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Dear Reviewers,

Thank you for your constructive comments on our paper. Your feedback helped us significantly improve
our manuscript. This document presents our reply to the comments raised and provides an overview of
the changes we made. The responses are shown in blue, and the related changes in the preprint are shown
in red (the line numbering in ”See lines” refers to the comparison document attached in the bottom of
this document). The comparison manuscript is attached after the response to the reviewers, with the
removed portions in red strikethrough and the added text in blue underlined text.

In summary, we have made an effort to reduce the length of the paper without missing important
explanations and takeaways. The paper has been reduced from 28 pages to 26 pages, without increasing
the Appendices. Considering further figure reductions due to two column format of WES, we expect the
final publication could be shortened to around 24-25 pages. The preprint also has benefited from further
grammatical corrections along the main text.

We agreed that key figures had to be increased and that inconsistencies were present in the original paper.
We appreciate your criticism towards these and we have adjusted the paper accordingly. Additional
redundancies found by the authors have also been removed. For example, Figures 3 and 5 (preprint)
have been combined, presenting the drivetrain loads and its thermal model together. Similarly, Figure
8 (preprint) has been removed and the methodological steps for the simple uncertainty propagation
exercise (Section 5.5.2) are explained in the text. The Discussion (Section 6) has been incorporated into
the Results and Conclusion (Sections 5 and 7, respectively) as suggested by the Reviewer 1. Finally,
Figure 15 and Equation 20 (both in the comparison and revised manuscript) have been added to support
the claim made by the authors in the paper that low turbulence could increase the fatigue loads of
a locating main bearing at rated wind speed, a phenomenon introduced as turbulence averaging and
explained in Section 5.5.2.

Sincerely,

Bruno Rodrigues Faria
Nikolay Dimitrov

Nikhil Sudhakaran
Matthias Stammler
Athanasios Kolios
W.Dheelibun Remigius
Xiaodong Zhang

Asger Bech Abrahamsen

Enclosure(s):

- General remarks

- Response to Reviewer 1

- Response to Reviewer 2

- Marked-up version of the comparison manuscript



1 Response to Reviewer 1

In this paper, the authors describe a methodology to calculate the consumed fatigue life for a wind
turbine main bearing and tower based on a combination of SCADA measurements, accelerometers, and
dedicated strain gauge bridges and models. In general it is interesting, but the article could benefit a bit
by further grammatical editing and trimming in length as it’s quite long. The most interesting Figures
14-18 of results should be increased in size, as they are quite small even when zooming in electronically.
I did not have the time or expertise to review the majority of the material on tower fatigue, including the
entirety of sections 5.3 and 5.4. I offer the following comments for consideration to improve the article.

Response: The authors greatly appreciate the detailed and reasonable feedback. It has been fun-
damental to make the results related to the strain gauge calibration and main bearings analysis, and
their respective takeaways, more consistent. The reference to Figure numbers refer to the comparison
document attached in the bottom, which should match the updated draft numbering.

Revised Section: Figures 14-18 (Figures 12-16 in the reviewed paper) have been increased, with a
smallest increment on Figure 18 (Figure 16 in the reviewed paper), since it was considered the least
critical. The manuscript has been shortened by two pages while preserving all relevant findings. A
breakdown of the modifications according to each feedback is presented in the following.

2 Comments and suggestions:

Abstract

b2

e Line 19: I still have my doubts about the importance of “...low turbulence intensity. ..” mentioned

here. See later comments on Section 5.5.2.

Response: The authors agreed that this sentence was misleading the reader. In fact, the thrust
curve is claimed to be the main driver of the fatigue loads in the locating main bearings. Whereas,
for a critical operation condition, at rated wind speed (peak of the thrust curve), higher fatigue
loads were mapped for low turbulence and low shear from 2016 to 2024 (inclusive). The authors
claim that such effect is explained by a turbulence averaging of the turbine thrust curve and
subsequent bearing dynamic load curve as function of the wind speed

Revised Section: The final lines in the abstract have been modified to "Fatigue loads in the
locating main bearing are driven by the peak of the turbine thrust curve but higher loads are
observed on the main bearings at rated wind speed, most critical operation, with low turbulence
intensity and low shear.” More comments are adjusted in Section 5.5.2. The authors have also
added one possible explanation to this observation, through the new Figure 15 and Equation 20.
The effect is explained by the fact that that higher turbulence at rated wind speed, should flatten
the peak of the thrust curve, and by so, decrease the fatigue loads of the locating main bearing.

See lines: 20-25 and Figure 15

e Lines 21-22: Related to comments on Section 5.5.1, on the surface, I don’t disagree with the
statement “It was also found that the specification of the gearbox mounting stiffness can lead to
a 60% overprediction of the main bearing loads” but it is misleading because it depends on one’s
view of the meaning of “specification” of the stiffness. In this case, the 60% overprediction is a
result of comparing a realistic stiffness to a rigid gearbox mount, which is not a typical assumption
as the elastomeric mounts are intentionally relatively soft. When the realistic stiffness is compared
to no (or very low) mounting stiffness, there is very little difference in the main bearing loads.
Although it’s still worthy to describe in the body of the paper, from this perspective there is little
interesting to note in the Abstract itself, so I recommend this sentence just be deleted.

