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Abstract. Based on maintenance data from over 1000 onshore and offshore wind turbines covering more than 4200 operating 

years, this study presents an analysis of failure rates, repair times, and maintenance resource requirements, focusing on 

subsystem-level reliability. Failure rates per turbine and megawatt are compared and failure behaviour over time is examined. 

Next to failure events, further corrective and preventive maintenance interventions are analysed. To provide more detailed 15 

insights for operation and maintenance simulations, a distinction is made between total major component replacements and 

those specifically requiring a jack-up vessel. Results show that onshore wind turbines have higher failure rates per megawatt 

than offshore wind turbines. Key subsystems including the pitch system, the control system, and power converter system are 

identified as critical to overall wind turbine reliability for both onshore and offshore wind turbines. For the overall wind turbine 

system, a failure behaviour over time following a bathtub curve is identified, with distinct trends for individual subsystems.  20 

1 Introduction  

The global shift towards renewable energy has driven significant investments in wind energy, positioning it as a cornerstone 

of sustainable power generation. With the growing reliance on wind energy, especially in offshore environments, the reliability 

and performance of wind turbines have become critical factors that directly influence energy yield, operational costs, and 

overall asset integrity (Ioannou et al., 2018). The effective management of these assets is particularly crucial as the industry 25 

aims to optimise operational efficiency and minimise downtime. However, achieving this requires a profound understanding 

of failure mechanisms and maintenance needs, underpinned by reliable data (Martinez-Luengo et al., 2019; Wang et al., 2023; 

Khan and Byun, 2024). 

While there has been considerable progress in the development of wind turbine (WT) technology, the reliability assessment 

and optimisation of operations and maintenance (O&M) of these systems has often been hampered by a lack of comprehensive, 30 

high-quality field data. Existing studies on wind turbine reliability mostly rely on limited datasets or combine data from diverse 
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turbine types and operating conditions without sufficient granularity (Carroll et al., 2016; Li and Guedes Soares, 2022). Such 

approaches can obscure the differences in reliability performance across turbine types, manufacturers, and environmental 

contexts. Consequently, there is a critical need for detailed analyses based on comprehensive field data that can provide more 

accurate and actionable insights into failure rates and maintenance strategies (Cevasco et al., 2021). 35 

This study represents a significant advancement in the field by presenting an extensive analysis of wind turbine reliability 

based on a large, representative sample of field data. Drawing on maintenance reports spanning more than 4,200 operational 

years from both onshore and offshore wind turbines, this research provides one of the most comprehensive evaluations of 

failure rates and further O&M-related key performance indicators (KPIs) to date. The analysis includes data from nine different 

onshore and four offshore wind turbine original equipment manufacturers (OEMs), covering a range of turbine capacities and 40 

operational contexts. This breadth and depth of data allow for a more comprehensive understanding of reliability performance 

across various wind turbine systems, informing both design optimisation and O&M strategies for future wind farms. 

Furthermore, the study introduces a detailed categorisation of wind turbine failures using the reference designation system 

RDS-PP, which is applied systematically for standardised component classification across all different turbine types and 

designs. By focusing on system and subsystem level and calculating average failure rates along with corresponding confidence 45 

intervals, this work studies the reliability behaviour of wind turbines with a rare and considerable level of detail, providing 

unnormalised KPIs and uncertainty quantifications. The findings reveal detailed insights into the different failure rates of 

onshore versus offshore turbines, the impact of turbine rated power on reliability, and the temporal patterns that characterise 

wind turbine failures. 

This level of granularity in data analysis not only enhances the reliability modelling of current wind turbine fleets but also 50 

serves as a valuable resource for OEMs, operators, and policymakers looking to improve the design and operation of future 

wind farms. The analysis conducted in this study highlights specific reliability challenges as well as opportunities for 

technological improvements and maintenance optimisation, making it an essential input for risk management and decision-

making in the wind energy sector (Ayyildiz and Erdogan, 2024). 

Recognising the sensitivity of the data involved, we have systematically evaluated and implemented measures to ensure the 55 

confidentiality and security of the datasets used in this research. These measures were crucial for protecting proprietary 

information and maintaining the trust of data providers while enabling the comprehensive analysis presented herein. 

In the sections that follow, we provide a thorough review of the current state of the art in wind turbine reliability research and 

outline the methodologies and datasets used in this study. This is followed by an in-depth presentation of the results, discussing 

their implications for both the operational management of wind farms and future research directions. 60 
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2 State of the art literature on wind turbine reliability 

2.1 Overview of wind turbine reliability research 

Understanding wind turbine reliability is crucial for optimising their performance and minimising operational costs, especially 

for offshore installations. Early studies primarily focused on analysing key reliability metrics such as average failure rates, 

mean time to repair, and availability, which are essential for developing maintenance strategies (Tavner et al., 2012). Over the 65 

years, efforts have been made to standardise the collection and analysis of reliability, availability, and maintainability (RAM) 

data across diverse turbine types and environments (Cevasco et al., 2021). Prominent initiatives like the WInD-Pool common 

knowledge base in Germany and the SPARTA program in the United Kingdom have been instrumental in adopting structured 

methodologies to gather operational data from wind farms (Leahy et al., 2019; Fraunhofer IEE, 2018). 

Due to the strict confidentiality of maintenance data, only a limited number of reliability studies have been published. European 70 

initiatives such as WMEP (Hahn et al., 2007), as well as WSD, WSDK, and LWK (e.g. (Tavner et al., 2007; Spinato et al., 

2009)) were among the first to analyse WT maintenance data, covering periods from the 1990s until 2004. More recent studies 

include those from the Reliawind project (Gayo, 2011), the University of Strathclyde (Carroll et al., 2016), the AWESOME 

project (Reder et al., 2016), and the SPARTA initiative (SPARTA, 2017). Additionally, detailed reviews of published failure 

rate statistics have been conducted by (Pfaffel et al., 2017; Cevasco et al., 2021; Artigao et al., 2021; Turnbull et al., 2022). 75 

However, as most of these studies rely on data sets recorded before 2015, with SPARTA being the only initiative providing 

more recent reliability and performance KPIs from 2020/21 (SPARTA, 2022), there remains a need for comprehensive and 

high-quality field data, particularly for modern, larger turbines. 

