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Abstract. In this publication a new method to generate stochastic representations of homogeneous and isotropic wind fields is

presented. In contrast to the typically employed algorithm, the new approach is based on the wind speed correlation tensor. This

allows simulating a homogeneous and isotropic turbulent wind field with very high accuracy. In this publication, a deviation of

the obtained dataset’s structure function from the theoretical one of at least one order of magnitude lower than the commonly

used method is achieved. Furthermore, a compensation method to decrease this error even further is proposed. Moreover, being5

a generic method, it can be used to simulate other Gaussian phenomena (e.g., temperature or index of refraction fluctuations)

on various spatial domains and grid shapes.

1 Introduction

In recent decades, researchers and engineers have increasingly relied on the use of synthetic datasets to represent complex

physical phenomena during the design process. Examples include the generation of wind speed along the three spatial dimen-10

sions, used in the design of airframe structures (cf. (Hoblit, 1988) or the aviation regulation (CS25, 2023)) and the computation

of wind turbine loads (as specified in (IEC61400-1, 2019)). Further, synthetic datasets are relevant for the generation of phase

screens, used in the modeling of optical propagation through the turbulent atmosphere (Andrews and Phillips, 2005). For this

reason, within the last sixty years, several stochastic synthesis methods have been developed, in particular for phenomena that

are considered Gaussian and stationary (e.g., temperature fluctuations and homogeneous, isotropic turbulence). These methods15

are based on different statistical approaches, including modal decomposition techniques (Fried, 1965), autoregressive models

(Baran and Infield, 1995), linear dynamical system solutions (Beghi et al., 2011), machine learning (Wold et al., 2024), or the

spectral representation of the phenomenon. This last family of algorithms can be further divided into the methods computing

the dataset by means of the relation between the phenomenon’s correlation function and power spectral density (PSD) (Dietrich

and Newsam, 1997; Borgman et al., 1984), and the ones synthesizing the dataset directly from the spectrum of the phenomenon20

(Mann, 1998). The latter class of algorithms, referred in this article as random phase method (RPM) after (Wilson, 1998), has

been very widely used in the realization of stochastic wind fields in the last twenty years (Friedrich et al., 2022; Chen et al.,

2022). However, to the authors’ knowledge, there is still no algorithm capable of synthesizing a high-fidelity wind field dataset
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(i.e., achieving a deviation from the theoretical correlation of less than the 1%) on different spatial domains (e.g., a cuboid

of 2000 m×2000 m×2000 m and a parallelepiped of 8000 m×500 m×500 m) without the need of specific optimization25

or weighting parameters. The here proposed method builds on the RPM and the Fourier integral method (FIM) developed by

(Pardo-Iguzquiza and Chica-Olmo, 1993), and solves the optimization issues needed for different spatial domains, allowing to

obtain a high fidelity 1-D, 2-D, or 3-D dataset on a wide range of spatial domains, and for any desired grid shape (e.g., square,

rectangular, cuboid). Since this method is based on the correlation tensor, it has been decided to call it the correlation-based

method (CBM). The paper is structured as follows: in the first section, the theory behind the RPM is presented. The dataset’s30

verification procedure is described in the second section, while the RPM’s dicretization errors are explained using an example

in the third section. In the fourth section the theory behind CBM is presented, while in the fifth section the latter method error

is computed for different wind fields at different spatial domains. Finally, in the sixth section, the RPM and the CBM results

are compared for different spatial domains.

2 The legacy approach: Random Phase Method (RPM)35

First applied by Shinozuka (Shinozuka and Jan, 1972) in the field of structural analysis, the approach to use the PSD in the

synthesis of stochastic datasets has become basically the method of choice in different areas, such as wind engineering (Mann,

1998), acoustics (Wilson, 1998), and astronomy (Lane et al., 1992). Considering a stationary random field u(s), where s is

the space vector and u is a vector composed of the components along the three axis u(s) = (ux(s),uy(s),uz(s)), the field’s

spectral representation can be written in the form of a Fourier-Stieltjes integral with a random complex amplitude dψ (k)40

(Cramer and Leadbetter, 1967):

u(s) =

+∞∫

−∞

eiksdψ (k) ; (1)

where k is the wavenumber vector, and i is the imaginary unit. The process ψ(k) is directly related with the PSD Φ(k) by

