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Abstract. Based on maintenance data from over 1000 onshore and offshore wind turbines covering more than 4200 operating
years, this study presents an analysis of failure rates, repair times, and maintenance resource requirements, focusing on
subsystem-level reliability. Failure rates per turbine and megawatt are compared and failure behaviour over time is examined.
Next to failure events, further corrective and preventive maintenance interventions are analysed. To provide more detailed
insights for operation and maintenance simulations, a distinction is made between total major component replacements and
those specifically requiring a jack-up vessel. Results show that onshore wind turbines have higher failure rates per megawatt
than offshore wind turbines. Key subsystems including the pitch system, the control system, and power converter system are
identified as critical to overall wind turbine reliability for both onshore and offshore wind turbines. For the overall wind turbine

system, a failure behaviour over time following a bathtub curve is identified, with distinct trends for individual subsystems.

1 Introduction

The global shift towards renewable energy has driven significant investments in wind energy, positioning it as a cornerstone
of sustainable power generation. With the growing reliance on wind energy, especially in offshore environments, the reliability
and performance of wind turbines have become critical factors that directly influence energy yield, operational costs, and
overall asset integrity (Ioannou et al., 2018). The effective management of these assets is particularly crucial as the industry
aims to optimise operational efficiency and minimise downtime. However, achieving this requires a profound understanding
of failure mechanisms and maintenance needs, underpinned by reliable data (Martinez-Luengo et al., 2019; Wang et al., 2023;
Khan and Byun, 2024).

While there has been considerable progress in the development of wind turbine (WT) technology, the reliability assessment
and optimisation of operations and maintenance (O&M) of these systems has often been hampered by a lack of comprehensive,

high-quality field data. Existing studies on wind turbine reliability mostly rely on limited datasets or combine data from diverse
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turbine types and operating conditions without sufficient granularity (Carroll et al., 2016; Li and Guedes Soares, 2022). Such
approaches can obscure the differences in reliability performance across turbine types, manufacturers, and environmental
contexts. Consequently, there is a critical need for detailed analyses based on comprehensive field data that can provide more
accurate and actionable insights into failure rates and maintenance strategies (Cevasco et al., 2021).

This study represents a significant advancement in the field by presenting an extensive analysis of wind turbine reliability
based on a large, representative sample of field data. Drawing on maintenance reports spanning more than 4,200 operational
years from both onshore and offshore wind turbines, this research provides one of the most comprehensive evaluations of
failure rates and further O&M-related key performance indicators (KPIs) to date. The analysis includes data from nine different
onshore and four offshore wind turbine original equipment manufacturers (OEMs), covering a range of turbine capacities and
operational contexts. This breadth and depth of data allow for a more comprehensive understanding of reliability performance
across various wind turbine systems, informing both design optimisation and O&M strategies for future wind farms.
Furthermore, the study introduces a detailed categorisation of wind turbine failures using the reference designation system
RDS-PP, which is applied systematically for standardised component classification across all different turbine types and
designs. By focusing on system and subsystem level and calculating average failure rates along with corresponding confidence
intervals, this work studies the reliability behaviour of wind turbines with a rare and considerable level of detail, providing
unnormalised KPIs and uncertainty quantifications. The findings reveal detailed insights into the different failure rates of
onshore versus offshore turbines, the impact of turbine rated power on reliability, and the temporal patterns that characterise
wind turbine failures.

This level of granularity in data analysis not only enhances the reliability modelling of current wind turbine fleets but also
serves as a valuable resource for OEMs, operators, and policymakers looking to improve the design and operation of future
wind farms. The analysis conducted in this study highlights specific reliability challenges as well as opportunities for
technological improvements and maintenance optimisation, making it an essential input for risk management and decision-
making in the wind energy sector (Ayyildiz and Erdogan, 2024).

Recognising the sensitivity of the data involved, we have systematically evaluated and implemented measures to ensure the
confidentiality and security of the datasets used in this research. These measures were crucial for protecting proprietary
information and maintaining the trust of data providers while enabling the comprehensive analysis presented herein.

In the sections that follow, we provide a thorough review of the current state of the art in wind turbine reliability research and
outline the methodologies and datasets used in this study. This is followed by an in-depth presentation of the results, discussing

their implications for both the operational management of wind farms and future research directions.
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2 State of the art literature on wind turbine reliability
2.1 Overview of wind turbine reliability research

Understanding wind turbine reliability is crucial for optimising their performance and minimising operational costs, especially
for offshore installations. Early studies primarily focused on analysing key reliability metrics such as average failure rates,
mean time to repair, and availability, which are essential for developing maintenance strategies (Tavner et al., 2012). Over the
years, efforts have been made to standardise the collection and analysis of reliability, availability, and maintainability (RAM)
data across diverse turbine types and environments (Cevasco et al., 2021). Prominent initiatives like the WInD-Pool common
knowledge base in Germany and the SPARTA program in the United Kingdom have been instrumental in adopting structured
methodologies to gather operational data from wind farms (Leahy et al., 2019; Fraunhofer IEE, 2018).

Due to the strict confidentiality of maintenance data, only a limited number of reliability studies have been published. European
initiatives such as WMEP (Hahn et al., 2007), as well as WSD, WSDK, and LWK (e.g. (Tavner et al., 2007; Spinato et al.,
2009)) were among the first to analyse WT maintenance data, covering periods from the 1990s until 2004. More recent studies
include those from the Reliawind project (Gayo, 2011), the University of Strathclyde (Carroll et al., 2016), the AWESOME
project (Reder et al., 2016), and the SPARTA initiative (SPARTA, 2017). Additionally, detailed reviews of published failure
rate statistics have been conducted by (Pfaffel et al., 2017; Cevasco et al., 2021; Artigao et al., 2021; Turnbull et al., 2022).
However, as most of these studies rely on data sets recorded before 2015, with SPARTA being the only initiative providing
more recent reliability and performance KPIs from 2020/21 (SPARTA, 2022), there remains a need for comprehensive and
high-quality field data, particularly for modern, larger turbines.

2.2 Key performance indicators for reliability and O&M assessment

KPIs are critical for evaluating wind turbine reliability and optimising O&M. Among the most widely used KPIs in reliability
studies are failure rates, mean time to failure (MTTF), mean time to repair (MTTR), and time-based or energy-based
availability (Pfaffel et al., 2017). An overview of commonly used KPIs is presented in Table 1. The failure rate, typically
measured as the number of failures per turbine per year, is a fundamental metric that provides important insights into turbine
reliability and is typically utilised as input for O&M modelling (Donnelly et al., 2024).

Comparative studies reveal significant differences not only in the aforementioned failure rates but also in further O&M -related
KPIs between onshore and offshore wind turbines and associate these with varying environmental conditions, maintenance
access, and design complexities (Faulstich et al., 2011). Subsystems such as the pitch system, hydraulic systems, rotor, power
converter system, generator, and gearbox are often identified as having the highest failure rates (cf. (Carroll et al., 2016;
SPARTA, 2017)), especially in offshore installations where repairs are more challenging. (Scheu et al., 2017) highlighted that
corrective maintenance for these critical components often results in substantial downtime, underscoring the need for robust

designs and advanced monitoring systems.
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Identifying general trends in reliability and maintainability helps operators to pinpoint where reliability improvements could
lower the levelized cost of energy (LCOE). However, challenges such as inconsistent data collection practices complicate the
comparison of reliability metrics across different studies. Efforts like those by the International Energy Agency (IEA) Wind
Task 33 aim to address these challenges by providing standardised frameworks for data collection and analysis (Hahn et al.,
2017).