2.2 Key performance indicators for reliability and O&M assessment 

KPIs are critical for evaluating wind turbine reliability and optimising O&M. Among the most widely used KPIs in reliability 80 

studies are failure rates, mean time to failure (MTTF), mean time to repair (MTTR), and time-based or energy-based 

availability (Pfaffel et al., 2017). An overview of commonly used KPIs is presented in Table 1. The failure rate, typically 

measured as the number of failures per turbine per year, is a fundamental metric that provides important insights into turbine 

reliability and is typically utilised as input for O&M modelling (Donnelly et al., 2024).  

Comparative studies reveal significant differences not only in the aforementioned failure rates but also in further O&M-related 85 

KPIs between onshore and offshore wind turbines and associate these with varying environmental conditions, maintenance 

access, and design complexities (Faulstich et al., 2011). Subsystems such as the pitch system, hydraulic systems, rotor, power 

converter system, generator, and gearbox are often identified as having the highest failure rates (cf. (Carroll et al., 2016; 

SPARTA, 2017)), especially in offshore installations where repairs are more challenging. (Scheu et al., 2017) highlighted that 

corrective maintenance for these critical components often results in substantial downtime, underscoring the need for robust 90 

designs and advanced monitoring systems. 
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Identifying general trends in reliability and maintainability helps operators to pinpoint where reliability improvements could 

lower the levelized cost of energy (LCOE). However, challenges such as inconsistent data collection practices complicate the 

comparison of reliability metrics across different studies. Efforts like those by the International Energy Agency (IEA) Wind 

Task 33 aim to address these challenges by providing standardised frameworks for data collection and analysis (Hahn et al., 95 

2017).  

The variability in methodologies and reliability indicators points to the need for more standardised approaches to provide 

actionable insights. Enhancing RAM databases with detailed failure and operational data is crucial for advancing wind turbine 

design and maintenance strategies (Leimeister and Kolios, 2018). 

 100 

Table 1: Summary table of key performance indicators (KPIs) for wind turbine reliability. 

KPI Definition Importance Common Calculation Methods 

Failure Rate 

Average number of failures 

per unit (e.g., per turbine) 

per year for a specific 

component or subsystem 

Indicates the reliability of wind turbine 

components and subsystems; high failure 

rates can lead to increased maintenance 

costs and downtime 

Empirical analysis using 

maintenance data 

Corrective 

Maintenance 

Rate 

Frequency of corrective 

maintenance interventions  

Indicates the reliability of wind turbine 

components and subsystems 

Empirical analysis of 

maintenance records 

Unscheduled 

Maintenance 

Rate 

Frequency of maintenance 

activities related to 

unexpected failures  

High rates suggest frequent unexpected 

failures and may affect downtime and 

operational planning 

Empirical data analysis from 

maintenance reports 

Preventive 

Maintenance 

Rate 

Frequency of preventive 

maintenance interventions 

Helps in understanding the maintenance 

strategy; high rates suggest that 

preventive maintenance interventions and 

associated costs are accepted to prevent 

failures 

Empirical data analysis from 

maintenance reports 

Mean Time 

to Failure 

(MTTF) 

Average time to failure for a 

non-repairable specific 

component or subsystem 

Helps in understanding the expected 

lifespan of components; a higher MTTF 

indicates better reliability 

Empirical data analysis from 

maintenance reports 
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Mean Time 

to Repair 

(MTTR) 

Average time required to 

repair a failed component or 

subsystem and restore it to 

operational condition 

Critical for planning maintenance 

resources and minimising downtime; a 

lower MTTR indicates more efficient 

maintenance processes 

Empirical analysis based on 

maintenance records 

Mean Time 

Between 

Failures 

(MTBF) 

Average time between 

successive failures of a 

repairable system or 

component 

Indicates the reliability of wind turbine 

components and subsystems; a higher 

MTBF indicates better reliability 

Calculated as the inverse of the 

average failure rate 

Availability 

(time-based) 

The proportion of time a 

wind turbine is operational 

and capable of generating 

power 

Reflects overall performance and 

reliability of wind turbines; high 

availability is key to maximising energy 

production and minimising losses 

Time-based calculations using 

operational and downtime data, 

i.e. typically SCADA data; 

Markov models 

Downtime 

Total time during which a 

wind turbine is not 

operational due to failures or 

maintenance 

Directly impacts energy yield and 

economic returns; high downtime leads to 

significant losses in revenue 

Derivation from SCADA data 

 

2.3 Common causes of failures and reliability challenges reported in literature 

Understanding the prevailing causes of failures in wind turbines is crucial for enhancing their reliability and maintenance 

strategies. In the literature, the following failure modes and causes are reported: The gearbox frequently fails due to bearing 105 

and gear fatigue, misalignment, and lubrication issues, leading to significant downtime (Carroll et al., 2016; Reder et al., 2016). 

Additionally, tribological failures such as pitting and scuffing affect gearboxes due to inadequate lubrication. The generator 

faces electrical and mechanical failures such as stator faults and insulation degradation due to electrical surges and thermal 

stresses (Kavakli and Gudmestad, 2023). Power converter failures are dominated by failures of the power semiconductor 

modules, their driver boards, the converter control system as well as the cooling system (Fischer et al., 2019a; Fischer et al., 110 

2023). The pitch system is vulnerable to mechanical wear from continuous blade angle adjustments in varying wind conditions 

(Li et al., 2022). Meanwhile, blades are prone to erosion, fatigue, and lightning strikes, affecting turbine performance (Lopez 

and Kolios, 2022). 

