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Abstract. Wind turbine rotor blades are among the most critical components of wind turbines, with their structural integrity
directly affecting reliability, lifetime, and maintenance costs. Reliable damage identification is therefore essential for structural
health monitoring (SHM) strategies in wind energy applications. In this context, the updating of numerical models represents
an established method for vibration-based non-destructive damage identification, including damage detection, localization and
quantification. Naturally, the model-updating process is affected by different sources of uncertainty. On the one hand, the
numerical model always represents an idealization that introduces unavoidable discrepancies between its basic assumptions
and reality. On the other hand, the measurement data and identified modal parameters, typically serving as damage-sensitive
features, are subject to uncertainty. Despite extensive research on uncertainty quantification and propagation in model updating,
comparative studies of model-updating procedures applied to large-scale structures, particularly wind turbine rotor blades,
remain scarce. Moreover, the level of model fidelity and the impact of different design variable configurations associated with
the selected numerical model are seldom examined in the context of model updating, typically formulated as an optimization
procedure.

This study addresses this gap by systematically evaluating how model fidelity and design variable parameterization influence
the model-updating results while considering uncertainty associated with the measurement data and identification process.
The investigations are conducted using measurement data from a 31 m rotor blade subjected to edgewise fatigue loading. A
comparison of the results shows that all design variable configurations yield consistent results, confirming the robustness of
the presented model-updating procedures. Model fidelity, however, strongly influences the outcomes, with higher accuracy and

detail leading to distinctly improved damage identification.

1 Introduction

The structural integrity of wind turbine rotor blades directly affects the operational reliability, energy yield, service lifetime,
and maintenance costs of entire wind farms (Hau, 2013). The blades are typically highly loaded and critical to the overall

design of the turbine (Kong et al., 2023). With the continuous upscaling of turbine and blade size, rotor blades are increasingly
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exposed to fatigue loads, making them susceptible to damage initiation and crack propagation. Algolfat et al. (2023) give
an overview of common damage scenarios for wind turbine rotor blades and point out that such types of damage can lead
to failure or breakdown of the wind turbines as they increase the level of vibrations and impose additional dynamic loads.
Consequently, reliable identification and characterization of blade damage is essential for effective structural health monitoring
(SHM) strategies in wind energy applications (Yang et al., 2017; Kaewniam et al., 2022).

Within an SHM framework, the basic assumption is that damage, defined as degradation of the mechanical properties (Wor-
den et al., 2007), causes detectable changes in the structural dynamic behavior (Mottershead and Friswell, 1993). Hence, to
enable damage identification, including detection, localization and quantification, vibration measurement data need to be ac-
quired for at least two different states of the considered structure (Friswell, 2007), meaning a reference state and an analysis
(i.e., target) state. A variety of different SHM methods based on various damage-sensitive features have been developed and
applied to date (Avci et al., 2021). Such approaches are of vital importance when seeking to maintain the safety and integrity
of the structures under consideration (Brownjohn, 2007; Fan and Qiao, 2011). Among them, the updating of numerical models
represents an established vibration-based non-destructive damage identification technique (Das et al., 2016; Ereiz et al., 2022),
which is also employed within this work. Due to its methodology, the model-updating process is affected by two major sources
of uncertainty — associated with the model and the measurement data — as clearly pointed out by Simoen et al. (2015).

One source of uncertainty arises from the numerical model employed in the updating procedure. Depending on its level of
fidelity, in terms of the chosen finite element (FE) type, the numerical model represents a more or less simplified version of the
structure under consideration and, by definition, always remains an idealization. Consequently, a certain level of discrepancy
between the model predictions and the corresponding characteristics identified from the measurement data is inevitable (Mot-
tershead et al., 2011). With regard to the modeling of (wind turbine) rotor blades, extensive research has been conducted on the
comparison of numerical models based on different FE types and, thus, with varying levels of model fidelity (Lake and Nixon,
1988; Volovoi et al., 2001; Peeters et al., 2018; de Almeida et al., 2025). However, comparative analyses of model-updating
procedures applied to large-scale structures, especially to wind turbine rotor blades, using different numerical models and
associated design variable configurations remain scarce. Mostly, model-updating procedures applied to small- or large-scale
wind turbine rotor blades utilize FE beam models (Noever-Castelos et al., 2022; Turnbull and Omenzetter, 2024). Chetan et al.
(2021), for example, propose a multi-fidelity digital twin model for the simulation of a 21 m sub-scale wind turbine rotor blade
but perform the actual updating of the mass and stiffness distributions using an Euler-Bernoulli beam model. Moreover, the
application of detailed shell-based models for model updating allowing for damage identification along the blade span and
chord is rarely published. Knebusch et al. (2020) applied a gradient-based model-updating procedure to a 20m rotor blade
using a detailed shell model. However, the design variables were mapped directly to material properties of so-called predefined
design fields, representing FE groups. While this is a common approach to keep the number of design variables low (Levin and
Lieven, 1998), it is dependent on a prior grouping of FEs and can result in undesired oscillatory stiffness distributions when an
unconstrained formulation is used.

Another source of uncertainty is the measurement data. Due to the unavoidable spatial sparsity and noisiness of sensor

signals and possible imperfections in the measurement equipment, measured data always contain uncertainty, which can merely
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be minimized but never fully eliminated (Link, 1999). In addition to the uncertainty contained in the raw measurement data,
further uncertainty is introduced during the subsequent signal processing and identification of modal characteristics of the
physical structure (Friswell and Mottershead, 1995), which is referred to as identification uncertainty. In recent years, numerous
studies have investigated uncertainty quantification and propagation in model updating, employing methods such as Bayesian
inference (Bi et al., 2021), interval approaches and fuzzy logic (Faes and Moens, 2020), and the sample-based deterministic
model-updating (SDMU) approach recently introduced by the authors (Wolniak et al., 2025a). However, the primary focus of
these works has typically been on methodological development rather than on large-scale experimental validation.

Within this work, the described uncertainty sources inherent to the model-updating process are systematically examined
and addressed using a 31 m laboratory wind turbine rotor blade subjected to edgewise fatigue loading. The rotor blade was
instrumented with accelerometers to monitor its gradual stiffness degradation due to the fatigue loading, ultimately leading
to crack growth across the leading edge at approximately 8 m distance from the blade root. The measured acceleration time
series along with the corresponding modal properties identified from the measurement data using Bayesian operational modal
analysis (BayOMA) (Au et al., 2013) are published in an open-access repository (Wolniak et al., 2025b) alongside this paper.
This unique experimental dataset provides a basis for monitoring the gradual stiffness degradation of a large-scale laboratory
rotor blade tested under edgewise fatigue loading.

