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Abstract. Wind turbine rotor blades are among the most critical components of wind turbines, with their structural integrity

directly affecting reliability, lifetime, and maintenance costs. Reliable damage identification is therefore essential for structural

health monitoring (SHM) strategies in wind energy applications. In this context, the updating of numerical models represents

an established method for vibration-based non-destructive damage identification, including damage detection, localization and

quantification. Naturally, the model-updating process is affected by different sources of uncertainty. On the one hand, the5

numerical model always represents an idealization that introduces unavoidable discrepancies between its basic assumptions

and reality. On the other hand, the measurement data and identified modal parameters, typically serving as damage-sensitive

features, are subject to uncertainty. Despite extensive research on uncertainty quantification and propagation in model updating,

comparative studies of model-updating procedures applied to large-scale structures, particularly wind turbine rotor blades,

remain scarce. Moreover, the level of model fidelity and the impact of different design variable configurations associated with10

the selected numerical model are seldom examined in the context of model updating, typically formulated as an optimization

procedure.

This study addresses this gap by systematically evaluating how model fidelity and design variable parameterization influence

the model-updating results while considering uncertainty associated with the measurement data and identification process.

The investigations are conducted using measurement data from a 31m rotor blade subjected to edgewise fatigue loading. A15

comparison of the results shows that all design variable configurations yield consistent results, confirming the robustness of

the presented model-updating procedures. Model fidelity, however, strongly influences the outcomes, with higher accuracy and

detail leading to distinctly improved damage identification.

1 Introduction

The structural integrity of wind turbine rotor blades directly affects the operational reliability, energy yield, service lifetime,20

and maintenance costs of entire wind farms (Hau, 2013). The blades are typically highly loaded and critical to the overall

design of the turbine (Kong et al., 2023). With the continuous upscaling of turbine and blade size, rotor blades are increasingly

1

https://doi.org/10.5194/wes-2025-219
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



exposed to fatigue loads, making them susceptible to damage initiation and crack propagation. Algolfat et al. (2023) give

an overview of common damage scenarios for wind turbine rotor blades and point out that such types of damage can lead

to failure or breakdown of the wind turbines as they increase the level of vibrations and impose additional dynamic loads.25

Consequently, reliable identification and characterization of blade damage is essential for effective structural health monitoring

(SHM) strategies in wind energy applications (Yang et al., 2017; Kaewniam et al., 2022).

Within an SHM framework, the basic assumption is that damage, defined as degradation of the mechanical properties (Wor-

den et al., 2007), causes detectable changes in the structural dynamic behavior (Mottershead and Friswell, 1993). Hence, to

enable damage identification, including detection, localization and quantification, vibration measurement data need to be ac-30

quired for at least two different states of the considered structure (Friswell, 2007), meaning a reference state and an analysis

(i.e., target) state. A variety of different SHM methods based on various damage-sensitive features have been developed and

applied to date (Avci et al., 2021). Such approaches are of vital importance when seeking to maintain the safety and integrity

of the structures under consideration (Brownjohn, 2007; Fan and Qiao, 2011). Among them, the updating of numerical models

represents an established vibration-based non-destructive damage identification technique (Das et al., 2016; Ereiz et al., 2022),35

which is also employed within this work. Due to its methodology, the model-updating process is affected by two major sources

of uncertainty – associated with the model and the measurement data – as clearly pointed out by Simoen et al. (2015).

One source of uncertainty arises from the numerical model employed in the updating procedure. Depending on its level of

fidelity, in terms of the chosen finite element (FE) type, the numerical model represents a more or less simplified version of the

structure under consideration and, by definition, always remains an idealization. Consequently, a certain level of discrepancy40

between the model predictions and the corresponding characteristics identified from the measurement data is inevitable (Mot-

tershead et al., 2011). With regard to the modeling of (wind turbine) rotor blades, extensive research has been conducted on the

comparison of numerical models based on different FE types and, thus, with varying levels of model fidelity (Lake and Nixon,

1988; Volovoi et al., 2001; Peeters et al., 2018; de Almeida et al., 2025). However, comparative analyses of model-updating

procedures applied to large-scale structures, especially to wind turbine rotor blades, using different numerical models and45

associated design variable configurations remain scarce. Mostly, model-updating procedures applied to small- or large-scale

wind turbine rotor blades utilize FE beam models (Noever-Castelos et al., 2022; Turnbull and Omenzetter, 2024). Chetan et al.

(2021), for example, propose a multi-fidelity digital twin model for the simulation of a 21m sub-scale wind turbine rotor blade

but perform the actual updating of the mass and stiffness distributions using an Euler-Bernoulli beam model. Moreover, the

application of detailed shell-based models for model updating allowing for damage identification along the blade span and50

chord is rarely published. Knebusch et al. (2020) applied a gradient-based model-updating procedure to a 20m rotor blade

using a detailed shell model. However, the design variables were mapped directly to material properties of so-called predefined

design fields, representing FE groups. While this is a common approach to keep the number of design variables low (Levin and

Lieven, 1998), it is dependent on a prior grouping of FEs and can result in undesired oscillatory stiffness distributions when an

unconstrained formulation is used.55

Another source of uncertainty is the measurement data. Due to the unavoidable spatial sparsity and noisiness of sensor

signals and possible imperfections in the measurement equipment, measured data always contain uncertainty, which can merely
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be minimized but never fully eliminated (Link, 1999). In addition to the uncertainty contained in the raw measurement data,

further uncertainty is introduced during the subsequent signal processing and identification of modal characteristics of the

physical structure (Friswell and Mottershead, 1995), which is referred to as identification uncertainty. In recent years, numerous60

studies have investigated uncertainty quantification and propagation in model updating, employing methods such as Bayesian

inference (Bi et al., 2021), interval approaches and fuzzy logic (Faes and Moens, 2020), and the sample-based deterministic

model-updating (SDMU) approach recently introduced by the authors (Wolniak et al., 2025a). However, the primary focus of

these works has typically been on methodological development rather than on large-scale experimental validation.

Within this work, the described uncertainty sources inherent to the model-updating process are systematically examined65

and addressed using a 31m laboratory wind turbine rotor blade subjected to edgewise fatigue loading. The rotor blade was

instrumented with accelerometers to monitor its gradual stiffness degradation due to the fatigue loading, ultimately leading

to crack growth across the leading edge at approximately 8m distance from the blade root. The measured acceleration time

series along with the corresponding modal properties identified from the measurement data using Bayesian operational modal

analysis (BayOMA) (Au et al., 2013) are published in an open-access repository (Wolniak et al., 2025b) alongside this paper.70

This unique experimental dataset provides a basis for monitoring the gradual stiffness degradation of a large-scale laboratory

rotor blade tested under edgewise fatigue loading.