Common failure mechanisms include fatigue, particularly in moving parts like blades and gear teeth due to cyclic loading. For 

many years, fatigue due to power and thermal cycling was postulated to be the main failure mechanism also in power 115 

converters, until comprehensive field-data and damage analyses revealed that climatic influences, which drive corrosion and 

affect insulation integrity in the converter, play a more important role in the wind-power application (Fischer et al., 2019a; 
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Fischer et al., 2019b). Corrosion is a relevant failure mechanism also for support structures, especially in offshore environments 

where saltwater accelerates degradation (Scheu et al., 2019; Tremps et al., 2024).  

It is important to keep in mind that the detailed identification of failure root causes and the underlying mechanisms can be a 120 

complex and laborious task, often requiring comprehensive data evaluation and analyses of damaged components. As the 

above example of power converters shows, there is a certain risk that hypotheses or postulates about prevailing failure 

mechanisms propagate through the literature and divert attention from the reality observed in the field. 

2.4 Impact of turbine design, manufacturer and age on reliability 

The reliability of wind turbines is significantly influenced by their design and the manufacturer. Studies have shown that design 125 

choices, such as drivetrain configurations (e.g., geared vs. direct drive) and control systems, affect failure rates and 

maintenance needs (Carroll et al., 2015; Carroll et al., 2018). For instance, direct-drive turbines eliminate the gearbox, reducing 

failures associated with gears and bearings, but they may have higher rates of electrical component failures due to the larger 

size and complexity of the generator and converter systems. Additionally, differences in manufacturing quality and component 

selection between manufacturers can lead to variability in reliability performance (Dahane et al., 2015). Standardisation, 130 

stringent quality control during the design and manufacturing phases as well as test-based reliability validation are essential to 

reduce such variability, ensuring consistent reliability across different turbine models and brands. 

The operating age of wind turbines also significantly impacts their reliability. As turbines age, wear and tear from continuous 

operation, exposure to harsh environmental conditions, and fatigue loading can lead to increased failure rates (Tavner et al., 

2012). Studies indicate that older turbines often experience failures in components such as blades, gearboxes, and electrical 135 

systems, which degrade due to prolonged exposure to mechanical stresses and environmental factors like temperature and 

humidity variations (Le and Andrews, 2015). Other subsystems, such as the power converter, exhibit pronounced early failures 

(Anderson et al., 2025). In general, failure patterns of technical systems typically follow a "bathtub curve”, where failure rates 

are decreasing during the early-failure phase, remain relatively constant during a "useful life" phase, and increase again as 

components degrade in the deterioration phase (Rigdon and Basu, 2000). Understanding these patterns is crucial for optimising 140 

maintenance strategies and extending the operational life of wind turbines. 

2.5 Data-driven approaches and advanced analytical methods 

The use of big data and machine learning (ML) has transformed the field of wind turbine reliability analysis, enabling more 

accurate early fault detection and enhanced maintenance strategies. Recent advancements leverage data-driven approaches 

using large datasets from SCADA (Supervisory Control and Data Acquisition) systems, which provide high-frequency data 145 

on turbine operations and performance (Zaher et al., 2009; Encalada-Dávilla et al., 2021). Machine learning techniques such 

as neural networks, random forests, and support vector machines have been employed to detect patterns in operational data, 

predict failures, and optimise maintenance schedules, thereby reducing downtime and maintenance costs (Black et al., 2021; 

Kusiak and Verma, 2011; Lorenzo-Espejo et al., 2022). AI-based predictive maintenance approaches also incorporate data 
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fusion techniques that combine SCADA data with environmental and maintenance records, offering a more comprehensive 150 

view of turbine health and enabling proactive interventions (Jeong et al., 2020). 

Recent meta-analyses and systematic reviews have consolidated findings across multiple studies to provide higher-level 

insights into wind turbine reliability management. For example, a meta-analysis by (Dao et al., 2019) aggregated reliability 

data from diverse sources, revealing trends in failure rates and highlighting critical components that require attention. These 

reviews often use statistical methods to compare data from different regions, turbine types, and operating conditions, offering 155 

a benchmark for reliability performance. By synthesising data from various studies, systematic reviews inform best practices 

for condition monitoring, component design, and maintenance planning, addressing gaps in existing literature and guiding 

future research. Such efforts help standardise reliability metrics and improve the robustness of reliability models, ensuring 

more effective asset management strategies for both onshore and offshore wind farms. 

2.6 Knowledge gaps and contribution of the present study 160 

Despite significant advancements in wind turbine reliability research, several gaps remain. A summary of those is shown in 

Table 2. Many studies rely on limited sample sizes and data from specific regions, which may not accurately represent broader 

operational contexts (Leahy et al., 2019). There is also a lack of comprehensive field data that captures the full spectrum of 

failure modes and environmental influences, especially for offshore turbines (Cevasco et al., 2021). This is often related to 

strict data confidentiality. Additionally, existing research often focuses only on a few subsystems (e.g. (SPARTA, 2017)), 165 

leading to gaps in reliability modelling. For example, (Hart et al., 2020) highlight that main bearings are frequently overlooked 

in reliability analyses. In reliability analyses, ensuring the recentness of data and coverage of modern WT technology remains 

a key challenge. As a result, many studies frequently reference literature based on older data sets that primarily reflect outdated 

turbine technology. 

 170 
Table 2: Summary table of research gaps. 

Research Gap Description 

Limited sample sizes Many studies use data from small, specific samples, limiting the generalisability of the findings. 