An outstanding feature of this rotor blade fatigue test was the complete documentation of the manufacturing process, accom-
panied by detailed material and geometry data. This extensive information enabled the development of two numerical models,
i.e., a beam model and a shell model, with differing levels of fidelity, both of which are employed and compared within the
model-updating procedure(s). Consequently, different design variable configurations are introduced and applied, as their se-
lection depends not only on the purpose of model updating but also on the specific numerical model used in the updating
process, including its element type and geometry. In this work, all presented design variable configurations define a one- or
two-dimensional damage distribution function used to alter the stiffness properties of the respective numerical model. This def-
inition ensures a smooth, realistic stiffness distribution and is independent of the FE mesh resolution and of prior assumptions
about the defect location while requiring few design variables. As in all related studies (Fan and Qiao, 2011; Simoen et al.,
2015; Ereiz et al., 2022), this work also uses the discrepancies between simulated and identified modal properties as updating
objectives. In particular, the eigenfrequencies and eigenmodes of the large-scale rotor blade are utilized in this work. To avoid
the need for weighting factors, multi-objective optimization is applied. In addition, both objective functions are formulated in
relative terms, taking into account a possible constant discrepancy between the simulated and identified responses for both the
analysis and reference states. To account for the uncertainty associated with the modal properties identified from the measure-
ment data, the SDMU approach is utilized (Wolniak et al., 2025a). This approach is motivated by a separation of the uncertainty
incorporation and the model-updating procedure itself, resulting in an approach that is fully adaptable to the specific problem
at hand. In this work, an SDMU realization is applied which delivers fully deterministic and reproducible results.

The following key points summarize the fundamental aspects of this study.

— Publication of a unique experimental dataset along with identified modal properties, providing a basis for monitoring the

stiffness degradation of a large-scale rotor blade tested under edgewise fatigue loading.
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— Application of a beam and shell model within the model-updating process to compare different levels of fidelity.
— Application of different design variable configurations tailored to the respective numerical models utilized.

The combination of a unique large-scale rotor blade fatigue test, the systematic model updating across the gradual stiffness
degradation of the rotor blade and the comparative evaluation of numerical models and associated design variable configura-
tions of different levels of fidelity constitutes a novel contribution in the context of SHM for wind turbine rotor blades. The
results demonstrate the methodological robustness of the proposed model-updating procedure, including the SDMU approach
that considers uncertainty associated with the measurement data and the subsequent modal parameter identification and in-
cluding the use of the one- and two-dimensional damage distribution functions parameterized by the different design variable
configurations. Moreover, the findings of this work underline the importance of defining the analysis objective in advance, as
the choice of the numerical model and the associated design variable parameterization is decisive in obtaining meaningful and

reliable results.

2 Model updating

Typically, a model-updating problem is formulated inversely and treated as an optimization problem (Mottershead et al., 2011).
An objective function is used to compare the structural dynamic behavior of the numerical model to a target state and an
optimization algorithm is used to find a model to match this target state by updating the selected design variables. Most often,
this is achieved through stiffness or mass modifications (Friswell and Mottershead, 1995).

The utilized optimization algorithm is essentially designed to solve bounded and nonlinear optimization problems. This can

be stated as
minimize e(x) fore e R, x € R", (1)

where € is a vector-valued function consisting of m objective functions e(x) = (e1(x),e2(x), ...,em(x)) and x is the n-
dimensional vector of design variables. In this work, multi-objective optimization is applied, where the concept of Pareto

dominance is followed (Marler and Arora, 2004). The space of the design variables is bounded by the volume of a hypercube
Tp < T < Ty, 2

where xj, and x,, are the lower and upper bounding vectors, respectively. For the optimization performed in this work, the
optimization framework EngiO, introduced by Berger et al. (2021), is utilized.

From Equation 1, it is clear that the optimization process and, thus, the quality of model-updating results depend on two
key aspects: On the configuration of the design variables & on the one hand, and, on the other hand, on the formulation of the

objective function (). In the following subsections, detailed information is given about the definitions used in this work.
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2.1 Design variables

The determination of the design variables strongly depends on the purpose of model updating. Since the aim of this contribution
is damage identification, specifically, damage localization and quantification, the parameterization should be able to identify
the geometric position of the damage and its intensity.

As damage mainly manifests itself as a change in stiffness, the general approach for most FE model-updating procedures
with the aim of damage identification is to alter the stiffness properties of the model at hand (Friswell and Mottershead, 1995).
This approach is also applied in this work. As no prior knowledge of the defect location is assumed, the updating of the
stiffness properties of all N elements is performed, independent of the element type. This is implemented by adapting the

initial Young’s modulus E of each FE with a corresponding scaling factor 6y,

Ee,k = FEy0; with k€ [LNel]- (3)

The stiffness scaling factors 6, are calculated on the basis of the design variables. In this work, the design variables param-
eterize a so-called damage distribution function, previously introduced and applied by the authors (Wolniak et al., 2023). By
formulating the mapping of the considered structural properties to the FEs using a distribution function, a smooth, realistic
distribution is ensured. This forces the model-updating process to focus on global structural dynamics instead of over-fitting
local deviations. Moreover, the model-updating procedure is independent of the FE mesh resolution and of prior assumptions
about the defect location while only needing few design variables. However, applying the damage distribution in its current
form restricts damage identification to only one damage position. In this work, a spatial Gaussian damage distribution function
is considered based on the assumption that the damage roughly follows this type of distribution.

The determination of the design variables additionally depends on the specific model used in the updating procedure, as
its element type and geometry inherently influence their configuration. In this work, two different numerical models of the
large-scale rotor blade are considered, which necessitate at least two different design variable configurations. In the following
subsections, firstly, the parameterization of a one-dimensional damage distribution function for the model updating using a
rather simple beam model of the rotor blade is presented. This definition based on three design variables was already intro-
duced and successfully employed in several preceding publications (Bruns et al., 2019a, b; Wolniak et al., 2023), where de-
terministic model updating was performed on simulated and experimental application examples. In addition, in this work, the
one-dimensional parameterization is extended by a fourth design variable, which independently adjusts the stiffness properties
in the edgewise and flapwise directions of the rotor blade, allowing for a distinct consideration of both directions. Secondly, the
parameterization of a two-dimensional damage distribution function for the model updating using a more detailed shell model
of the rotor blade is introduced. This configuration is based on five design variables and allows for a damage identification in

longitudinal direction and circumferential direction.
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2.1.1 One-dimensional damage distribution function — 3 design variables

The one-dimensional damage distribution function is defined along a single control variable, specifically the length L of the

beam model representing the rotor blade. It can be described by the three design variables
xip=(uz or D). “)

In the design variable vector xp, pr represents the geometric position of the distribution function’s center point along the
length, o1, represents the width (standard deviation) of the distribution, i.e., the extent of the damage, and D;p represents
the intensity of the damage. In this case, the damage intensity is defined as the area under the Gaussian distribution function
defined by pr, and op..

The calculation of the stiffness scaling factors 0)p ;, for each FE with a corresponding length [}, is based on the probability

density function f (s Lk | u1.,01) evaluated along the control variable s L.k and truncated to the interval 0 < sy, ,, < L

f(sck|pr,or)

Oipr=1—Dip L ;
k

with % € [1,Ng]. 4)

More detailed information regarding the one-dimensional damage distribution function parameterized by three design variables
is given in Wolniak et al. (2023).

