical and effective solutions for wind turbine state estimation. under varying wind scenarios.

4.3 Monte Carlo analysis

In this part, a Monte Carlo (MC) analysis is employed as a powerful tool to assess the sensitivity of the observers to initialization

conditions and to quantify their convergence time under identical operating conditions (Sarbandi and Khaloozadeh, 2024).
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In this experiment, the only quantity varied from run to run is the initial condition of the observers. All other components of390

the simulation, including the turbulent wind field, wave excitation, OpenFAST dynamics, and control inputs, are kept identical

across all MC realizations. Consequently, any observed variation in transient behavior is solely attributable to different initial

observer states. A set of N = 100 simulations is generated by initializing the wind and rotor speed estimates within a uniform

±30% interval around their true values. Three initialization scenarios are examined: (i) rotor speed initialization error only, (ii)

wind speed initialization error only, and (iii) simultaneous initialization errors in both wind speed and rotor speed.395

To compare the observers consistently, a window convergence time is used. Convergence is declared when the worst-case

estimation error across all MC runs remains within a prescribed tolerance band for a continuous duration of Thold = 20 s.

The thresholds are chosen as εω = 0.2 rad/s for rotor speed and εv = 1.7 m/s for wind speed. The convergence time for wind

speed is defined as the earliest time at which every MC trajectory satisfies the inequality ∆v ≤ εv for all t in a window of

length Thold. rotor speed convergence is defined analogously. Requiring convergence over the entire simulation would be400

unnecessarily restrictive. Turbulent wind excitation, platform motion, and nonlinear aerodynamic effects naturally cause short-

lived error fluctuations even after the estimator has converged. The windowed criterion avoids misclassifying such fluctuations

as divergence and better reflects practical control requirements.

The resulting convergence times for SOSMO, ASOSMO, and CD–EKF across all scenarios are reported in Table 2 and

illustrated in Fig. 9. This metric captures the earliest time after which all realizations remain within the prescribed bounds.405

The error-band plots show the dispersion of estimation errors caused solely by changes in initial observer states. In all

scenarios, all observers converge. rotor speed errors settle quickly because ω is directly measured, which justifies the smaller

threshold εω . wind speed estimation is more difficult because v is unmeasured and its dynamics are unknown. As a result, wind

speed error bands are wider and the threshold εv must be larger.

Table 2. Convergence times for rotor speed and wind speed estimation under the three initial-condition initialization scenarios. Each value

corresponds to the earliest time at which all MC realizations for N = 100 remain within the prescribed error bounds.

rotor speed convergence times REWS convergence times

Scenario SOSMO ASOSMO CD–EKF SOSMO ASOSMO CD–EKF

∆ω0 only 0.65 3.79 1.70 2.80 13.16 6.96

∆v0 only 2.48 3.81 3.98 10.84 13.25 13.03

∆ω0 +∆v0 2.55 9.90 5.74 10.89 13.25 13.06

Note. Convergence is declared when all MC realizations remain within the prescribed error bounds for a continuous

duration of Thold = 20 s.

From Fig. 9, it can be seen that the CD–EKF typically drives the estimation error toward zero more rapidly during the initial410

transient. However, when applying the windowed convergence criterion—which requires the estimates to remain within the

prescribed bounds for a continuous duration—the SOSMO achieves the shortest convergence times in most scenarios. This

difference arises because the adaptive law in the ASOSMO starts with a conservative gain that increases only after sufficient

18



(a) ∆ω0 only

(b) ∆v0 only

(c) ∆ω0 +∆v0

Figure 9. MC analysis with N = 100 realizations per scenario for the three initial-condition error cases.

excitation, leading to a slower approach to steady-state accuracy. In contrast, the SOSMO and CD–EKF employ fixed gains or

explicit covariance updates, allowing them to settle more quickly once the estimation error enters the tolerance band. Overall,415

19



while the CD–EKF is fast in the early transient, the SOSMO exhibits the most favorable worst-case convergence times under

the robustness metric used here, whereas the ASOSMO consistently requires longer convergence due to its gain adaptation

mechanism.