Lack of diversity in field 

data 

Inadequate data coverage on different environments and conditions, especially for offshore sites 

Insufficient coverage of 

certain subsystems 

Underrepresentation of specific subsystem failure types or insufficient reliability data for 

certain subsystems 

Lack of recent field data Most studies are based on old data sets, not covering modern WT technology. 

Need for standardisation 

and harmonisation 

Lack of standard methodologies and definitions across studies complicates comparative 

analysis. 
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This study aims to address these gaps by using a more representative sample size and conducting a comprehensive analysis of 

both onshore and offshore wind turbine maintenance data. By integrating diverse datasets including modern turbine technology 175 

and systematically evaluating failure modes across various subsystems, this research offers a more holistic view of turbine 

reliability which is applicable for future wind farm design and operation. 

3 Methodology and evaluated data sets 

3.1 Methodology 

3.1.1 Field-data collection and pre-processing 180 

Maintenance reports, which are available for each visit of a wind turbine, of more than 1000 wind turbines were collected 

making an effort to include a variety of turbine types of both onshore and offshore turbines. Attention was paid to incorporate 

recently commissioned turbines as well as having data sets of turbines which have a certain track record already. This leads to 

a unique field-data collection with respect to its size, diversity and recentness.  

Maintenance records include information about what maintenance intervention was carried out on which turbine on which 185 

date. Those reports can have different lengths and levels of detail. Typically, at least spare parts and / or work descriptions are 

recorded which allow one to understand what kind of work technicians have performed on the turbines. In order to conduct 

different reliability analyses, the data needs to be machine-readable and comparable even though the reports stem from 

different organisations and sites. Within this study standards and guidelines like the reference designation system RDS-PP for 

wind turbines (VGB PowerTech, 2014) and the State-Event-Cause-Code “ZEUS” (FGW e.V. - Fördergesellschaft 190 

Windenergie und andere Erneuerbare Energien, 2013) are utilised to support the pre-processing. RDS-PP is used to classify 

maintenance interventions according to the components and subsystems that were maintained. Using ZEUS, activities 

performed by technicians are labelled as corrective and preventive and further differentiated according to the specific 

maintenance action undertaken. The pre-processing results in a comprehensive field-data base covering: 

• Wind turbine ID and respective wind farm 195 

• Wind turbine manufacturer and type 

• Commissioning date of the turbine 

• Rated power of the turbine 

• Technical information about the different subsystems 

• Coordinates of the turbine  200 

• Data provider 

• Time stamps of start and end date of each maintenance activity 

• Number of technicians involved 

• Components and subsystems affected (standardised codes of RDS-PP) 
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• Type of maintenance activity (standardised codes of ZEUS) 205 

3.1.2 Reliability analyses 

In order to assess O&M activities and WT reliability performance, different reliability analyses are performed and KPIs 

computed. Respective KPIs can be utilised for benchmarking of different assets, understanding failure patterns as a basis for 

developing countermeasures, or as input for development and O&M simulation of future wind farms.  

KPIs are assessed for corrective and preventive maintenance interventions. Particular attention is paid to failures of 210 

components and subsystems as those are afflicted with costly downtimes requiring maintenance and the use of spare parts. 

Within this study, a failure is defined as an event necessitating corrective maintenance (ZEUS code “02-08-01”) and which is 

not resettable but requires a component to be replaced (ZEUS code “02-09-09-01”). Note that, consequently, events remedied 

by means of e.g. retightening, cleaning or refilling are not considered as a failure. In order to compare reliability KPIs of 

different components, sub-systems and overall turbines, the following average rates are calculated: 215 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑐 =
∑ 𝐶𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝐶

𝑇
 ,        (1) 

𝑝𝑟𝑒𝑣𝑒𝑛𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑝 =
∑ 𝑃𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑃

𝑇
 ,        (2) 

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑓 =
∑ 𝑁𝑖

𝐼
𝑖=1

∑ 𝑋𝑖𝑇𝑖
𝐼
𝑖=1

=
𝑁

𝑇
 ,          (3) 

Herein, 𝐶𝑖 is the number of corrective maintenance visits, 𝑃𝑖  is the number of preventive maintenance visits, and  𝑁𝑖 is the 

number of failures of the analysed component or subsystem in the time interval 𝑖. 𝑋𝑖 is the number of WTs analysed within 220 

this time interval of duration 𝑇𝑖 . Consequently, the average rates are equal to the quotient of the sum of all corrective, preventive 

or failure events, 𝐶, 𝑃 and 𝑁, respectively, and the total amount of considered WT operational years 𝑇.  

As WTs of different power classes are included in the analyses, next to average rates per WT and year, average rates per rated 

capacity in MW and year are also calculated.  

Moreover, confidence intervals for the failure rates are computed to quantify the uncertainty stemming from the size of the 225 

data sets. According to (Bain and Engelhardt, 1991), the confidence intervals for failure rates based on time-censored data are 

estimated using Eq. (4): 

[
𝜒2(

𝛼

2
,2𝑁)

2𝑇
,

𝜒2(1−
𝛼

2
,2𝑁+2)

2𝑇
]           (4) 

Herein, 𝜒2(𝛼/2,2𝑁) is the (𝛼/2)-quantile of the 𝜒2 distribution with 2𝑁 degrees of freedom. In this study, 𝛼 = 0.1 is utilised 

to provide confidence intervals with a confidence level of 90%. As explained in more detail in (Fischer et al., 2019a), these 230 

confidence intervals based on sample data are to be interpreted in terms of frequency: if a large number of samples (in this 
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case failure or maintenance data sets covering a part of a WT population) was evaluated, the confidence intervals determined 

according to Eq. (4) would cover the true value of the failure rate in 90% of the cases.  