2.1.2 One-dimensional damage distribution function — 4 design variables

By introducing a fourth design variable A € [0,1], the above-described one-dimensional damage distribution function is ex-
tended so that it can alter the stiffness properties in flapwise and edgewise directions separately. Therefore, instead of changing
the initial Young’s modulus Ey of each FE, which alters each element stiffness altogether, the initial moments of inertia I, o
and I, o in flapwise and edgewise directions and the initial moment of deviation I, o are updated separately from each other

in an equivalent way to Equation 3

Iza:,@,k: Izz,O,k ezz,lD,k
Lyy.0.k Tyyok | © | Oyyip.k with & € [1, Nel]. ©)
I.ty,@,k Iacy,O,k exy,lD,k

The calculation of the stiffness scaling factors 8p ;. for each of the three moments of inertia follows a similar approach to

Equation 5, except that the damage intensity D p is scaled by different factors A;z, Ayy and Ay

ozz,lD,k )\rx
I J(spk | pr,or)

l with k€ [1, Ny, (7
k

Oy | =1=Dip | Ayy

sz,lD,k /\»Ly
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whereby these different factors are defined based on the fourth design variable A
Asa A
w | = 1—A with A €[0,1]. 8)
Azy A(1=N)

The presented formulation allows the single design variable A to capture the trade-off between edgewise and flapwise stiffness.
In addition, the total stiffness alteration applied in the different lateral directions of the structure remains proportional to
the damage intensity Dp, which is determined and adjusted by the employed optimization algorithm. Consequently, the
progression of the model-updating procedure mirrors that of utilizing only three design variables (cf. Section 2.1.1), with the
added ability to introduce damage separately in the two lateral directions.

For the calculation of the scaling factor A, it is assumed that the structural stiffness undergoes an affine transformation
characterized by independent scaling along the two lateral axes (Timoshenko and Gere, 2012). This preserves the overall shape
of the stiffness distribution while modifying its extents along the x (i.e., flapwise) and y (i.e., edgewise) axes. As a result, the
scaling factor for the moment of deviation (also referred to as the product of inertia), I,.,,, can be derived as the geometric mean
of the scaling factors for I, and I, i.e., Agy = \/)\m)\yy = \/)\ (I—=X).

2.1.3 Two-dimensional damage distribution function — 5 design variables

Using the shell model as representation of the rotor blade, a parameterization of the damage distribution function along a single
control variable, i.e., the length L of the rotor blade, is no longer sufficient. The parameterization has to be extended to a second
control variable, meaning the perimeter P of the rotor blade. As a result, a two-dimensional damage distribution function is
defined on the surface of the shell model and the design variable vector describing this two-dimensional damage distribution

function is extended to five entries
T
xop = (pur, o pup op Dop) . 9)

As the damage distribution function is now bell-shaped, its center point is described by the two geometric positions p7, and

wp along the length and the perimeter of the rotor blade, respectively

pn = | 1. (10)

kp

As the blade’s perimeter changes along its length, the design variable ;1 p is normalized to values between —0.5 < pup < 0.5,

whereby the value O corresponds to the leading edge (LE) and the values —0.5 and 0.5 correspond to the trailing edge (TE) of
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the rotor blade. The damage extent is characterized by o, and o p, making up the covariance matrix
g7, 0
o= 0 . 11)
op

The off-diagonal terms are set to zero for the application considered. This leads to a distribution function that can be circular
or elliptical but is restricted to have no inclination or obliqueness. The design variable o p is normalized in the same manner
as pup. The damage intensity D,p is defined similarly to the one-dimensional formulation as the area under the (bell-shaped)
two-dimensional Gaussian distribution function.

For the two-dimensional application, the calculation of the stiffness scaling factors #,p ; for each FE with a corresponding
area ay, is based on the probability density function f(sy | pop,2ap) evaluated along the two-dimensional control variable

se=(sLr spx)

f(sk | top, op)
ay

Opr=1—Dyp A with k€ [1, Ny (12)

The two-dimensional control variable s, is truncated to 0 < sy, ,, < L along the blade’s length and to —0.5 < sp, < 0.5 along

the normalized perimeter of the blade. A denotes the total area (surface) of the rotor blade.
2.2 Objective function formulation — sample-based deterministic model updating

As uncertainty is inevitable in real-world model-updating applications, the formulation of the model-updating problem is
uncertain as well. To tackle the issue of uncertainty propagation within the model-updating procedure, the authors recently
introduced the sample-based deterministic model-updating (SDMU) approach (Wolniak et al., 2025a). The key idea behind
the SDMU approach is to exclude the uncertainty from the design-variable dependent part of the objective function formula-
tion, i.e., from the actual model-updating procedure. Instead, the uncertainty is incorporated indirectly by generating multiple
discrete input samples. Following the sample provision, a fully deterministic model-updating procedure using a numerical
optimization algorithm is executed based on each input sample. Thus, multiple deterministic model-updating procedures are
performed based on the input samples.

Due to the separation of the uncertainty incorporation and model-updating procedure, both the type of sample provision
and the choice of the optimization algorithm are arbitrary. This interchangeability allows the approach to be fully adaptable
to the specific problem at hand. Consequently, the SDMU approach can be realized to deliver fully reproducible results,
which is also applied within this work. Therefore, the global deterministic optimization algorithm global pattern search (GPS)
(Hofmeister et al., 2019) is chosen. As the two modal parameters eigenfrequencies f and eigenmodes  are considered as the
two objectives for the model-updating procedure of the large-scale rotor blade, multi-objective optimization is required. Hence,
the multi-objective extension of the deterministic optimization algorithm is utilized, namely the multi-objective global pattern

search (MOGPS) (Giinther et al., 2025).
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Regarding the sample provision, the available measurement data were segmented into a number of datasets. For each dataset,
the eigenfrequency and eigenmode mean values were identified using BayOMA and cross-combined for each considered
reference state and analysis state. Thus, after applying this specific (or any other) sample provision (SP), a resulting number
of Nsp modal parameter samples fu ; ;j and ¢wm ; ; With ¢ € [1, Nodes) and j € [1, Nsp| represent the input samples for each
subsequent deterministic model-updating procedure. The subscript (-)m denotes measured data, ¢ denotes the mode index,
whereby Nyodes 1S the number of modes investigated, and j is the sample number. As a result, the two objective functions are
each vectors with Ngp entries, the first comprising the mean squared eigenfrequency error ¢ ; and the second comprising the

mean squared eigenmode error €, ;

1 Ninodes fSA,i(m)*fSR,i fMA,z‘,‘*fMR,i,' 2
ef,j<m>¢ s ( — Junsg ~ Suwig

Nmodes fsr,i IMR4,5

gj(xm) = 5

— 1 Ninodes 1 Niensors 2

€p,i(T) = \/N 2t (N 21" (@5 () = Psr,u,i) = (PMA w05 — PMRwsi5) )
modes Sensors

with u € [LMensors]’ 1€ [17Nmodes]’ ] S [LNSP]- (13)

The subscript (-)m indicates a measured quantity, whereas simulated modal parameters are denoted by the subscript (+)s. The
subscripts () and (-) indicate the reference state and analysis state, respectively. The presented definition of the two objective
functions was introduced by Ragnitz et al. (2025) for damage localization on the LUMO benchmark structure (Wernitz et al.,
2022) using a stochastic multi-objective model-updating approach. Both objective functions are based on a relative formulation,
which takes into account a possible constant discrepancy between the simulated and identified responses for both the analysis
and reference states of the examined structure. The goal is to obtain a numerically efficient, well-formulated optimization
problem, which can handle irreducible modeling errors.