An outstanding feature of this rotor blade fatigue test was the complete documentation of the manufacturing process, accom-

panied by detailed material and geometry data. This extensive information enabled the development of two numerical models,

i.e., a beam model and a shell model, with differing levels of fidelity, both of which are employed and compared within the75

model-updating procedure(s). Consequently, different design variable configurations are introduced and applied, as their se-

lection depends not only on the purpose of model updating but also on the specific numerical model used in the updating

process, including its element type and geometry. In this work, all presented design variable configurations define a one- or

two-dimensional damage distribution function used to alter the stiffness properties of the respective numerical model. This def-

inition ensures a smooth, realistic stiffness distribution and is independent of the FE mesh resolution and of prior assumptions80

about the defect location while requiring few design variables. As in all related studies (Fan and Qiao, 2011; Simoen et al.,

2015; Ereiz et al., 2022), this work also uses the discrepancies between simulated and identified modal properties as updating

objectives. In particular, the eigenfrequencies and eigenmodes of the large-scale rotor blade are utilized in this work. To avoid

the need for weighting factors, multi-objective optimization is applied. In addition, both objective functions are formulated in

relative terms, taking into account a possible constant discrepancy between the simulated and identified responses for both the85

analysis and reference states. To account for the uncertainty associated with the modal properties identified from the measure-

ment data, the SDMU approach is utilized (Wolniak et al., 2025a). This approach is motivated by a separation of the uncertainty

incorporation and the model-updating procedure itself, resulting in an approach that is fully adaptable to the specific problem

at hand. In this work, an SDMU realization is applied which delivers fully deterministic and reproducible results.

The following key points summarize the fundamental aspects of this study.90

– Publication of a unique experimental dataset along with identified modal properties, providing a basis for monitoring the

stiffness degradation of a large-scale rotor blade tested under edgewise fatigue loading.
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– Application of a beam and shell model within the model-updating process to compare different levels of fidelity.

– Application of different design variable configurations tailored to the respective numerical models utilized.

The combination of a unique large-scale rotor blade fatigue test, the systematic model updating across the gradual stiffness95

degradation of the rotor blade and the comparative evaluation of numerical models and associated design variable configura-

tions of different levels of fidelity constitutes a novel contribution in the context of SHM for wind turbine rotor blades. The

results demonstrate the methodological robustness of the proposed model-updating procedure, including the SDMU approach

that considers uncertainty associated with the measurement data and the subsequent modal parameter identification and in-

cluding the use of the one- and two-dimensional damage distribution functions parameterized by the different design variable100

configurations. Moreover, the findings of this work underline the importance of defining the analysis objective in advance, as

the choice of the numerical model and the associated design variable parameterization is decisive in obtaining meaningful and

reliable results.

2 Model updating

Typically, a model-updating problem is formulated inversely and treated as an optimization problem (Mottershead et al., 2011).105

An objective function is used to compare the structural dynamic behavior of the numerical model to a target state and an

optimization algorithm is used to find a model to match this target state by updating the selected design variables. Most often,

this is achieved through stiffness or mass modifications (Friswell and Mottershead, 1995).

The utilized optimization algorithm is essentially designed to solve bounded and nonlinear optimization problems. This can

be stated as110

minimize ε(x) for ε ∈ Rm, x ∈ Rn, (1)

where ε is a vector-valued function consisting of m objective functions ε(x) = (ε1(x),ε2(x), ...,εm(x)) and x is the n-

dimensional vector of design variables. In this work, multi-objective optimization is applied, where the concept of Pareto

dominance is followed (Marler and Arora, 2004). The space of the design variables is bounded by the volume of a hypercube

xlb ≤ x≤ xub, (2)115

where xlb and xub are the lower and upper bounding vectors, respectively. For the optimization performed in this work, the

optimization framework EngiO, introduced by Berger et al. (2021), is utilized.

From Equation 1, it is clear that the optimization process and, thus, the quality of model-updating results depend on two

key aspects: On the configuration of the design variables x on the one hand, and, on the other hand, on the formulation of the

objective function ε(x). In the following subsections, detailed information is given about the definitions used in this work.120
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2.1 Design variables

The determination of the design variables strongly depends on the purpose of model updating. Since the aim of this contribution

is damage identification, specifically, damage localization and quantification, the parameterization should be able to identify

the geometric position of the damage and its intensity.

As damage mainly manifests itself as a change in stiffness, the general approach for most FE model-updating procedures125

with the aim of damage identification is to alter the stiffness properties of the model at hand (Friswell and Mottershead, 1995).

This approach is also applied in this work. As no prior knowledge of the defect location is assumed, the updating of the

stiffness properties of all Nel elements is performed, independent of the element type. This is implemented by adapting the

initial Young’s modulus E0 of each FE with a corresponding scaling factor θk

Eθ,k = E0θk with k ∈ [1,Nel]. (3)130

The stiffness scaling factors θk are calculated on the basis of the design variables. In this work, the design variables param-

eterize a so-called damage distribution function, previously introduced and applied by the authors (Wolniak et al., 2023). By

formulating the mapping of the considered structural properties to the FEs using a distribution function, a smooth, realistic

distribution is ensured. This forces the model-updating process to focus on global structural dynamics instead of over-fitting

local deviations. Moreover, the model-updating procedure is independent of the FE mesh resolution and of prior assumptions135

about the defect location while only needing few design variables. However, applying the damage distribution in its current

form restricts damage identification to only one damage position. In this work, a spatial Gaussian damage distribution function

is considered based on the assumption that the damage roughly follows this type of distribution.

The determination of the design variables additionally depends on the specific model used in the updating procedure, as

its element type and geometry inherently influence their configuration. In this work, two different numerical models of the140

large-scale rotor blade are considered, which necessitate at least two different design variable configurations. In the following

subsections, firstly, the parameterization of a one-dimensional damage distribution function for the model updating using a

rather simple beam model of the rotor blade is presented. This definition based on three design variables was already intro-

duced and successfully employed in several preceding publications (Bruns et al., 2019a, b; Wolniak et al., 2023), where de-

terministic model updating was performed on simulated and experimental application examples. In addition, in this work, the145

one-dimensional parameterization is extended by a fourth design variable, which independently adjusts the stiffness properties

in the edgewise and flapwise directions of the rotor blade, allowing for a distinct consideration of both directions. Secondly, the

parameterization of a two-dimensional damage distribution function for the model updating using a more detailed shell model

of the rotor blade is introduced. This configuration is based on five design variables and allows for a damage identification in

longitudinal direction and circumferential direction.150
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2.1.1 One-dimensional damage distribution function – 3 design variables

The one-dimensional damage distribution function is defined along a single control variable, specifically the length L of the

beam model representing the rotor blade. It can be described by the three design variables

x1D = (µL σL D1D)T . (4)

In the design variable vector x1D, µL represents the geometric position of the distribution function’s center point along the155

length, σL represents the width (standard deviation) of the distribution, i.e., the extent of the damage, and D1D represents

the intensity of the damage. In this case, the damage intensity is defined as the area under the Gaussian distribution function

defined by µL and σL.

The calculation of the stiffness scaling factors θ1D,k for each FE with a corresponding length lk is based on the probability

density function f (sL,k | µL,σL) evaluated along the control variable sL,k and truncated to the interval 0≤ sL,k ≤ L160

θ1D,k = 1−D1D L
f (sL,k | µL,σL)

lk
with k ∈ [1,Nel]. (5)

More detailed information regarding the one-dimensional damage distribution function parameterized by three design variables

is given in Wolniak et al. (2023).