The variability in methodologies and reliability indicators points to the need for more standardised approaches to provide
actionable insights. Enhancing RAM databases with detailed failure and operational data is crucial for advancing wind turbine

design and maintenance strategies (Leimeister and Kolios, 2018).

Table 1: Summary table of key performance indicators (KPIs) for wind turbine reliability.

KPI Definition Importance Common Calculation Methods

Average number of failures  Indicates the reliability of wind turbine

per unit (e.g., per turbine) components and subsystems; high failure Empirical analysis using
Failure Rate ) i ) )

per year for a specific rates can lead to increased maintenance ~ maintenance data

component or subsystem costs and downtime
Corrective ) ) o ) ] o ]

Frequency of corrective Indicates the reliability of wind turbine Empirical analysis of
Maintenance . . . .

maintenance interventions components and subsystems maintenance records
Rate

Unscheduled Frequency of maintenance High rates suggest frequent unexpected o ]
Empirical data analysis from
Maintenance activities related to failures and may affect downtime and ]
maintenance reports
Rate unexpected failures operational planning

Helps in understanding the maintenance

Preventive ) strategy; high rates suggest that o ]
Frequency of preventive ) ) ) ) Empirical data analysis from
Maintenance . . . preventive maintenance interventions and .
maintenance interventions . maintenance reports
Rate associated costs are accepted to prevent
failures

Mean Time  Average time to failure fora Helps in understanding the expected o ]
Empirical data analysis from
to Failure non-repairable specific lifespan of components; a higher MTTF ]
maintenance reports
(MTTF) component or subsystem indicates better reliability
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Average time required to Critical for planning maintenance

Mean Time . . . . . . . .. .
R repair a failed component or  resources and minimising downtime; a Empirical analysis based on

to Repair
(MTTR) subsystem and restore it to lower MTTR indicates more efficient maintenance records

operational condition maintenance processes
Mean Time  Average time between ) o ) )

) ) Indicates the reliability of wind turbine )
Between successive failures of a ) Calculated as the inverse of the
) components and subsystems; a higher )
Failures repairable system or o S average failure rate
MTBF indicates better reliability

(MTBF) component

The proportion of time a Reflects overall performance and Time-based calculations using
Availability  wind turbine is operational  reliability of wind turbines; high operational and downtime data,

(time-based) and capable of generating availability is key to maximising energy  i.e. typically SCADA data;

power production and minimising losses Markov models

Total time during which a
Directly impacts energy yield and
wind turbine is not
Downtime ) ) economic returns; high downtime leads to Derivation from SCADA data
operational due to failures or )
) significant losses in revenue
maintenance

2.3 Common causes of failures and reliability challenges reported in literature

Understanding the prevailing causes of failures in wind turbines is crucial for enhancing their reliability and maintenance
strategies. In the literature, the following failure modes and causes are reported: The gearbox frequently fails due to bearing
and gear fatigue, misalignment, and lubrication issues, leading to significant downtime (Carroll et al., 2016; Reder et al., 2016).
Additionally, tribological failures such as pitting and scuffing affect gearboxes due to inadequate lubrication. The generator
faces electrical and mechanical failures such as stator faults and insulation degradation due to electrical surges and thermal
stresses (Kavakli and Gudmestad, 2023). Power converter failures are dominated by failures of the power semiconductor
modules, their driver boards, the converter control system as well as the cooling system (Fischer et al., 2019a; Fischer et al.,
2023). The pitch system is vulnerable to mechanical wear from continuous blade angle adjustments in varying wind conditions
(Li et al., 2022). Meanwhile, blades are prone to erosion, fatigue, and lightning strikes, affecting turbine performance (Lopez
and Kolios, 2022).

Common failure mechanisms include fatigue, particularly in moving parts like blades and gear teeth due to cyclic loading. For
many years, fatigue due to power and thermal cycling was postulated to be the main failure mechanism also in power
converters, until comprehensive field-data and damage analyses revealed that climatic influences, which drive corrosion and

affect insulation integrity in the converter, play a more important role in the wind-power application (Fischer et al., 2019a;
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Fischer et al., 2019b). Corrosion is a relevant failure mechanism also for support structures, especially in offshore environments
where saltwater accelerates degradation (Scheu et al., 2019; Tremps et al., 2024).

It is important to keep in mind that the detailed identification of failure root causes and the underlying mechanisms can be a
complex and laborious task, often requiring comprehensive data evaluation and analyses of damaged components. As the
above example of power converters shows, there is a certain risk that hypotheses or postulates about prevailing failure

mechanisms propagate through the literature and divert attention from the reality observed in the field.

2.4 Impact of turbine design, manufacturer and age on reliability

The reliability of wind turbines is significantly influenced by their design and the manufacturer. Studies have shown that design
choices, such as drivetrain configurations (e.g., geared vs. direct drive) and control systems, affect failure rates and
maintenance needs (Carroll et al., 2015; Carroll et al., 2018). For instance, direct-drive turbines eliminate the gearbox, reducing
failures associated with gears and bearings, but they may have higher rates of electrical component failures due to the larger
size and complexity of the generator and converter systems. Additionally, differences in manufacturing quality and component
selection between manufacturers can lead to variability in reliability performance (Dahane et al., 2015). Standardisation,
stringent quality control during the design and manufacturing phases as well as test-based reliability validation are essential to
reduce such variability, ensuring consistent reliability across different turbine models and brands.

The operating age of wind turbines also significantly impacts their reliability. As turbines age, wear and tear from continuous
operation, exposure to harsh environmental conditions, and fatigue loading can lead to increased failure rates (Tavner et al.,
2012). Studies indicate that older turbines often experience failures in components such as blades, gearboxes, and electrical
systems, which degrade due to prolonged exposure to mechanical stresses and environmental factors like temperature and
humidity variations (Le and Andrews, 2015). Other subsystems, such as the power converter, exhibit pronounced early failures
(Anderson et al., 2025). In general, failure patterns of technical systems typically follow a "bathtub curve”, where failure rates
are decreasing during the early-failure phase, remain relatively constant during a "useful life" phase, and increase again as
components degrade in the deterioration phase (Rigdon and Basu, 2000). Understanding these patterns is crucial for optimising

maintenance strategies and extending the operational life of wind turbines.

2.5 Data-driven approaches and advanced analytical methods

The use of big data and machine learning (ML) has transformed the field of wind turbine reliability analysis, enabling more
accurate early fault detection and enhanced maintenance strategies. Recent advancements leverage data-driven approaches
using large datasets from SCADA (Supervisory Control and Data Acquisition) systems, which provide high-frequency data
on turbine operations and performance (Zaher et al., 2009; Encalada-Davilla et al., 2021). Machine learning techniques such
as neural networks, random forests, and support vector machines have been employed to detect patterns in operational data,
predict failures, and optimise maintenance schedules, thereby reducing downtime and maintenance costs (Black et al., 2021;

Kusiak and Verma, 2011; Lorenzo-Espejo et al., 2022). Al-based predictive maintenance approaches also incorporate data

6
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fusion techniques that combine SCADA data with environmental and maintenance records, offering a more comprehensive
view of turbine health and enabling proactive interventions (Jeong et al., 2020).