One way the Ngp two-objective functions e () can be handled is by performing independent model-updating procedures on
each of the two-objective functions. However, for high sample numbers and more complex numerical models, this approach
will eventually become very expensive in terms of computing time. This is why the use of a meta-model is proposed, whereby
the process of setting up and integrating a considered meta-model is incorporated into the SDMU approach and is referred to as
metaSDMU (Wolniak et al., 2025a). The objective is to derive a meta-model using a single representative deterministic model-
updating procedure in order to generate a sampling pattern within the design variable space, which is dense in the area where
the solution(s) are expected. The design variable samples generated during this optimization procedure and the corresponding
objective function values calculated provide the training data for the two meta-models — one meta-model for each input, i.e.,

each modal parameter. Subsequently, these meta-models replace the actual numerical model such that
fmeta,S,i ((B) ~ fS,i(m) and (Pmeta,S,i(w) ~ Ps,i ((L') with 7 ¢ [17Nm0des] (14)

holds true for each (simulated) eigenfrequency fs ; and eigenmode s ;.
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This way, the potentially computationally expensive model evaluations required in every iteration step only have to be per-
formed during one model-updating procedure. For all other samples, the model updating with consideration of uncertainty (cf.
Equation 13) is performed using the meta-models, which are computationally much more efficient. More detailed information

regarding the (meta)SDMU approach is given in Wolniak et al. (2025a).

3 Rotor blade fatigue test

The large-scale destructive rotor blade fatigue test was carried out on a 31 m wind turbine rotor blade. The blade was manufac-
tured by the Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES) and the fatigue test took place in one of their
test facilities in Bremerhaven, Germany. The fatigue test was carried out by Fraunhofer IWES, while the measurement system
setup, data acquisition and subsequent operational modal analysis were conducted by the authors of this work.

During the test, the blade was bolted to an adapter plate with the suction side facing downwards. Figure 1 shows the
suspended laboratory rotor blade from different perspectives. Four load shears were mounted on the blade to apply the load

and introduce a controllable bending moment. The longitudinal positions and masses of the four load shears are listed in Table

Table 1. Load shear positions and masses.

Load shear Longitudinal position ~Mass

inm in kg
1 9 3674
2 15 608
3 20 176
4 29 92

(a) Pressure side. (b) Suction side.

Figure 1. Suspended rotor blade in the test facility in Bremerhaven.

A total of 34 IEPE (integrated electronics piezo-electric) accelerometers with a dynamic range of +100  were mounted on
the pressure side (facing upwards) of the rotor blade. These accelerometers contain an internal charge amplifier, providing a
voltage output proportional to acceleration, which enables high-sensitivity vibration measurements with low signal degradation

over long cables. The sensors were placed every 3m along the center line and the TE of the blade, as shown in Figure 1a. Two

10
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accelerometers each were fixed at each sensor position at a 90-degree angle to each other in order to measure the flapwise and
edgewise directions separately. Figure 2 shows an example sensor setup and in Table 2, the longitudinal sensor positions are
listed. As the cross-section of the rotor blade gradually tapers along the blade length, 10 sensor positions were located along

the center line and 7 sensor positions were located along the TE.

Table 2. Sensor positions.

Longitudinal position 4 7 10 13 16 19 22 25 28 3l
from blade root in m

Center line X X X X X X X X X X
Trailing edge X X X X X X X

Figure 2. Example sensor setup with two accelerome-
ters at a 90-degree angle.

The fatigue load was introduced by a hydraulic cylinder connected to the second load shear at blade length L = 15m. The
periodic excitation was carried out in edgewise direction close to the rotor blade’s first eigenfrequency in this direction using a

frequency of 1.59 Hz. The following fatigue load levels (FLL) were set during the course of the rotor blade fatigue test.
— FLL 1: =~ 240000 cycles with 1700 e (measured at L = 12m)
— FLL 2: = 425000 cycles with 1900 pe (measured at L = 12m)
— FLL 3: &~ 11000 cycles with £2000 pe (measured at L = 61m)

The amplitude of the hydraulic cylinder’s motion was initially selected so that a material strain of 1700 ue was measured at
the TE of the blade at L = 12m using strain gauges. This load level was increased subsequently and after approximately 11000
cycles of the final FLL 3, the test was terminated due to the growth of a structurally critical crack at the LE, which most likely
occurred due to fiber failure.

For the analysis of the different rotor blade states in between and after the application of the FLLs, dynamic tests were
performed. These tests were carried out using dynamic shaker excitations, during which the rotor blade was decoupled from
the hydraulic cylinder unit so that its motion was free of this constraint. The shaker was connected to load shear 2 at L = 15m.
Each excitation was carried out in the edgewise direction using broadband white noise and lasted approximately 20 minutes.
Table 3 provides an overview of the rotor blade states together with a description of the corresponding rotor blade’s condition
with respect to structural integrity. Figures 3 and 4 show photographs of the described fatigue cracks that occurred during the

course of the test.
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Table 3. Analysis states of the laboratory rotor blade to which shaker excitations were applied.

State Date Fatigue load level (FLL) Description

1 04/22/2021  State after FLL 1 Vertical cracks across the TE.
11 04/26/2021  State after FLL 2 More vertical cracks across the TE.
11T 04/29/2021  State after FLL 3 Crack across the LE at L = 8 m.

Figure 3. Vertical cracks across the TE traced out (a) Zoomed out. (b) Zoomed in.

in red for state I and in green for state II. Figure 4. Crack across the LE at L = 8m in state III.

3.1 Operational modal analysis

In this work, Bayesian operational modal analysis (BayOMA) (Au et al., 2013) is utilized for the identification of the modal
parameters from the measurement data of the dynamic tests under broudband white noise excitation. The sampling rate was set
to 100 Hz during the measurements. Figure 5 illustrates the frequency spectrum including the first Npoqes = 5 eigenfrequencies

of an example acceleration time period of the large-scale rotor blade recorded in state I. The frequency ranges utilized for the
BayOMA are highlighted.

0
m
o
R
[}
2 550 i
<
>
5
g’-loo ! .Ln‘ | ‘
z
= _150 L L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 45 5 5.5

Frequency in Hz

Figure 5. Frequency spectrum of the acceleration measurement in state I subject to broadband white-noise excitation. The frequency ranges
utilized for the BayOMA are highlighted.
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To visualize the stability and consistency of the recorded measurement data over time, the measurement data were seg-
mented into a number of datasets Ng. The evaluation time period was set to Tpa, = 400s and a moving window with an
overlap of 385s was applied. For approximately 20min = 1200s total measurement time, this results in Ny = 53 datasets.
For each dataset, BayOMA was applied, resulting in 53 outputs which comprise the mean value and standard deviation of each
eigenfrequency and the mean value and covariance matrix of each eigenmode. Figure 6 shows box plots of all eigenfrequency

mean values 7M7i, ; identified from all 53 measurement datasets in the three different rotor blade states with 7 € [1, Nimodes) and
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Figure 6. Box plots of the first five eigenfrequency mean values of the rotor blade identified for each measurement dataset in the three different
analysis states using BayOMA. Box plot definitions: median (red line), interquartile range (blue box), extreme values (black whiskers) and
outliers (red markers). Green crosses indicate the eigenfrequencies identified for dataset 9.

First of all, this analysis reveals that the interquartile ranges of the eigenfrequency mean values ?M,i remain stable for each
observed rotor blade state. This indicates consistent measurements with no significant fluctuations or outliers.

Looking more closely at the variation of the mean values of the five different eigenfrequencies across all states, it is clear
that the eigenfrequencies fMJ and fM) 3, corresponding to flapwise bending mode shapes, are not significantly influenced by
the damage that occurred during the fatigue test. In contrast, eigenfrequencies ?M,Q, ?M, 4 and ?M, 5 exhibit a gradual reduction
in magnitude, whereby the second and fourth eigenfrequencies correspond to edgewise bending mode shapes. The relative
deviations of the first five eigenfrequencies between states I and III range from 0.02 % to 0.6 %.

