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Abstract. Wind turbines are pivotal in the transition towards renewable energy. The operational conditions of these 

machines are continuously monitored through sensors that measure key indicators of efficiency and performance, including 10 

yaw angles, rotational speed, and vibrations. However, sensors are subjected to wear, degradation and consequent reduction 

in data reliability over time, which provides scope for developing a consistent and effective method to detect 

misinterpretation of turbine operating conditions caused by faulty measurements.  

This research presents a novel method that integrates Computational Fluid Dynamics (CFD) simulations into a Digital Twin 

(DT) model to detect and correct yaw misalignment caused by faulty wind direction readings. Yaw error is estimated by 15 

interpolation across CFD-based performance data using live sensor measurements. The novel DT-based method was 

validated through experimental testing on a small-scale horizontal-axis wind turbine. 

The results provide scope for a significant improvement in the resilience of wind turbines under conditions of sensor 

malfunctions, without the need for human intervention or supervision.   

The proposed method is intended to be adaptable, enabling analysis of diverse failure modes under varying operational 20 

conditions. This work also advances condition monitoring and sustainable asset management, offering potential for a larger 

adoption across different turbomachinery applications.  

1 Introduction 

In today’s energy landscape, wind turbines play a crucial role in decreasing dependence on fossil fuels and addressing 

climate change (Bashir, 2022; Duranay et al., 2024; Veers et al., 2022). The wind energy sector is rapidly growing, with its 25 

share of global electricity generation expected to rise from 5 % to 30 % by 2050 (Arshad and O’Kelly, 2019; Farina and 

Anctil, 2022), consequently, large investigations are conducted to make sure that the utilization of these systems is exploited 

at its full potential, limiting factors that may compromise efficiency and effectiveness in energy production. Condition 

monitoring is critical for ensuring the reliable and cost-effective operation of wind turbines, leveraging both conventional 
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signal processing methods and innovative big data analysis to support predictive maintenance strategies (Benbouzid et al., 30 

2021; Khan and Byun, 2023). 

Faulty sensors represent a significant risk to wind turbine performance by providing incorrect information and initiating 

ill-informed control measures. These errors can lead to various faults, including accelerated component wear, overheating, 

and rotor imbalance (Kini et al., 2023; Liu et al., 2022).  

This paper focuses on one critical consequence of such sensor faults: yaw misalignment, with a specific focus on static 35 

yaw misalignment, which is a constant offset between the nacelle position and the actual wind direction. This type of 

misalignment often results from sensor-associated problems such as exposure to harsh environmental conditions, 

miscalibration, or software faults. Due to inappropriate alignment of the rotor with respect to the wind direction, yaw 

misalignment diminishes aerodynamic efficiency, decreases energy production, and increases structural loads on the turbine 

(Bao and Yang, 2021; Jing et al., 2020).  In addition to the static case, yaw misalignment may also occur in a dynamic form, 40 

where the deviation between the nacelle orientation and the incoming wind direction varies over time. Dynamic yaw 

misalignment is primarily caused by the delayed response of the yaw control system to rapidly changing wind directions, 

resulting in transient misalignments that induce unsteady aerodynamic loads, power fluctuations, and additional fatigue 

stresses on the turbine structure (Gao and Hong, 2021; Wang et al., 2019). Yaw errors ranging from 4° to 20° can decrease 

the annual energy production by approximately 2.7 % to 11 % according to the size and design of the turbine (Astolfi et al., 45 

2020; Hulsman et al., 2022; Liew et al., 2020; Yusong and Solomin, 2020). Previous research stated that acceptable 

misalignments should range from ±5° to ±10°, beyond which significant power losses and aerodynamic inefficiencies 

emerge (Cardaun et al., 2019; Simley et al., 2020). 

Data-driven methods based on either Supervisory Control and Data Acquisition (SCADA) or Light Detection and 

Ranging (LiDAR) data offer scalable solutions for large-scale implementation to detect and compensate for static and 50 

dynamic yaw errors without the need for additional hardware (Chen et al., 2024; Gao and Hong, 2021).  

For example, Gao and Hong (2021) propose a method for dynamic yaw misalignment correction using supervised 

machine learning trained on SCADA data. Their strategy estimates yaw error through the analysis of power deviations on a 

short-term horizon and has been shown to be effective under both static and dynamic yaw faults, given a large amount of 

training data. However, this approach requires the introduction of intentional faults into the system for model calibration and 55 

validation, which limits rapid and smooth scalability in actual wind farms. 

Data-driven approaches inherently rely on the representativeness and on the quality of historical data, since these limit 

their own transferability to any unobserved fault. As an example of a poor-quality dataset, historical data could have been 

collected in the past by sensors that were affected by faulty conditions due to deterioration or being incomplete, or extracted 

from not sufficiently diverse training datasets (Badihi et al., 2022).  60 

Digital Twins (DTs) are increasingly adopted as a tool to enable condition monitoring and establish a clear, complete, 

and time-controlled track to exploit data effectively. They integrate real-time operational data with virtual models of the 

turbine to provide more interpretable and reliable fault detection, while also supporting performance diagnostics and control 
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optimization in wind energy applications (De Kooning et al., 2021; Momber et al., 2022; Stadtmann et al., 2023). 