4.4 Computational time

To assess the computational burden associated with each observer, the execution time of every estimator block using the420

MATLAB/Simulink Profiler (R2023a) is measured. Importantly, the reported run-time refers exclusively to the time required

for the internal computations of each observer. All measurements are obtained under identical conditions (Sect. 4.1), ensuring

fair comparison. The CD-EKF exhibited the longest run-time (18 ms), followed by the ASOSMO (11 ms) and the SOSMO

(9 ms). These results reflect the higher algorithmic complexity of the CD-EKF, as expected. The ASOSMO slightly increases

complexity with its adaptive gain mechanism, in contrast to the constant gain used in the SOSMO (see Fig. 10).
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Figure 10. Execution time (in milliseconds) of different observers measured in MATLAB/Simulink Profiler simulations under identical

conditions.
425

5 Experimental results

The proposed observers have been experimentally validated on a SIL setup at École Centrale Nantes, France. The experimental

platform consists of a 1/32-scale semi-submersible FOWT, based on the OC4-DeepCwind concept, deployed in the wave tank

of the LHEEA Laboratory (LHEEA Laboratory, 2025). The physical model includes the floating platform, tower, and mooring

system and is instrumented with motion-tracking markers and load sensors, as shown in Fig. 11. This setup provides realistic430

hydrodynamic excitation through physical wave generation and platform motion.

The overall SIL architecture is illustrated in Fig. 12. In this hybrid configuration, the hydrodynamic processes, wave ex-

citation, viscous and radiation loads, mooring-line forces, and the resulting platform dynamics are reproduced physically in

the wave tank. Consequently, the corresponding hydrodynamic modules of OpenFAST (HydroDyn, MAP++, MoorDyn or

FEAMooring, ElastoDyn), highlighted in the blue dashed region of Fig. 12, are disabled in the numerical simulation. Instead,435
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Figure 11. Experimental SIL test setup of the 5 MW 1/32-scale semi-submersible OC4 FOWT at École Centrale Nantes (Aslmostafa et al.,

2026).

the measured 6 degrees of freedom platform and tower-top motions from the Qualisys system are imposed as inputs to the

real-time numerical model (Bonnefoy et al., 2024). It should be noted that aerodynamic loads are computed numerically. In

other words, a modified real-time implementation of OpenFAST runs, where the wind field is prescribed numerically and the

aerodynamic modules (InflowWind, AeroDyn, ServoDyn), highlighted in the red dashed region of Fig. 12, remain active. At

each iteration of the SIL loop, the solver receives the measured motions and computes the instantaneous aerodynamic thrust440

corresponding to the imposed wind field. This thrust is then applied to the physical model by a tower-top actuator system

(Fig. 11), enabling consistent aero-hydro coupling during the experiment.

In the SIL setup, the inflow wind field is numerically prescribed in OpenFAST. Based on this inflow and the instantaneous

platform and rotor conditions, OpenFAST computes the corresponding REWS vr(t), which is used as the reference signal for

evaluating the estimation error.445

As shown in Fig. 11, aerodynamic loads are emulated in real time by a six-fan thrust generator mounted on the turbine’s

tower, driven by aerodynamic inputs from the OpenFAST simulation. Simultaneously, wave generators in the tank reproduce

hydrodynamic conditions, ensuring realistic environmental forcing. A six degrees of freedom actuation system replaces the

drive-train, enabling closed-loop testing under dynamic conditions ().
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Figure 12. Schematic of the modules in the SIL architecture. The figure is inspired by Bonnefoy et al. (2024) and National Renewable

Energy Laboratory (2023). The hydrodynamic and structural modules (blue dashed region) are disabled, as the corresponding processes are

reproduced physically in the wave tank, while the aerodynamic modules (red dashed region) remain active and compute real-time aerody-

namic loads using the prescribed wind field and measured platform motions.

Table 3 outlines selected technical characteristics of both the numerical emulator (OpenFAST) and the scaled experimental450

setup implemented in the laboratory. The table highlights key parameters of the reference full-scale FOWT alongside those

used in the physical test environment.

Table 3. Key specifications of the experimental setup, including both full-scale and corresponding 1/32-scale parameters.

Parameter Real : model scale Unit

Floater type Semi-submersiblea –

Nominal powerb 5 MW

Rotor diameterb 126 m

Platform height 30 : 0.9375 m

Tower height 70.528 : 2.204 m

Tower mass 2.5× 105 : 8 kg

Rotor thrust 8.0× 105 : 24.4 N

Test tank size 50× 30× 5 m

Notes. a Based on the OC4-DeepCwind platform under IEA

Wind Task 30 (Robertson et al., 2014)
b Emulated via software-in-the-loop (SIL).
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5.1 Test conditions and scenarios

Three test scenarios have been conducted to evaluate the performance and robustness of the proposed observers under various

wind and wave conditions, as reported in Table 4. The three datasets were selected under complementary operating regimes as455

– Case 1 (Region III only). With �vvr ∈ [11.41, 25.37] m s−1, the turbine operates fully above rated only, highlighting

estimator behavior under above-rated operation and strong pitch activity.