2.1.2 One-dimensional damage distribution function – 4 design variables

By introducing a fourth design variable λ ∈ [0,1], the above-described one-dimensional damage distribution function is ex-165

tended so that it can alter the stiffness properties in flapwise and edgewise directions separately. Therefore, instead of changing

the initial Young’s modulus E0 of each FE, which alters each element stiffness altogether, the initial moments of inertia Ixx,0

and Iyy,0 in flapwise and edgewise directions and the initial moment of deviation Ixy,0 are updated separately from each other

in an equivalent way to Equation 3




Ixx,θ,k

Iyy,θ,k

Ixy,θ,k


 =




Ixx,0,k

Iyy,0,k

Ixy,0,k


 ◦




θxx,1D,k

θyy,1D,k

θxy,1D,k


 with k ∈ [1,Nel]. (6)170

The calculation of the stiffness scaling factors θ1D,k for each of the three moments of inertia follows a similar approach to

Equation 5, except that the damage intensity D1D is scaled by different factors λxx, λyy and λxy




θxx,1D,k

θyy,1D,k

θxy,1D,k


 = 1−D1D




λxx

λyy

λxy


 L

f (sL,k | µL,σL)
lk

with k ∈ [1,Nel], (7)
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whereby these different factors are defined based on the fourth design variable λ




λxx

λyy

λxy


 =




λ

1−λ
√

λ(1−λ)


 with λ ∈ [0,1]. (8)175

The presented formulation allows the single design variable λ to capture the trade-off between edgewise and flapwise stiffness.

In addition, the total stiffness alteration applied in the different lateral directions of the structure remains proportional to

the damage intensity D1D, which is determined and adjusted by the employed optimization algorithm. Consequently, the

progression of the model-updating procedure mirrors that of utilizing only three design variables (cf. Section 2.1.1), with the

added ability to introduce damage separately in the two lateral directions.180

For the calculation of the scaling factor λxy , it is assumed that the structural stiffness undergoes an affine transformation

characterized by independent scaling along the two lateral axes (Timoshenko and Gere, 2012). This preserves the overall shape

of the stiffness distribution while modifying its extents along the x (i.e., flapwise) and y (i.e., edgewise) axes. As a result, the

scaling factor for the moment of deviation (also referred to as the product of inertia), Ixy , can be derived as the geometric mean

of the scaling factors for Ixx and Iyy, i.e., λxy =
√

λxxλyy =
√

λ(1−λ).185

2.1.3 Two-dimensional damage distribution function – 5 design variables

Using the shell model as representation of the rotor blade, a parameterization of the damage distribution function along a single

control variable, i.e., the length L of the rotor blade, is no longer sufficient. The parameterization has to be extended to a second

control variable, meaning the perimeter P of the rotor blade. As a result, a two-dimensional damage distribution function is

defined on the surface of the shell model and the design variable vector describing this two-dimensional damage distribution190

function is extended to five entries

x2D = (µL σL µP σP D2D)T . (9)

As the damage distribution function is now bell-shaped, its center point is described by the two geometric positions µL and

µP along the length and the perimeter of the rotor blade, respectively

µ2D =


µL

µP


 . (10)195

As the blade’s perimeter changes along its length, the design variable µP is normalized to values between −0.5 < µP ≤ 0.5,

whereby the value 0 corresponds to the leading edge (LE) and the values −0.5 and 0.5 correspond to the trailing edge (TE) of
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the rotor blade. The damage extent is characterized by σL and σP , making up the covariance matrix

Σ2D =


σL 0

0 σP


 . (11)

The off-diagonal terms are set to zero for the application considered. This leads to a distribution function that can be circular200

or elliptical but is restricted to have no inclination or obliqueness. The design variable σP is normalized in the same manner

as µP . The damage intensity D2D is defined similarly to the one-dimensional formulation as the area under the (bell-shaped)

two-dimensional Gaussian distribution function.

For the two-dimensional application, the calculation of the stiffness scaling factors θ2D,k for each FE with a corresponding

area ak is based on the probability density function f(sk | µ2D,Σ2D) evaluated along the two-dimensional control variable205

sk = (sL,k sP,k)T

θ2D,k = 1−D2D A
f(sk | µ2D,Σ2D)

ak
with k ∈ [1,Nel]. (12)

The two-dimensional control variable sk is truncated to 0≤ sL,k ≤ L along the blade’s length and to −0.5 < sP,k ≤ 0.5 along

the normalized perimeter of the blade. A denotes the total area (surface) of the rotor blade.

2.2 Objective function formulation – sample-based deterministic model updating210

As uncertainty is inevitable in real-world model-updating applications, the formulation of the model-updating problem is

uncertain as well. To tackle the issue of uncertainty propagation within the model-updating procedure, the authors recently

introduced the sample-based deterministic model-updating (SDMU) approach (Wolniak et al., 2025a). The key idea behind

the SDMU approach is to exclude the uncertainty from the design-variable dependent part of the objective function formula-

tion, i.e., from the actual model-updating procedure. Instead, the uncertainty is incorporated indirectly by generating multiple215

discrete input samples. Following the sample provision, a fully deterministic model-updating procedure using a numerical

optimization algorithm is executed based on each input sample. Thus, multiple deterministic model-updating procedures are

performed based on the input samples.

Due to the separation of the uncertainty incorporation and model-updating procedure, both the type of sample provision

and the choice of the optimization algorithm are arbitrary. This interchangeability allows the approach to be fully adaptable220

to the specific problem at hand. Consequently, the SDMU approach can be realized to deliver fully reproducible results,

which is also applied within this work. Therefore, the global deterministic optimization algorithm global pattern search (GPS)

(Hofmeister et al., 2019) is chosen. As the two modal parameters eigenfrequencies f and eigenmodes φ are considered as the

two objectives for the model-updating procedure of the large-scale rotor blade, multi-objective optimization is required. Hence,

the multi-objective extension of the deterministic optimization algorithm is utilized, namely the multi-objective global pattern225

search (MOGPS) (Günther et al., 2025).
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Regarding the sample provision, the available measurement data were segmented into a number of datasets. For each dataset,

the eigenfrequency and eigenmode mean values were identified using BayOMA and cross-combined for each considered

reference state and analysis state. Thus, after applying this specific (or any other) sample provision (SP), a resulting number

of NSP modal parameter samples fM,i,j and φM,i,j with i ∈ [1,Nmodes] and j ∈ [1,NSP] represent the input samples for each230

subsequent deterministic model-updating procedure. The subscript (·)M denotes measured data, i denotes the mode index,

whereby Nmodes is the number of modes investigated, and j is the sample number. As a result, the two objective functions are

each vectors with NSP entries, the first comprising the mean squared eigenfrequency error εf,j and the second comprising the

mean squared eigenmode error εφ,j

εj(x) =





εf,j(x) =

√
1

Nmodes

∑Nmodes
i=1

(
fSA,i(x)− fSR,i

fSR,i
− fMA,i,j − fMR,i,j

fMR,i,j

)2

εφ,j(x) =

√
1

Nmodes

∑Nmodes
i=1

(
1

Nsensors

∑Nsensors
u=1 ((φSA,u,i(x)−φSR,u,i)− (φMA,u,i,j −φMR,u,i,j))

2

)2

with u ∈ [1,Nsensors], i ∈ [1,Nmodes], j ∈ [1,NSP]. (13)235

The subscript (·)M indicates a measured quantity, whereas simulated modal parameters are denoted by the subscript (·)S. The

subscripts (·)R and (·)A indicate the reference state and analysis state, respectively. The presented definition of the two objective

functions was introduced by Ragnitz et al. (2025) for damage localization on the LUMO benchmark structure (Wernitz et al.,

2022) using a stochastic multi-objective model-updating approach. Both objective functions are based on a relative formulation,

which takes into account a possible constant discrepancy between the simulated and identified responses for both the analysis240

and reference states of the examined structure. The goal is to obtain a numerically efficient, well-formulated optimization

problem, which can handle irreducible modeling errors.