Response: The authors agreed that the mentioned sentences is not relevant enough to be included
in the abstract. In addition, the main text has been reformulated so that the reader understands
that only by applying a non realistic clamped gearbox mounting, the fatigue loads of the main
bearings would be significantly affect. While, if the gearbox mounting is neglected in the drivetrain
load model or considered flexible, within reasonable values found in literature, small impact should
be observed on the main bearing loads.



Revised Section: The sentence in lines 23-24 has been removed and a better explanation in
included in Section 5.5.1 "Figure 13 shows the effect of the stiffness used to model the gearbox
mounting fixation points on the P, of the front and rear main bearing. Small variation is observed
if the stiffness is neglected or used as in the literature. However, as shown in Figure 13, an
overprediction of 10% and 60% of the front and rear dynamic equivalent loads P, could be reached
if a gearbox is rigidly fixed in a 4-point drivetrain, which is not a realistic assumption.”

See lines: 563-568

1 Introduction

e Line 35: Do the authors intend the phrase “As a failure in the main bearing means a failure in
turbine operation” to mean that the turbine itself may fail catastrophically, or just lead to downtime
and replacement? From the next sentences, it seems the latter. If so, I recommend “As a main
bearing replacement incurs significant costs and turbine downtime, ...”

Response: Agreed.
Revised Section: The sentence has been updated as suggested.
See line: 38

e Line 54: T am not sure of the meaning of “aims to maximize coverage using”. I think simply “aims
to use” is clearer.

Response: Agreed.
Revised Section: The sentence has been updates as suggested.

See line: 59

2.2 Main bearing fatigue lifetime

e Lines 130-134: In addition to the text here regarding a_ISO, I believe adding a pointer statement
that a drivetrain thermal model will be discussed in Section 4.4 would be helpful. Without any such
statement, the reader is left wondering how a_ISO will be determined (I did). Such a statement is
also made in Section 4.0, but it would have been helpful earlier.

Response: Agreed.

Revised Section: A reference to the main bearing thermal model is also made in Section 2.2 in
7 In this work, a drivetrain thermal model is used to allow the estimation of aigo,;, as shown in
Section 4.2.

See lines: 151-152

2.3 Virtual load sensors

e Line 137: In general, the article seems to place emphasis on the benefit of “keeping the necessary
measuring [instrumentation] in the nacelle” In this case, strain gauges in the nacelle rather than
at the bottom of the tower. Is there really much benefit to this in practice though? Obviously,
strain gauges at the tower bottom are very easily accessible. Can the authors comment?

Response: The authors have decided to remove such emphasis from this paper. The discussion is
interesting as it can be approached from a Original Equipment Manufacturer (OEM), an operator
or a Retrofit partner point of view. However, it was decided to leave such subject for a next
publication to come. The importance of the virtual load sensors is focused in terms of replacing
physical sensor when they fail.

Revised Section: The mentioned sentenced has been adjusted to remove the discussion on "keep-
ing the necessary measuring instrumentation in the nacelle”.

See lines: 80-81



3 Measurements

e Line 166: There is no “...graph on the left...”. The discussion here does have some importance,
as in the Abstract the very high fatigue lives are attributed to “the low average wind speed of the
turbine site compared to the wind turbine design wind class TA.”

Response: Thank you for the careful reading and feedback. The first sentence should have been
removed during the updating of drafts.

Revised Section: The first sentence has been removed, whereas the following discussion is still
valid: ”the Risg site has fairly low wind resources (...)"

See lines: 185

e Lines 173 and 176: Maybe I am mistaken, but gamma is described as the yaw angle in line 170 but
the azimuth angle in line 176.

Response: Agreed.

Revised Section: The gamma ~ has been corrected to the phi ¢ to represent the azimuth angle.
See line: 196

4.1 Strain gauge zero-drift automatic calibration

e Lines 208-209: I don’t understand the meaning of “No external dynamic load should cause zero
strain.” I don’t necessarily disagree with it, but it seems to be a restatement of the fact that the
external loads are assumed to be zero in idling and parked conditions. Also, I recommend “bending
moment” be changed to “bending moments” here, or even “blade root and tower bottom bending
moments” for greater clarity.

Response: The first mentioned sentence was misleading the reader. It was supposed to introduced
the concept behind the calibration methods. However, it was decided to remove this sentence and
leave the explanation of the calibration methods to be done in Section 4.1.1. The calibration is not
directly connected to the presence or absence of external loads, but by the consistent variations of
defined gravitational loads. As for the second mentioned sentence, the authors agreed.

Revised Section: The first mentioned sentence has been removed. And the reader could refer to
Section 4.1.1 to have a better understanding of the calibration methods. The second mentioned
sentence has been updated as suggested.

See lines: 228

4.2 From blade and tower to main bearing loads

o Line 233: I believe adding a pointer “A sensitivity analysis is performed in Section 5.5.1 to evaluate
the importance of this assumption” would be helpful.

Response: Agreed.
Revised Section: The suggested sentence has been added in Section 4.2.
See lines: 254-255

e Lines 246-251: Here the drivetrain model is discussed, which assumes that the gearbox carries
some load because of the main shaft bending flexibility. This may very well be fine, but I'll admit
I don’t know off the top of my head how good of an assumption this is compared to deflections
resulting from main bearing internal radial clearance.