– Case 2 (Transition Region II↔III). With �vvr ∈ [8.20, 14.42] m s−1, it covers the transition region, testing robustness

to region switching.

– Case 3 (Region II/III). With �vvr ∈ [8.43, 19.24] m s−1, serving as a general verification across variable conditions from460

low wind speed to high wind speed.

The three cases collectively address various conditions to ensure a balanced comparison of CD-EKF, SOSMO, and ASOSMO

against the actual wind speed.

Table 4. Test conditions for experimental validation, including wind and wave ranges and region classification based on turbine operating

regimes.

Wind speed (m s−1) Wave elevation (m) Region

Test case Min Max Min Max II III

Case 1 11.41 25.37 −4.62 5.54 – ✓

Case 2 8.20 14.42 −2.48 2.89 ✓ ✓

Case 3 8.43 19.24 −2.35 2.92 ✓ ✓

5.2 Results and discussion

Figures 13–15 illustrate the experimental results for the three test cases. In all scenarios, observers are able to estimate the wind465

speed despite the presence of wave-induced platform motions and unmodeled dynamics.

To provide a comprehensive assessment of estimation performance, multiple complementary metrics are considered in both

the time and frequency domains. Let x(k) denote a scalar component of the state vector, namely either the rotor speed ωr(k)

or the REWS vr(k), x̂(k) its estimate, and e(k) = x̂(k)−x(k) the corresponding estimation error at sample k = 1, . . . ,N . The

following statistical indicators are used in this section: (i) the root mean square error RMSE =
√

1
N

∑N
k=1 e(k)

2; (ii) the mean470

estimation error (bias) µe =
1
N

∑N
k=1 e(k); (iii) the variance of the estimation error σ2

e =
1

N−1

∑N
k=1(e(k)−µe)

2; and (iv) the

mean square error (MSE), defined as MSE= E[e2] = σ2
e +µ2

e. Together, these metrics quantify overall accuracy, systematic

bias, stochastic dispersion, and the combined effect of bias and variance, as summarized in Table 5.

Table 5 shows that all three observers achieve comparable levels of accuracy across the different operating regimes, with

variations depending on the wind region and excitation level. In several cases, the sliding-mode observers exhibit reduced bias475
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Figure 13. Experimental results for case 1: rotor speed ωr , wind speed REWS �vvr , and their estimated values under turbulent wind and wave

conditions.
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Figure 14. Experimental results for case 2: rotor speed ωr , wind speed REWS �vvr , and their estimated values under turbulent wind and wave

conditions.

or variance, while in others the CD-EKF provides similar or slightly lower dispersion. These results indicate that the proposed

observers achieve performance levels on par with the reference CD-EKF while relying on fundamentally different estimation

principles.

The frequency-domain characteristics of the estimation error are examined through the power spectral density (PSD), shown

in Fig. 16. The (one-sided) PSD of the estimation error, denoted by Se(f), describes how the error energy is distributed across480

frequencies and is formally defined as

Se(f) = lim
T→∞

1

T

∣∣∣∣∣∣
T∫

0

e(t)e−j2πft dt

∣∣∣∣∣∣
2

, (35)
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Figure 15. Experimental results for case 3: rotor speed ωr , wind speed REWS �vvr , and their estimated values under turbulent wind and wave

conditions.

where f denotes frequency. For real-valued signals, a one-sided representation is used so that all spectral energy is contained

on the nonnegative frequency axis. In practice, Se(f) is estimated from the sampled error sequence e(k) using Welch’s method,

as implemented in MATLAB via the pwelch function. Following Soltani et al. (2013), the frequency-weighted PSD f ·Se(f)485

is reported to emphasize the contribution of different frequency bands to the overall estimation error.