Recent meta-analyses and systematic reviews have consolidated findings across multiple studies to provide higher-level
insights into wind turbine reliability management. For example, a meta-analysis by (Dao et al., 2019) aggregated reliability
data from diverse sources, revealing trends in failure rates and highlighting critical components that require attention. These
reviews often use statistical methods to compare data from different regions, turbine types, and operating conditions, offering
a benchmark for reliability performance. By synthesising data from various studies, systematic reviews inform best practices
for condition monitoring, component design, and maintenance planning, addressing gaps in existing literature and guiding
future research. Such efforts help standardise reliability metrics and improve the robustness of reliability models, ensuring

more effective asset management strategies for both onshore and offshore wind farms.

2.6 Knowledge gaps and contribution of the present study

Despite significant advancements in wind turbine reliability research, several gaps remain. A summary of those is shown in
Table 2. Many studies rely on limited sample sizes and data from specific regions, which may not accurately represent broader
operational contexts (Leahy et al., 2019). There is also a lack of comprehensive field data that captures the full spectrum of
failure modes and environmental influences, especially for offshore turbines (Cevasco et al., 2021). This is often related to
strict data confidentiality. Additionally, existing research often focuses only on a few subsystems (e.g. (SPARTA, 2017)),
leading to gaps in reliability modelling. For example, (Hart et al., 2020) highlight that main bearings are frequently overlooked
in reliability analyses. In reliability analyses, ensuring the recentness of data and coverage of modern WT technology remains
a key challenge. As a result, many studies frequently reference literature based on older data sets that primarily reflect outdated

turbine technology.

Table 2: Summary table of research gaps.

Research Gap Description

Limited sample sizes Many studies use data from small, specific samples, limiting the generalisability of the findings.

Lack of diversity in field  Inadequate data coverage on different environments and conditions, especially for offshore sites

data
Insufficient coverage of Underrepresentation of specific subsystem failure types or insufficient reliability data for
certain subsystems certain subsystems

Lack of recent field data Most studies are based on old data sets, not covering modern WT technology.
Need for standardisation Lack of standard methodologies and definitions across studies complicates comparative

and harmonisation analysis.
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This study aims to address these gaps by using a more representative sample size and conducting a comprehensive analysis of
both onshore and offshore wind turbine maintenance data. By integrating diverse datasets including modern turbine technology
and systematically evaluating failure modes across various subsystems, this research offers a more holistic view of turbine

reliability which is applicable for future wind farm design and operation.

3 Methodology and evaluated data sets
3.1 Methodology
3.1.1 Field-data collection and pre-processing

Maintenance reports, which are available for each visit of a wind turbine, of more than 1000 wind turbines were collected
making an effort to include a variety of turbine types of both onshore and offshore turbines. Attention was paid to incorporate
recently commissioned turbines as well as having data sets of turbines which have a certain track record already. This leads to
a unique field-data collection with respect to its size, diversity and recentness.

Maintenance records include information about what maintenance intervention was carried out on which turbine on which
date. Those reports can have different lengths and levels of detail. Typically, at least spare parts and / or work descriptions are
recorded which allow one to understand what kind of work technicians have performed on the turbines. In order to conduct
different reliability analyses, the data needs to be machine-readable and comparable even though the reports stem from
different organisations and sites. Within this study standards and guidelines like the reference designation system RDS-PP for
wind turbines (VGB PowerTech, 2014) and the State-Event-Cause-Code “ZEUS” (FGW e.V. - Fordergesellschaft
Windenergie und andere Erneuerbare Energien, 2013) are utilised to support the pre-processing. RDS-PP is used to classify
maintenance interventions according to the components and subsystems that were maintained. Using ZEUS, activities
performed by technicians are labelled as corrective and preventive and further differentiated according to the specific

maintenance action undertaken. The pre-processing results in a comprehensive field-data base covering:

. Wind turbine ID and respective wind farm

. Wind turbine manufacturer and type

. Commissioning date of the turbine

. Rated power of the turbine

. Technical information about the different subsystems

. Coordinates of the turbine

. Data provider

. Time stamps of start and end date of each maintenance activity

. Number of technicians involved

. Components and subsystems affected (standardised codes of RDS-PP)
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. Type of maintenance activity (standardised codes of ZEUS)

3.1.2 Reliability analyses

In order to assess O&M activities and WT reliability performance, different reliability analyses are performed and KPIs
computed. Respective KPIs can be utilised for benchmarking of different assets, understanding failure patterns as a basis for
developing countermeasures, or as input for development and O&M simulation of future wind farms.

KPIs are assessed for corrective and preventive maintenance interventions. Particular attention is paid to failures of
components and subsystems as those are afflicted with costly downtimes requiring maintenance and the use of spare parts.
Within this study, a failure is defined as an event necessitating corrective maintenance (ZEUS code “02-08-01") and which is
not resettable but requires a component to be replaced (ZEUS code “02-09-09-017). Note that, consequently, events remedied
by means of e.g. retightening, cleaning or refilling are not considered as a failure. In order to compare reliability KPIs of

different components, sub-systems and overall turbines, the following average rates are calculated:

. , s c
corrective maintenance rate ¢ = = == €))
s_oxiry T
i=1Xili
. . Z{=1 P; P
preventive maintenance rate p = 35— = — 2)
yLoximi T
i=14ili
, sI_ N N
failure rate f = 3=+ =—, 3)
Yi XiTy T

Herein, C; is the number of corrective maintenance visits, P; is the number of preventive maintenance visits, and N; is the
number of failures of the analysed component or subsystem in the time interval i. X; is the number of WTs analysed within
this time interval of duration T;. Consequently, the average rates are equal to the quotient of the sum of all corrective, preventive

or failure events, C, P and N, respectively, and the total amount of considered WT operational years T.

As WTs of different power classes are included in the analyses, next to average rates per WT and year, average rates per rated

capacity in MW and year are also calculated.

Moreover, confidence intervals for the failure rates are computed to quantify the uncertainty stemming from the size of the
data sets. According to (Bain and Engelhardt, 1991), the confidence intervals for failure rates based on time-censored data are

estimated using Eq. (4):

X2(G2N) x*(1-3,2N+2) @)
2T 2T

’

Herein, y%(a/2,2N) is the («/2)-quantile of the y? distribution with 2N degrees of freedom. In this study, @ = 0.1 is utilised
to provide confidence intervals with a confidence level of 90%. As explained in more detail in (Fischer et al., 2019a), these

confidence intervals based on sample data are to be interpreted in terms of frequency: if a large number of samples (in this



235

240

245

250

https://doi.org/10.5194/wes-2025-212 WIND

Preprint. Discussion started: 24 October 2025 —~ ENERGY
(© Author(s) 2025. CC BY 4.0 License. e we \ SCIENCE

® european academy of wind energy
m

case failure or maintenance data sets covering a part of a WT population) was evaluated, the confidence intervals determined

according to Eq. (4) would cover the true value of the failure rate in 90% of the cases.

3.2 Evaluated data sets

The data sets underlying this analysis are based on maintenance reports of onshore and offshore wind turbines. In total, more
than 4200 operational years are covered. A detailed overview of the data sets is provided in Table 3. While the offshore data
stem from turbines of four different OEMs with turbine capacities ranging up to 9 MW, the onshore data comprise turbines of
nine different manufacturers. In total, 1089 WTs located in seven different European countries are considered in the present

study.

Table 3: Information about the data sets which have been considered in the analysis.