Response: The authors appreciate the raised discussion. Indeed radial clearance was not men-
tioned initially. The validation of such assumption would not be feasible in the scope of this
paper. However, the authors reason that, considering the flexible gearbox mounting usually seen
in operation, neglecting the radial clearance is in the more conservative side of this analysis.



Revised Section: The authors have added in Section 4.2. ” The radial clearance from the bearings
is not explicitly considered.” for the sake of completeness. However, no further validations were
pursued.

See line: 268-269

o Line 257: Here, thrust load-sharing between the two main bearing is discussed, but in the end I
believe the rear bearing is simply assumed to act as the locating bearing and carry all the thrust.
This would be a common design objective achieved by greater axial internal clearance in the front
than the rear bearing. Is that a correct understanding of what the authors have implemented?

Response: Exactly. The authors appreciated this comments as it makes it more clear to the
reader the decision that the rear main bearing is the locating bearing.

Revised Section: The following sentence has been added in Section 4.2 ”Since both bearings can
carry axial loads, the system may become over-constrained, causing additional axial stress during
thermal expansion. For these reasons, the rear bearing is considered the locating bearing, being
the larger bearing and with greater axial internal clearance.”

See lines: 279-282

4.3 Tower bottom virtual load sensor: thrust and fatigue loads

e Figure 4: Is quite small. I recommend each one be enlarged. Additionally, I'm not sure I understand
the value of examining the PSD of the azimuth. I assume this signal looks similar to a triangular
wave (i.e. roughly linear from 0 to 360 degrees repeating for each complete rotor revolution), so it
has spectral content at each rotor frequency, not just 1, 3, and 6P as described in line 279.

Response: Agreed. The authors have initially added the azimuth angle ¢ as the measured azimuth
angle less the integral of rotor speed w in time. However, it was decided that this exercise did not
add relevant discussion in the main text, in comparison to the remaining input signals (SCADA,
nacelle accelerometer, blade root strain gauges).

Revised Section: Figure 4 has been increased and the azimuth angle ¢ has been removed from
Figure 4(left). And lines 325-327 has been removed as it was an erroneous explanation of the
frequency components in the azimuth angle ¢.

See lines: 325-327 and Figure 4

b2

e Line 280: I don’t understand the sentence ”... only the accelerometer signal can well capture the
first fore-aft turbine frequency (around 0.62 Hz Rinker et al. (2018)), while its amplification of
higher frequency components compared to M,re—qf: cannot be considered pure electrical noise.”
To me, it appears that there is nearly as strong content of this frequency in Myfopre—qf: as the
accelerometer as shown in the middle figure.

Response: The authors have not properly explained the scope of Figure 4: present the input
signal Power Spectrum Density (PSD) of the virtual load sensors compared to the target variable
PSD Myore—ast (tower bottom bending moment in the fore-aft direction). As the latter would not
be available in the deployment of the virtual load sensors.

Revised Section: The authors have added explicitly that the Mgy e—qpe refers to the target
variable in the training of the virtual load sensor, in then it would be interesting to compare its
PSD with all different input sources (SCADA, nacelle accelerometer and blade root strain gauges).
Added as "The black line is added in all charts as is the target variable Mopc—qf: of the virtual
load sensors.”

See lines: caption of Figure 4

e Line 284: Gearbox vibrations are described relative to the accelerometer measurement; however,
I don’t believe it’s described or shown in the paper where exactly this accelerometer is located.
Is it attached to the bedplate, for instance? I don’t necessarily disagree with the statement here;
however, the vibration frequencies in these plots are from 0 to 5 Hz or so, which is quite low
for a “gearbox vibration” in general, for instance, as a result of tooth meshing. More importantly
though, what is the significance of the extent of attenuation (or not) of the accelerometer compared



to Mfore-aft? If there isn’t any significance, then why is this discussed? If there is significance,
what is it?

Response: The authors agree that the location of the nacelle accelerometer was not previously
stated. Secondly, the extent of the attenuation of the accelerometer compared to the Myore—qrt
could add undesired oscillation into the virtual load sensor estimate of the Myore—qp: When trying
to the minimize the training error with non related oscillations.

Revised Section: The authors have defined the position of the nacelle acceleration and explicitly
stated a possible impact of it in the virtual load sensor performance as in ”The most consistent
explanation is that the gearbox operation feeds high-frequency broadband vibrations to the nacelle
accelerometer mounted below the bedplate near the gearbox. Virtual load sensors trained on the
nacelle accelerometer might add higher frequency oscillations to the Mo e—qy: estimate, as shown
in Figure (...).

See lines: 331-335

4.4 Drivetrain thermal model

e In general, the thermal model described here is interesting. Aside from the statement “.. .1t yielded
3 C MAE” for the gearbox temperature, I don’t have a good sense of the actual temperature results.
I see this is later included in Section 5.5.4, so I am wondering why this mention of 3 C MAE is
included in the Methodology section rather than the Results section. Having said that, I think
practically speaking such a thermal model might not be needed as many or most turbines have an
existing main bearing temperature measurement.

Response: Indeed, the mentioning on the MAE is misplaced and have been moved to the Results.
And the authors agreed that main bearing temperature are often available and have added a note
on that.