(Cramer and Leadbetter, 1967):

|dψ(k)2|= Φ(k)dk ; (2)45

where the overline symbol ψ denotes the mean. In the case of a three-dimensional turbulent wind field, the PSD is described

by the 3× 3 tensor Φpq(k) (Batchelor, 1953), where the subscripts p and q are the tensor indices. In a discretized volume, the

integral in Eq. (1) can be approximated with a discrete Fourier series (Mann, 1998):

up(s) =
N∑

j=1

eikjsCpq(k)µq(k) ; (3)

where N is the number of points in the dataset (i.e., the total number of the grid’s pixels), µq(k) is a set of complex random50

variables with zero mean and unit variance, and Cpq(k) are the Fourier coefficients that are related with the wind speed tensor
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by (Mann, 1998):

C∗ptCqt =
(2π)m

V
Φpq(k) ; (4)

where V is the volume of the grid considered, the star symbol ∗ denotes the complex conjugate, and m is the number of

dimensions of the considered spatial domain (e.g., m = 2 for a 2-D grid). Once computed the Fourier coefficients Cpq , Eq. (3)55

can be solved efficiently using the inverse Fourier transform (Cooley and Tukey, 1965):

up(s) = Re/ Im

{
F−1

(
µ(k)

(2π)m/2

√
V

N
√

Φpq(k)

)}
; (5)

where Re/ Im symbol means that either the real or imaginary component of the result can be used, F−1 stands for the Discrete

Inverse Fourier Transform (DIFT). The
√

Φpq(k) term can be computed using a matrix decomposition technique, such as

Cholesky decomposition (Cholesky, 1910), or the dimension-dependent factorizations suggested in (Mann, 1998).60

3 Verification of the synthesized dataset

To check the quality of the dataset generated using Eq. (5), i.e., computing the dataset’s correlation deviation from the the-

oretical one, the dataset’s structure function, D, can be compared with the theoretical one, Dth, as suggested by Johansson

(Johansson and Gavel, 1994). D can be computed in two different ways:

– directly from its definition (Tatarski, 1961):65

D(r) = (ux(s+ r)−ux(s))2 ; (6)

where r is the separation vector, defined as the radial distance from the center of the grid;

– or, in a faster way, by means of the relation between the structure function and the correlation function, B, a statisti-

cal function that describes the mutual relation between the fluctuations of a physical phenomenon at different spatial

positions. The procedure is the following:70

1. Compute the dataset’s PSD, Φ(k), as:

Φ(k) = |F(u(s))2|= F(u(s))F(u(s))∗

N
; (7)

where the symbol F denotes the Discrete Fourier Transform (DFT).

2. Then the dataset’s correlation function, B(r), is computed as the inverse Fourier transform of Φ(k) (Wiener, 1930);

75

B(r) = F−1(Φ(k)) . (8)
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3. Finally, the dataset’s structure function can be computed as:

D(r) = 2(B(0)−B(r)) ; (9)

where 0 is the null vector.

Once the dataset’s structure function is computed using Eq. (9), the dataset’s error can be quantified as:80

ε(r) =
∣∣∣∣

D(r)
Dth(r)

− 1
∣∣∣∣ . (10)

For a more detailed explanation of the structure function and the correlation function, the interested reader is referred to

(Tatarski, 1961).

4 RPM’s discretization errors

As an example of the RPM application, consider generating a 2-D wind field representing only the velocity component along85

the x-axis, ux(s). In this case, Eq. (4) becomes:

Cxx(k) =
√

Φxx(k) ; (11)

consequently, ux(s) is:

ux(s) = Re/ Im
{
F−1

(
µ(k)

2π

LxLy
NxNy

√
Φxx(k)

)}
; (12)

where Li is the domain size along the i-th direction, Ni is the number of pixel along the i-th direction, and µ(k) is a Nx×Ny90

matrix of complex random variables with zero mean and unit variance. To test the RPM accuracy, a single wind field has been

generated using Eq. (12) considering a von Kármán (VK) spectrum with a turbulence outer scale of L0 = 756 m, on a square

grid of dimensions 3L0× 3L0. The expected dataset’ structure function is computed by setting µ(k) = 1 in Eq. (12). Both the

generated wind field, and its expected structure function are represented in Fig. (1). By analyzing the expected and theoretical

structure functions, it is clear that the generated wind field does not properly represent the required statistics, underestimating95

the spectral power, and thus the wind speed variance, especially for larger values of the separation vector r.