Specifically, CFD-based DTs integrating real-time data with Computational Fluid Dynamics (CFD) models are increasingly 65 

recognised for their capacity to achieve condition-monitoring while introducing the fundamental physics laws underpinning 

the behaviour of the physical system.  This is important for two main reasons: on one hand, it allows us to generate an 

accurate living DT in which a calibrated and high-fidelity fluid dynamic model is integrated and continuously affected by 

experimental and condition-related sensor datasets; on the other hand, a complete DT enables the access to a better 

engineering understanding and interpretation of the system operational conditions, especially when subjected to mismatch 70 

from expected performance (Kang et al., 2024; Solari et al., 2024) 

In line with the above-mentioned potential, this paper proposes an innovative DT-based method capable of detecting and 

correcting yaw misalignment caused by faulty wind direction sensors. Unlike conventional data-driven approaches, the 

presented DT integrates condition monitoring parameters detected by the sensors with CFD-derived performance surfaces, 

without any need for prior training on faulty conditions. Yaw error is identified as an error only according to the outcome of 75 

the DT, without assuming prior determined misalignment data.  

Once the DT was validated, its use could be demonstrated to control yaw misalignment due to sensor faults. As the wind 

vane sensor provides for the turbine rotor axis to be oriented towards the direction that enables maximum performance, its 

fault provokes the turbine rotor axis shifting towards a direction that compromises performance, resulting in a consequent 

mismatch between the expected turbomachine performance and condition monitoring data. The control action provided by 80 

the DT consists of being robust and capable of generating feedback data to correct the turbine rotor axis towards the wind 

flow direction, thereby optimizing the turbine's performance.   

Even when sensors are not effective because of faults, the DT is capable of leveraging real-time wind sensor 

measurements and autonomously detecting and correcting erroneous yaw angles, significantly enhancing fault tolerance in 

turbine control systems. As a result, this solution presents a robust, scalable, and complementary solution to data-driven 85 

approaches, with high value in operational situations where sensor integrity, data availability, or environmental variability 

could undermine conventional machine learning-based systems. Finally, the DT-based solution established herein delivers a 

practical framework for driving digitalization strategies and resilience in wind energy operations. 

2 Materials and methods 

2.1 Experimental setup 90 

For developing and testing the DT-based condition monitoring method, an experimental campaign was performed using a 

small-scale horizontal axis wind turbine (HAWT): Pikasola 400W-12V Wind Turbine Generator. The turbine is originally 

passively yawed by the wind thanks to its tail; it has a rotor with a diameter of 1.3 m, and it is characterized by a rated power 

of 400 W generated at 12 V DC. The rated rotational speed of 800 min-1 is reached for an incoming wind speed of 13 m s-1, 

whereas power starts to be delivered for a cut-in speed of 2.5 m s-1. 95 
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The turbine was tested outdoors at the airfield of Cranfield University, Bedfordshire, United Kingdom, located at a 

latitude of 52° 03' 59.5" N and longitude of 0° 37' 34.0" W. The tests were run during January and February 2025, where the 

registered average wind speeds ranged from 4 to 9 m s-1, with wind gusts that reached 17 m s-1. Figure 1 presents the 

generator installed on a 2.0 m long pole, which was equipped with a dedicated adjustable basement frame. 

 100 

Figure 1. Small-scale wind turbine (Pikasola 400W-12V, 1.3 m rotor diameter) on a 2.0 m pole with dedicated base during outdoor testing 

at Cranfield University airfield, UK. 

The experimental setup included a custom-built sensor network and yaw control system, installed on the asset to enable 

real-time monitoring and correction of yaw misalignment. Details of the array are provided in Sect. 2.3 and 2.4. Furthermore, 

the setup included specifically dedicated sensors to enable the measurement of the turbine's aerodynamic performance using 105 

two dimensionless parameters, which will be defined and further discussed in detail in Sect. 2.2.2: the power coefficient (Cp) 

and the tip speed ratio (TSR). 

2.2 CFD modelling 

2.2.1 Geometry and domain 

The machine geometry was developed as a computer-aided design (CAD) model. In particular, the blade geometry was 110 

extracted from a previous model already developed by Utah Valley University (Shakya et al., 2024), since previous research 

had already been conducted on the same specific turbine; the nose and the nacelle of the wind turbine generator were 

designed by reverse engineering from the physical asset.   Simplifications included not modelling the wind turbine’s pole 

and tail, but only the rotor and its nacelle.  

As presented in Fig. 2, the fluid domain consisted of a box space around the full rotor of size 5Dx5Dx12D, where D is 115 

the turbine diameter. The rotor was located 4 diameters distant from the inlet of the domain, followed by a conical 
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subdomain, moving in solidarity with the blades, with a locally denser mesh to capture the near-wake flow structures and the 

onset of wake formation. This space sizing is consistent with recommendations and practices found in the literature (Siddiqui 

et al., 2019, 2022). It is a common practice to define the computational domain being sufficiently large to accurately capture 

the flow field around the rotor while minimizing computational timing and cost.  120 

 

Figure 2. Overview of the CFD domain around the wind turbine rotor.  