Offshore Onshore
WT operational years considered 1755 2489
Number of WT OEMs covered 4 9
Rated capacity considered Up to 9 MW
Available data period 2006-2024

The data set analysed in this study encompasses the following technical concepts:

. Pitch system: hydraulic, electrical
. Drive train concepts: geared, direct drive, hybrid drive
. Generator types: doubly-fed induction generator (DFIG), electrically excited synchronous generator

(EESG), permanent magnet synchronous generator (PMSG), squirrel-cage induction generator (SCIG);
including low voltage (LV) and medium voltage (MV) generators

. Converter technology: air-cooled, liquid-cooled; including LV and MV converters

While it is important to include data of both, WTs which have been operated already for some time to analyse failure behaviour
over time and WTs which have just recently been commissioned to incorporate newest technologies, this leads to a diverse
data set of different turbine generations. The data period analysed in this study is nearly identical for both onshore and offshore
WTs. Note that 12.5% of the WTs have a capacity smaller than 2 MW. Most WTs covered within this study can be considered

as recent turbine technology.

10
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4.1 Comparison of failure rates for onshore and offshore wind turbines
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Figure 1 and Figure 2 illustrate a comparative analysis of failure rates for onshore and offshore WTs, calculated per WT and

year, as well as per MW of turbine capacity and year, respectively. In addition to presenting the average failure rate of the

entire WT, Table 5 provides the average failure rates for all 29 subsystems defined by RDS-PP, along with a corresponding

260 translation of RDS-PP codes. For better clarity in the presentation of results, the analysis in this section is limited to the eleven

most critical subsystems, selected based on failure frequency. Components that could not be unequivocally assigned to a

specific subsystem are categorised under “G”, representing “other components”. It is important to note that the sum of all

subsystem failure rates exceeds the overall WT failure rate, as certain failure events involve the replacement of components

across multiple subsystems.
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Figure 1: Failure-rate comparison per WT and year of onshore and offshore WTs including the eleven most critical subsystems.
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Figure 2: Failure-rate comparison per MW of turbine capacity and year for onshore and offshore WTs including the eleven most
critical subsystems.

The comparison of average failure rates per WT and year indicates a higher reliability of onshore WTs (3.3 vs. 4.3 failures per
offshore WT and year), consistent with findings frequently reported in the literature (Cevasco et al., 2021). However, when
normalised per MW and year, the data reveal that onshore WTs exhibit a higher failure frequency per WT capacity, with an
average failure rate of 1.729 failures per MW per year, compared to 1.088 failures per MW per year for offshore WTs. Given
the strong dependence of average failure rates on WT size — shown e.g. in (Spinato et al., 2009; Koukoura, 2019; Walgern et
al., 2023; Anderson et al., 2025), and also found in our analyses — further analysis and interpretation are based exclusively on
failure rates normalised per MW and year. While for onshore WTs the subsystems rotor system (MDA) including the pitch
system, the control system (MDY), the drive train system (MDK), and the converter system (MSE) are identified as most
critical, for offshore WTs the highest failure rates are recognised for the subsystems rotor system, control system, lifting gears
(XMM), and converter system. In previous publications by Fraunhofer IWES, which focused exclusively on the power
converter, the converter subsystem also encompassed failures related to main circuit breakers and contactors (cf. (Fischer et
al., 2019a; Fischer et al., 2019b; Fischer et al., 2023; Anderson et al., 2025)). In contrast, this study categorises these failures
separately within the “Generator Switching System” (MSC) subsystem in order to follow the RDS-PP classification.
Additionally, while some of our earlier studies normalised failure rates based on the rated power of the converter, it is important
to note that in the present analysis all failure rates, including that of the converter system, are normalised by the rated power

of the turbine.
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Note that the drive train system covers the subassemblies rotor bearing, speed conversion, drive train brake, high speed shaft,
drive train auxiliary systems, main and offline gear oil systems, oil lubrication system, rotor lock, rotor slewing unit, and drive
train cooling system. Therefore, the subsystem is evaluated across both WTs with and without gearboxes. A more detailed
examination of the MDA system category reveals that for onshore WTs the pitch system accounts for approximately 80.8% of
MDA system failures, whereas for offshore WTs it constitutes nearly 82.5% of failures within this category (cf. Table 5).
Provided KPIs in Table 5 can be utilised for estimating failures and maintenance interventions. However, it is important to
note that the failure behaviour is not solely characterised by turbine size making more sophisticated reliability models necessary

to support such analysis.

4.2 Failure-rate comparison across WT OEMs

Although it is common practice to report average failure rates derived from mixed fleets comprising different WT types, as
presented in Section 4.1, this approach carries inherent risks. Reporting only a group-averaged failure rate without further
differentiation might obscure major reliability differences, which can serve as key indicators for root-cause analysis and design
optimisation. To address these limitations, an OEM-specific analysis is performed. Figure 3 and Figure 4 present the average
failure rates of offshore WTs from four different OEMs and onshore WTs from six different OEMs. Where a manufacturer is
included in both Fig. 3 and Fig. 4, they do not share the same label for confidentiality reasons. This means that OEM1 in Fig.

3 is not the same manufacturer as OEM1 in Fig. 4.

Failure rate per MW (1/a)
0.0 0.5 1.0 1.5 2.0 25 3.0

Overall Wind Turbine (WT) -H
I

mOEM1 mOEM2Z mOEM3 mOEM4

Figure 3: Failure-rate comparison per MW and year across WT OEMs of offshore assets.
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Failure rate per MW (1/a)
0.0 0.5 1.0 1.5 2.0 25 3.0

Overall Wind Turbine (WT)

I‘

mOEM1 mOEM2 wOEM3 mOEM4 mOEMS5 mOEM6

Figure 4: Failure-rate comparison per MW and year across WT OEMs of onshore assets.

To ensure that the comparison reflects only technological differences, failure rates are again normalised per MW and year.
Analysis results reveal significant disparities in failure rates between WTs from different manufacturers. For offshore WTs,
the average failure rate for OEM1 is 1.6 to 2.4 times higher than that of the other three OEMs, with a distinct failure rate of
1.7 failures per MW per year. In the case of onshore WTs, failure rates range between 1.5 and 2.5 failures per MW per year.
The variability in confidence intervals reflects the uncertainty associated with the sizes of the underlying data subsets. While
datasets for all offshore OEMs and onshore OEMs 2 and 4 include at least 1100 MW -years, analysis for onshore OEMs 1, 3,
5, and 6 are based on smaller datasets ranging from 200 to 330 MW-years. Onshore OEMs 7, 8, and 9 are excluded from this
analysis due to insufficient sample sizes. Overall, onshore OEM failure rates generally exceed those of offshore OEMs, with

the exception of offshore OEM1, which exhibits a failure rate comparable to the three best-performing onshore OEMs.

4.3 Failure-rate behaviour through time

An essential aspect of reliability analysis is the evolution of failure behaviour over time. This is assessed by calculating failure
rates across different operating years. To isolate the effect of WT aging, the analysis is conducted for specific WT types,
avoiding the confounding influence of mixed turbine designs. As an example, Fig. 5 presents a comparison of normalised
failure rates across different operating years, grouped into five periods of WT operating age, for a single WT type including

eight representative subsystems.
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Figure 5: Comparison of normalised failure rates across different operating years for a specific WT type including eight exemplary
subsystems.

The failure rate trajectory for the entire WT system follows the characteristic shape of a bathtub curve (Pulcini, 2001): During
the initial years of operation, elevated failure rates are observed, corresponding to early failures. Over time, failure rates
decline, reaching a lower and more stable level through operating years 5 to 8. In contrast to the typical shape of the bathtub
curve implying low and constant failure rates for a long period of the operational life, this phase is found to be surprisingly
short in the investigated WT fleet. From year 9 onward, failure rates increase again, indicative of degradation-related failures.
Although confidence intervals show a slight overlap between some groups, the overall trend is clearly visible and observable
across different WT types, both onshore and offshore.