3.2 Evaluated data sets 

The data sets underlying this analysis are based on maintenance reports of onshore and offshore wind turbines. In total, more 235 

than 4200 operational years are covered. A detailed overview of the data sets is provided in Table 3. While the offshore data 

stem from turbines of four different OEMs with turbine capacities ranging up to 9 MW, the onshore data comprise turbines of 

nine different manufacturers. In total, 1089 WTs located in seven different European countries are considered in the present 

study. 

 240 

Table 3: Information about the data sets which have been considered in the analysis. 

 Offshore Onshore 

WT operational years considered 1755 2489 

Number of WT OEMs covered 4 9 

Rated capacity considered Up to 9 MW 

Available data period 2006-2024 

 

The data set analysed in this study encompasses the following technical concepts: 

• Pitch system: hydraulic, electrical 

• Drive train concepts: geared, direct drive, hybrid drive 245 

• Generator types: doubly-fed induction generator (DFIG), electrically excited synchronous generator 

(EESG), permanent magnet synchronous generator (PMSG), squirrel-cage induction generator (SCIG); 

including low voltage (LV) and medium voltage (MV) generators 

• Converter technology: air-cooled, liquid-cooled; including LV and MV converters 

While it is important to include data of both, WTs which have been operated already for some time to analyse failure behaviour 250 

over time and WTs which have just recently been commissioned to incorporate newest technologies, this leads to a diverse 

data set of different turbine generations. The data period analysed in this study is nearly identical for both onshore and offshore 

WTs. Note that 12.5% of the WTs have a capacity smaller than 2 MW. Most WTs covered within this study can be considered 

as recent turbine technology. 
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4 Results and discussion 255 

4.1 Comparison of failure rates for onshore and offshore wind turbines 

Figure 1 and Figure 2 illustrate a comparative analysis of failure rates for onshore and offshore WTs, calculated per WT and 

year, as well as per MW of turbine capacity and year, respectively. In addition to presenting the average failure rate of the 

entire WT, Table 5 provides the average failure rates for all 29 subsystems defined by RDS-PP, along with a corresponding 

translation of RDS-PP codes. For better clarity in the presentation of results, the analysis in this section is limited to the eleven 260 

most critical subsystems, selected based on failure frequency. Components that could not be unequivocally assigned to a 

specific subsystem are categorised under “G”, representing “other components”. It is important to note that the sum of all 

subsystem failure rates exceeds the overall WT failure rate, as certain failure events involve the replacement of components 

across multiple subsystems. 

 265 

 

Figure 1: Failure-rate comparison per WT and year of onshore and offshore WTs including the eleven most critical subsystems. 

 

https://doi.org/10.5194/wes-2025-212
Preprint. Discussion started: 24 October 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

 

Figure 2: Failure-rate comparison per MW of turbine capacity and year for onshore and offshore WTs including the eleven most 270 
critical subsystems. 

 

The comparison of average failure rates per WT and year indicates a higher reliability of onshore WTs (3.3 vs. 4.3 failures per 

offshore WT and year), consistent with findings frequently reported in the literature (Cevasco et al., 2021). However, when 

normalised per MW and year, the data reveal that onshore WTs exhibit a higher failure frequency per WT capacity, with an 275 

average failure rate of 1.729 failures per MW per year, compared to 1.088 failures per MW per year for offshore WTs. Given 

the strong dependence of average failure rates on WT size – shown e.g. in (Spinato et al., 2009; Koukoura, 2019; Walgern et 

al., 2023; Anderson et al., 2025), and also found in our analyses – further analysis and interpretation are based exclusively on 

failure rates normalised per MW and year. While for onshore WTs the subsystems rotor system (MDA) including the pitch 

system, the control system (MDY), the drive train system (MDK), and the converter system (MSE) are identified as most 280 

critical, for offshore WTs the highest failure rates are recognised for the subsystems rotor system, control system, lifting gears 

(XMM), and converter system. In previous publications by Fraunhofer IWES, which focused exclusively on the power 

converter, the converter subsystem also encompassed failures related to main circuit breakers and contactors (cf. (Fischer et 

al., 2019a; Fischer et al., 2019b; Fischer et al., 2023; Anderson et al., 2025)). In contrast, this study categorises these failures 

separately within the “Generator Switching System” (MSC) subsystem in order to follow the RDS-PP classification. 285 

Additionally, while some of our earlier studies normalised failure rates based on the rated power of the converter, it is important 

to note that in the present analysis all failure rates, including that of the converter system, are normalised by the rated power 

of the turbine.  
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Note that the drive train system covers the subassemblies rotor bearing, speed conversion, drive train brake, high speed shaft, 

drive train auxiliary systems, main and offline gear oil systems, oil lubrication system, rotor lock, rotor slewing unit, and drive 290 

train cooling system. Therefore, the subsystem is evaluated across both WTs with and without gearboxes. A more detailed 

examination of the MDA system category reveals that for onshore WTs the pitch system accounts for approximately 80.8% of 

MDA system failures, whereas for offshore WTs it constitutes nearly 82.5% of failures within this category (cf. Table 5). 

Provided KPIs in Table 5 can be utilised for estimating failures and maintenance interventions. However, it is important to 

note that the failure behaviour is not solely characterised by turbine size making more sophisticated reliability models necessary 295 

to support such analysis.  

4.2 Failure-rate comparison across WT OEMs 

Although it is common practice to report average failure rates derived from mixed fleets comprising different WT types, as 

presented in Section 4.1, this approach carries inherent risks. Reporting only a group-averaged failure rate without further 

differentiation might obscure major reliability differences, which can serve as key indicators for root-cause analysis and design 300 

optimisation. To address these limitations, an OEM-specific analysis is performed. Figure 3 and Figure 4 present the average 

failure rates of offshore WTs from four different OEMs and onshore WTs from six different OEMs. Where a manufacturer is 

included in both Fig. 3 and Fig. 4, they do not share the same label for confidentiality reasons. This means that OEM1 in Fig. 