Revised Section: The error in the gearbox temperature MAE has been moved to Section 5.5.3.
And the authors have added in the beginning of the "Drivetrain thermal model” subsection "In case
the temperature measurements of the main bearings are not available, estimates of the temperature
of the main bearings are necessary to incorporate the life modification factor aisp.” to make it
clear that the drivetrain thermal model is implemented since main bearing temperatures were not
available in the DTU research V52 turbine.

See lines: 284-285 and 615

e Line 312: Here, the grease cleanliness level is mentioned, but what assumption was made about
it? Typical contamination maybe?

Response: The authors agree that assumptions taken on the grease cleanliness should be stated.
But since this study has used different assumptions in Figures 15 and 16, it was decided to men-
tioned the section in which this assumption is made.

Revised Section: A referral to Section 5.5.3 has been added.
See lines: 304

5.1 Continual calibration routines

e Line 322: Here it is stated “From the left charts, it is possible to observe larger zero drifts for the
blade root compared to the tower bottom strain gauges.” This may be true, but it is quite difficult
to tell as the channels have offsets that overshadow any change in them over time. A better way to
show the drift would be to normalize each one by their initial value and plot the change over time.

Response: Agreed.

Revised Section: The mean value of the offset from the left chart in Figure 5a has been subtracted
to facilitate the visualization. Whereas the offsets in Figure 5b have been maintained as it was
already possible to visualize drift and at a similar bending moment range as of Figure 5a (around
500 kNm).

See lines: Figure 5a(left) and caption.



5.2.1 Fatigue damage accumulation

e I thought I understood how the lifetimes of the tower (1770 years) and front (166 years) and
rear (333 years) were determined, but apparently not. For example, I had assumed if 0.003 D is
accumulated in the tower in 9 years, then it would take 3,000 years (= 9/0.003) for D to reach a
value of 1. Similarly for the main bearings (9/0.03 = 300 years for the front bearing). It’s not clear
to me that Equations 2 and 7 explain this difference. If the authors could address how the stated
lifetimes are calculated, I believe it would be beneficial.

Response: Agreed. Once again, the authors appreciated the careful reading. This has been a
mistake in the documentation of the calculated values.

Revised Section: The reviewers have estimated the corrected values. The tower lifetime is
calculated as 2952 years, and the front and rear main bearings lifetime is calculated as 282 and 566
years, respectively. This has been updated both in the abstract and main text.

See lines: 10 and 410-411

5.2.3 Effect of periodic calibration on the main bearings L10

e Line 361: I recommend adding “...can influence the lifetime estimation of main bearings for this
methodology.”

Response: Agreed. This should emphasize that the absolute errors in the Lig due to periodic
calibration are valid for the proposed methodology.

Revised Section: The sentence has been updated as suggested.

See lines: 437

5.5 Main bearings loads and fatigue lifetime analysis
e Figure 14 especially would benefit from increasing in size.

Response: Agreed. Figure 12 (previous Figure 14) has been increased to facilitate visualization.
However due to the final size of the document, further increasing was not possible.

Revised Section: Figure 12 (previous Figure 14) has been increased while keeping it in a two-
column fitting.

See lines: refer to Figure 12.

5.5.1 Sampling frequency and gearbox mounting stiffness assumptions

e Although on the surface I don’t disagree with Figure 15b or the statement that “overprediction of
the front and rear dynamic equivalent loads could be reached, if a gearbox is assumed to be rigidly
fixed in a 4-point drivetrain” in line 451, the “baseline” that is being compared to for this paper is a
baseline of rigid stiffness of the gearbox mounts, which I don’t know is a very common assumption.
This results in (large sounding) overpredictions of up to 60%. I think it’s much more common to
do the opposite: that is, neglect the stiffness of these mounts as a “baseline” for a simple model
(which is the description used in the Conclusions), which when comparing the estimated stiffness
to would result in a very similar prediction. The conclusion one would derive then sounds quite a
bit different. It would be that the dynamic equivalent loads are not affected (or only affected by
a very small amount, it depends on the actual numbers in Figure 15b) by the estimated gearbox
mounting stiffness compared to an assumption of no stiffness. This then makes the statement in
Line 449-450 “...the assumption on which stiffness should be used to model the gearbox mounting
fixation points into the bedplate has been shown to be one order of magnitude more relevant” to
ring hollow. See related comments to Abstract and Conclusions.

Response: The authors agreed that the text was misleading the reader into considering the
baseline as the rigidly fixed. The previous mentioning to the gearbox mounting stiffness has been
removed from the abstract and conclusion, as this exercise should be seen as a minor sensitivity
analysis rather than a main outcome. In addition, in the sensitivity analysis section, the text has
been adjusted as suggested by the reviewer.



Revised Section: The description of the sensitivity analysis has been adjusted to: "Figure 13
shows the effect of the stiffness used to model the gearbox mounting fixation points on the P, of
the front and rear main bearing. Small variation is observed if the stiffness is neglected or used as
in the literature (Haastrup et al., 2011; Keller et al., 2016). However, as shown in Figure 13, an
overprediction of 10% and 60% of the front and rear dynamic equivalent loads P, could be reached
if a gearbox is rigidly fixed in a 4-point drivetrain, which is not a realistic assumption.”