The failure behaviour of individual subsystems varies significantly depending on the specific subsystem under analysis. While
certain subsystems, such as the drive train system (MDK), yaw system (MDL), and converter system (MSE), exhibit a failure

trend similar to that of the overall WT system, others, such as the central hydraulic system (MDX) and the power generation
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system (MKA), show a steadily increasing trend suggesting that these are primarily suffering from degradation-related failures.
Additionally, some subsystems do not display a distinct trend due to overlapping confidence intervals, either because no
distinct trend exists, or the dataset is too limited to detect one. These findings emphasise that the well-established bathtub curve

in reliability modelling results from the superposition of different failure mechanisms and trends.

4.4 Other O&M relevant KPIs

When utilising reliability data for O&M simulations or OPEX calculations, additional O&M KPIs beyond failure rates are
required as input. To address this, further analyses based on the offshore data subset are presented in the following. These
include a comparison of corrective and preventive maintenance interventions, an analysis of major component replacements
(MCR), and an evaluation of average repair times and the average number of maintenance technicians required per failure
event and subsystem. Due to limited access to cost data and the impact of inflation, cost figures for spare parts are not provided,
as comparisons across different datasets and years would be challenging. Reference values can be found in (Carroll et al.,

2016; BVG Associates, 2019; Stehly et al., 2024).

4.4.1 Comparison of corrective and preventive maintenance interventions

Within this study the failure definition is based on the consumption of spare parts, while other corrective maintenance activities
not requiring spare parts are classified under the category “Corrective Maintenance other”. In addition to addressing failure
events and conducting troubleshooting and repairs — both classified as corrective maintenance interventions — technicians are
also responsible for preventive maintenance interventions, such as scheduled maintenance. Furthermore, statutory inspections,
functional tests, condition monitoring related activities — such as oil sampling — and routine tasks like topping up coolants or
lubricants are categorised as preventive maintenance interventions. Figure 6 displays the corresponding maintenance rates per
MW and year.

. 30 2.664
£ 25
= 20 1.651
=
5 1o 1.088
o 1.0
=
[NN)
00
Failures Corrective Preventive
Maintenance other Maintenance

Figure 6: Comparison of corrective and preventive maintenance interventions for offshore wind assets differentiating corrective
interventions into failures and other corrective maintenance.
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As detailed in Section 5.3, offshore WTs experience an average of 1.088 failures per MW per year. For example, this is
equivalent to 5.4 failures per year for a 5 MW turbine and 10.9 failures per year for a 10 MW turbine. Additionally, the category
“Corrective Maintenance other” accounts for 1.651 interventions per MW and year, while preventive maintenance actions total
2.664 interventions per MW and year. In total, this results in 5.403 maintenance interventions per MW per year. This translates
to approximately 27 maintenance interventions annually for a 5 MW WT and to around 54 maintenance interventions for 10
MW WT. Similar intervention frequencies are observed across offshore wind farms with different WT power classes included

in the data sets used for this analysis.

4.4.2 Major component replacements

The average failure rates per subsystem presented above are based on all corrective maintenance interventions involving the
use of spare parts, regardless of the size or cost of the replaced component. To provide further details relevant for O&M
simulations, a distinction is made between total major component replacements (MCR) and those that specifically require a
jack-up vessel (JUV), as outlined in (The Crown Estate, 2014). MCR encompasses replacements across six subsystems: the
rotor system (MDA), the drive train system (MDK), the power generation system (MKA), the generator transformer system
(MST), the nacelle (MUD), and the tower system (UMD). The components considered for each subsystem are listed in Table

4. Average offshore MCR rates as well as rates of interventions requiring a JUV are presented in Table 5.

Table 4: Considered components for major component replacements (MCR) and MCR requiring a jack-up vessel (JUV).

Subsystem MCR requiring no JUV MCR requiring a JUV

Rotor system (MDA) - blade, hub, blade bearing

Drive train system (MDK) damaged high and low speed shaft main bearing, gearbox, rotor shaft assembly
Power generation system (MKA) generator bearings generator

Generator transformer system (MST) - transformer

Nacelle (MUD) - nacelle

Tower system (UMD) - tower, transition piece, foundation

With an average of 0.0209 MCR per MW and year, the power generation system MKA accounts for the highest MCR rate,
followed by the drive train system MDK at 0.0149 MCR per MW and year. Of these, 0.0097 MCR per MW and year require
a JUV, making the drive train system the primary contributor to MCR events necessitating a JUV. For the rotor system MDA
only blade and blade bearing replacements were observed, while no MCR events were recorded for the nacelle, tower,

transition piece, or foundation. Across the entire WT, the total MCR rate is 0.0366 per MW and year, with 0.0117 MCR per
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MW per year requiring a JUV. For a wind farm comprising 50 WTs, each with a rated capacity of 10 MW, this corresponds
to approximately 37% of WTs undergoing a MCR annually, with 12% requiring a JUV — equivalent to roughly six WTs.

4.4.3 Average repair time

The average repair time per subsystem is displayed in Table 5. It represents the total duration from the technicians’ arrival to
their departure from the turbine, regardless of the number of personnel involved in the maintenance intervention. Unlike
downtime or time to repair, it does not account for travel time, lead time of spare parts, delays due to inaccessibility, or other
external factors (Carroll et al., 2016). It is important to note that the average repair time is calculated across all failure events
without distinguishing between failure severity. On average, component replacements for the overall WT system require 2.7
hours. Other corrective maintenance activities take approximately 1.5 hours, while preventive maintenance tasks involve an
average technician presence of 3.8 hours.

The longest repair times are observed for the drive train system, rotor system, generator transformer system, and converter
system. While extended repair durations are expected for subsystems containing major components, their overall impact on
turbine availability remains limited due to relatively low failure rates in most cases. In contrast, the power converter system

has a substantial effect on availability, as it exhibits both a high failure rate and prolonged average repair time.

4.4.4 Average number of technicians required

Similarly to the average repair time, the average number of technicians required per maintenance intervention for each
subsystem is shown in Table 5. This value represents the mean number of technicians who recorded working hours on the WT
or were listed in maintenance records. However, this information was available for only half of the WTs in the offshore data
set, resulting in a reduced sample size for analysis. Consequently, the data set is insufficient to provide specific figures for
MCR beyond the overall averages for all failure events. As a result, the variation in technician requirements across subsystems
is relatively small, ranging from 1.9 technicians for the common cooling system to 3.5 technicians for the generator transformer
system and generator switching system. On average, 2.5 technicians are required for both other corrective maintenance

activities and preventive maintenance interventions.

4.5 Comparison with results from literature

Although a direct comparison with existing literature is not feasible due to variations in turbine sizes, technologies, and
generations considered in different studies, this section aims to contextualise the findings of this paper within the existing body
of reliability and O&M research. For offshore WTs, studies by the University of Strathclyde (Carroll et al., 2016) and SPARTA
(SPARTA, 2017; SPARTA, 2022) are referenced, while for onshore turbines, comparisons are drawn with findings from
WMEP (Faulstich et al., 2011), Reliawind (Gayo, 2011) and AWESOME (Reder et al., 2016). However, direct comparisons
remain challenging due to differences in categorisation systems and variations in KPI definitions. For example, Carroll et al.

report annual failure rates, whereas SPARTA provides monthly repair rates. This shows that the definition of failure itself
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varies across studies. (Anderson et al., 2023) emphasise that such differences in failure definitions in field-data-based studies
significantly impact the reported KPI values. Despite these challenges, a general comparison remains valuable to place our
results in the context of other research work.