2.2.2 Simulation settings 

Simulations were performed using the software Ansys Fluent 2024R1 on the Delta2 High-Performance Computing (HPC) 

cluster of Cranfield University. The Shear Stress Transport (SST) k-ω turbulence model was employed to compute the flow 125 

behaviour around the turbine under steady-state conditions. The choice of this model was due to its capacity to predict power 

output and aerodynamic loads more accurately than other Reynolds-Averaged Navier-Stokes equations (RANS) turbulence 

models, as commonly emphasised in literature (Al-Ttowi et al., 2024; Jha et al., 2024; Muiruri et al., 2019). The rotation of 

the rotor was modelled through a multiple reference frame (MRF) (ANSYS FLUENT 12.0 Theory Guide - 2.3.1 The 

Multiple Reference Frame Model). 130 

Boundary conditions included a uniform inlet velocity with a turbulence intensity of 5 %. The simulated wind speeds 

were U∞ = 3, 5, 8, and 13 m s-1, in order to cover an incoming inflow that ranged from the cut-in speed to the rated speed of 

the selected wind turbine. Yaw misalignment was reproduced by modifying the inlet flow angle relative to the turbine’s rotor 

axis by a yaw error angle, γ. When simulating yaw misalignment states, two faces of the box-shaped domain were set as 

inlets, whereas the opposing two downstream faces were set as pressure outlets. The top and bottom walls were configured 135 

as free-slip walls. 

A common theoretical assumption is that yaw misalignment results in a symmetric power loss for positive and negative 

yaw errors (Lu et al., 2023). After verifying this hypothesis on power production, only positive yaw misalignment angles 

were tested, specifically at yaw errors γ = 5°, 10°, and 15°.   
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As anticipated in Sect. 2.1, the aerodynamic performance of the rotor was evaluated in terms of two standard 140 

dimensionless coefficients: the power coefficient (Cp) and the tip speed ratio (TSR), defined as: 

𝐶𝑝 =
𝑃

1

2
𝜌𝐴𝑈∞

3
 ,                    (1) 

𝑇𝑆𝑅 =
𝜔𝑅

U∞
 ,                                  (2) 

where P is the mechanical power extracted by the turbine, ρ is the air density, A is the area of the rotor disc, U∞ is the wind 

speed, ω is the angular speed of the rotor and R is the radius of the turbine. These coefficients define the operating point of 145 

the turbine and were computed for both CFD simulations and following experimental measurements. 

CFD simulations were conducted for each selected wind speed, with the rotor speed adjusted to achieve the target TSR, 

ranging from 2 to 8 (Lu et al., 2023; Siddiqui et al., 2019). Aerodynamic power was calculated by multiplying the rotor 

torque by the prescribed rotational speed once it reached full convergence. 

The computational mesh was designed to be polyhedral and unstructured, consisting of approximately 31 million 150 

elements, with a blade first layer thickness of 1.22e-5 m that granted a y+ value of about 1 for the analysed operations. 

Although a systematic mesh independence study was not conducted, the mesh resolution was chosen based on prior CFD 

experience from similar applications (Carrattieri et al., 2025; Cravero et al., 2025), ensuring precise near-wall treatment and 

stable convergence.  

2.2.3 Estimation of yaw misalignment from CFD-derived performance data 155 

The aerodynamic power response of the wind turbine was derived through CFD simulations introduced in the previous Sect. 

2.2.2. For each specified yaw misalignment angle (γ = 0°, 5°, 10°, 15°) and for each prescribed wind speed (U∞ = 3, 5, 8, 13 

m s-1), Cp-TSR distributions were collected from steady-state simulations in the specified range of TSR (2 to 8), amounting 

to a total of 112 simulations; this dataset was then used to develop a Cp-TSR-γ performance space.  

For wind speeds of 8 m s-1 and 13 m s-1, the Cp-TSR distributions showed the same aerodynamic behaviour due to 160 

aerodynamic similarity, with a relative percentage error below 5 %. Therefore, it was considered acceptable to select a single 

average dataset to represent the range of wind speeds from 8 to 13 m s-1 (see results in Sect. 3.1).  

Due to computational limitations related to the extensive time required for each high-fidelity simulation, simulating the 

full range of yaw and TSR combinations across additional wind speeds was prohibitively expensive in terms of both CPU 

hours and storage. Hence, linear interpolation among the selected wind speeds was employed to generate Cp-TSR-γ data at 165 

intermediate wind speeds (U∞ = 4, 6, 7 m s-1). 

The CFD-derived performance space was used as the foundation for the performance estimation and inference of the yaw 

misalignment γ = f(Cp, TSR, U∞), as part of the virtual object of the DT model. Specifically, for each reference wind speed 

U∞, a piecewise cubic interpolant was constructed over the (Cp, TSR) input space using scipy.interpolate.griddata from the 

SciPy library (Virtanen et al., 2020),  allowing the retrieval of the corresponding yaw misalignment angle γ during 170 
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experimental testing through direct measurements of Cp and TSR (see Sect. 2.6). For wind direction changes exceeding the 

maximum yaw offset simulated in CFD, the inference output was set to γ = 15°.    

2.3 Sensor network and data flow   

To monitor the wind turbine performance during experimental trials, the following sensors were used to sample data through 

an Arduino Yun microcontroller: 175 

- Wind vane: RS-FXJT-V05-360 model;  

- Anemometer: RS-FSJT-NPN model; 

- Tachometer: A3144 from Allegro; 

- Current sensor: ACS712ELCTR-30A. 

An overview of the designed sensor network and the resulting data flow among the different modules is presented in the 180 

schematic of Fig. 3. Data from all sensors was collected at a frequency of 1 Hz and stored in a cloud MongoDB database 

(MongoDB Atlas | The Modern, Multi-Cloud Database |) via a custom Python script. The adopted sampling frequency was 

chosen according to the recommendations from the IEC 61400-12 standard for wind measurement systems, which suggests 1 

Hz for proper accuracy (INTERNATIONAL ELECTROTECHNICAL COMMISSION, 2022). 