One way the NSP two-objective functions ε(x) can be handled is by performing independent model-updating procedures on

each of the two-objective functions. However, for high sample numbers and more complex numerical models, this approach

will eventually become very expensive in terms of computing time. This is why the use of a meta-model is proposed, whereby245

the process of setting up and integrating a considered meta-model is incorporated into the SDMU approach and is referred to as

metaSDMU (Wolniak et al., 2025a). The objective is to derive a meta-model using a single representative deterministic model-

updating procedure in order to generate a sampling pattern within the design variable space, which is dense in the area where

the solution(s) are expected. The design variable samples generated during this optimization procedure and the corresponding

objective function values calculated provide the training data for the two meta-models – one meta-model for each input, i.e.,250

each modal parameter. Subsequently, these meta-models replace the actual numerical model such that

fmeta,S,i(x)≈ fS,i(x) and φmeta,S,i(x)≈φS,i(x) with i ∈ [1,Nmodes] (14)

holds true for each (simulated) eigenfrequency fS,i and eigenmode φS,i.
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This way, the potentially computationally expensive model evaluations required in every iteration step only have to be per-

formed during one model-updating procedure. For all other samples, the model updating with consideration of uncertainty (cf.255

Equation 13) is performed using the meta-models, which are computationally much more efficient. More detailed information

regarding the (meta)SDMU approach is given in Wolniak et al. (2025a).

3 Rotor blade fatigue test

The large-scale destructive rotor blade fatigue test was carried out on a 31m wind turbine rotor blade. The blade was manufac-

tured by the Fraunhofer Institute for Wind Energy Systems (Fraunhofer IWES) and the fatigue test took place in one of their260

test facilities in Bremerhaven, Germany. The fatigue test was carried out by Fraunhofer IWES, while the measurement system

setup, data acquisition and subsequent operational modal analysis were conducted by the authors of this work.

During the test, the blade was bolted to an adapter plate with the suction side facing downwards. Figure 1 shows the

suspended laboratory rotor blade from different perspectives. Four load shears were mounted on the blade to apply the load

and introduce a controllable bending moment. The longitudinal positions and masses of the four load shears are listed in Table265

1.

(a) Pressure side. (b) Suction side.

Figure 1. Suspended rotor blade in the test facility in Bremerhaven.

Table 1. Load shear positions and masses.

Load shear Longitudinal position Mass
in m in kg

1 9 3674
2 15 608
3 20 176
4 29 92

A total of 34 IEPE (integrated electronics piezo-electric) accelerometers with a dynamic range of ±100 m
s2 were mounted on

the pressure side (facing upwards) of the rotor blade. These accelerometers contain an internal charge amplifier, providing a

voltage output proportional to acceleration, which enables high-sensitivity vibration measurements with low signal degradation

over long cables. The sensors were placed every 3m along the center line and the TE of the blade, as shown in Figure 1a. Two270
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accelerometers each were fixed at each sensor position at a 90-degree angle to each other in order to measure the flapwise and

edgewise directions separately. Figure 2 shows an example sensor setup and in Table 2, the longitudinal sensor positions are

listed. As the cross-section of the rotor blade gradually tapers along the blade length, 10 sensor positions were located along

the center line and 7 sensor positions were located along the TE.

Figure 2. Example sensor setup with two accelerome-
ters at a 90-degree angle.

Table 2. Sensor positions.

Longitudinal position 4 7 10 13 16 19 22 25 28 31
from blade root in m

Center line x x x x x x x x x x
Trailing edge x x x x x x x

The fatigue load was introduced by a hydraulic cylinder connected to the second load shear at blade length L = 15m. The275

periodic excitation was carried out in edgewise direction close to the rotor blade’s first eigenfrequency in this direction using a

frequency of 1.59 Hz. The following fatigue load levels (FLL) were set during the course of the rotor blade fatigue test.

– FLL 1: ≈ 240000 cycles with ±1700µε (measured at L = 12m)

– FLL 2: ≈ 425000 cycles with ±1900µε (measured at L = 12m)

– FLL 3: ≈ 11000 cycles with ±2000µε (measured at L = 6m)280

The amplitude of the hydraulic cylinder’s motion was initially selected so that a material strain of ±1700µε was measured at

the TE of the blade at L = 12m using strain gauges. This load level was increased subsequently and after approximately 11000

cycles of the final FLL 3, the test was terminated due to the growth of a structurally critical crack at the LE, which most likely

occurred due to fiber failure.

For the analysis of the different rotor blade states in between and after the application of the FLLs, dynamic tests were285

performed. These tests were carried out using dynamic shaker excitations, during which the rotor blade was decoupled from

the hydraulic cylinder unit so that its motion was free of this constraint. The shaker was connected to load shear 2 at L = 15m.

Each excitation was carried out in the edgewise direction using broadband white noise and lasted approximately 20 minutes.

Table 3 provides an overview of the rotor blade states together with a description of the corresponding rotor blade’s condition

with respect to structural integrity. Figures 3 and 4 show photographs of the described fatigue cracks that occurred during the290

course of the test.
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Table 3. Analysis states of the laboratory rotor blade to which shaker excitations were applied.

State Date Fatigue load level (FLL) Description

I 04/22/2021 State after FLL 1 Vertical cracks across the TE.
II 04/26/2021 State after FLL 2 More vertical cracks across the TE.
III 04/29/2021 State after FLL 3 Crack across the LE at L = 8m.

Figure 3. Vertical cracks across the TE traced out
in red for state I and in green for state II.

(a) Zoomed out. (b) Zoomed in.

Figure 4. Crack across the LE at L = 8m in state III.

3.1 Operational modal analysis

In this work, Bayesian operational modal analysis (BayOMA) (Au et al., 2013) is utilized for the identification of the modal

parameters from the measurement data of the dynamic tests under broudband white noise excitation. The sampling rate was set

to 100Hz during the measurements. Figure 5 illustrates the frequency spectrum including the first Nmodes = 5 eigenfrequencies295

of an example acceleration time period of the large-scale rotor blade recorded in state I. The frequency ranges utilized for the

BayOMA are highlighted.
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Figure 5. Frequency spectrum of the acceleration measurement in state I subject to broadband white-noise excitation. The frequency ranges
utilized for the BayOMA are highlighted.
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To visualize the stability and consistency of the recorded measurement data over time, the measurement data were seg-

mented into a number of datasets Nsets. The evaluation time period was set to TData = 400s and a moving window with an

overlap of 385s was applied. For approximately 20min = 1200s total measurement time, this results in Nsets = 53 datasets.300

For each dataset, BayOMA was applied, resulting in 53 outputs which comprise the mean value and standard deviation of each

eigenfrequency and the mean value and covariance matrix of each eigenmode. Figure 6 shows box plots of all eigenfrequency

mean values fM,i,j identified from all 53 measurement datasets in the three different rotor blade states with i ∈ [1,Nmodes] and

j ∈ [1,Nsets].
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Figure 6. Box plots of the first five eigenfrequency mean values of the rotor blade identified for each measurement dataset in the three different
analysis states using BayOMA. Box plot definitions: median (red line), interquartile range (blue box), extreme values (black whiskers) and
outliers (red markers). Green crosses indicate the eigenfrequencies identified for dataset 9.

First of all, this analysis reveals that the interquartile ranges of the eigenfrequency mean values fM,i remain stable for each305

observed rotor blade state. This indicates consistent measurements with no significant fluctuations or outliers.