The measured acceleration time series together with the BayOMA results of the three rotor blade states are published as
open-access resources alongside this work within the public data repository of Leibniz University Hanover (Wolniak et al.,

2025b).
3.2 Finite element models

As both production and testing were carried out by Fraunhofer IWES, an outstanding feature of this rotor blade fatigue test
was the complete documentation of the manufacturing process in addition to material and geometric data. Based on this
detailed information, two different finite element (FE) models were developed and employed for the model-updating procedures
presented in this work. The simulations were performed using the FE analysis software Abaqus. Both numerical models are

illustrated in Figure 7. Further information regarding the element types, number of FEs and the computing time for the modal
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analysis is given in Table 4, whereby the computing time comprises the setup of the model itself (i.e., the input file) and the
modal analysis.

Firstly, a beam model was created based on the available cross-sectional characteristics of the rotor blade. Two-node linear
beam elements, available in Abaqus as B31 elements, are selected, whereby a total of 251 beam elements are utilized. The B31
elements are based on the Euler-Bernoulli beam theory, allowing the representation of bending, axial, and torsional deforma-
tions along the beam axis. The varying sectional properties were assigned to the beam elements using general cross-sectional
parameters. The load shears were simplified as point masses according to the information listed in Table 1 and assigned to the
structure using concentrated mass elements in Abaqus.

Secondly, a detailed shell model was set up based on the geometric data and composite layup available from the manufac-
turing process documentation. For this numerical model, S3R (three-node triangular) and S4R (four-node quadrilateral) shell
elements with reduced integration were utilized. These elements efficiently capture bending, membrane, and transverse shear
behavior, making them suitable for modeling thin to moderately thick shell structures. The load shears were modeled in detail
using C3D4 tetrahedral solid elements and were included in all subsequent calculations, as they were attached during the whole

experiment. In total, the shell model comprises approximately 310000 FEs, of which around 81700 are shell elements.

(a) Beam model. (b) Shell model.

Figure 7. FE models of the 31 m wind turbine rotor blade.

Table 4. Information regarding the two FE models utilized for the model updating of the laboratory rotor blade.

FE model Element notation Representation Number of ~ Computing time for
in Abaqus of the load shears FEs the modal analysis
Beam model B31 Simplified using 251 0.3 min
point masses (MASS)
Shell model S3R, S4R Detailed using 310000 8min

solid elements (C3D4)

14
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4 Results

The following subsections present the results of the SDMU approach, applied using the three different design variable config-
urations (cf. Sections 2.1.1, 2.1.2 and 2.1.3) with the objective of identifying damage in the considered laboratory rotor blade.
For this purpose, all available rotor blade states listed in Table 3 are considered and systematically combined, yielding a total of
six different state combinations. These combinations are summarized in Table 5, whereby the combinations along the diagonal
represent self-comparisons of identical states.

In this work, the SDMU approach is applied to three different design variable configurations, which feature different numbers
of design variables Npys, each defining a damage distribution function. These configurations are associated with the two
numerical models of different levels of detail. The upper and lower bounds @y, and &y, and physical units used for each design

variable configuration are listed in Table 6.

Table 5. Rotor blade state combinations considered for Table 6. Upper and lower bounds for the different design variable
the damage identification using the SDMU approach. configurations.
State I State IT State IIT FE model Npvs Units x s Typ
State I I-1 I-11 I-111 m nr 0 31
State 1T -1 TI-11T Beam model 3 m oL 0.001 2
State 111 TII-1IT - Dip —0.02 0.02
m nr 0 31
m or 0.001 2
Beam model 4 ( i ) (Dm) 0'02) (0.0Q)
- A 0 1
m nr 0 31
m or, 0.001 2
Shell model 5 - wp —0.5 0.5
- op 0.01 0.3
Dsp —0.02 0.02

For all model-updating procedures conducted in this work, the two objectives involve the minimization of the discrepan-
cies in both the first Nyqes = 5 eigenfrequencies and eigenmodes between those identified from the measurement data and
those calculated using the respective FE models. For the sample provision within the SDMU approach, the Nt = 53 modal
parameter mean values identified for each reference and analysis (i.e., target) state are cross-combined using the Cartesian

= 2809 input samples and, consequently, in the same number of functions N2

product. This results in a total of Ngp = N2
representing the two objectives (cf. Equation 13). The subsequent numerical optimization is carried out using the deterministic
multi-objective global pattern search (MOGPS) algorithm. Accordingly, the present work employs a fully deterministic SDMU
realization for the damage identification on the laboratory rotor blade.

Importantly, the input samples directly represent the identified modal parameter mean values of each dataset. As demon-
strated in Section 3.1, the measurement conditions were stationary, i.e., no significant variations in temperature, humidity or
other environmental factors occurred during the rotor blade fatigue test. Consequently, the generated sample set inherently

reflects the frequentist uncertainty associated with the measurement and modal identification process. For applications involv-

ing significant environmental or operational variations, however, this sampling strategy would no longer be sufficient and an
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alternative sample provision approach, for example based on the variance estimates provided by BayOMA, would be required
to account for the additional sources of uncertainty.

For the visualization of the results, cumulative distribution functions (CDFs) are utilized. The CDFs are calculated based on
the respective optimal design variables associated with the Pareto frontier, which is the result of the multi-objective optimization
(i.e., model updating) procedure employed in this work. A CDF provides a comprehensive view of how probabilities are
distributed across the range of the considered (design) variable. A notable feature of CDFs is the rate at which they increase. A
steep section in a CDF indicates a rapid accumulation of probability over a small range of values. This indicates that a significant
portion of the data points are concentrated around that region. Consequently, the probability density function (PDF), which is

the derivative of the CDF, will be high in this area, pointing to a high density of occurrences.
4.1 Model-updating results using the beam model

To begin with, the damage identification results obtained using the beam model of the rotor blade (cf. Figure 7a) are presented
for the three- and four-dimensional design variable configurations, as introduced in Sections 2.1.1 and 2.1.2, respectively.
Before the application of the SDMU approach, preliminary studies are conducted to determine suitable settings for the input
data and optimization algorithm hyperparameters. These studies are carried out using the three-dimensional design variable

parameterization defined for the beam model with upper and lower bounds according to Table 6.
4.1.1 Settings

The first step of the SDMU approach is a single deterministic model-updating run using the numerical model, in this case,
the beam model of the rotor blade. The resulting samples and corresponding modal parameters serve as the input data for the
subsequent meta-model setup. Therefore, appropriate settings have to be defined for this initial deterministic model-updating
run forming the basis of the subsequent (meta)SDMU procedure.