The anemometer and wind vane were positioned 0.65 m above ground level; both were placed 0.3 m ahead of the rotor 185 

plane to minimize aerodynamic interference from the blades. A 0.4 m separation between the sensors ensured negligible 

mutual interference, with the configuration’s suitability validated through CFD postprocessing. While the sensor 

arrangement is nonstandard relative to IEC-specified meteorological tower spacing (INTERNATIONAL 

ELECTROTECHNICAL COMMISSION, 2022), it was sufficient for local flow characterization and yaw correction under 

the specific constraints of small-scale, portable wind turbine testing. 190 

The A3144 Hall effect sensor was used as a tachometer to measure rotor speed through three magnets attached behind 

each blade’s root; the sensor was positioned right after the rotor to easily detect a full revolution. A custom Arduino routine 

processed the pulses to calculate the rotational speed. To measure the wind generator voltage, a voltage divider was 

implemented to scale the maximum possible voltage (12 V) to 5 V, compatible with the Arduino microcontroller. 

A 12 V (55 W) halogen bulb was connected to the turbine as a fixed resistive load to maintain stable electrical 195 

performance, limiting the maximum current draw from the generator and resulting in lower total extractable power than the 

turbine’s rated capacity. Nevertheless, this setup was sufficient to monitor relative power trends and validate the yaw 

correction logic within the DT model. 

DC power was calculated by multiplying the current measured by the ACS712 current sensor and the voltage read 

through the voltage divider.  200 

The entire sensor network was designed to be compact, allowing for outdoor deployment in varying locations without the 

need for fixed infrastructure. This flexibility enabled prompt repositioning of the turbine in open field conditions, facilitating 

experimental tests under naturally fluctuating wind conditions. 
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Figure 3. Schematic of the sensor network and data acquisition system for the instrumented wind turbine. 205 

2.4 Yaw control system 

A custom yaw control system was developed to adjust and correct the turbine’s yaw angle. Yaw actuation was built using a 

Crouzet 82840 (Gear Ratio = 750) brush DC motor connected to the nacelle via a belt drive and controlled using an Arduino 

Uno microcontroller together with the BTS7960 motor driver module (see Fig. 3). The motor shaft was fitted with a 35 mm-

diameter pulley that, via a 5 mm-pitch belt, drove a 75 mm-diameter pulley mounted on the nacelle shaft. The pulley axes 210 

were spaced 80 mm apart. 

This design ensured sufficient robustness to overcome gyroscopic forces from rotor rotation and system friction. The 

system was manually calibrated to ensure accurate yaw actuations with a yaw speed of 1 ° s-1. Calibration was performed by 

tracing visible markers around the nacelle shaft, allowing angle adjustments to be verified against known reference positions.  

2.5 Numerical-experimental power matching 215 

To ensure consistency between the power output of the wind generator and the aerodynamic predictions derived from CFD 

simulations, a three-step correction technique was employed. Consistency between experimental tests and numerical 

simulations was necessary to grant accurate real-time monitoring within the DT feedback logic for proper CFD interpolation. 

First, similarly to the approach described in Sect. 2.2.3, a piecewise cubic interpolant was designed over the CFD-derived 

Cp values corresponding to the correctly aligned (i.e., non-misaligned) yaw condition. The interpolation was performed in 220 

the (TSR, U∞) space to estimate the expected power coefficient Cp for any future measured operating point. The results of 

the interpolation are provided in Sect. 3.2.  
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Second, instantaneous experimental values for TSR and U∞, obtained during the second turbine trial (see Sect.2.7), were 

then fed into the interpolator to find the predicted Cp according to CFD. Before interpolation, outlier filtering was applied to 

each experimental time series using the interquartile range (IQR) method (threshold = 2.5).  225 

Therefore, a correction factor (CF) dataset was determined as the pointwise residual difference between interpolation-

predicted and experimentally obtained Cp values under the same measured TSR and U∞:  

𝐶𝐹(𝑇𝑆𝑅𝑒𝑥𝑝 , 𝑈∞
𝑒𝑥𝑝

) = 𝐶𝑝𝐶𝐹𝐷(𝑇𝑆𝑅𝑒𝑥𝑝 , 𝑈∞
𝑒𝑥𝑝

) −  𝐶𝑝𝑒𝑥𝑝                                                                                                       (3) 

Where the superscript 𝑒𝑥𝑝 stands for the experimentally measured values, whereas CFD refers to the interpolated values 

extracted from CFD results.  230 

In a third step, a cubic spline model was fitted to the pointwise CF values, with the smoothness parameter s equal to 1, to 

create a correction surface mapping the (CF, TSR, U∞) space (see Sect. 3.2). 

This method allowed for the compensation of differences due to sensor noise, unmodeled losses, and mechanical-

electrical conversion inefficiencies. Nevertheless, the interpolation built upon correctly yawed data was also used as a first 

approximation for correcting yawed operating conditions, under the assumption that yaw misalignment introduced no drastic 235 

change in conversion losses other than the aerodynamic Cp reduction itself (Astolfi et al., 2023; Lu et al., 2023). 

As a result, in subsequent experimental trials for each set of measured TSR and U∞, a correction factor was computed by 

interpolating the cubic spline model and summed to the measured Cp to obtain a corrected power coefficient within the 

range of the CFD values, ready for processing by the DT model.  