See lines: 563-568

5.5.2 Environmental and operational conditions (EOCs) mapping of the main
bearings dynamic equivalent loads

e To be honest, I had quite a difficult time discerning what the take-aways are from Figure 16
compared to Figure 14 discussed in all of Section 5.5.2. Are there any? In reading the text, I
found myself more easily referring to Figure 14 for interpretation. Figure 14 tells me that Peq for
both bearings is relatively well tightly grouped between the 10th and 90th percentiles, regardless
of the shear or TI. Section 5.5.2 seems to try to convince me of the opposite. As an example for
the rear bearing, let’s take the sentence “Approximately 10% increase in load driven by a change
in turbulence from 15% to 8%.” Although this may be true, what is the significance? From what I
can tell from Figure 16, what is described here is the small change from yellow to yellow-ish green.
Is that correct? Another reason I bring this up is that the manuscript is already quite long, and I
do not see anything new in Section 5.5.2. As far as I can tell, it could be deleted and any additional
explanation included in the discussion of Figure 14. All Figure 16 seems to tell me that is new is
that the TI is up to 30% and the shear coefficient up to 0.4, and that the highest values of Peq
for the front bearing are at low shear (this latter fact has already been described elsewhere). It is
only modestly interesting that the Peq for the front bearing tends to be largest around 10% TI,
but then again it’s a relatively small increase (maybe 20 kN out of over 200, or less than 10%) and
it may be an artifact of averaging over 10 minutes. If this section and Figure 16 remains, Figure
16 especially would benefit from increasing in size.

Response: Figure 14 (previous Figure 16) has been increased to facilitate visualization. The
authors agreed that the draft discussion of the results in Figure 14 were misleading by not first
introducing the impact of the thrust curve in the fatigue load P4 of the locating main bearing. And
then, discussing the impact of the turbulence intensity and shear. The authors have reformulated
the description of Figure 14 to incorporate the feedback from the reviewer while allowing further
discussion of the effect of the low turbulence. Similarly, the takeaways have been adjusted in the
Abstract and Conclusion. The authors argue that the mapping of the fatigue loads measurements
from 2016 to 2024 (inclusive) have presented a similar effect of the turbulence and shear in the
fatigue loads of the locating main bearing at the rated wind speed.

Revised Section: Figure 14 (previous Figure 16) has been increased while keeping it in a two-
column fitting. And the last paragraph from Section 5.5.2 has been reformulated to "Note that
the peak of the thrust curve is claimed to be the main driver of the fatigue load in the locating
bearing P, (Kenworthy et al., 2024; Quick et al., 2025). Figure 15 highlights the effect of the
low turbulence intensity and shear at the rated wind speed, as they refer to the most damaging
operating conditions and should affect the main bearing lifetime more severely depending on the
probability of occurrence, as described in Equation 6.

See lines: Figures 14 and 15

5.5.3 Main bearing lifetime using thrust estimate from virtual load sensors

e Line 474-475: 1 think this sentence would benefit from rewording to something like “This might
come from the fact that the bearing fatigue is dominated by the mean value of Peq rather than
fluctuations in the radial and/or axial loads.”

Response: Agreed. However the authors have decided to remove Section 5.5.3, as it was not a
main learning from the paper and it could shorten the overall size of the publication.

Revised Section: The suggested sentence has been included in Section 5.5.

See lines: 549-552



5.5.4 Main bearings modified rating life: L10m and a_ISO

e Line 479: Here max main bearing temps of 55 and 61 C are mentioned, but what is shown in Figure
17 is ambient temps? Is there a reason for this? Why bother to calculate the main bearing temps
if they are not to be shown in Figure 17, only discussed in general? It’s the bearing temperature
that really matters.

Response: The authors agreed that the main bearing temperature have not been further men-
tioned. The authors have included the bearing temperature of the main bearing in pointers in
Figure 15 (previous Figure 17). In addition, the minimum, average and maximum temperatures
of the main bearings have been included in the main text. However, the authors argue that it
might be more valuable to the current analysis to map the bearing lifetime as function of external
environmental conditions rather than subsequent physical quantities that are analytically linked to
the main bearing lifetime such as P, viscosity ratio x or bearing temperature 7 and 7. A figure
mapping the Lqg,, as function of the main bearing temperature could also lead to good discussion
but has been avoided to shorten the length of the paper.

Revised Section: The minimum, average and maximum temperatures of the main bearings have
been included in the main text. And the temperature of the main bearings have been added in
Figure 16.

See lines: 613-615 and Figure 16.

e Figure 17: I'm not sure I understand the life mentioned in each subfigure, which ranges from 20
to 10,000 years. Is this the basic life for an individual 10-minute bin “j” from Equation 6, or the
combined and modified life from Equation 87 The use of L10m,f and L10m,r in the Figure says
the latter, but it feels like it is a graph of the former. Equation 8 implies a_ISO has a single
fixed value and is applied to the combined L10; however, Figure 17 implies a_ISO is calculated for
every 10-minute period from the main bearing temperature and dynamic equivalent load (and fixed
contamination level and fatigue load limit) and applied to the basic L10 before being combined. Is
this a correct understanding?

Response: The authors appreciate the comment as it identified a poor definition of the a;jgo in
Section 2. The argo,; is actually calculated for each 10-min j instance. And so is the modified
rating life Lyq,, of the rear and front main bearing.

Revised Section: Equation 8 has been updated to present Ljg,,,; calculated for each 10-min j.
The mapping of the L1q,, continue to be as function of the environmental conditions.