Regarding the utilized MOGPS optimization algorithm, two hyperparameters exist, namely the maximum number of objec-
tive function evaluations Ny, s and the algorithm-specific number of tracked globally best coordinates 7" (Hofmeister et al.,
2019). To evaluate which settings of N, s and 7" are suitable, a convergence study is set up. To this end, a set of Vs = 500 de-
sign variable samples is randomly generated in the design variable space (cf. Table 6) and the corresponding modal parameters
are calculated using the beam model. These results are utilized as test data to evaluate each meta-model, set up using different
combinations of Ny, and 7. The evaluation of each combination is calculated using the cumulated relative root mean square

error (RMSE) of the first Nyodes = 5 eigenfrequencies

Nmodes N(es( 2
1 fmelaSi(mle)_.fSi(xle)>
€ — E D5 > > > . (15)
meta, f ; Niest ( fs,i(xip,5)

j=1
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Figure 8 shows a heat map according to the natural logarithm of the eigenfrequency error pyeta, . The minimum error is
obtained for 7" = 200 and N5 = 5000, which are therefore selected as the hyperparameter settings for the model-updating
run used to populate the meta-model. Notably, the meta-model error remains consistently low for 7' > 200 and Neyas > 2000.

For the initial deterministic model-updating run, only a single set of modal parameters can be used as input in the objective
functions (cf. Equation 13). As discussed in Section 3.1, the measurements show a high level of consistency without significant
fluctuations or outliers. Consequently, the specific choice of the modal parameters used as input for the initial model-updating
run is not critical. In this work, the modal parameters identified from the measurement data after a 2-minute settling time are
selected, corresponding to dataset number 9. The corresponding eigenfrequency mean values are marked in Figure 6 with green
Crosses.

To verify that this set of modal parameters is indeed representative, model-updating runs with 7' = 200 and Neyas = 5000
are performed for all available datasets, shown as an example for combination I-IIT (cf. Table 5). In this context, a one-to-one
mapping is employed. Figure 9 shows all Ny = 53 resulting CDFs for the three design variables. The results demonstrate
that the choice of the input dataset has no significant effect on the model-updating results, confirming that the chosen dataset 9
(highlighted in green) is representative. Consequently, j = 9 is used in Equation 13 for evaluating the two objective functions

within the deterministic model-updating runs.

1 T T T T T
~ F
~
= L 4
9000 z =
8000 29
7000 3
6000
£ 5000 310
:
= 4000 =
328
3000
2000 33 = =
1000 ! | S o0sf }EEH
500 34 =
100 —— ‘ — 0 . |
10 20 50 100 200 500 1000 -0.02  -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
T D]D

Figure 8. Evaluation of each meta-model set up using different com- Figure 9. Resulting CDFs of the deterministic model-updating pro-
binations of Nevas and 7'. Surface colored according to the error cedures for combination I-III based on the modal parameters of all
In(ef meta)- datasets. The results for dataset 9 are highlighted in green.

Table 7. Settings for the SDMU procedure.

Equation Settings FE model evaluations
Setup meta-model 13,7=9 Nevals = 5000 5000
T =200
MetaSDMU 13,5 € [1,N2]  News = 5000
T =20
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4.1.2 Results for 3 design variables

This section presents the results obtained with the (meta)SDMU approach using the three-dimensional design variable con-
figuration, which defines the one-dimensional damage distribution function applied to the beam model. For each state combi-
nation, the design variable samples and corresponding eigenfrequencies and eigenmodes from the initial deterministic model-
updating runs serve as input for the meta-models, using the hyperparameter settings determined previously. Based on these
meta-models and by applying Equation 14, the metaSDMU procedure is carried out. As noted earlier, the Nyts = 53 identified
= 2809

two-objective functions, forming the basis of 2809 model-updating runs per combination, all of which are based on the corre-

eigenfrequency and eigenmode mean values constitute the input samples and are cross-combined. This results in N2,
sponding meta-models.
Figure 10 shows the resulting CDFs for each design variable of each combination. The CDFs are derived from all optimal

design variables obtained in the course of all N2

s model-updating runs. For the combinations I-III and II-III, where state

IIT represents the target state with the emerged crack at the TE of the rotor blade, the correct crack location and extent are
highlighted in addition to the results for the design variables yi;, and oy,. The crack extends longitudinally from py, = 7.5m —
8.5m, yielding a correct damage width of 1m. As the one-dimensional damage distribution function is formulated based on
a Gaussian distribution function (cf. Section 2.1.1), ur, £ 1o represents the range including approximately 68 % of the data
values, whereas p 7, + 20, corresponds to roughly 95 % of the values. Consequently, 20, is associated with the correct damage
extent of £0.5m = 1m, resulting in a correct value for 1oy, = 0.25m. Both values are highlighted in Figure 10b. For the
self-combinations I-1, II-IT and III-II1, the known zero-damage intensity is highlighted in addition to the design variable Dp.
Moreover, the red crosses indicate a representative optimal design variable vector & p opimal that is selected from the CDFs
such that the first design variable, the damage position piy,, is set to its median value fiy, defined as the 50% value of the

corresponding CDF.
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Figure 10. Resulting CDFs of the SDMU approach applied to the beam model using the one-dimensional damage distribution function
parameterized by three design variables, with settings given in Table 7. The red crosses added for combination I-III indicate an example
optimal design variable vector.

Starting with combinations I-1, II-II and III-III, where each state is compared with itself, the model-updating results are
expected to reflect the absence of damage. The corresponding CDFs of the damage intensity D;p, shown in Figure 10c, are
nearly identical, with D;p = 0 being the most probable outcome for all three self-comparisons. The results for design variable
i1, shown in Figure 10a, are also similar to each other, showing a sample distribution across the entire design variable space
without clear probability clusters. Likewise, the longitudinal damage extent o, shown in Figure 10b exhibits a similar pattern
with a slightly steeper slope for o7, < 0.5. Although the damage position and extent are not directly relevant when the damage
intensity is zero, the lack of convergence in py further confirms that no damage is present when these states are compared
with themselves. In summary, with Dp = 0 as the most probable solution, the results for combinations I-I, II-IT and ITI-III
consistently and correctly indicate that no damage is present in the rotor blade for these self-comparisons.

For combination I-II, comparing reference state I with analysis state II, no distinct damage position is apparent, as the design
variable pi;, remains distributed across the design variable space. A similar pattern is observed for o, again with a slightly
steeper increase of the CDF for o7, < 0.5. However, the damage intensity D;p shifts slightly from D;p =0 to D;p ~ 0.002
(cf. Figure 10c). This indicates that damage has occurred but no distinct position can be determined. This outcome is consistent
with the target rotor blade state II, where numerous small vertical cracks appeared along the TE (cf. Figure 3). Consequently,
no single location is severely damaged, instead, the stiffness of the rotor blade is slightly reduced along the entire blade length
due to these minor cracks.

Examining combinations I-III and II-III, where state III represents the target state with the most severe damage, the optimal
damage intensity shifts to Dp ~ 0.005. This positive value corresponds to a stiffness reduction in the rotor blade beam model
according to the applied one-dimensional damage distribution function. The location of the stiffness reduction is identified at
pr, ~ 11 —12m for both combinations, which overestimates the actual damage location (L = 7.5 — 8.5m) by approximately

3—4m. The results for the damage width o1, shown in Figure 10b, are again spread across the design variable space. Compared
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to the solutions for all other combinations, the CDFs for combinations I-III and II-IIT show a noticeably steeper slope for
o1, < 0.5m, whereby the median value lies exactly between the 1o, and 20, values highlighted in the figure. Consequently,
this identified damage extent corresponds reasonably well with the actual crack length of approximately 1 m.

To summarize, the SDMU procedure yields very similar results for combinations I-IIT and II-III, comparing states I and II
to the same target state III. Moreover, for the self-combinations I-I, II-II and III-III, the model-updating procedure consistently
returns zero-damage results. These findings demonstrate the consistency and, consequently, the reliability of the applied SDMU
approach, objective function formulation and utilized design variable configuration.