2.6 Digital twin model for yaw fault detection and correction 240 

The DT model was specifically designed to guarantee that the turbine was continuously aligned with the wind inflow. If 

misalignment was detected, the condition-based logic of the model’s algorithm identified whether the issue stemmed from a 

change in wind direction or from faulty wind vane data. The system operated in a closed loop, with right-time feedback and 

self-correcting yaw adjustments based on sensor data and CFD interpolation.  

To distinguish the sign of yaw misalignment, yaw error was defined as positive when the wind direction deviated 245 

clockwise from the rotor axis (looking down from above), placing the wind vector on the right-hand side of the rotor axis 

when viewed from upstream. 

The DT control logic was written in Python. Temporal data was fetched from the cloud database with a sampling interval 

of 30 s; this interval was partly constrained by the MongoDB data retrieval latency, which extended the loop duration to 

approximately 32 to 33 s.  250 

Outlier filtering was then applied to each time series using the IQR method (threshold = 2.5). Cp and TSR time series 

were computed following the definitions provided in 2.2.2. A correction factor was then summed to each fetched Cp value to 

be consistent with the CFD performance results after interpolating the cubic spline model presented in Sect. 2.5.  

Subsequently, the averaged values of TSR, wind speed, and the corrected Cp over the sampling interval were used as 

inputs for the right-time γ inference model. As explained in Sect. 2.2.3, the model works based on a piecewise cubic 255 
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interpolation of the CFD-derived performance space, returning a yaw misalignment angle γ = f(Cp, TSR) for the selected 

wind speed U∞. Before interpolation, the wind speed average was rounded to select the closest corresponding response 

surface. 

To check for the presence of a yaw fault caused by faulty sensor data and to resolve the sign ambiguity of yaw 

misalignment under potentially faulty wind vane conditions, the DT model implemented a self-correcting feedback logic, 260 

with a threshold for yaw fault detection set to 5°. The control loop continuously monitored the percentage change in the Cp 

across two consecutive time intervals and the inferred yaw error γ. For each time interval, the Cp percentage change was 

calculated as follows: 

𝐶𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝐶𝑝𝑖−𝐶𝑝𝑖−1

𝐶𝑝𝑖−1
∗ 100 [%]                                                                                                                (4) 

where i is the current time interval.  265 

Yaw fault from wind data was flagged only if the Cp percentage change decreased for two consecutive loops and the 

inferred γ exceeded the defined threshold. The logic initially assumed a positive yaw misalignment (clockwise deviation) and 

applied a corresponding yaw correction through the yaw system. Based on the aforementioned conditions: 

• If the inferred γ in the previous interval was less than the threshold, the controller proceeded to apply a clockwise 

correction by adding the current γ to the current yaw angle. This tested the hypothesis of a positive yaw error. 270 

• Conversely, if the γ from the previous interval was already greater than the threshold, the control logic concluded 

that the original correction was in the wrong direction, indicating a negative yaw misalignment. In this case, a 

stronger counterclockwise correction was made by subtracting twice the previously inferred γ from the current yaw 

angle. 

This process enabled the DT model to actively diagnose the sign of the yaw error through direct feedback over 275 

consecutive time intervals. If the power output worsened after assuming a positive yaw misalignment, the model’s algorithm 

was capable of detecting and correcting the course by inferring a negative yaw deviation.  

In the absence of inferred faults, the wind vane sensor data were considered to be correct, and the control logic operated 

to adjust the yaw angle of the turbine to be aligned with the measured wind direction. To ensure a consistent response, a 

control flag was implemented in the algorithm to disable further actuations linked to the healthy sensor state once a faulty 280 

sensor state was detected. As a result, the turbine’s yaw angle adjustments relied only on CFD interpolation, maintaining 

alignment with the wind direction even in the presence of unreliable sensor data. In this configuration, the CFD interpolation 

itself acted as a virtual sensor, providing yaw measurements otherwise provided by the faulty device. 

The adjustment command was sent through a dedicated Python interface, which actuated the 24 V DC motor driving the 

yaw system. The motor’s movement was bounded between 110° and 230°, ensuring mechanical safety.  285 

The loop then ran for 30 seconds (the defined sampling interval) before fetching a new set of data and calling the control 

logic and interpolation once again. During experimental testing, the DT model was manually interrupted, after which the 
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motor drove the turbine to a neutral 180° reference position, providing a mechanical reset to the system with a safe 

shutdown.  

2.7 Testing and validation procedures 290 

To validate the proposed DT-based method, a three-phase experimental campaign was conducted using the setup described 

in Sect. 2.1. The turbine was tested outdoors under naturally fluctuating wind conditions, with each trial targeting a specific 

development objective. 

First Trial - Data acquisition and streaming verification 

The first trial aimed to verify real-time acquisition and cloud storage of sensor data. Sensor values (voltage, current, wind 295 

speed, direction and rotational speed) were streamed at 1 Hz and successfully stored in the cloud database. Wind speed and 

direction data were used for inflow characterization, rotational speed for tip speed ratio calculation, current and voltage for 

electrical power estimation. This data laid the foundation for deriving Cp and TSR in later trials. Wind data logged in this 

trial indicated outliers due to natural turbulence, which encouraged implementing IQR filtering. 

Second Trial - Electromechanical power characterization  300 

A second experimental session took place outdoors at the airfield of Cranfield University (see Sect. 2.1) to measure the 

electrical power output under actual loading conditions for the correctly yawed turbine. During the second trial, the turbine 

was left to be passively yawed by the wind.  From current and voltage measurements, the electromechanical Cp could be 

calculated and compared against the aerodynamic Cp derived from CFD simulations. A notable deviation resulted from this 

comparison due to conversion losses as well as to limitations in electrical load capacity.  305 

A CFD-calibrated correction factor (CF), as a function of the turbine operating point, was established to adjust the 

measured Cp to an estimated aerodynamic Cp. This correction allowed for meaningful calibration between experimental data 

and the CFD-derived performance results used in the following DT model (see Sect. 2.5). 