See lines: Equation 8

o Lines 491-492: Like section 5.5.2, a citation of Kenworthy (2024) would be appropriate here, as
they came to the same conclusion.

Response: Agreed. The reference to Kenworthy (2024) has been added. In addition, a reference
to Quick (2025), a WES pre-print, has been added as it is also an appropriate reference.

Revised Section: The discussion to the Figure 14 (previous Figure 16) has been reformulated
and incorporated Kenworthy (2024) and Quick (2025) references.

See lines: 587

e Line 496: Here L10,r is given as 315 years, while if I understand the Abstract and section 5.2.1
correctly it is 333 years. Shouldn’t they be the same?

Response: Agreed. The authors appreciate the attention from the reviewer. It has been an error
from the authors in the documentation. The values have been updated in the Abstract and Sections
5.2.1 and 5.5.3, now are the same.

Revised Section: Abstract and Sections 5.2.1 now have the value of Ly, equal to 566 years.

See lines: 10



6 Discussion

e If it were me, I would integrate anything new in Section 6 into the main body of the article itself.
It’s an opportunity to shorten the article, as it feels much of what is described here has already
been stated earlier, and there’s an additional Conclusions section.

Response: Agreed. The text and discussions previously contained in Section 6 (Discussion) but
have included in Section 5 (Results) and Section 7 (Conclusion).

Revised Section: The previous Section 6 (Discussion) has been removed. The important take-
aways have been included in the Results and Conclusion.

e Line 502: Strictly speaking, I think this should state “...eight full strain gauge bridges...”,
shouldn’t it?

Response: Agreed.
Revised Section: The suggested sentence has been added in Section 6.
See lines: 691

e Lines 523-526: Like previous comments on Section 5.5.1, Abstract, and Conclusions, I believe these
sentences are misleading. Among other reasons, stating “The stiffness of the gearbox mounting
could lead...” alone is rather vague. What is meant here is “Assuming the gearbox is rigidly
mounted could lead...”; however, as stated earlier, this is an usual assumption. It is more typical
to assume the gearbox mounting has little or even no stiffness. As mentioned earlier, I would rather
see these statements “flipped” in their comparative sense, with the resulting conclusion being that
modeling of the gearbox stiffness had little impact on Peq or L10 (actual amount TBD).

Response: Agreed.

Revised Section: The discussion on the gearbox stiffness has been removed from the Abstract
and Conclusion, being limited to the Section 5.5.1. With the statement "flipped” as suggested by
the reviewer.

See lines: 563-568

e Lines 530-534: The sentences here regarding the relative importance of TI to other factors seem
to be in some ways contradictory and in other ways misleading. Both Kenworthy (2024) and the
results in this manuscript indicate that main bearing temperature and grease cleanliness first and
foremost, followed by shear, are much larger factors in main bearing rating life than the turbulence
intensity. The reader would not get that sense right now.

Response: Agreed. The paper pre-print Abstract, Section 5.5.2 and Conclusion were initially
misleading the reader. The authors have reformulate to make sure that the thrust curve is the
driver of the fatigue load in the locating main bearing. Whereas, at the rated wind speed (most
damaging condition) both low turbulence and shear showed similar effect on the increased loads.
And once the modified rating life Lg,, is presented, temperature and grease cleanliness levels
prevail.

Revised Section: Abstract, Section 5.5.2 and Conclusion have been modified to incorporate the
suggested reviewer feedback, while still arguing that low turbulence had the similar effect as low
shear in the locating rear main bearing.

See lines:20-22, 583-589 and Figure 15.

7 Conclusion
e Line 558: I recommend this be changed to “...has a longer life as the shear exponent increases. . .”
Response: Agreed.
Revised Section: The suggested sentence has been added in Section 6.

See lines: 712
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e Line 560: As mentioned earlier, the statement “...the rear main bearing, at rated wind speed, has
higher loads for lower turbulence intensities” seems to have mis-placed emphasis. It is extremely
difficult to see this in Figure 16, when in comparison the mean wind speed has a far, far greater
effect. I am not able to tell whether, for a given wind speed, if a change in TT or shear exponent
has a greater effect.

Response: The authors hopefully have managed to better discuss the effect of the thrust curve,
Quick (2025), and the turbulence effect in the lifetime of the locating main bearing as shown in
Figure 15. Once the discussion of the results has been reformulated, the authors seek only to
describe the mapping of load measurement from 2016 to 2024 (inclusive), which identified a effect
of the turbulence intensity as high as of the shear. The first driver (turbulence intensity) is in
agreement with the HIPERWIND 5.4 report, whereas the second driver (shear) in in agreement
with Kenworthy (2024).

Revised Section: As previously mentioned, Abstract, Section 5.5.2 and Conclusion have been
modified to incorporate the suggested reviewer feedback.

e Line 560: The statement “Neglecting the stiffness of the gearbox mount renders unrealistically high
Peq, but having the stiffness values within realistic ranges results in little influence on the lifetime”
hearkens back to Section 5.5.1, but I believe it uses wording opposite to Figure 15b. From Figure
15b, T would write this statement that “Assuming a rigid gearbox mount renders unrealistically
high Peq...” or “Neglecting the stiffness of the gearbox mount has a minimal impact on Peq”. See
previous comments on Section 5.5.1 and Figure 15b. Like the Abstract, it’s worth considering if
this point is even important enough to mention in the Conclusion. It might be deleted without
losing anything, as it’s really a sensitivity study like downsampling the SCADA rate which is not
mentioned in the Conclusions. I leave it to the authors to decide.