For onshore WTs, an overall average failure rate of 1.729 failures per MW and year has been determined in the present study,
with the pitch system, control system, drive train system, and converter system identified as the most critical subsystems.
Similar findings were reported by (Faulstich et al., 2011), who calculated an annual failure rate of 2.4 failures per WT —
consistent with the smaller rated capacities of the turbines in their study — while also highlighting the electrical and control
systems as particularly critical. Although (Gayo, 2011) reported only normalised failure rates, their findings similarly identified
the power module (including power converter, generator, transformer and switchgears), rotor module (including pitch system,
blades and hub), control system, and drive train system among the five most frequently failing subsystems. In contrast, (Reder
et al., 2016) highlight the gearbox, the blades, the blade brake, generator, and controller as most critical, while reporting lower
normalised failure rates for the pitch system and the frequency converter.

For offshore WTs, an annual average failure rate of 1.088 per MW have been determined in this study. (Carroll et al., 2016)
reported approximately 7.8 failures per turbine per year, including major component replacements, as well as major and minor
repairs, for turbines with rated capacities between 2 and 4 MW. Transforming the findings of our study to a 3 MW turbine
results in an estimated 3.3 failures per turbine and year, which appears significantly lower. However, considering discrepancies
in failure definitions and incorporating the additional 1.651 interventions per MW per year associated with corrective
maintenance interventions beyond component failures, the estimated corrective maintenance rate reaches approximately 8.2
for a 3 MW turbine — closely aligning with the figures reported by (Carroll et al., 2016). This highlights the substantial impact
that failure definitions and the inclusion criteria for corrective maintenance activities have on reported failure rates.
Regarding the most failure-prone subsystems of offshore WTs, the pitch system, control system, and converter system have
emerged as critical in our study, consistent with the top four failing subsystems identified in the (SPARTA, 2017) report.
Similarly, (Carroll et al., 2016) highlighted the pitch system as a major contributor to failure events. Furthermore, significant
differences in annual failure rates were observed across different OEMs, a finding also noted by (SPARTA, 2022) when
comparing forced outages per turbine between two OEMs for selected subsystems.

The analysis has also revealed variations in failure behaviour over time, with the overall WT system following the characteristic
bathtub curve. At the same time, different subsystems exhibit different failure trends. (Faulstich et al., 2011) reported a similar
trend for overall onshore WTs. (SPARTA, 2022) assessed temporal patterns for repairs for specific components and
subsystems not directly comparable with failure events and their trends evaluated within this study. The increasing repair rate
observed for the generator in the SPARTA evaluation aligns with the trends found for the power generation system (MKA) in
the present study, whereas other subsystems are not directly comparable due to differences in component classification.
Regarding major component replacements, both this study and (Carroll et al., 2016) identified the power generation system
and drive train system as the primary contributors to JUV interventions. Finally, reported average repair times and the number

of technicians required for replacements were compared with findings from (Carroll et al., 2016). Repair times in this study
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were generally lower than those reported by Carroll et al., even when compared with Carroll’s “minor repairs” category, which
primarily includes small spare parts driving overall failure rates. On average, 2.8 technicians were required per replacement

according to our results, which is in the same range as the figures reported in (Carroll et al., 2016).
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5 Conclusions and outlook

This study provides a comprehensive analysis of failure rates for offshore and onshore wind turbines (WTs), as well as repair
times and maintenance resource requirements for offshore assets, with a particular focus on subsystem-level reliability. Based
on real-world maintenance data from over 1000 onshore and offshore WTs covering more than 4200 operational years, this
data set offers unique diversity, size and recentness when compared to those used in previous reliability studies. The results
highlight that while onshore WTs exhibit lower failure rates per turbine and year, their failure rates per megawatt and year are
higher compared to offshore WTs. Given the strong dependence of failure rates on the turbines’ rated power, further analyses
have been conducted based on failure rates per MW and year to ensure comparability. Onshore WTs exhibit an average failure
rate of 1.729 failures per MW per year, whereas offshore WTs demonstrate a lower annual average failure rate of 1.088 failures
per MW.

The analysis of subsystem-level failure rates has revealed that certain components, such as the pitch system (0.314 vs. 0.164
failures per MW and year), the control system (0.255 vs. 0.127 failures per MW and year), and the converter system (0.223
vs. 0.124 failures per MW and year), contribute disproportionately to overall WT unreliability for both onshore and offshore
turbines. While the drive train system exhibited notably high failure rates for onshore WTs, offshore WTs experienced elevated
failure rates in the lifting gear system. Particularly the power converter system has been identified as a critical subsystem due
to its combination of a high average failure rate and extended repair duration, making it a major factor affecting overall WT
availability next to long-lasting replacement campaigns of major components. Additionally, major component replacements
(MCR) have been analysed, distinguishing between those requiring a jack-up vessel (JUV) and those that do not. The power
generation system and drive train system accounted for the majority of MCRs, with the latter also being responsible for the
highest share of JUV-requiring replacements.

The study has also examined failure behaviour through time, demonstrating that the overall WT failure pattern follows the
well-established bathtub curve, with high early failure rates, a period of stability, and increasing failure rates due to degradation
in later years of turbine operation. However, subsystem-specific trends vary, with some following the same pattern as the
overall WT and others dominated by degradation failures or displaying no clear trend.

In addition to failure rates, i.e. the frequency of corrective measures including spare-part consumption, corrective maintenance
interventions without spare-part use and preventive maintenance tasks have also been analysed. On average, 2.7 hours are
required for component replacements, while other corrective maintenance and preventive maintenance activities take 1.5 hours
and 3.8 hours, respectively. The number of technicians required per maintenance intervention varies by subsystem, ranging
from 1.8 to 3.5 technicians, with an overall average of 2.5 technicians per other corrective and preventive maintenance task.
While major component failures have significant repair times, their relatively low failure rates limit their impact on availability.
In contrast, frequently failing subsystems such as the power converter system have a substantial influence on turbine

performance and should be prioritised in reliability-driven design improvements.
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Our findings emphasise the importance of detailed, subsystem-level reliability analyses to enhance the accuracy of O&M
simulations and operational expenditure (OPEX) calculations. Aggregated failure rates derived from mixed turbine fleets may
obscure critical differences in reliability between turbine types, underscoring the necessity of subgroup-specific analyses. At
the same time, the coverage of a variety of WT types and manufacturers is an important prerequisite for providing
representative results.

Ultimately, this study underscores the complexity of WT reliability and maintenance planning, highlighting the need for
continued field-data based analysis to optimise O&M strategies and improve the long-term sustainability of wind energy
operations. Future research will extend beyond basic failure rate calculations to develop advanced reliability models that
capture temporal trends in failure behaviour and quantify the effect of various factors on reliability, including design aspects

and operating conditions.

Author contribution

Conceptualisation: J.W., K.F.; Data curation: JJW., N.S., M.H., N.T., M.\M., F.A., K.F.; Formal analysis: J.W.; Funding
acquisition: J.W., K.F., A.K.; Investigation: J.W.; Methodology: J.W.; Project administration: J.W.; Supervision: K.F., A.K.,
J.W.; Validation: J.W., K.F.; Visualisation: J.W.; Writing (original draft preparation): J.W., A.K.; Writing (review and editing):
K.F.,AK,FA.,JW.