Third Trial - DT validation and fault detection  

The final trial tested the ability of the proposed method to detect and correct yaw misalignment. During this phase, in 310 

addition to the standard signals (wind speed, wind direction, power, rotational speed), the estimated yaw error γ, the 

measured yaw position, and the Cp trend were computed at every time interval. These parameters were used by the DT to 

detect misalignments and decide whether to override faulty wind direction readings. The trial consisted of four sub-tests: 

1. Test 1, validation of yaw system actuation: A test of the customized yaw system of the turbine that validated its 

ability to align the rotor with the wind direction at each sampling interval. 315 

2. Test 2, positive yaw misalignment: A yaw misalignment of +10° was established by subtracting 10° from the wind 

vane measurements before running the test. The DT model correctly sensed the misalignment through decreased 
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performance and successfully aligned the turbine with the real wind direction, circumventing the faulty sensor after 

the deviation had been confirmed. At the end of the second trial, the DT was also capable of detecting an average 

change in the wind direction.  320 

3. Test 3, positive yaw misalignment: A repeat test with a +10° offset was performed; in this test, however, the DT did 

not measure the misalignment. The likely reason was increased turbulence and high-frequency gusts that 

temporarily obscured a degradation in the performance that is being relied on for detection. 

4. Test 4, negative yaw misalignment: A negative yaw misalignment of -15° was simulated by adding +15° to the 

measurements of the wind vane before running the test. The DT model correctly sensed the fault from the 325 

interpolated CFD performance space and computed the proper yaw correction command. 

Although these results demonstrated the promise of the DT in independent fault detection and fault correction, the system 

also tended to be sensitive to wind turbulence and inhomogeneities near the ground. These phenomena are omnipresent in 

the boundary layer of the atmosphere and can induce spurious corrections. Such effects should be weaker in utility wind 

turbines operating at higher hub heights, where wind profiles are more even.  330 

3 Results and discussion 

3.1 CFD calibration and integration within the digital twin framework  

 

Figure 4. Cp-TSR curves for γ = 0° and γ = 15°, at wind speeds of 8 m s-1 and 13 m s-1. Relative deviations from the 13 m s-1 baseline are 

illustrated, confirming aerodynamic similarity across this range. 335 

Figure 4 illustrates the Cp distributions against the TSR under various inflow conditions. Distributions for two wind speeds 

(8 m s-1 and 13 m s-1) are presented under aligned (γ = 0°) and misaligned (γ = 15°) conditions. Relative deviations from the 

reference case at 13 m s-1 are marked on each curve. 
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The results confirm that in the TSR range from 2 to 8, the aerodynamic performance of the rotor is almost identical in 

terms of wind speeds. In any yaw angle error, the relative difference in Cp between 8 m s-1 and 13 m s-1 is less than 5 %, 340 

highlighting the aerodynamic similarity between the results. This feature supports the selection of modelling the wind 

turbine's aerodynamic performance, in the inflow range of 8 to 13 m s-1, with a single averaged performance curve per yaw 

direction. This choice reduces the DT’s inference problem dimensionality without sacrificing physical accuracy. 

Figure 5 represents the aerodynamic power performance obtained from CFD calculations (white markers) in terms of Cp, 

TSR, yaw angle error γ, and wind speed U∞. Results associated with the same incoming wind speed are fitted with a response 345 

surface, which varies in colour in terms of Cp. The yaw misalignment axis shows only positive deviations.  

No direct experimental validation of the CFD calculations was conducted through wind tunnel or high-precision 

aerodynamic testing, but rather, was ensured through the addition of a correction factor (CF) defined through the second 

experiment (see Sect. 2.5).  

In the figure, it is possible to observe the averaged performance surface representing the wind speed range over which 350 

aerodynamic similarity holds. Moreover, for every surface, there is an evident decreasing trend in the power response of the 

turbine when moving to greater yaw misalignment angles, as also shown in the literature (Lu et al., 2023). For wind speeds 

between 13 m s-1 and 5 m s-1, the maximum power extraction was found at TSR equal to 6 under correct yaw conditions. For 

the 4 m s-1 and 3 m s-1 surfaces, the maximum Cp moved between TSR equal to 5 and 6. 

Superimposed on the surface are indicative arrows showing the γ inference process. Namely, through sensor-based 355 

estimations of Cp, TSR, and U∞, the DT model identifies the corresponding distribution associated with the averaged 

rounded value of wind speed and performs an interpolation to estimate the yaw misalignment angle γ. The figure enhances 

the physics underlying the DT model.  

 

https://doi.org/10.5194/wes-2025-216
Preprint. Discussion started: 10 December 2025
c© Author(s) 2025. CC BY 4.0 License.

reviewer
Try not to sue 3D plots as they are difficult to interpret. Use 2D line plots to quantify things and contour plots. 



14 

 

Figure 5. CFD-derived performance surfaces showing Cp as a function of TSR, yaw misalignment γ, and wind speed. Arrows illustrate 360 
how the DT infers yaw error using real-time sensor inputs. 