Response: Agreed.

Revised Section: The authors have removed such text from the Abstract and Conclusion and
reformulated the discussion in Section 5.5.1.

See lines: 563-568

e Line 562: Although this may be true, is there a reference that can be cited that life corrections
have been validated for other bearings (smaller and/or oil lubricated)? Such a statement would
actually be beneficial earlier in the manuscript, rather than only here.

Response: Agreed. The authors appreciate the feedback as it supported the theoretical back-
ground of the paper to become more robust.

Revised Section: A reference to the ”"Recalibrated Equations for Determining the Effect of
Oil Filtration on Rolling Bearing Life” report by NASA, Needelman and Zaretsky (2014), has
been added to Section 2.2 and Conclusion. The document reports a review of several relevant
references investigating, among other topics, the impact of the lubricant cleanliness in the bearings
lifetime "Life factor LF” (pitch diameter of reference is 100 mm), such as the impact of particle
contamination according to the particle size in oil filtration.

See lines: 149 and 720-722

Minor grammatical comments

Response: We appreciated the careful reading and detailed correction on the grammatical errors. Thank
you for your patience and time.

Revised Section: All comments below have been incorporated as suggested. For the sake of conciseness,
they will not be replied individually, but their suggested lines are still coherent if checks are to be
made. Further small grammatical corrections have been made and citation style changed in the response
manuscript.

e Line 5: Rather than “minimally intrusive strain gauge at blade and tower” I believe simply “tower
and blade root strain gauge bridges” is clearer.

11



Line 26: I believe the preferred citation style is here “...global benchmark reports (IEA and NEA,
2020; IRENA, 2024).” Similar for line 29 “. .. the foundations (Ziegler et al. 2018; IEC-TS-61400-28,
2020).

Line 42: Use plural “reported failures” here.

Line 45: Use citation style “(Santos et al., 2024)” here. I recommend reviewing citation style
throughout. Maybe the WES editors will take care of this themselves.

Line 86: Should be “number of cycles” here.

Line 102: I'm not sure “reasoning” is correct here, I believe the meaning is “meaning” as used later
in line 104.

Line 113: Ttalicize P, X, and Y here in the text.

Line 139: I'm not sure I understand the meaning of “Benefiting from instances statistics...”.
Similarly for line 159.

Line 146: A space is needed “...different. Similarly, Dimitrov and Gocmen (2022) show. ..”

Line 194: Does the V25 have a S355 steel tower as stated in line 79, or only “assumed” to have a
S355 steel tower as stated here?

Line 197: Here and elsewhere, I believe “LL10,m” should be “L10m”.

Line 262: Here “...time steps,NlaggedFNN Dimitrov and Gocmen (2022)...” seems a little gar-
bled. Is “Nlagged” a variable?

Line 270: DLC does not need to be redefined here, as it was already done in Line 77. Similar for
other instances of “design load cases (DLC)” after this point.

Line 324: There is a double period in this line.
Line 433: There is a double-space here.
Line 439: Instead of “is incremental”, I believe “incrementally increases” makes more sense here.

Line 541: Should be “continually calibrated”.

3 Response to Reviewer 2

This paper presents an interesting approach to continuous lifetime monitoring of wind turbine towers
and main bearings using strain gauge calibration and virtual load sensors over nearly 10 years of data.
The methodology is comprehensive and the long-term dataset is valuable. However, several clarifications
and corrections are needed before publication, as outlined below.

Response: The authors greatly appreciate the critical feedback. The results related to the virtual load
sensors have been improved by incorporating the suggestions given by the Reviewer 2. Similarly for the
general comments.

Revised Section: As previously mentioned to the Reviewer 1, an effort has been made to shorten the
paper, and make the methodology more robust, specially, for topics related to the tower bottom virtual
load sensor.

4

Comments and suggestions:

The paper is quite long as another reviewer has also noted. Consider shortening by consolidating
or removing redundant material. Some sections could be more concise.

Response: Agreed. This feedback has been transparent and coherent to the Reviewer 1. The
authors have made an effort to shorten the paper length.

Revised Section: Figures 14-18 (Figures 12-16 in the reviewed paper) have been increased. The
manuscript has been shortened by two pages while preserving all relevant findings

12



o The paper switches inconsistently between “nearly 10 years,” “9 years,” and “7.5 years” when
describing different analyses. A clear timeline figure would help readers follow which period is
being discussed in each section.

Response: Agreed. The authors appreciated the attention given by the Reviewer 2 to this matter.
The authors have not been consistent in the pre-print document in terms of a clear timeline.

Revised Section: Instead of a timeline figure as suggested, which would take significant space,
the authors have decided to be coherent along the main text. Now the mentioning to 9 and 7.5
years have been removed. The load measurement campaign has been presented to be carried out
from 2016 to 2024 (inclusive) along the different sections of the paper. With the exception of
to the deployment of virtual load sensor, which neglected a initial 35 Hz dataset as explained in
the Section 5.4, and had a final timeline from June 2017 to 2024 (inclusive). The phrase “nearly
10 years”, instead of 72016 to 2024 (inclusive)”, is used only in the Abstract and Conclusion to
emphasize the long-term reliability of the strain gauges and the lifetime counting.