Competing interests

At least one of the (co-)authors is a member of the editorial board of Wind Energy Science.

Acknowledgements

The provision of comprehensive field data by project partners is gratefully acknowledged.

Financial support

The present work was mostly carried out within the research project “Reduction of uncertainties for continued operation of
offshore wind farms combining reliability and yield analysis (RUN25+)” funded by the German Federal Ministry for Economic
Affairs and Climate Action (BMWK) under grant number 03EE3106. Further financial support was received by EPSRC
through the Wind and Marine Energy Systems Centre for Doctoral Training under the grant number EP/S023801/1.

25



520

525

530

535

540

545

550

https://doi.org/10.5194/wes-2025-212 WIND
Preprint. Discussion started: 24 October 2025

~
© Author(s) 2025. CC BY 4.0 License. e we \ EZ:EEIT\I%YE

References

Anderson, F., Dawid, R., McMillan, D., and Garcia Cava, D.: On the sensitivity of wind turbine failure rate estimates to failure
definitions, J. Phys.: Conf. Ser., 2626, doi:10.1088/1742-6596/2626/1/012025, 2023.

Anderson, F., Pelka, K., Walgern, J. L. T., and Fischer, K.: Trends and influencing factors in power-converter reliability of
wind turbines: A deepened analysis, IEEE Trans. Power Electron., 1-12, doi: 10.1109/TPEL.2025.3530163, 2025.

Artigao, E., Martin-Martinez, S., Cefia, A., Honrubia-Escribano, A., and Gomez-Lazaro, E.: Failure rate and downtime survey
of wind turbines located in Spain, IET Renew. Power Gener., 15, 225-236, doi: 10.1049/rpg2.12019, 2021.

Ayyildiz, E., and Erdogan, M.: A comprehensive approach to evaluate risk mitigation strategies in offshore wind farms using
spherical fuzzy decision making analysis, Ocean Eng., 221, 118881, doi:10.1016/j.oceaneng.2024.118881, 2024.

Bain, L. J., and Engelhardt, M.: Statistical analysis of reliability and life testing models: theory and methods, Dekker, New
York, 1991.

Black, I. M., Richmond, M., and Kolios, A.: Condition monitoring systems: a systematic literature review on machine-learning
methods improving offshore-wind turbine operational management, Int. J. Sustain. Energy, 40, 923-946,
doi:10.1080/14786451.2021.1890736, 2021.

BVG Associates: Guide to an offshore wind farm, BVG Associates, 2019.

Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., and McArthur, S.: Wind turbine gearbox failure and
remaining useful life prediction using machine learning techniques, Wind Energy, 22, 360-375, doi:10.1002/we.2290, 2018.
Carroll, J., McDonald, A., and McMillan, D.: Reliability comparison of wind turbines with DFIG and PMG drive trains, IEEE
Trans. Energy Convers., 30, 663—-670, doi:10.1109/TEC.2014.2367243, 2015.

Carroll, J., McDonald, A., and McMillan, D.: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind
turbines, Wind Energy, 19, 1107-1119, doi:10.1002/we.1887, 2016.

Cevasco, D., Koukoura, S., and Kolios, A.: Reliability, availability, maintainability data review for the identification of trends
in offshore wind energy applications, Renew. Sustain. Energy Rev., 135, 110181, doi:10.1016/j.rser.2020.110414, 2021.
Dahane, M., Sahnoun, M., Bettayeb, B., Baudry, D., and Boudhar, H.: Impact of spare parts remanufacturing on the operation
and maintenance performance of offshore wind turbines: a multi-agent approach, J. Intell. Manuf., 28, 1531-1549,
doi:10.1007/s10845-015-1154-1, 2015.

Dao, C., Kazemtabrizi, B., and Crabtree, C.: Wind turbine reliability data review and impacts on levelised cost of energy,
Wind Energy, 22, 1848—1871, doi:10.1002/we.2404, 2019.

Donnelly, O., Carroll, J., and Howland, M.: Analysing the cost impact of failure rates for the next generation of offshore wind
turbines, Wind Energy, 27, 695710, doi:10.1002/we.2907, 2024.

Encalada-Davilla, A., Tutiven, C., Puruncajas, B., and Vidal, Y.: Wind turbine multi-fault detection based on SCADA data
via an autoencoder, Renew. Energ. Power Qual. J., 19, 4, doi:10.24084/repqj19.325, 2021.

26



555

560

565

570

575

580

585

https://doi.org/10.5194/wes-2025-212 WIND
Preprint. Discussion started: 24 October 2025

~
© Author(s) 2025. CC BY 4.0 License. e we \ EZ:EEIT\I%YE

Faulstich, S., Hahn, B., and Tavner, P. J.: Wind turbine downtime and its importance for offshore deployment, Wind Energy,
14, 327-337, doi:10.1002/we.421, 2011.

FGW e.V. — Fordergesellschaft Windenergie und andere Erneuerbare Energien: Technical guidelines for power generating
units — State-Event-Cause code for power generating units (ZEUS), FGW e.V., Berlin, 2013.

Fischer, K., Pelka, K., Bartschat, A., Tegtmeier, B., Coronado, D., and Broer, C.: Reliability of power converters in wind
turbines: exploratory analysis of failure and operating data from a worldwide turbine fleet, IEEE Trans. Power Electron., 34,
63326344, doi:10.1109/TPEL.2018.2875005, 2019a.

Fischer, K., Pelka, K., Puls, S., Poech, M.-H., Mertens, A., Bartschat, A., Tegtmeier, B., Broer, C., and Wenske, J.: Exploring
the causes of power-converter failure in wind turbines based on comprehensive field-data and damage analysis, Energies, 12,
678, doi:10.3390/en12040593, 2019b.

Fischer, K., Pelka, K., and Walgern, J.: Trends and influencing factors in power-converter reliability of wind turbines, in: Proc.
PCIM Europe 2023, Niirnberg, Germany, doi:10.30420/566091068, 2023.

Fraunhofer IEE: WInD-Pool — Windenergie-Informations-Daten-Pool, Fraunhofer IEE, 2018.

Gayo, J. B.: Final publishable summary of results of project ReliaWind, 2011.

Hahn, B., Durstewitz, M., and Rohrig, K.: Reliability of wind turbines, Wind Energy, 10, 329-332, doi: 10.1007/978-3-540-
33866-6_62,2007.

Hahn, B., Welte, T., Faulstich, S., Bangalore, P., Boussion, C., Harrison, K., Miguelanez-Martin, E., O’Connor, F., Pettersson,
L., Soraghan, C., Stock-Williams, C., Serensen, J., van Bussel, G., and Vatn, J.: Recommended practices for wind farm data
collection and reliability  assessment for O&M  optimization, Energy  Procedia, 137, 358-365,
doi:10.1016/j.egypro.2017.10.360, 2017.

Hart, E., Clarke, B., Nicholas, G., Amiri, A. K., Stirling, J., Carroll, J., Dwyer-Joyce, R., McDonald, A., and Long, H.: A
review of wind turbine main bearings: design, operation, modelling, damage mechanisms and fault detection, Wind Energy
Sci., 5, 105-124, doi:10.5194/wes-5-105-2020, 2020.

Toannou, A., Angus, A., and Brennan, F.: A lifecycle techno-economic model of offshore wind energy for different entry and
exit instances, Appl. Energy, 406—424, doi:10.1016/j.apenergy.2018.03.143, 2018.