This error arises due to the fact that the PSD is not a bandwidth-limited function in the desired wavenumber domain, hence

the implementation of the DFT generates a sampling error, as stated by the Nyquist-Shannon sampling theorem (Shannon,

1949). In fact, by using the DFT, the wavenumber domain on which the PSD is computed is determined by the grid’s spatial

resolution, as represented in Fig. (2), where it is clear how the spatial grid acts as a sort of bandpass filter, considering only part100

of the spectra. A possible way to circumvent the low wavenumbers’ power underestimation is to increase the actual spatial grid

size while maintaining the same spatial resolution in order to consider the lower wavenumbers. However, this approach depends

on the considered PSD and on the grid shape, so it has to be optimized for each specific case. Moreover, for some applications

(e.g., when employing this approach in a Monte-Carlo setup) this is not possible due to computational reasons, because of the
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Figure 1. A wind field example generated by the RPM. Fig1a: a single wind field generated using the RPM. Fig1b: theoretical structure

function in blue stars, dataset’s expected structure function in dashed orange.

large memory size that the grid would end up having. Consequently, other methods that reduce this error calculation-wise have105

been developed.

For example, the sub-harmonic method (Sedmak, 1998) decreases the inaccuracies in the low-wavenumber region by replac-

ing the single sample at the origin in the wavenumber domain by nine (or even more) sub-samples. These samples represent an

equivalent length that is three times higher the length of a simple grid, allowing to sample the PSD at lower wavenumbers and

enhancing the dataset accuracy at high spatial scales.110

Another corrective method, proposed in (Xiang, 2014), implements a modal decomposition of the correlation function. The

correlation function is pre-processed by extracting the piston and tilt components and a mask is applied. The tilt and piston

components are then used to compute a tilt screen, that is added to the dataset generated using Eq. (12). However, the drawback

of such methods is that they are not of general nature (i.e., they cannot be applied for all kinds of PSDs), hence it is needed

to compute different weighting parameters to the PSD from spatial domain to spatial domain. Moreover, these methods can be115

applied only on square grids.

5 The correlation based method (CBM): generating the wind field from the correlation tensor

The here proposed CBM has been developed with the aim of eliminating the bandpass effect of the DFT arising while using

the RPM method. To solve this problem, the relation between the correlation function and the PSD (i.e., the two quantities

5
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Figure 2. The spatial grid acting as bandpass filter. The green rectangle represents the considered wavenumbers for a spatial domain of the

order of three times the outer scale, in this case both a high and a low wavenumbers’ power underestimation are expected. The red line

represents the VK spectrum, and the black line represents the turbulence outer scale.

being a Fourier pair, as expressed in Eq. (8)) can be used. Indeed, by using the theoretical correlation function, computed on120

the spatial domain s, to generate the PSD used in the dataset’s synthesis, the sampling error is eliminated. This solution, and

how to generate a stochastic dataset from it, has been first investigated theoretically by (Cramer and Leadbetter, 1967), from

which several methods, mainly used in the field of geostatistics, have followed. However some of these methods (Dietrich and

Newsam, 1997; Wood and Chan, 1994) rely on the correlation matrix having a Toeplitz structure (i.e., a matrix in which each

descending diagonal from left to right is constant). This is not always the case in wind field generation problems. Another125

proposed method (Pardo-Iguzquiza and Chica-Olmo, 1993) is very similar to the here proposed CBM, except that no arrange-

ments of the Fourier coefficients on the wavenumber domain are needed in the latter one. The CBM can be described by the

following steps:

1. Compute the correlation function: in the case of a homogeneous turbulent wind field, the correlation tensor can be

computed as (Batchelor, 1953):130

Bpq(r) = σ2
[rprq

r2
f(r)+

(
δpq −

rprq

r2

)
g(r)

]
; (13)

where σ2 is the wind speed variance, f(r) is the longitudinal correlation function, g(r) is the lateral correlation function,

and δpq is the Dirac delta function.
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2. Compute the PSD: the corresponding PSD, ΦCBM(k), is the Fourier transform of the computed correlation function,