The CFD results for the rated wind speed of 13 m s-1 showed that the yaw-induced power degradation followed a cosine-

based loss pattern with a TSR-dependent exponent. To quantify the yaw-induced power loss trend, the power output at 

various yaw errors was fitted to the classical cosine-exponent model (Lu et al., 2023), expressed through Eq. (5):  

𝑃(𝛾) = 𝑃0 𝑐𝑜𝑠𝑛(𝛾)                                                                                                                                                              (5)  365 

Where 𝑃0 is the power extracted for the turbine properly aligned with the wind and 𝑛 the exponent governing the power 

drop. A linear regression of log(𝑃(𝛾)/𝑃0)) versus log (𝑐𝑜𝑠(𝛾)) was used to estimate the best fit exponent 𝑛, following the 

approach in yaw sensitivity modelling. As shown in Table 1, the exponent increased with TSR, ranging from -0.94 at TSR = 

2 to 8.93 at TSR = 8, with the rated operating point of the small-scale turbine being represented by TRS = 4.19. This trend 

confirms the nonlinearity of yaw sensitivity with operating conditions and further supports the fidelity of the aerodynamic 370 

model.  

Table 1. Cosine law exponent characterizing yaw-induced power loss at each TSR for rated wind speed (13 m s-1). 

TSR n exponent 

2.00 -0.94 

3.00 -0.65 

4.19 2.80 

5.00 4.10 

6.00 4.97 

7.00 5.77 

8.00 8.93 

3.2 Experimental power correction results 

Figure 6 illustrates the wind turbine performance surface calculated by CFD for aligned conditions (γ = 0°), with black 

markers indicating the original simulation data. As described in Sect. 3.1, one single average Cp-TSR curve was taken to 375 

describe the behaviour of the turbine for wind speeds from 8 to 13 m s-1, based on accepted aerodynamic similarity.  

This database was used as the basis to develop a correction factor (CF) that would align electromechanical readings with 

numerically predicted aerodynamic performance, described in Sect. 2.5. The resulting interpolating surface, overlaid on the 

original CFD data points, confirms a good agreement within the defined operating envelope. 
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 380 

Figure 6. CFD-derived performance surface for the correctly yawed turbine (γ = 0°). 

Figure 7 presents the computed CF datapoints, defined as the pointwise residual difference between the experimental Cp 

values and those interpolated from the CFD surface of Fig. 6, following Eq. (3). The CF values were used to build a smooth 

cubic spline model to estimate the aerodynamic Cp from electromechanical readings and to enable the DT algorithm to 

perform right-time adjustments.  385 

The correction data gathered during the second experimental trial showed a banded distribution, corresponding to 

discrete operating conditions reached during testing. After IQR-based outlier removal, the dataset contained wind speeds 

between 2.5 m s-1 and 11 m s-1, and TSR between 2 and 4. 

The fitted spline exhibits a definite positive gradient in CF with increasing U∞ and TSR. The trend shows larger 

discrepancies for greater TSR and U∞ values between experimental and CFD-based Cp values, most likely due to increased 390 

rotational speeds and unaccounted electrical losses. 

The developed correction model allows the DT to balance field measurements and CFD predictions to achieve consistent 

performance inference and fault detection. 
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Figure 7. Correction factor (CF) values derived from the pointwise difference (residuals) between experimental and CFD-based Cp 395 
results. 

3.3 Yaw fault detection performance 

Figure 8 presents the outcome of Test 1, which was designed primarily to check the real-time responsiveness of 

the modified yaw actuation system under dynamic inflow conditions. Variable wind conditions were registered during the 

test. The turbine yaw angle was first initialized at 180°; as observed in the first panel, the DT 400 

model effectively changed the yaw direction of the turbine in each loop in line with the wind direction readings. 

Rapid changes in the wind direction occurred during the test, with values up to -18°. The DT model 

captured these changes, reflected in the Cp and TSR parameters, inferring yaw misalignment angles of 15° and 10° as shown 

in the second panel.  
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 405 

Figure 8. Time series from Test 1: verification of the yaw actuation system and initial DT fault inference under gusty conditions. 

This observation indicates that DT could potentially monitor fast changes in wind direction and Cp. 

Furthermore, the analysis demonstrated that misalignment detection is more likely to occur during conditions of 

high wind strength, which led to greater TSRs and increased the responsiveness of the aerodynamic model. 

Test 2 results are shown in Fig. 9. The test started with a -10° artificial bias in the wind vane readings, inducing a positive 410 

yaw misalignment of 10°. A 13° error was detected by the DT model at time 13:14:09 after about 3 minutes and corrective 

feedback was sent at the end of the loop, marked with a vertical dashed grey line. Due to the system's mechanical inertia, a 

second 9° error was detected in the subsequent loop, but no actuation was performed because of a Cp increase of 112 

% following the first actuation.  
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 415 

Figure 9. Time series from Test 2: detection and correction of a 10° yaw misalignment. 

In addition, the first panel shows the real wind direction (marked in black) that the system adjusted to after the corrective 

feedback provided by the DT. Additionally, a strong wind direction change (+18°) was inferred close to the end of the test, 

which was picked up by the DT as a 15° deviation in the subsequent interval, providing a corresponding feedback action. A 

partial recovery of Cp (about 17 %) ensued and prevented a second feedback command. This reaction further illustrates the 420 

system's capability to adapt to changing inflow conditions and the CFD inference as a virtual sensor; the DT did not issue 

any unnecessary actuation commands, demonstrating robustness against false positives under gusty conditions. 