Jeong, S., Kim, E.-J., Shin, D. H., Park, J.-W., and Sim, S.-H.: Data fusion-based damage identification for a monopile offshore
wind turbine structure using wireless smart sensors, Ocean Eng., 195, 106728, doi:10.1016/j.0oceaneng.2019.106728, 2020.
Kavakli, M., and Gudmestad, O. T.: Analysis and assessment of onshore and offshore wind turbine failures, Int. J. Energy
Prod. Manag., 8, 27-34, doi: 10.18280/ijepm.080104, 2023.

Khan, P. W., and Byun, Y.-C.: A review of machine learning techniques for wind turbine fault detection, diagnosis, and
prognosis, Int. J. Green Energy, 21, 771-786, doi: 10.1080/15435075.2023.2217901, 2024.

Koukoura, S.: Wind turbine gearbox diagnostics using artificial intelligence, University of Strathclyde, Glasgow, 2019.
Kusiak, A., and Verma, A.: A data-driven approach for monitoring blade pitch faults in wind turbines, IEEE Trans. Sustain.

Energy, 2, 87-96, doi:10.1109/TSTE.2010.2066585, 2011.

27



590

595

600

605

610

615

https://doi.org/10.5194/wes-2025-212 WIND

Preprint. Discussion started: 24 October 2025 —~ ENERGY
(© Author(s) 2025. CC BY 4.0 License. e we \ SCIENCE

® european academy of wind energy
m

Leahy, K., Gallagher, C., O'Donovan, P., and O'Sullivan, D. T. J.: Issues with data quality for wind turbine condition
monitoring and reliability analyses, Energies, 12, 201, doi:10.3390/en12020201, 2019.

Le, B., and Andrews, J.. Modelling wind turbine degradation and maintenance, Wind Energy, 19, 571-591,
doi:10.1002/we.1851, 2015.

Leimeister, M., and Kolios, A.: A review of reliability-based methods for risk analysis and their application in the offshore
wind industry, Renew. Sustain. Energy Rev., 91, 10651076, doi:10.1016/j.rser.2018.04.004, 2018.

Li, H., and Guedes Soares, C.: Assessment of failure rates and reliability of floating offshore wind turbines, Reliab. Eng. Syst.
Saf., 228, 108777, doi:10.1016/j.ress.2022.108777, 2022.

Li, J., et al.: Impact of pitch actuator fault on 10-MW semi-submersible floating wind turbine, Ocean Eng., 254, 111375,
doi:10.1016/j.oceaneng.2022.111375, 2022.

Lopez, J. C., and Kolios, A.: Risk-based maintenance strategy selection for wind turbine composite blades, Energy Rep., 8,
5541-5561, doi:10.1016/j.egyr.2022.04.027, 2022.

Lorenzo-Espejo, A., Escudero-Santana, A., Mufioz-Diaz, M.-L., and Robles-Velasco, A.: Machine learning-based analysis of
a wind turbine manufacturing operation: a case study, Sustainability, 14, 7779, doi:10.3390/su14137779, 2022.
Martinez-Luengo, M., Shafiee, M., and Kolios, A.: Data management for structural integrity assessment of offshore wind
turbine support structures: data cleansing and missing data imputation, Ocean Eng., 173, 867-883,
doi:10.1016/j.oceaneng.2019.01.003, 2019.

Pfaffel, S., Faulstich, S., and Rohrig, K.: Performance and reliability of wind turbines: a review, Energies, 10, 1-27,
doi:10.3390/en10111904, 2017.

Pulcini, G.: Modeling the failure data of a repairable equipment with bathtub type failure intensity, Reliab. Eng. Syst. Saf., 71,
209-218, doi:10.1016/S0951-8320(00)00101-0, 2001.

Reder, M. D., Gonzalez, E., and Melero, J. J.: Wind turbine failures — tackling current problems in failure data analysis, J.
Phys.: Conf. Ser., 753, 072027, doi:10.1088/1742-6596/753/7/072027, 2016.

Rigdon, S., and Basu, A.: Statistical methods for the reliability of repairable systems, John Wiley and Sons, New York, 2000.
Scheu, M. N., Kolios, A., Fischer, T., and Brennan, F.: Influence of statistical uncertainty of component reliability estimations
on offshore wind farm availability, Reliab. Eng. Syst. Saf., 168, 28—39, doi:10.1016/j.ress.2017.05.021, 2017.

Scheu, M. N., Tremps, L., Smolka, U., Kolios, A., and Brennan, F.: A systematic failure mode effects and criticality analysis
for offshore wind turbine systems towards integrated condition-based maintenance strategies, Ocean Eng., 176, 118—133,
doi:10.1016/j.oceaneng.2019.02.048, 2019.

SPARTA: Portfolio review 2016: system performance, availability and reliability trend analysis, SPARTA Project,
Northumberland, UK, 2017.

SPARTA: Portfolio review 2020/21: system performance, availability and reliability trend analysis, ORE Catapult, UK, 2022.
Spinato, F., Tavner, P., van Bussel, G., and Koutoulakos, E.: Reliability of wind turbine subassemblies, IET Renew. Power

Gener., 3, 1-9, doi:10.1049/iet-rpg.2008.0060, 2009.

28



620

625

630

635

640

https://doi.org/10.5194/wes-2025-212 WIND
Preprint. Discussion started: 24 October 2025

~
© Author(s) 2025. CC BY 4.0 License. e we \ EZ:EEIT\I%YE

Stehly, T., Duffy, P., and Mulas Hernando, D.: Cost of wind energy review: 2024 edition, National Renewable Energy
Laboratory, US, 2024.

Tavner, P. J., Greenwood, D. M., Whittle, M. W. G., Gindele, R., Faulstich, S., and Hahn, B.: Study of weather and location
effects on wind turbine failure rates, Wind Energy, 16, 175-187, doi:10.1002/we.538, 2012.

Tavner, P., Xiang, J., and Spinato, F.: Reliability analysis for wind turbines, Wind Energy, 10, 1-18, doi:10.1002/we.204,
2007.

The Crown Estate: Jack-up vessel optimisation — improving offshore wind performance through better use of jack-up vessels
in the operations and maintenance phase, London, UK, 2014.

Tremps, L., Yeter, B., and Kolios, A.: Review and analysis of the failure risk mitigation via monitoring for monopile offshore
wind structures, Energy Rep., 11, 5407-5420, doi:10.1016/j.egyr.2024.05.026, 2024.

Turnbull, A., McKinnon, C., Carroll, J., and McDonald, A.: On the development of offshore wind turbine technology: an
assessment of reliability rates and fault detection methods in a changing market, Energies, 15, 3180, doi:10.3390/en15093180,
2022.

VGB PowerTech: VGB-Standard RDS-PP Application Guideline Part 32: Wind Power Plants, VGB PowerTech, 2014.
Walgern, J., Fischer, K., Hentschel, P., and Kolios, A.: Reliability of electrical and hydraulic pitch systems in wind turbines
based on field-data analysis, Energy Rep., 9, 3273-3281, doi:10.1016/j.egyr.2023.02.007, 2023.

Wang, J., Liang, D., Li, Z., Hong, Z., Song, X., and Deng, Y.: Data-driven reliability assessment of wind power system
operation state, in: Proc. 3rd Power System and Green Energy Conf. (PSGEC), IEEE, Shanghai, China, 98—104,
doi:10.1109/PSGEC58411.2023.10256008, 2023.

Zaher, A., McArthur, S. D. J., Infield, D. G., and Patel, Y.: Online wind turbine fault detection through automated SCADA
data analysis, Wind Energy, 12, 574-593, doi:10.1002/we.319, 2009.

29