3 is not the same manufacturer as OEM1 in Fig. 4. 

 305 

 

Figure 3: Failure-rate comparison per MW and year across WT OEMs of offshore assets. 
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Figure 4: Failure-rate comparison per MW and year across WT OEMs of onshore assets. 310 

 

To ensure that the comparison reflects only technological differences, failure rates are again normalised per MW and year. 

Analysis results reveal significant disparities in failure rates between WTs from different manufacturers. For offshore WTs, 

the average failure rate for OEM1 is 1.6 to 2.4 times higher than that of the other three OEMs, with a distinct failure rate of 

1.7 failures per MW per year. In the case of onshore WTs, failure rates range between 1.5 and 2.5 failures per MW per year. 315 

The variability in confidence intervals reflects the uncertainty associated with the sizes of the underlying data subsets. While 

datasets for all offshore OEMs and onshore OEMs 2 and 4 include at least 1100 MW-years, analysis for onshore OEMs 1, 3, 

5, and 6 are based on smaller datasets ranging from 200 to 330 MW-years. Onshore OEMs 7, 8, and 9 are excluded from this 

analysis due to insufficient sample sizes. Overall, onshore OEM failure rates generally exceed those of offshore OEMs, with 

the exception of offshore OEM1, which exhibits a failure rate comparable to the three best-performing onshore OEMs. 320 

4.3 Failure-rate behaviour through time 

An essential aspect of reliability analysis is the evolution of failure behaviour over time. This is assessed by calculating failure 

rates across different operating years. To isolate the effect of WT aging, the analysis is conducted for specific WT types, 

avoiding the confounding influence of mixed turbine designs. As an example, Fig. 5 presents a comparison of normalised 

failure rates across different operating years, grouped into five periods of WT operating age, for a single WT type including 325 

eight representative subsystems. 
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Figure 5: Comparison of normalised failure rates across different operating years for a specific WT type including eight exemplary 330 
subsystems. 

 

The failure rate trajectory for the entire WT system follows the characteristic shape of a bathtub curve (Pulcini, 2001): During 

the initial years of operation, elevated failure rates are observed, corresponding to early failures. Over time, failure rates 

decline, reaching a lower and more stable level through operating years 5 to 8. In contrast to the typical shape of the bathtub 335 

curve implying low and constant failure rates for a long period of the operational life, this phase is found to be surprisingly 

short in the investigated WT fleet. From year 9 onward, failure rates increase again, indicative of degradation-related failures. 

Although confidence intervals show a slight overlap between some groups, the overall trend is clearly visible and observable 

across different WT types, both onshore and offshore.  

The failure behaviour of individual subsystems varies significantly depending on the specific subsystem under analysis. While 340 

certain subsystems, such as the drive train system (MDK), yaw system (MDL), and converter system (MSE), exhibit a failure 

trend similar to that of the overall WT system, others, such as the central hydraulic system (MDX) and the power generation 
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system (MKA), show a steadily increasing trend suggesting that these are primarily suffering from degradation-related failures. 

Additionally, some subsystems do not display a distinct trend due to overlapping confidence intervals, either because no 

distinct trend exists, or the dataset is too limited to detect one. These findings emphasise that the well-established bathtub curve 345 

in reliability modelling results from the superposition of different failure mechanisms and trends.  

4.4 Other O&M relevant KPIs 

When utilising reliability data for O&M simulations or OPEX calculations, additional O&M KPIs beyond failure rates are 

required as input. To address this, further analyses based on the offshore data subset are presented in the following. These 

include a comparison of corrective and preventive maintenance interventions, an analysis of major component replacements 350 

(MCR), and an evaluation of average repair times and the average number of maintenance technicians required per failure 

event and subsystem. Due to limited access to cost data and the impact of inflation, cost figures for spare parts are not provided, 

as comparisons across different datasets and years would be challenging. Reference values can be found in (Carroll et al., 

2016; BVG Associates, 2019; Stehly et al., 2024).  

4.4.1 Comparison of corrective and preventive maintenance interventions  355 

Within this study the failure definition is based on the consumption of spare parts, while other corrective maintenance activities 

not requiring spare parts are classified under the category “Corrective Maintenance other”. In addition to addressing failure 

events and conducting troubleshooting and repairs – both classified as corrective maintenance interventions – technicians are 

also responsible for preventive maintenance interventions, such as scheduled maintenance. Furthermore, statutory inspections, 

functional tests, condition monitoring related activities – such as oil sampling – and routine tasks like topping up coolants or 360 

lubricants are categorised as preventive maintenance interventions. Figure 6 displays the corresponding maintenance rates per 

MW and year. 

 

 

Figure 6: Comparison of corrective and preventive maintenance interventions for offshore wind assets differentiating corrective 365 
interventions into failures and other corrective maintenance. 
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As detailed in Section 5.3, offshore WTs experience an average of 1.088 failures per MW per year. For example, this is 

equivalent to 5.4 failures per year for a 5 MW turbine and 10.9 failures per year for a 10 MW turbine. Additionally, the category 

“Corrective Maintenance other” accounts for 1.651 interventions per MW and year, while preventive maintenance actions total 370 

2.664 interventions per MW and year. In total, this results in 5.403 maintenance interventions per MW per year. This translates 

to approximately 27 maintenance interventions annually for a 5 MW WT and to around 54 maintenance interventions for 10 

MW WT. Similar intervention frequencies are observed across offshore wind farms with different WT power classes included 

in the data sets used for this analysis.  