Bpq(r):135

ΦCBM(k) = F(Bpq(r)) ; (14)

the obtained ΦCBM is not the theoretical PSD, but it is the discrete Fourier pair of the theoretical correlation function

Bpq(r) on the desired spatial domain. Note that ΦCBM(k) is not a tensor, as in (Mann, 1998), because it is the Fourier

transform of the tensor component Bpq , and not of the whole tensor. This component takes already into account the

longitudinal and lateral correlation, as expressed in Eq. (13).140

3. Synthesize the dataset: the random dataset up(s) can be generated by taking the real or imaginary component of the

DIFT of the square root of the PSD ΦCBM(k), multiplied with a set of complex Gaussian random variables with zero

mean and unity variance µ(k):

up(s) = Re/ Im
{
F−1

(
µ(k)

√
ΦCBM(k)N

)}
. (15)

The main difference to the FIM lies in this last step. In this case there is no need to divide the wavenumber domain in145

different regions where the amplitude spectrum’s coefficients (i.e., the square root of the PSD) are computed, but the

PSD ΦCBM(k) is directly used in the computation.

6 Validating the CBM at different spatial domains

As an example of the CBM application, a single component wind field has been generated on a 2-D domain using the same

parameters as in Section 4. In the case of a 2-D domain and considering the velocity along the x-axis, Eq. (13) becomes:150

Bxx(r) = σ2

[
r2
x

r2
f(r)+

r2
y

r2
g(r)

]
; (16)

and the generated wind field ux(s) is:

ux(s) = Re/ Im
{
F−1

(
µ(k)

√
F (Bxx(r))NxNy

)}
. (17)

The representation of ux and its expected structure function are represented in Fig. (3). The expected structure function matches

exactly the theoretical one, demonstrating that the synthesized dataset ux(s) respects the required statistics.155

In order to verify the actual generality of the method (i.e., it can be used without the need for any parameter optimization on

any spatial domain), the expected structure function has been calculated for a wide range of spatial grid dimensions, starting

from .01L0 up to 10L0. Similar to the function ΦFFT in Xiang (Xiang, 2014), for very small spatial domains w.r.t. the turbu-

lence outer scale L0, the obtained PSD, ΦCBM(k), yields negative values. This is theoretically incorrect, because the PSD is

defined as a positive function. The cause of the occurrence of these negative values is due to the implementation of the DFT160

on very small spatial domains. In fact, for very small spatial domains, the correlation function becomes almost flat, requiring
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Figure 3. A wind field example generated by the CBM. Fig3a: a single wind field generated using the CBM. Fig3b: theoretical structure

function in blue stars, dataset’s expected structure function in dashed orange.

some of the DFT coefficients to be phase-shifted by a factor π (i.e., having negative-amplitude values) in order to obtain the

desired shape in the spatial domain. This concept is represented in Fig. (4), where a single component wind field is generated

on a 2-D, 8× 8 grid, of length 0.1L0 and L0 = 756 m. By looking at Fig. (4), it is clear how using positive-amplitude DFT

coefficients leads to an error in the calculation of the correlation function.165

To tackle the issue regarding negative PSD values, it is possible to consider only the positive part of the PSD, and reduce

the error by pre-compensating the correlation function, as proposed by (Xiang, 2014). Considering the example presented in

Fig. (3), where the theoretical correlation function has been used without any compensation, this pre-compensation consists in

updating the correlation function used in the PSD computation by subtracting to the theoretical correlation function, Bxx(r)

defined in Eq. (16), the weighted error generated by neglecting the negative-amplitude wavenumbers of the PSD:170

BW (r) = Bxx(r)−W (r)∆Φ(r) ; (18)

where the error ∆Φ(r) is computed as:

∆Φ(r) = Bxx(r)−F [H (ΦCBM (k))ΦCBM (k)] ; (19)

where H() is the Heaviside function, and the weight W (r) has the shape of an elliptic super Gaussian window:

W (r) = Ae−C[( rx
E )g

+( ry
F )g] ; (20)175
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Figure 4. Negative DFT coefficients contribution. Fig4a: the theoretical correlation function in blue stars, the correlation function computed

using Eq. (8) in orange, the correlation function computed using the absolute value of the PSD in dashed green. Fig4b: the different colors

represent the contribution to the correlation function computation of different DFT coefficients. The contribution of the negative coefficients

is represented by continuous lines, the contribution of the same coefficients but with a positive value in dashed lines. The difference between

the sum of the two sets of lines gives the expected error in using the absolute value of the PSD.