To illustrate a representative damage distribution (i.e., stiffness reduction) for combination I-III, an example optimal design
variable vector & ipopimal 15 selected from the CDFs such that the first design variable is set to its median value fiz,. The
remaining two design variables are chosen as the optimal values corresponding to this fixed first design variable, which, in the
case of the beam model, also coincide with their respective median values. In Figure 10, the example optimal design variable
VECLOT & 1D optimal 18 indicated using red crosses. The stiffness reduction resulting from the one-dimensional damage distribution
function based on & |p optimal 1 Visualized in Figure 11. For comparison, Figure 12 visualizes the actual damage due to the crack

that emerged at L ~ 8m (cf. Figure 4). It is evident that the crack location is overestimated by approximately 3.5m.

- L = T 1 1 1

0 5 10 15 20 25 30
Length in m

Figure 11. Visualization of the stiffness reduction based on & p,eptimal, denoted by red crosses in Figure 10, in the beam model. The schematic
rotor blade geometry is additionally outlined.

L 1 1 1 1

0 5 10 15 20 25 30
Length in m

Figure 12. Visualization of the correct stiftness reduction in the beam model. The schematic rotor blade geometry is additionally outlined.

4.1.3 Results for 4 design variables

The results obtained using the four-dimensional parameterization of the one-dimensional damage distribution function, adding
a separate consideration of the stiffness alterations in flapwise and edgewise directions via the design variable )\, are generally
consistent with those presented above. Figure 13 shows the resulting CDFs of all optimal design variables for the six state
combinations. As before, for combinations I-IIT and II-III, the correct damage location and extent are highlighted in addition to
the results for the design variables i1, and 0. Moreover, the zero-damage results for all three self-comparisons are highlighted

in addition to the results for the design variable Dp.
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Figure 13. Resulting CDFs of the SDMU approach applied to the beam model using the one-dimensional damage distribution function
parameterized by four design variables, with settings given in Table 7.

Again, the design variable Dp, shown in Figure 13c, returns zero as the most probable outcome for all three self-comparisons

and indicates a stiffness reduction for combinations I-II, I-III and II-III. Closer examination reveals that the stiffness reduction
increases from combination I-II to I-III and remains similar between combinations I-III and II-III. This is consistent with the
observations from Figure 10c. Similarly, the design variables y;, and o, yield comparable results for the two design variable
configurations applied to the beam model of the laboratory rotor blade.

Regarding the definition of the fourth design variable A (cf. Section 2.1.2), a value of A\ = 0 implies a stiffness alteration
applied in the edgewise direction and a value of A =1 implies a stiffness alteration applied in the flapwise direction. It is
evident from Figure 13d that A = 0 is the most probable solution for all combinations, indicating that mainly the stiffness in
the edgewise direction is reduced, given that D p is positive. For combinations I-II, I-IIT and II-III, this probability reaches

approximately 50 %, while the self-comparisons show slightly less conclusive results.
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Consequently, the separate consideration of the edgewise and flapwise directions captures the directional effect of the dam-
age and provides an approximate indication of its positioning along the blade perimeter. However, the results should not be
interpreted as ideal, since even in the self-comparison a significant probability of A = 0 is observed. Therefore, these findings
should not be overemphasized. A true assessment of directional dependence would require the use of a shell model, which is

presented in the following subsection.
4.2 Model updating using the shell model

Here, the damage identification results of the (meta)SDMU approach applied to the shell model of the laboratory rotor blade
are presented. In this case, the two-dimensional damage distribution function parameterized by five design variables is utilized
with upper and lower bounds according to Table 6.

In the initial deterministic model-updating run for each combination, the same settings as listed in Table 7 are employed.
Based on the samples and corresponding eigenfrequencies and eigenmodes, the respective meta-models are created using the
same settings as before. For the subsequent metaSDMU approach, only the maximum number of objective function evaluations
is doubled to N.y,s = 10000 as more evaluations are needed for a sufficient convergence of the design variables in a higher-
dimensional design variable space. The number of tracked globally best coordinates is, again, selected in the same way as
before to be T = 20.

Figure 14 shows the resulting CDFs obtained for each design variable of each combination. As before, these CDFs are
calculated based on all optimal design variables identified in the course of all N2, separate model-updating runs for each input
sample. For combinations I-III and II-III, the correct edgewise and flapwise locations of the emerged crack in state III are
marked in gray. In addition, the 1o and 20 damage extents are highlighted for both directions. For all three self-comparisons,
the zero-damage result is highlighted. Furthermore, the red crosses indicate a possible optimal design variable vector &sp optimal
for combination I-III. This example optimal design variable vector is selected from the CDFs as before such that the first design

variable, the damage position p,, is set to its median value /iy, defined as the 50 % value of the corresponding CDF.
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Figure 14. Resulting CDFs of the SDMU approach applied to the shell model using the two-dimensional damage distribution function
parameterized by five design variables. The red crosses added for combination I-III indicate an example optimal design variable vector.

For the design variable yy,, shown in Figure 14a, combinations I-III and II-III, with state III as the target state, clearly show
that the damage localization along the blade length almost exactly matches the correct crack position. Most optimal values
obtained using the shell model fall almost entirely in the shaded gray area, representing the true damage location. In contrast,
the results obtained using the beam model (cf. Figures 10a and 13a) overestimate the damage position by approximately 3 —4m.
This means that the shell model improves localization accuracy along the blade length. For combination II-III, the CDF also
shows a short steep section at L = 8 m. This indicates that the stiffness reduction has already begun at this location in state II,
although it is less distinct than in state III. For combinations I-I, II-IT and III-III, no clear convergence of pz, is observed, which
is consistent with the expected zero-damage result for these self-comparisons.

Figure 14b displays the resulting CDFs for the damage position pp along the blade perimeter. For combinations I-I, I-II,
II-IT and III-IT1, no clear convergence is visible, indicating that no specific position along the blade perimeter can be determined

for these state combinations. For combinations I-III and II-II1, a position between pp = —0.1 and pup = —0.3 is identified as
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the most probable solution. The negative sign corresponds to the pressure side of the blade, oriented upwards in the considered
laboratory setup (cf. Figure 1). This outcome does not match the true crack location across the LE in state III, corresponding
to up = 0 as marked in gray. However, closer inspection of Figure 4 shows that the crack propagates slightly more on the
pressure side and changes direction through approximately 90° at this position. This may explain why the model-updating
results identify the damage predominantly on the pressure side. Still, the damage localization along the blade perimeter remains
complicated.

The results for the damage extent along the length oz, shown in Figure 14c, are similar to those obtained using the beam
model (cf. Figures 10b and 13b) with the median lying exactly between the 1o, and 20, values. The damage extent along the
blade perimeter o p, shown in Figure 14d, indicates a rather small extent in this direction with the median being even lower
than the highlighted 1op value. Consequently, the optimal results for the covariance matrix 3,p correspond to a crack-like
shape extenting in longitudinal direction. Whereas this reflects the characteristics of the real damage extent, the orientation
does not correspond to the true extent across the LE of the rotor blade. However, it should be noted that an oblique damage
extent, as is actually the case here (cf. Figure 4), cannot be captured by the currently applied covariance matrix 3,p, since its
off-diagonal terms are set to zero (cf. Section 2.1.3).