4.4.2 Major component replacements 375 

The average failure rates per subsystem presented above are based on all corrective maintenance interventions involving the 

use of spare parts, regardless of the size or cost of the replaced component. To provide further details relevant for O&M 

simulations, a distinction is made between total major component replacements (MCR) and those that specifically require a 

jack-up vessel (JUV), as outlined in (The Crown Estate, 2014). MCR encompasses replacements across six subsystems: the 

rotor system (MDA), the drive train system (MDK), the power generation system (MKA), the generator transformer system 380 

(MST), the nacelle (MUD), and the tower system (UMD). The components considered for each subsystem are listed in Table 

4. Average offshore MCR rates as well as rates of interventions requiring a JUV are presented in Table 5.  

 

Table 4: Considered components for major component replacements (MCR) and MCR requiring a jack-up vessel (JUV). 

Subsystem MCR requiring no JUV MCR requiring a JUV 

Rotor system (MDA) - blade, hub, blade bearing 

Drive train system (MDK) damaged high and low speed shaft main bearing, gearbox, rotor shaft assembly 

Power generation system (MKA) generator bearings generator 

Generator transformer system (MST) - transformer 

Nacelle (MUD) - nacelle 

Tower system (UMD) - tower, transition piece, foundation 

 385 

 

With an average of 0.0209 MCR per MW and year, the power generation system MKA accounts for the highest MCR rate, 

followed by the drive train system MDK at 0.0149 MCR per MW and year. Of these, 0.0097 MCR per MW and year require 

a JUV, making the drive train system the primary contributor to MCR events necessitating a JUV. For the rotor system MDA 

only blade and blade bearing replacements were observed, while no MCR events were recorded for the nacelle, tower, 390 

transition piece, or foundation. Across the entire WT, the total MCR rate is 0.0366 per MW and year, with 0.0117 MCR per 
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MW per year requiring a JUV. For a wind farm comprising 50 WTs, each with a rated capacity of 10 MW, this corresponds 

to approximately 37% of WTs undergoing a MCR annually, with 12% requiring a JUV – equivalent to roughly six WTs. 

4.4.3 Average repair time 

The average repair time per subsystem is displayed in Table 5. It represents the total duration from the technicians’ arrival  to 395 

their departure from the turbine, regardless of the number of personnel involved in the maintenance intervention. Unlike 

downtime or time to repair, it does not account for travel time, lead time of spare parts, delays due to inaccessibility, or other 

external factors (Carroll et al., 2016). It is important to note that the average repair time is calculated across all failure events 

without distinguishing between failure severity. On average, component replacements for the overall WT system require 2.7 

hours. Other corrective maintenance activities take approximately 1.5 hours, while preventive maintenance tasks involve an 400 

average technician presence of 3.8 hours.  

The longest repair times are observed for the drive train system, rotor system, generator transformer system, and converter 

system. While extended repair durations are expected for subsystems containing major components, their overall impact on 

turbine availability remains limited due to relatively low failure rates in most cases. In contrast, the power converter system 

has a substantial effect on availability, as it exhibits both a high failure rate and prolonged average repair time.  405 

4.4.4 Average number of technicians required 

Similarly to the average repair time, the average number of technicians required per maintenance intervention for each 

subsystem is shown in Table 5. This value represents the mean number of technicians who recorded working hours on the WT 

or were listed in maintenance records. However, this information was available for only half of the WTs in the offshore data 

set, resulting in a reduced sample size for analysis. Consequently, the data set is insufficient to provide specific figures for 410 

MCR beyond the overall averages for all failure events. As a result, the variation in technician requirements across subsystems 

is relatively small, ranging from 1.9 technicians for the common cooling system to 3.5 technicians for the generator transformer 

system and generator switching system. On average, 2.5 technicians are required for both other corrective maintenance 

activities and preventive maintenance interventions.  

4.5 Comparison with results from literature  415 

Although a direct comparison with existing literature is not feasible due to variations in turbine sizes, technologies, and 

generations considered in different studies, this section aims to contextualise the findings of this paper within the existing body 

of reliability and O&M research. For offshore WTs, studies by the University of Strathclyde (Carroll et al., 2016) and SPARTA 

(SPARTA, 2017; SPARTA, 2022) are referenced, while for onshore turbines, comparisons are drawn with findings from 

WMEP (Faulstich et al., 2011), Reliawind (Gayo, 2011) and AWESOME (Reder et al., 2016). However, direct comparisons 420 

remain challenging due to differences in categorisation systems and variations in KPI definitions. For example, Carroll et al. 

report annual failure rates, whereas SPARTA provides monthly repair rates. This shows that the definition of failure itself 
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varies across studies. (Anderson et al., 2023) emphasise that such differences in failure definitions in field-data-based studies 

significantly impact the reported KPI values. Despite these challenges, a general comparison remains valuable to place our 

results in the context of other research work.  425 

For onshore WTs, an overall average failure rate of 1.729 failures per MW and year has been determined in the present study, 

with the pitch system, control system, drive train system, and converter system identified as the most critical subsystems. 

Similar findings were reported by (Faulstich et al., 2011), who calculated an annual failure rate of 2.4 failures per WT – 

consistent with the smaller rated capacities of the turbines in their study – while also highlighting the electrical and control 

systems as particularly critical. Although (Gayo, 2011) reported only normalised failure rates, their findings similarly identified 430 

the power module (including power converter, generator, transformer and switchgears), rotor module (including pitch system, 

blades and hub), control system, and drive train system among the five most frequently failing subsystems. In contrast, (Reder 

et al., 2016) highlight the gearbox, the blades, the blade brake, generator, and controller as most critical, while reporting lower 

normalised failure rates for the pitch system and the frequency converter.  

For offshore WTs, an annual average failure rate of 1.088 per MW have been determined in this study. (Carroll et al., 2016) 435 

reported approximately 7.8 failures per turbine per year, including major component replacements, as well as major and minor 

repairs, for turbines with rated capacities between 2 and 4 MW. Transforming the findings of our study to a 3 MW turbine 

results in an estimated 3.3 failures per turbine and year, which appears significantly lower. However, considering discrepancies 

in failure definitions and incorporating the additional 1.651 interventions per MW per year associated with corrective 

maintenance interventions beyond component failures, the estimated corrective maintenance rate reaches approximately 8.2 440 

for a 3 MW turbine – closely aligning with the figures reported by (Carroll et al., 2016). This highlights the substantial impact 

that failure definitions and the inclusion criteria for corrective maintenance activities have on reported failure rates. 