Looking more closely at the variation of the mean values of the five different eigenfrequencies across all states, it is clear

that the eigenfrequencies fM,1 and fM,3, corresponding to flapwise bending mode shapes, are not significantly influenced by

the damage that occurred during the fatigue test. In contrast, eigenfrequencies fM,2, fM,4 and fM,5 exhibit a gradual reduction

in magnitude, whereby the second and fourth eigenfrequencies correspond to edgewise bending mode shapes. The relative310

deviations of the first five eigenfrequencies between states I and III range from 0.02% to 0.6%.

The measured acceleration time series together with the BayOMA results of the three rotor blade states are published as

open-access resources alongside this work within the public data repository of Leibniz University Hanover (Wolniak et al.,

2025b).

3.2 Finite element models315

As both production and testing were carried out by Fraunhofer IWES, an outstanding feature of this rotor blade fatigue test

was the complete documentation of the manufacturing process in addition to material and geometric data. Based on this

detailed information, two different finite element (FE) models were developed and employed for the model-updating procedures

presented in this work. The simulations were performed using the FE analysis software Abaqus. Both numerical models are

illustrated in Figure 7. Further information regarding the element types, number of FEs and the computing time for the modal320
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analysis is given in Table 4, whereby the computing time comprises the setup of the model itself (i.e., the input file) and the

modal analysis.

Firstly, a beam model was created based on the available cross-sectional characteristics of the rotor blade. Two-node linear

beam elements, available in Abaqus as B31 elements, are selected, whereby a total of 251 beam elements are utilized. The B31

elements are based on the Euler-Bernoulli beam theory, allowing the representation of bending, axial, and torsional deforma-325

tions along the beam axis. The varying sectional properties were assigned to the beam elements using general cross-sectional

parameters. The load shears were simplified as point masses according to the information listed in Table 1 and assigned to the

structure using concentrated mass elements in Abaqus.

Secondly, a detailed shell model was set up based on the geometric data and composite layup available from the manufac-

turing process documentation. For this numerical model, S3R (three-node triangular) and S4R (four-node quadrilateral) shell330

elements with reduced integration were utilized. These elements efficiently capture bending, membrane, and transverse shear

behavior, making them suitable for modeling thin to moderately thick shell structures. The load shears were modeled in detail

using C3D4 tetrahedral solid elements and were included in all subsequent calculations, as they were attached during the whole

experiment. In total, the shell model comprises approximately 310000 FEs, of which around 81700 are shell elements.

(a) Beam model. (b) Shell model.

Figure 7. FE models of the 31m wind turbine rotor blade.

Table 4. Information regarding the two FE models utilized for the model updating of the laboratory rotor blade.

FE model Element notation Representation Number of Computing time for
in Abaqus of the load shears FEs the modal analysis

Beam model B31 Simplified using 251 0.3min
point masses (MASS)

Shell model S3R, S4R Detailed using 310000 8min
solid elements (C3D4)
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4 Results335

The following subsections present the results of the SDMU approach, applied using the three different design variable config-

urations (cf. Sections 2.1.1, 2.1.2 and 2.1.3) with the objective of identifying damage in the considered laboratory rotor blade.

For this purpose, all available rotor blade states listed in Table 3 are considered and systematically combined, yielding a total of

six different state combinations. These combinations are summarized in Table 5, whereby the combinations along the diagonal

represent self-comparisons of identical states.340

In this work, the SDMU approach is applied to three different design variable configurations, which feature different numbers

of design variables NDVs, each defining a damage distribution function. These configurations are associated with the two

numerical models of different levels of detail. The upper and lower bounds xub and xlb and physical units used for each design

variable configuration are listed in Table 6.

Table 5. Rotor blade state combinations considered for
the damage identification using the SDMU approach.

State I State II State III

State I I-I I-II I-III
State II II-II II-III
State III III-III

Table 6. Upper and lower bounds for the different design variable
configurations.

FE model NDVs Units x xlb xub

Beam model 3

m
m
-

  µL

σL

D1D

  0
0.001
−0.02

  31
2

0.02



Beam model 4

m
m
-
-


 µL

σL

D1D
λ


 0

0.001
−0.02

0


 31

2
0.02
1



Shell model 5


m
m
-
-
-




µL

σL

µP

σP

D2D




0
0.001
−0.5
0.01
−0.02




31
2

0.5
0.3
0.02



For all model-updating procedures conducted in this work, the two objectives involve the minimization of the discrepan-345

cies in both the first Nmodes = 5 eigenfrequencies and eigenmodes between those identified from the measurement data and

those calculated using the respective FE models. For the sample provision within the SDMU approach, the Nsets = 53 modal

parameter mean values identified for each reference and analysis (i.e., target) state are cross-combined using the Cartesian

product. This results in a total of NSP = N2
sets = 2809 input samples and, consequently, in the same number of functions N2

sets

representing the two objectives (cf. Equation 13). The subsequent numerical optimization is carried out using the deterministic350

multi-objective global pattern search (MOGPS) algorithm. Accordingly, the present work employs a fully deterministic SDMU

realization for the damage identification on the laboratory rotor blade.

Importantly, the input samples directly represent the identified modal parameter mean values of each dataset. As demon-

strated in Section 3.1, the measurement conditions were stationary, i.e., no significant variations in temperature, humidity or

other environmental factors occurred during the rotor blade fatigue test. Consequently, the generated sample set inherently355

reflects the frequentist uncertainty associated with the measurement and modal identification process. For applications involv-

ing significant environmental or operational variations, however, this sampling strategy would no longer be sufficient and an
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alternative sample provision approach, for example based on the variance estimates provided by BayOMA, would be required

to account for the additional sources of uncertainty.

For the visualization of the results, cumulative distribution functions (CDFs) are utilized. The CDFs are calculated based on360

the respective optimal design variables associated with the Pareto frontier, which is the result of the multi-objective optimization

(i.e., model updating) procedure employed in this work. A CDF provides a comprehensive view of how probabilities are

distributed across the range of the considered (design) variable. A notable feature of CDFs is the rate at which they increase. A

steep section in a CDF indicates a rapid accumulation of probability over a small range of values. This indicates that a significant

portion of the data points are concentrated around that region. Consequently, the probability density function (PDF), which is365

the derivative of the CDF, will be high in this area, pointing to a high density of occurrences.

4.1 Model-updating results using the beam model

To begin with, the damage identification results obtained using the beam model of the rotor blade (cf. Figure 7a) are presented

for the three- and four-dimensional design variable configurations, as introduced in Sections 2.1.1 and 2.1.2, respectively.

Before the application of the SDMU approach, preliminary studies are conducted to determine suitable settings for the input370

data and optimization algorithm hyperparameters. These studies are carried out using the three-dimensional design variable

parameterization defined for the beam model with upper and lower bounds according to Table 6.

4.1.1 Settings

The first step of the SDMU approach is a single deterministic model-updating run using the numerical model, in this case,

the beam model of the rotor blade. The resulting samples and corresponding modal parameters serve as the input data for the375

subsequent meta-model setup. Therefore, appropriate settings have to be defined for this initial deterministic model-updating

run forming the basis of the subsequent (meta)SDMU procedure.