For all three cases, the three estimators exhibit a similar low-pass behavior, with small differences primarily in the low-

and mid-frequency ranges. Depending on the operating condition, the sliding-mode observers and the CD-EKF alternately

show lower error energy in specific frequency bands, indicating that none of the approaches systematically dominates across

the entire spectrum. Importantly, all estimators preserve a significant portion of the low-frequency content relevant for wind490

turbine control. The probabilistic structure of the estimation error is further analyzed through empirical probability density

functions (PDFs) (shown in Fig. 17), Specifically, the empirical distribution of the estimation error e(k) is evaluated using a

normalized histogram and compared with a Gaussian probability density function parameterized by the sample mean µe and

variance σ2
e , given by

pGauss(e) =
1√
2πσe

exp

(
− (e−µe)

2

2σ2
e

)
. (36)495

In all cases, the error distributions are approximately symmetric and well approximated by Gaussian fits. Differences between

observers mainly appear in the spread and centering of the distributions, consistent with the bias and variance values reported

in Table 5.

Finally, Fig. 18 summarizes the normalized wind speed error metrics for the three observers across the three test cases. The

radar representation provides a compact overview of performance trade-offs across RMSE, mean error, variance, and MSE.500

The results illustrate that the observers exhibit comparable overall performance, with each method showing relative strengths

depending on the operating regime and metric considered.
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Table 5. Time-domain statistical performance metrics for CD-EKF, SOSMO, and ASOSMO across three experimental test cases, evaluated

for rotor speed ωr and REWS vr .

Case Variable Method RMSE µe σ2
e E[e2]

Case 1

ωr

CD-EKF 9.00× 10−2 −1.29× 10−2 7.93× 10−3 8.09× 10−3

SOSMO 5.90× 10−2 1.42× 10−3 3.48× 10−3 3.48× 10−3

ASOSMO 1.14× 10−1 −6.64× 10−3 1.30× 10−2 1.30× 10−2

vr

CD-EKF 1.89 5.54× 10−1 3.25 3.56

SOSMO 1.76 3.02× 10−1 3.02 3.11

ASOSMO 1.84 2.41× 10−1 3.32 3.38

Case 2

ωr

CD-EKF 6.74× 10−2 −4.82× 10−3 4.53× 10−3 4.55× 10−3

SOSMO 2.40× 10−2 1.68× 10−5 5.75× 10−4 5.74× 10−4

ASOSMO 4.49× 10−2 −2.80× 10−3 2.00× 10−3 2.01× 10−3

vr

CD-EKF 1.22 7.87× 10−1 8.66× 10−1 1.49

SOSMO 9.93× 10−1 3.08× 10−1 8.92× 10−1 9.86× 10−1

ASOSMO 1.02 4.56× 10−1 8.41× 10−1 1.05

Case 3

ωr

CD-EKF 7.52× 10−2 −2.98× 10−3 5.65× 10−3 5.66× 10−3

SOSMO 4.27× 10−2 6.36× 10−4 1.83× 10−3 1.83× 10−3

ASOSMO 5.20× 10−2 −7.48× 10−5 2.70× 10−3 2.70× 10−3

vr

CD-EKF 1.72 9.57× 10−1 2.04 2.96

SOSMO 1.49 5.98× 10−1 1.85 2.21

ASOSMO 1.49 5.96× 10−1 1.88 2.23

Overall, the experimental results demonstrate that the proposed second-order sliding-mode observers achieve estimation per-

formance comparable to that of the widely used CD-EKF while offering alternative robustness and tuning characteristics. The

multi-metric analysis highlights that no single estimator uniformly outperforms the others across all conditions, but rather that505

each approach provides a viable and reliable solution for REWS estimation in FOWTs under realistic experimental conditions.

6 Conclusions

This paper proposed robust wind speed REWS estimation methods based on a second-order sliding mode observer: a constant-

gain second-order sliding mode observer (SOSMO) and its adaptive version (ASOSMO). The estimation framework is built on

a reduced-order nonlinear model and is validated evaluated not only on the OpenFAST simulator but also through experimental510

tests where all degrees of freedom are activated.
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Figure 16. Power spectral density (PSD) of the REWS estimation error in three test cases.

The two observers are evaluated against the standard continuous–discrete extended Kalman filter (CD-EKF), and they

demonstrate accurate tracking of wind dynamics. Unlike CD-EKF, the SOSMO-based methods not only eliminate the need

for tuning noise covariance matrices but also avoid the linearization of system dynamics, thereby reducing implementation

complexity and improving reliability under modeling uncertainties. Moreover, the adaptive version allows for very limited515

knowledge of the model.