Regarding the most failure-prone subsystems of offshore WTs, the pitch system, control system, and converter system have 

emerged as critical in our study, consistent with the top four failing subsystems identified in the (SPARTA, 2017) report. 

Similarly, (Carroll et al., 2016) highlighted the pitch system as a major contributor to failure events. Furthermore, significant 445 

differences in annual failure rates were observed across different OEMs, a finding also noted by (SPARTA, 2022) when 

comparing forced outages per turbine between two OEMs for selected subsystems.  

The analysis has also revealed variations in failure behaviour over time, with the overall WT system following the characteristic 

bathtub curve. At the same time, different subsystems exhibit different failure trends. (Faulstich et al., 2011) reported a similar 

trend for overall onshore WTs. (SPARTA, 2022) assessed temporal patterns for repairs for specific components and 450 

subsystems not directly comparable with failure events and their trends evaluated within this study. The increasing repair rate 

observed for the generator in the SPARTA evaluation aligns with the trends found for the power generation system (MKA) in 

the present study, whereas other subsystems are not directly comparable due to differences in component classification. 

Regarding major component replacements, both this study and (Carroll et al., 2016) identified the power generation system 

and drive train system as the primary contributors to JUV interventions. Finally, reported average repair times and the number 455 

of technicians required for replacements were compared with findings from (Carroll et al., 2016). Repair times in this study 
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were generally lower than those reported by Carroll et al., even when compared with Carroll’s “minor repairs” category, which 

primarily includes small spare parts driving overall failure rates. On average, 2.8 technicians were required per replacement 

according to our results, which is in the same range as the figures reported in (Carroll et al., 2016). 

  460 
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5 Conclusions and outlook 

This study provides a comprehensive analysis of failure rates for offshore and onshore wind turbines (WTs), as well as repair 465 

times and maintenance resource requirements for offshore assets, with a particular focus on subsystem-level reliability. Based 

on real-world maintenance data from over 1000 onshore and offshore WTs covering more than 4200 operational years, this 

data set offers unique diversity, size and recentness when compared to those used in previous reliability studies. The results 

highlight that while onshore WTs exhibit lower failure rates per turbine and year, their failure rates per megawatt and year are 

higher compared to offshore WTs. Given the strong dependence of failure rates on the turbines’ rated power, further analyses 470 

have been conducted based on failure rates per MW and year to ensure comparability. Onshore WTs exhibit an average failure 

rate of 1.729 failures per MW per year, whereas offshore WTs demonstrate a lower annual average failure rate of 1.088 failures 

per MW. 

The analysis of subsystem-level failure rates has revealed that certain components, such as the pitch system (0.314 vs. 0.164 

failures per MW and year), the control system (0.255 vs. 0.127 failures per MW and year), and the converter system (0.223 475 

vs. 0.124 failures per MW and year), contribute disproportionately to overall WT unreliability for both onshore and offshore 

turbines. While the drive train system exhibited notably high failure rates for onshore WTs, offshore WTs experienced elevated 

failure rates in the lifting gear system. Particularly the power converter system has been identified as a critical subsystem due 

to its combination of a high average failure rate and extended repair duration, making it a major factor affecting overall WT 

availability next to long-lasting replacement campaigns of major components. Additionally, major component replacements 480 

(MCR) have been analysed, distinguishing between those requiring a jack-up vessel (JUV) and those that do not. The power 

generation system and drive train system accounted for the majority of MCRs, with the latter also being responsible for the 

highest share of JUV-requiring replacements.   

The study has also examined failure behaviour through time, demonstrating that the overall WT failure pattern follows the 

well-established bathtub curve, with high early failure rates, a period of stability, and increasing failure rates due to degradation 485 

in later years of turbine operation. However, subsystem-specific trends vary, with some following the same pattern as the 

overall WT and others dominated by degradation failures or displaying no clear trend.   

In addition to failure rates, i.e. the frequency of corrective measures including spare-part consumption, corrective maintenance 

interventions without spare-part use and preventive maintenance tasks have also been analysed. On average, 2.7 hours are 

required for component replacements, while other corrective maintenance and preventive maintenance activities take 1.5 hours 490 

and 3.8 hours, respectively. The number of technicians required per maintenance intervention varies by subsystem, ranging 

from 1.8 to 3.5 technicians, with an overall average of 2.5 technicians per other corrective and preventive maintenance task. 

While major component failures have significant repair times, their relatively low failure rates limit their impact on availability. 

In contrast, frequently failing subsystems such as the power converter system have a substantial influence on turbine 

performance and should be prioritised in reliability-driven design improvements.   495 
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Our findings emphasise the importance of detailed, subsystem-level reliability analyses to enhance the accuracy of O&M 

simulations and operational expenditure (OPEX) calculations. Aggregated failure rates derived from mixed turbine fleets may 

obscure critical differences in reliability between turbine types, underscoring the necessity of subgroup-specific analyses. At 

the same time, the coverage of a variety of WT types and manufacturers is an important prerequisite for providing 

representative results.  500 

Ultimately, this study underscores the complexity of WT reliability and maintenance planning, highlighting the need for 

continued field-data based analysis to optimise O&M strategies and improve the long-term sustainability of wind energy 

operations. Future research will extend beyond basic failure rate calculations to develop advanced reliability models that 

capture temporal trends in failure behaviour and quantify the effect of various factors on reliability, including design aspects 

and operating conditions.  505 
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