Regarding the utilized MOGPS optimization algorithm, two hyperparameters exist, namely the maximum number of objec-

tive function evaluations Nevals and the algorithm-specific number of tracked globally best coordinates T (Hofmeister et al.,

2019). To evaluate which settings of Nevals and T are suitable, a convergence study is set up. To this end, a set of Ntest = 500 de-380

sign variable samples is randomly generated in the design variable space (cf. Table 6) and the corresponding modal parameters

are calculated using the beam model. These results are utilized as test data to evaluate each meta-model, set up using different

combinations of Nevals and T . The evaluation of each combination is calculated using the cumulated relative root mean square

error (RMSE) of the first Nmodes = 5 eigenfrequencies

εmeta,f =
Nmodes∑

i=1




√√√√ 1
Ntest

Ntest∑

j=1

(
fmeta,S,i(x1D,j)− fS,i(x1D,j)

fS,i(x1D,j)

)2

 . (15)385
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Figure 8 shows a heat map according to the natural logarithm of the eigenfrequency error εmeta,f . The minimum error is

obtained for T = 200 and Nevals = 5000, which are therefore selected as the hyperparameter settings for the model-updating

run used to populate the meta-model. Notably, the meta-model error remains consistently low for T ≥ 200 and Nevals ≥ 2000.

For the initial deterministic model-updating run, only a single set of modal parameters can be used as input in the objective

functions (cf. Equation 13). As discussed in Section 3.1, the measurements show a high level of consistency without significant390

fluctuations or outliers. Consequently, the specific choice of the modal parameters used as input for the initial model-updating

run is not critical. In this work, the modal parameters identified from the measurement data after a 2-minute settling time are

selected, corresponding to dataset number 9. The corresponding eigenfrequency mean values are marked in Figure 6 with green

crosses.

To verify that this set of modal parameters is indeed representative, model-updating runs with T = 200 and Nevals = 5000395

are performed for all available datasets, shown as an example for combination I-III (cf. Table 5). In this context, a one-to-one

mapping is employed. Figure 9 shows all Nsets = 53 resulting CDFs for the three design variables. The results demonstrate

that the choice of the input dataset has no significant effect on the model-updating results, confirming that the chosen dataset 9

(highlighted in green) is representative. Consequently, j = 9 is used in Equation 13 for evaluating the two objective functions

within the deterministic model-updating runs.400

Figure 8. Evaluation of each meta-model set up using different com-
binations of Nevals and T . Surface colored according to the error
ln(εf,meta).
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Figure 9. Resulting CDFs of the deterministic model-updating pro-
cedures for combination I-III based on the modal parameters of all
datasets. The results for dataset 9 are highlighted in green.

Table 7. Settings for the SDMU procedure.

Equation Settings FE model evaluations

Setup meta-model 13, j = 9 Nevals = 5000 5000
T = 200

MetaSDMU 13, j ∈ [1,N2
sets] Nevals = 5000

T = 20
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4.1.2 Results for 3 design variables

This section presents the results obtained with the (meta)SDMU approach using the three-dimensional design variable con-

figuration, which defines the one-dimensional damage distribution function applied to the beam model. For each state combi-

nation, the design variable samples and corresponding eigenfrequencies and eigenmodes from the initial deterministic model-

updating runs serve as input for the meta-models, using the hyperparameter settings determined previously. Based on these405

meta-models and by applying Equation 14, the metaSDMU procedure is carried out. As noted earlier, the Nsets = 53 identified

eigenfrequency and eigenmode mean values constitute the input samples and are cross-combined. This results in N2
sets = 2809

two-objective functions, forming the basis of 2809 model-updating runs per combination, all of which are based on the corre-

sponding meta-models.

Figure 10 shows the resulting CDFs for each design variable of each combination. The CDFs are derived from all optimal410

design variables obtained in the course of all N2
sets model-updating runs. For the combinations I-III and II-III, where state

III represents the target state with the emerged crack at the TE of the rotor blade, the correct crack location and extent are

highlighted in addition to the results for the design variables µL and σL. The crack extends longitudinally from µL = 7.5m−
8.5m, yielding a correct damage width of 1m. As the one-dimensional damage distribution function is formulated based on

a Gaussian distribution function (cf. Section 2.1.1), µL± 1σL represents the range including approximately 68% of the data415

values, whereas µL±2σL corresponds to roughly 95% of the values. Consequently, 2σL is associated with the correct damage

extent of ±0.5m = 1m, resulting in a correct value for 1σL = 0.25m. Both values are highlighted in Figure 10b. For the

self-combinations I-I, II-II and III-III, the known zero-damage intensity is highlighted in addition to the design variable D1D.

Moreover, the red crosses indicate a representative optimal design variable vector x1D,optimal that is selected from the CDFs

such that the first design variable, the damage position µL, is set to its median value µ̃L, defined as the 50% value of the420

corresponding CDF.
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(c) Design variable D1D.

Figure 10. Resulting CDFs of the SDMU approach applied to the beam model using the one-dimensional damage distribution function
parameterized by three design variables, with settings given in Table 7. The red crosses added for combination I-III indicate an example
optimal design variable vector.

Starting with combinations I-I, II-II and III-III, where each state is compared with itself, the model-updating results are

expected to reflect the absence of damage. The corresponding CDFs of the damage intensity D1D, shown in Figure 10c, are

nearly identical, with D1D = 0 being the most probable outcome for all three self-comparisons. The results for design variable

µL, shown in Figure 10a, are also similar to each other, showing a sample distribution across the entire design variable space425

without clear probability clusters. Likewise, the longitudinal damage extent σL shown in Figure 10b exhibits a similar pattern

with a slightly steeper slope for σL < 0.5. Although the damage position and extent are not directly relevant when the damage

intensity is zero, the lack of convergence in µL further confirms that no damage is present when these states are compared

with themselves. In summary, with D1D = 0 as the most probable solution, the results for combinations I-I, II-II and III-III

consistently and correctly indicate that no damage is present in the rotor blade for these self-comparisons.430

For combination I-II, comparing reference state I with analysis state II, no distinct damage position is apparent, as the design

variable µL remains distributed across the design variable space. A similar pattern is observed for σL, again with a slightly

steeper increase of the CDF for σL < 0.5. However, the damage intensity D1D shifts slightly from D1D = 0 to D1D ≈ 0.002

(cf. Figure 10c). This indicates that damage has occurred but no distinct position can be determined. This outcome is consistent

with the target rotor blade state II, where numerous small vertical cracks appeared along the TE (cf. Figure 3). Consequently,435

no single location is severely damaged, instead, the stiffness of the rotor blade is slightly reduced along the entire blade length

due to these minor cracks.

Examining combinations I-III and II-III, where state III represents the target state with the most severe damage, the optimal

damage intensity shifts to D1D ≈ 0.005. This positive value corresponds to a stiffness reduction in the rotor blade beam model

according to the applied one-dimensional damage distribution function. The location of the stiffness reduction is identified at440

µL ≈ 11− 12m for both combinations, which overestimates the actual damage location (L = 7.5− 8.5m) by approximately

3−4m. The results for the damage width σL, shown in Figure 10b, are again spread across the design variable space. Compared
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to the solutions for all other combinations, the CDFs for combinations I-III and II-III show a noticeably steeper slope for

σL < 0.5m, whereby the median value lies exactly between the 1σL and 2σL values highlighted in the figure. Consequently,

this identified damage extent corresponds reasonably well with the actual crack length of approximately 1m.445

To summarize, the SDMU procedure yields very similar results for combinations I-III and II-III, comparing states I and II

to the same target state III. Moreover, for the self-combinations I-I, II-II and III-III, the model-updating procedure consistently

returns zero-damage results. These findings demonstrate the consistency and, consequently, the reliability of the applied SDMU

approach, objective function formulation and utilized design variable configuration.