Table 1. Compensation parameters

A 65(
L

L0
−0.7

)
1.2
√

2π
e
−

[
log

(
L

L0
−0.7

)
−1.7

]2
2×1.22 − 6.4

C 2

E L2/530

F L2/530

g 0.3

where g is the super Gaussian function exponent, and A,C,E,F are parameters that can be optimized depending on the PSD

and the required dataset’s accuracy. The parameters proposed for a square 64×64 grid, of dimension L×L, and a VK spectrum

are reported in Table 1. These parameters were found by optimizing the dataset error for different spatial domains. By using

the weighted CBM (WCBM) with these parameters, the obtained error is three to five times lower than using the CBM for very
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small spatial domains w.r.t. the turbulence outer scale L0. Finally, Eq. (17) becomes:180

up(s) = Re
{
F−1

(
µ(k)

√
F (BW (r))NxNy

)}
. (21)

7 Comparing the RPM and CBM methods

The errors of both methods have been compared on a wide range of spatial grid dimensions, starting from .01L0 up to 10L0.

For each grid, the method error ∆i has been computed as:

∆i = max(ε(ri)) ; (22)185

where ε(ri) is computed using Eq. (10) for the separation vector ri, and the dataset’s structure function D(ri) is computed

using Eq. (9), in which the dataset’s correlation function is computed as:

B(ri) = ux(s)ux(s + ri)∗ . (23)

It has been decided to consider the maximum error value for each spatial domain for conservative reasons. The comparison

between the two methods is represented in Fig. (5), where it is clear how the CBM over-performed the RPM of at least one190

order of magnitude, confirming that the method is a reliable solution in the synthesization of Gaussian processes without the

need of any parameters optimization. For spatial domains greater than 2.5L0, a region where the generated wind fields are used

to validate wind reconstruction algorithms’ performances (Kiehn et al., 2022), the CBM can be declared as exact in principle

(Wood and Chan, 1994), meaning that the method error is limited by the computer arithmetic inaccuracies. If a greater accuracy

is needed at low spatial domains the WCBM can be used by implementing Eq. (21) (dashed green line in Fig. (5)). The proposed195

solution reduces the error up to two order of magnitudes w.r.t. the RPM.

8 Conclusions

In this publication a new generating method for synthesizing Gaussian and stationary phenomena has been presented. This

new method allows to generate a dataset with an error of at least one order of magnitude less than the common used RPM. For

spatial domains greater than 2.5L0, the CBM can be declared as exact in principle. Furthermore, being a general method, it can200

be used to synthesize any phenomenon considered Gaussian and stationary (e.g., index of refraction fluctuations, temperature

fluctuations, homogeneous and isotropic turbulence) only by knowing the phenomenon’s structure or correlation function.

These can be obtained through analytical solutions (e.g., from the Kolmogorov cascade theory (Kolmogorov, 1991)) or from

real measurement data, allowing to synthesize phenomena for which no analytical solutions exist (e.g., Clear Air Turbulence

(CAT) events (Knox, 1997)). A further advantage of the method is that it allows, in a relatively simple way, the representation205

of anisotropies in the phenomenon of interest: these can be directly added to the theoretical correlation from which the PSD is

computed (Pardo-Iguzquiza and Chica-Olmo, 1993). Finally, the method is valid also for non-symmetrical spatial domains, an

interesting result that can be applied to highly customized wind speed dataset generation, as it will be described in a subsequent
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Figure 5. Methods comparison. RPM error in blue, CBM error in orange, WCBM in dashed green. The x axis indicates the ratio between

the considered spatial domain and the turbulence outer scale.

publication. Moreover, a routine to automatically compute the weighting function W (r) starting from the error ∆Φ(r) is being

developed. This would allow to achieve better performance on small spatial domains w.r.t. the turbulence outer scale L0.210
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