The results for the damage intensity D;p, presented in Figure 14e, follow a pattern across all combinations similar to that
observed for the (meta)SDMU results using the beam model (cf. Figures 10c and 13c). For the self-comparisons, D,p = 0 is
the most probable outcome. Combination I-II shows an initial stiffness reduction, which is visible due to the slight rightward
shift of the CDF. For combination I-III, the CDF shifts further to the right, revealing a more distinct solution for a positive D;p.
This indicates an even greater stiffness reduction. The results for combination II-1I1, also targeting state III, show a comparable
solution for D;p ranging from 0.025 to 0.175.

The stiffness reduction corresponding to the optimal design variable vector T2p opimal, marked in red in Figure 14, is visu-
alized in Figure 15. Again, &op opimal 1S selected with the first design variable set to its median value /i, while the remaining
four design variables are chosen as the optimal values corresponding to this fixed first design variable. For the shell model,
these corresponding values coincide with the respective median values regarding design variables o, up and op, whereas
the corresponding optimal value for D;p is slightly below its median. For comparison, Figure 16 shows the correct damage
location associated with the crack that emerged in state III. It should be noted that the “correct” representation aligns with
the intuitive perception of the crack extending across the LE. This does not correspond to the actual crack propagation, which
runs obliquely across the LE (cf. Figure 4). However, as mentioned before, this obliqueness cannot be captured by the applied
five-dimensional design variable parameterization, as the off-diagonal terms of the covariance matrix X,p are set to zero (cf.
Section 2.1.3).

In summary, the (meta)SDMU approach applied to the shell model of the rotor blade successfully localizes the damage
along the blade length at L ~ 8 m. Furthermore, the damage exhibits an elongated, crack-like shape, which reflects the charac-
teristics of the real damage extent. However, the found orientation is along the blade length rather than transverse to it and the

circumferential damage position was not accurately captured at the LE of the rotor blade but shifted towards its pressure side.
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Figure 15. Visualization of the stiffness reduction based on &2p,eptimal, denoted by red crosses in Figure 14, in the shell model.
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Figure 16. Visualization of the correct stiffness reduction in the shell model.

4.3 Comparison of the results

In this subsection, a direct comparison of the results obtained using the three different design variable configurations, defining
the respective damage distribution functions applied to the two different numerical models, is presented. To illustrate this,
Figure 17 shows all the CDFs resulting for combination I-III. This combination updates the reference state I to the analysis

state III of the laboratory rotor blade.
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Figure 17. Resulting CDFs of the SDMU procedure for combination I-III — comparison of all three parameterizations of the damage distri-
bution function.
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In general, the results for the three design variables 1, oz and D (i.e., Dip and D,p) show a high degree of similarity. This
overall consistency confirms the methodological robustness of the presented (meta)SDMU approach and the validity of the
three different implemented parameterizations of the damage distribution function. Moreover, the agreement across the results
underlines their reliability, particularly given that two numerical models of distinctly different levels of accuracy and detail
were employed.

However, upon closer inspection, some differences can be discerned. Most notably, the use of the more detailed shell model
increases the accuracy of the damage localization along the blade length, shown in Figure 17a. Table 8 summarizes the local-
ization accuracy of the different design variable parameterizations using the beam and shell models with respect to the true
damage position iy, at L = 8m along the 31m blade. Therefore, the medians fiy, — defined as the 50% values of the CDFs
— were calculated for each design variable configuration. To provide a quantitative metric for assessing the accuracy of the

presented CDFs, Table 8 lists the relative error e,,, calculated in % per design variable configuration

e, =100 x % (16)

Table 8. Comparison of the damage localization accuracy.

FE model Npvys r Deviation from fif, e,

in m in m in %
Beam model 3 11.63 3.63 11.7
Beam model 4 12.59 4.59 14.8
Shell model 5 7.75 0.25 0.8

The listed results demonstrate that the shell model reduces the damage localization error to less than 1% of the blade length.
Due to its higher spatial resolution and more detailed representation of the blade geometry, it is significantly more accurate in
capturing local damage. However, this accuracy comes with the need for detailed geometric and material information and the
cost of higher computational demand, with a computing time of around 8 minutes, including the input file generation, model
loading and modal analysis. In contrast, the beam model provides a reasonably accurate damage localization within 11—15% of
the blade length despite its simplified representation, while requiring only around 20 seconds of computing time. This indicates
that beam models can offer a practical compromise between computational efficiency and localization performance.

The damage extent is predicted nearly identically by all three parameterizations, illustrated in Figure 17b. The true lon-
gitudinal extent of the oblique crack propagation is approximately 1 m, corresponding to a correct value of 20, ~ 0.5m and
lor = 0.25m, as respectively indicated by the vertical dashed and dotted lines in the figure. All in all, the three model-updating
procedures accurately reflect the predominantly local nature of the damage.

Regarding the results obtained for the damage intensity shown in Figure 17c, the beam model with 3 design variables

predicts a slightly lower damage intensity, whereas the other two configurations yield similar results. Importantly, all three
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model-updating procedures consistently identify a stiffness reduction with high probability, indicating that the three presented

damage parameterizations reliably capture the key structural effect of the damage.

5 Conclusions

In this work, FE model updating was performed with the objective of damage identification based on a laboratory rotor blade
fatigue test. Three rotor blade states were measured during the test, resulting in six possible state combinations to which the
presented model-updating procedure was applied. The sample-based deterministic model-updating (SDMU) approach was
employed, which, in this particular application, accounts for identification uncertainty in the modal parameters. Three different
design variable configurations were introduced, each defining a damage distribution function used to update the stiffness of
two numerical models with different levels of fidelity (beam and shell). This methodological framework enabled a systematic
evaluation of how model detail and design variable parameterization influence the results of model updating.

In summary, all three design variable configurations yielded consistent results across all six state combinations, confirming
the robustness of the SDMU approach and validating the implemented parameterizations of the damage distribution function.
The agreement among the results underlines their reliability, particularly given that two numerical models of distinctly differ-
ent levels of accuracy and detail were employed. As expected, all model-updating procedures returned zero-damage results
for the three self-comparisons and revealed a progressively increasing stiffness reduction together with a conclusive damage
localization along the blade length. The most notable difference between the two utilized FE models was revealed with respect
to the longitudinal damage localization. While the use of the shell model allows for a damage localization within less than 1%
of the blade length, the use of the beam model achieved an accuracy of only 11 %, overestimating the true damage position by
3.0m.

The findings of this work underline the importance of defining the analysis objective in advance. Depending on whether
precise localization or overall damage characterization is the primary goal, the choice of the numerical model and the associated
design variable parameterization is decisive for obtaining meaningful and reliable results. In practice, this enables an informed
balance between computational efficiency and model accuracy according to the desired outcome.

As the considered five-dimensional design variable parameterization applied to the shell model does not account for oblique
damage extents, incorporating the off-diagonal terms of the covariance matrix represents an interesting extension. Future work
should also aim to include model uncertainty in the SDMU approach. Moreover, the present study is limited to a laboratory
experiment without realistic variation of environmental or operational conditions, which are of high relevance for rotor blades.

Addressing these aspects will provide valuable extensions and enhancements to the presented model-updating approach.

Data availability. The measured acceleration time series together with the BayOMA results of the three rotor blade states are published as

open-access resources alongside this work within the public data repository of Leibniz University Hanover: Wolniak et al. (2025b).
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