To illustrate a representative damage distribution (i.e., stiffness reduction) for combination I-III, an example optimal design450

variable vector x1D,optimal is selected from the CDFs such that the first design variable is set to its median value µ̃L. The

remaining two design variables are chosen as the optimal values corresponding to this fixed first design variable, which, in the

case of the beam model, also coincide with their respective median values. In Figure 10, the example optimal design variable

vector x1D,optimal is indicated using red crosses. The stiffness reduction resulting from the one-dimensional damage distribution

function based on x1D,optimal is visualized in Figure 11. For comparison, Figure 12 visualizes the actual damage due to the crack455

that emerged at L≈ 8m (cf. Figure 4). It is evident that the crack location is overestimated by approximately 3.5m.

0 5 10 15 20 25 30

Length in m

Figure 11. Visualization of the stiffness reduction based on x1D,optimal, denoted by red crosses in Figure 10, in the beam model. The schematic
rotor blade geometry is additionally outlined.

0 5 10 15 20 25 30

Length in m

Figure 12. Visualization of the correct stiffness reduction in the beam model. The schematic rotor blade geometry is additionally outlined.

4.1.3 Results for 4 design variables

The results obtained using the four-dimensional parameterization of the one-dimensional damage distribution function, adding

a separate consideration of the stiffness alterations in flapwise and edgewise directions via the design variable λ, are generally

consistent with those presented above. Figure 13 shows the resulting CDFs of all optimal design variables for the six state460

combinations. As before, for combinations I-III and II-III, the correct damage location and extent are highlighted in addition to

the results for the design variables µL and σL. Moreover, the zero-damage results for all three self-comparisons are highlighted

in addition to the results for the design variable D1D.
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Figure 13. Resulting CDFs of the SDMU approach applied to the beam model using the one-dimensional damage distribution function
parameterized by four design variables, with settings given in Table 7.

Again, the design variable D1D, shown in Figure 13c, returns zero as the most probable outcome for all three self-comparisons

and indicates a stiffness reduction for combinations I-II, I-III and II-III. Closer examination reveals that the stiffness reduction465

increases from combination I-II to I-III and remains similar between combinations I-III and II-III. This is consistent with the

observations from Figure 10c. Similarly, the design variables µL and σL yield comparable results for the two design variable

configurations applied to the beam model of the laboratory rotor blade.

Regarding the definition of the fourth design variable λ (cf. Section 2.1.2), a value of λ = 0 implies a stiffness alteration

applied in the edgewise direction and a value of λ = 1 implies a stiffness alteration applied in the flapwise direction. It is470

evident from Figure 13d that λ = 0 is the most probable solution for all combinations, indicating that mainly the stiffness in

the edgewise direction is reduced, given that D1D is positive. For combinations I-II, I-III and II-III, this probability reaches

approximately 50%, while the self-comparisons show slightly less conclusive results.
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Consequently, the separate consideration of the edgewise and flapwise directions captures the directional effect of the dam-

age and provides an approximate indication of its positioning along the blade perimeter. However, the results should not be475

interpreted as ideal, since even in the self-comparison a significant probability of λ = 0 is observed. Therefore, these findings

should not be overemphasized. A true assessment of directional dependence would require the use of a shell model, which is

presented in the following subsection.

4.2 Model updating using the shell model

Here, the damage identification results of the (meta)SDMU approach applied to the shell model of the laboratory rotor blade480

are presented. In this case, the two-dimensional damage distribution function parameterized by five design variables is utilized

with upper and lower bounds according to Table 6.

In the initial deterministic model-updating run for each combination, the same settings as listed in Table 7 are employed.

Based on the samples and corresponding eigenfrequencies and eigenmodes, the respective meta-models are created using the

same settings as before. For the subsequent metaSDMU approach, only the maximum number of objective function evaluations485

is doubled to Nevals = 10000 as more evaluations are needed for a sufficient convergence of the design variables in a higher-

dimensional design variable space. The number of tracked globally best coordinates is, again, selected in the same way as

before to be T = 20.

Figure 14 shows the resulting CDFs obtained for each design variable of each combination. As before, these CDFs are

calculated based on all optimal design variables identified in the course of all N2
sets separate model-updating runs for each input490

sample. For combinations I-III and II-III, the correct edgewise and flapwise locations of the emerged crack in state III are

marked in gray. In addition, the 1σ and 2σ damage extents are highlighted for both directions. For all three self-comparisons,

the zero-damage result is highlighted. Furthermore, the red crosses indicate a possible optimal design variable vector x2D,optimal

for combination I-III. This example optimal design variable vector is selected from the CDFs as before such that the first design

variable, the damage position µL, is set to its median value µ̃L, defined as the 50% value of the corresponding CDF.495
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Figure 14. Resulting CDFs of the SDMU approach applied to the shell model using the two-dimensional damage distribution function
parameterized by five design variables. The red crosses added for combination I-III indicate an example optimal design variable vector.

For the design variable µL, shown in Figure 14a, combinations I-III and II-III, with state III as the target state, clearly show

that the damage localization along the blade length almost exactly matches the correct crack position. Most optimal values

obtained using the shell model fall almost entirely in the shaded gray area, representing the true damage location. In contrast,

the results obtained using the beam model (cf. Figures 10a and 13a) overestimate the damage position by approximately 3−4m.

This means that the shell model improves localization accuracy along the blade length. For combination II-III, the CDF also500

shows a short steep section at L = 8m. This indicates that the stiffness reduction has already begun at this location in state II,

although it is less distinct than in state III. For combinations I-I, II-II and III-III, no clear convergence of µL is observed, which

is consistent with the expected zero-damage result for these self-comparisons.

Figure 14b displays the resulting CDFs for the damage position µP along the blade perimeter. For combinations I-I, I-II,

II-II and III-III, no clear convergence is visible, indicating that no specific position along the blade perimeter can be determined505

for these state combinations. For combinations I-III and II-III, a position between µP =−0.1 and µP =−0.3 is identified as
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the most probable solution. The negative sign corresponds to the pressure side of the blade, oriented upwards in the considered

laboratory setup (cf. Figure 1). This outcome does not match the true crack location across the LE in state III, corresponding

to µP = 0 as marked in gray. However, closer inspection of Figure 4 shows that the crack propagates slightly more on the

pressure side and changes direction through approximately 90◦ at this position. This may explain why the model-updating510

results identify the damage predominantly on the pressure side. Still, the damage localization along the blade perimeter remains

complicated.

The results for the damage extent along the length σL, shown in Figure 14c, are similar to those obtained using the beam

model (cf. Figures 10b and 13b) with the median lying exactly between the 1σL and 2σL values. The damage extent along the

blade perimeter σP , shown in Figure 14d, indicates a rather small extent in this direction with the median being even lower515

than the highlighted 1σP value. Consequently, the optimal results for the covariance matrix Σ2D correspond to a crack-like

shape extenting in longitudinal direction. Whereas this reflects the characteristics of the real damage extent, the orientation

does not correspond to the true extent across the LE of the rotor blade. However, it should be noted that an oblique damage

extent, as is actually the case here (cf. Figure 4), cannot be captured by the currently applied covariance matrix Σ2D, since its

off-diagonal terms are set to zero (cf. Section 2.1.3).520

The results for the damage intensity D2D, presented in Figure 14e, follow a pattern across all combinations similar to that

observed for the (meta)SDMU results using the beam model (cf. Figures 10c and 13c). For the self-comparisons, D2D = 0 is

the most probable outcome. Combination I-II shows an initial stiffness reduction, which is visible due to the slight rightward

shift of the CDF. For combination I-III, the CDF shifts further to the right, revealing a more distinct solution for a positive D2D.