In Fig. 10, the results for Test 3 are presented. For this type of test, a newly positive yaw misalignment fault of 10° in the 

wind vane readings was tested right from the beginning. In this case, although at time 13:33:36 the DT, through CFD 

interpolation, managed to detect a misalignment (12°), the system couldn’t provide feedback action due to the strong 425 

fluctuations in the wind inflow, which had a direct effect on the power production and could not satisfy the criteria at the 

base of the DT algorithm. This test was characterised by the lowest maximum wind speeds registered during the trial. 
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Figure 10. Time series from Test 3: fault detection under 10° misalignment suppressed by unstable inflow. 

Figure 11 presents the results from Test 4 that concluded the third experimental trial. In this scenario, a negative yaw 430 

misalignment condition of 15° was simulated. Soon, from the beginning of the test, the twin signalled the presence of a 

misalignment, inferring a 14° yaw error. Only at time 13:49:36, after about 7 minutes, the algorithm could confirm the 

presence of a misalignment (+15°) and provide proper feedback, assuming it to be positive. It is possible to see that after the 

first feedback action, the registered Cp showed a -37 % decrease, which indicated to the algorithm that the provided 

actuation was in the wrong direction (positive clockwise), which was followed by another detection of 15° misalignment in 435 

the next loop. After the second detection, a second corrective actuation of -30° was issued; the corrective command resolved 

the negative yaw fault and successfully realigned the turbine with the wind inflow. This test highlighted the DT’s ability to 

self-correct directional misclassification after detecting a post-actuation power drop. 

In this case, Cp recovery in the time series was not very clear due to a rapid decrease in the wind speed that drove the 

turbine to TSRs close to 1. Although a modest increase in power can be seen following the correction, it is difficult to isolate 440 

this recovery from the effects of reduced inflow velocity. These trial outcomes directly informed the accuracy evaluation 

summarized in Sect. 3.4. 
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Figure 11. Time series from Test 4: detection of −15° fault and recovery sequence. 

3.4 Accuracy evaluation metrics 445 

Table 2 summarizes the performance of the DT model during the third trial, where three out of four tests were subjected to 

artificially introduced yaw faults. The DT successfully identified misalignment conditions in all faulted cases, with a 100 % 

detection success rate. Yaw correction accuracy, as the absolute difference between estimated and true yaw errors, was 

highly accurate, with errors between 0° and 3°, verifying the effectiveness of the inference model.  

Large recoveries in Cp were observed after corrective action, such as a +112 % recovery in Test 2. In Test 4, an incorrect 450 

initial actuation resulted in a −37 % drop, necessitating a second corrective action, though further recovery was masked by 

falling wind speed.  
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Table 2. Evaluation of yaw detection and correction performance using the DT during the third experimental trial. 455 

Metric Definition Evaluation Based on Tests 

Detection Success Rate Percentage of faulted tests in which the CFD 

interpolation detected yaw misalignment (γ 

≥ 5°). 

3 out of 3 faulted tests: 100 % 

Yaw Correction Accuracy |𝛾𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 − 𝛾𝑡𝑟𝑢𝑒| Test 2 (first feedback): 3° 

Test 2 (second feedback): 3° 

Test 4: 0° 

Cp Recovery (%) Percent increase in Cp following yaw 

correction (when applicable). 

Test 2 (first feedback): +112 % 

Test 2 (second feedback): +17 % 

Test 4: −37 % after mis-actuation, followed 

by a recovery attempt, but with an unclear 

signal due to wind drop. 

4 Conclusions 

Concept and contribution: This study introduced a DT-based model that, unlike purely data-driven approaches, combines 

CFD-based performance data with real-time sensor data to identify and correct yaw misalignment caused by flawed wind 

direction measurements in a small-scale HAWT. By directly determining yaw error from high-fidelity simulation data, rather 

than assuming accurate inputs from the wind vane, the model enhances operating robustness without requiring new hardware 460 

or pre-training on faulted scenarios. 

Physical basis and implementation: CFD simulations spanning yaw errors and wind speeds were used to obtain a Cp-TSR-

γ performance space of the selected HAWT (with aerodynamic similarity leveraged to reduce dimensionality). A calibration 

step mapped electromechanical readings to CFD Cp results, and a piecewise-cubic interpolant enabled right-time yaw 

inference. When the wind vane was flagged as unreliable, the CFD interpolation acted as a virtual sensor to sustain 465 

alignment. 

Validation under actual conditions: Outdoor trials with injected positive/negative wind vane biases showed that the DT-

based model accurately detected and responded to multiple injected yaw faults with a 100 % rate of detection success across 

faulted tests and achieved yaw correction errors of as low as 0-3°. Cp recovery was as high as +112 % after corrective action, 

showing considerable recovery of performance.  470 

https://doi.org/10.5194/wes-2025-216
Preprint. Discussion started: 10 December 2025
c© Author(s) 2025. CC BY 4.0 License.

reviewer
This is a bizarre way of writing a conclusion that for some reason seems to be the way AI models are writing them



22 

 

Practical implications: The approach improves fault tolerance and preserves energy harvesting without LiDAR or 

additional instrumentation, facilitating SCADA-based analytics and offering a physics-informed route to condition 

monitoring and sustainable assets management. 

Future extensions: Extend the CFD analysis to dynamic yaw misalignment, measure AEP gains and load effects over 

longer-duration campaigns, strengthen the logic of resolving signs, and generalize the DT-based model to other failures of 475 

interest (e.g., leading edge roughness effects, torque/anomaly pitch) through enlarged performance surfaces. 
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