To summarize, the proposed observers provide a simple yet effective solution for accurate wind speed REWS estimation

and can be integrated into advanced control strategies. This integration promises improved system stability and reduced fatigue
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(a) Case #1

(b) Case #2
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Figure 17. Comparison of the distribution and probability density function (PDF) of the REWS estimation error in three test cases.

loads when used within appropriate control schemes (e.g., pitch and/or torque control), contributing to the performance of

FOWTs. These results mark an initial step toward a comprehensive robust estimation and control framework.520

As future work, a fully integrated adaptive observer–based controller scheme will be developed to further improve the overall

performance and resilience of FOWTs.
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Figure 18. Comparison of normalized error metrics for the three REWS estimation methods: CD–EKF, SOSMO, and ASOSMO, evaluated

over three representative wind cases. All metrics are normalized with respect to the CD–EKF baseline.

Appendix A: Continuous-discrete extended Kalman filter

The nonlinear state-space form of a FOWT can be written as

ẋ= f(x,u)+w(t),525

yk = h(xk,uk)+ vk, (A1)

where x= [ωr vt vm ]⊤ is the state vector, vt and vm denote the turbulent and mean wind speed components, respectively, and

the control input is u= [τg β]⊤. Additionally, w(t) and vk are continuous-time and discrete-time white noises, respectively,

defined as

w(t)∼N (0,Q),530

vk ∼N (0, Rk), (A2)

where Q is the process-noise covariance matrix and Rk is the measurement-noise covariance (scalar in this case).

The extended Kalman filter for a continuous–discrete nonlinear system generally consists of two main steps: (i) time update

(prediction) and (ii) measurement update (correction), as described in (Abbas et al., 2022; Knudsen et al., 2011) as
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• Step 1: Time update535

x̂+
0 = E(x0), (A3)

P+
0 = E

[
(x0 − x̂0)(x0 − x̂0)

⊤] , (A4)

˙̂x(t) = f
(
x̂k−1|k−1, uk

)
, (A5)

Ṗ(t) = F(t)Pk|k−1 +Pk|k−1F
⊤(t)+Qk −Kk−1RmK⊤

k−1, (A6)

where F(t) = ∂f
∂x

∣∣∣
x̂k−1|k−1,uk

is the Jacobian matrix of the nonlinear dynamics, and P is the estimation-error covariance. The540

estimate x̂+ represents the state updated using yk, while x̂− denotes the prediction using yk−1.

• Step 2: Measurement update

Kk =Pk|k−1H
⊤
k

(
HkPk|k−1H

⊤
k +Rm

)−1
, (A7)

x̂k|k = x̂k|k−1 +Kk

(
yk −h(x̂k|k−1)

)
, (A8)

Pk|k = (I−KkHk)Pk|k−1, (A9)545

where Hk = ∂h
∂x

∣∣
x̂k|k−1

is the Jacobian matrix of the measurement function, and Kk is the Kalman gain.

The process-noise covariance is chosen as

Q= diag

{
1× 10−5,

πv3mt
2
i

L
,

4

600

}
, Rm = 0.02, (A10)

and using the relation v̂r = vt + vm, the estimation of the wind speed REWS is calculated.

Appendix B: Nomenclature550

Abbreviations

ASOSMO Adaptive second-order sliding mode observer

CD-EKF Continuous–discrete extended Kalman filter

EKF Extended Kalman filter

FOWT Floating offshore wind turbine

KF Kalman filter

NREL National Renewable Energy Laboratory

REWS Rotor-effective wind speed

ROSCO Reference open-source controller

SIL Software-in-the-loop

SMO Sliding mode observer

SOSMO Second-order sliding mode observer

STW Supertwisting

30



Symbols and parameters

α,ε Design parameters of the adaptive law [–]

β Blade pitch angle [rad]

λ Tip-speed ratio [–]

ωr, ω̂r Real and estimated rotor speed [rad s−1]

ρ Air density [kg m−3]

τa Aerodynamic torque [N m]

τg, τ
∗
g Generator torque, rated value [N m]

Cp Power coefficient (function of λ, β) [–]

J Total rotational inertia [kg m2]

k1,k2 Adaptive observer gains [–]

ng Gearbox ratio [–]

Pa Aerodynamic power extracted by the rotor [W]

Pwind Theoretical wind power [W]

R Rotor radius [m]

u Control input vector

vr, v̂r True and estimated rotor-effective wind speed [m s−1]

v∞ Free-stream (upstream) inflow wind speed [m s−1]

z Observer coordinate vector
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