This indicates an even greater stiffness reduction. The results for combination II-III, also targeting state III, show a comparable525

solution for D2D ranging from 0.025 to 0.175.

The stiffness reduction corresponding to the optimal design variable vector x2D,optimal, marked in red in Figure 14, is visu-

alized in Figure 15. Again, x2D,optimal is selected with the first design variable set to its median value µ̃L, while the remaining

four design variables are chosen as the optimal values corresponding to this fixed first design variable. For the shell model,

these corresponding values coincide with the respective median values regarding design variables σL, µP and σP , whereas530

the corresponding optimal value for D2D is slightly below its median. For comparison, Figure 16 shows the correct damage

location associated with the crack that emerged in state III. It should be noted that the “correct” representation aligns with

the intuitive perception of the crack extending across the LE. This does not correspond to the actual crack propagation, which

runs obliquely across the LE (cf. Figure 4). However, as mentioned before, this obliqueness cannot be captured by the applied

five-dimensional design variable parameterization, as the off-diagonal terms of the covariance matrix Σ2D are set to zero (cf.535

Section 2.1.3).

In summary, the (meta)SDMU approach applied to the shell model of the rotor blade successfully localizes the damage

along the blade length at L≈ 8m. Furthermore, the damage exhibits an elongated, crack-like shape, which reflects the charac-

teristics of the real damage extent. However, the found orientation is along the blade length rather than transverse to it and the

circumferential damage position was not accurately captured at the LE of the rotor blade but shifted towards its pressure side.540
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(a) View of the pressure side. (b) View of the leading edge.

Figure 15. Visualization of the stiffness reduction based on x2D,optimal, denoted by red crosses in Figure 14, in the shell model.

(a) View of the pressure side. (b) View of the leading edge.

Figure 16. Visualization of the correct stiffness reduction in the shell model.

4.3 Comparison of the results

In this subsection, a direct comparison of the results obtained using the three different design variable configurations, defining

the respective damage distribution functions applied to the two different numerical models, is presented. To illustrate this,

Figure 17 shows all the CDFs resulting for combination I-III. This combination updates the reference state I to the analysis

state III of the laboratory rotor blade.545
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Figure 17. Resulting CDFs of the SDMU procedure for combination I-III – comparison of all three parameterizations of the damage distri-
bution function.
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In general, the results for the three design variables µL, σL and D (i.e., D1D and D2D) show a high degree of similarity. This

overall consistency confirms the methodological robustness of the presented (meta)SDMU approach and the validity of the

three different implemented parameterizations of the damage distribution function. Moreover, the agreement across the results

underlines their reliability, particularly given that two numerical models of distinctly different levels of accuracy and detail

were employed.550

However, upon closer inspection, some differences can be discerned. Most notably, the use of the more detailed shell model

increases the accuracy of the damage localization along the blade length, shown in Figure 17a. Table 8 summarizes the local-

ization accuracy of the different design variable parameterizations using the beam and shell models with respect to the true

damage position µ̂L at L = 8m along the 31m blade. Therefore, the medians µ̃L – defined as the 50% values of the CDFs

– were calculated for each design variable configuration. To provide a quantitative metric for assessing the accuracy of the555

presented CDFs, Table 8 lists the relative error eµL
calculated in % per design variable configuration

eµL
= 100× µ̂L− µ̃L

31m
. (16)

Table 8. Comparison of the damage localization accuracy.

FE model NDVs µ̃L Deviation from µ̂L eµL

in m in m in %

Beam model 3 11.63 3.63 11.7
Beam model 4 12.59 4.59 14.8
Shell model 5 7.75 0.25 0.8

The listed results demonstrate that the shell model reduces the damage localization error to less than 1% of the blade length.

Due to its higher spatial resolution and more detailed representation of the blade geometry, it is significantly more accurate in

capturing local damage. However, this accuracy comes with the need for detailed geometric and material information and the560

cost of higher computational demand, with a computing time of around 8 minutes, including the input file generation, model

loading and modal analysis. In contrast, the beam model provides a reasonably accurate damage localization within 11−15% of

the blade length despite its simplified representation, while requiring only around 20 seconds of computing time. This indicates

that beam models can offer a practical compromise between computational efficiency and localization performance.

The damage extent is predicted nearly identically by all three parameterizations, illustrated in Figure 17b. The true lon-565

gitudinal extent of the oblique crack propagation is approximately 1m, corresponding to a correct value of 2σL ≈ 0.5m and

1σL ≈ 0.25m, as respectively indicated by the vertical dashed and dotted lines in the figure. All in all, the three model-updating

procedures accurately reflect the predominantly local nature of the damage.

Regarding the results obtained for the damage intensity shown in Figure 17c, the beam model with 3 design variables

predicts a slightly lower damage intensity, whereas the other two configurations yield similar results. Importantly, all three570
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model-updating procedures consistently identify a stiffness reduction with high probability, indicating that the three presented

damage parameterizations reliably capture the key structural effect of the damage.

5 Conclusions

In this work, FE model updating was performed with the objective of damage identification based on a laboratory rotor blade

fatigue test. Three rotor blade states were measured during the test, resulting in six possible state combinations to which the575

presented model-updating procedure was applied. The sample-based deterministic model-updating (SDMU) approach was

employed, which, in this particular application, accounts for identification uncertainty in the modal parameters. Three different

design variable configurations were introduced, each defining a damage distribution function used to update the stiffness of

two numerical models with different levels of fidelity (beam and shell). This methodological framework enabled a systematic

evaluation of how model detail and design variable parameterization influence the results of model updating.580

In summary, all three design variable configurations yielded consistent results across all six state combinations, confirming

the robustness of the SDMU approach and validating the implemented parameterizations of the damage distribution function.

The agreement among the results underlines their reliability, particularly given that two numerical models of distinctly differ-

ent levels of accuracy and detail were employed. As expected, all model-updating procedures returned zero-damage results

for the three self-comparisons and revealed a progressively increasing stiffness reduction together with a conclusive damage585

localization along the blade length. The most notable difference between the two utilized FE models was revealed with respect

to the longitudinal damage localization. While the use of the shell model allows for a damage localization within less than 1%

of the blade length, the use of the beam model achieved an accuracy of only 11%, overestimating the true damage position by

3.5m.

The findings of this work underline the importance of defining the analysis objective in advance. Depending on whether590

precise localization or overall damage characterization is the primary goal, the choice of the numerical model and the associated

design variable parameterization is decisive for obtaining meaningful and reliable results. In practice, this enables an informed

balance between computational efficiency and model accuracy according to the desired outcome.

As the considered five-dimensional design variable parameterization applied to the shell model does not account for oblique

damage extents, incorporating the off-diagonal terms of the covariance matrix represents an interesting extension. Future work595

should also aim to include model uncertainty in the SDMU approach. Moreover, the present study is limited to a laboratory

experiment without realistic variation of environmental or operational conditions, which are of high relevance for rotor blades.

Addressing these aspects will provide valuable extensions and enhancements to the presented model-updating approach.

Data availability. The measured acceleration time series together with the BayOMA results of the three rotor blade states are published as

open-access resources alongside this work within the public data repository of Leibniz University Hanover: Wolniak et al. (2025b).600
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