See lines: 72016 to 2024 (inclusive)” in line 179, Figure 5, Figure 6, Table 2, Figure 12, Figure
14, Figure 16. "June 2017 to 2024 (inclusive)” in line 490 and Figure 9.

e The gearbox mounting stiffness of 20 x 10 N/m is from literature for different turbines. The
sensitivity analysis shows this can cause 60% error in P.,. How representative is this value for your
specific drivetrain? How could this be validated in practice?

Response: The authors appreciate the discussion. As pointed by the Reviewer 1, the pre-print
draft was misleading when discussing the results from the sensitivity analysis for the gearbox
mounting stiffness. The adjusted discussion aimed to emphasize the the exact value of the mounting
is not as relevant as long as it is not model as a rigid support, but instead, as flexible with values
close to the literature. Validation of such results could be performed by the application of testing
loads in the torque arm mounting spring, but they are out of the scope of this paper.

Revised Section: As suggested by the Reviewer 1, the discussion on the gearbox mounting
stiffness has been reformulated in order to be more clear.

See lines: 563-568

e The hyperparameter tuning used only 5 hours of data compared to 160 hours for training. Why
do the authors use such a small amount? This seems inconsistent.

Response: Agreed. The value documented int the pre-print was not correct. The hyperparameters
for the tower bottom virtual load sensors have been tuned with 10 hours, whereas 5 hours was used
for the tuning of the blade root virtual load sensors pursued in a past conference article (Faria et
al., 2025). The 10 hours subset is still not as large but one should considered that 3 seeds have
been used during the Random Search optimization framework, which increases the robustness of
the tuned values.

Revised Section: The value documented in Section 4.3 has been updated to 10 hours and a
mention to the 3 seeds is also made.

See lines: 313-314

e You trained on 160 hours but validated on 160 hours from 2019. How was the validation set
selected? Same k-means or random?

Response: Yes. Indeed, this information was missing from the pre-print version. Thank you for
the carefull reading.

Revised Section: The validation set has also been selected using K-means, as added in Section
5.3.

See lines: 450

e There is a fundamental clarity issue with the lifetime calculations in Section 5.2.1 and Figure 7.
The accumulated damage values shown in the figure do not align with the stated lifetimes of 166
years for the front main bearing and 333 years for the rear main bearing. The same issue appears
for the tower bottom lifetime. Please verify and clarify these numbers.
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Response: Agreed. The authors appreciate the attention of both Reviewer 1 and 2 to the wrong
documented values-

Revised Section: The tower bottom fatigue lifetime is actually 2952 years, whereas the front and
rear main bearings lifetime is 282 and 566 years respectively. The correction has been applied to
the Abstract and Sections 5.2.1 and 5.5.3.

See lines:10 and 410-411

Figure 12b shows the correction factor varies across years for different inputs. Using an average
value could introduce bias depending on which year dominates. Did the authors check if this
correlates with annual wind statistics?

Response: The pre-print was misleading the reader by suggesting that the virtual load sensors
was corrected solely by the average slope, when actually, it is corrected by the maximum/minimum,
standard deviation and average of the slope. The experimental slope correction tries to incorporate
such biases by using not only the average, but also the standard deviation and maximum /minimum
areas in Figure 11 (previous Figure 13). In this way, one could pick a year by chance and still have
a uncertainty quantification. Regardless, the authors agreed that the driver of this bias could be
the annual wind statistics. Such effect has not been validated, but the discussion suggested by the
reviewer has been added.

Revised Section: Text related to the Figures 10 and 11 in Section 5.4.1 have shortly incorporate
the suggested discussion of the reviewer. And future research should be guided by the proposed
discussion.

See lines: 511-512

Figure 11 shows all virtual sensors systematically underpredict tower damage. The proposed cor-
rection method needs 6 months to 1 year of real measurements for calibration. This limits the
benefit, and you still need substantial measurements. What is the minimum period needed for
reliable correction?

Response: The authors agreed that this would be a interesting exercise and should motivate
following research.

Revised Section: Section 6 (Conclusion) has incorporated the suggestion from the Reviewer. The
authors have a great interest in continuing the research to investigate the needed load measurement
periods and their associated model uncertainty for the slope correction.

See lines: 704-705

LSTM with strain inputs (no accelerometer) performed worse than simpler FNN. Needs more
explanation than just “LSTM cannot attenuate 1P, 2P, 3P contributions.” Why would temporal
modeling perform worse with these periodic signals?

Response: The authors agreed that the pre-print did not contain any further explanation com-
menting the performance of the LSTM without nacelle accelerometer. A discussion has been added
with a possible explanation.

Revised Section: In Section 5.3, the following text has been added "The LSTM added unrealistic
oscillations in the time-series estimate with larger 1P, 2P, and 3P frequency contributions and
underpredicted the 1%¢ FA frequency contribution, most likely due to poor model coupling of the
blade strain gauges and azimuth angle ¢ inputs.” The claim is that the sin/cos fed signals of the
azimuth angle ¢ were not been properly coupled by the model to incorporate the turbine fore-aft
motion resultant of the combination of the individual blade root strain gauges (bending moments)
as function of the azimuth angle (thrust curve).

See lines: 456-459

Low turbulence increasing bearing loads at rated wind speed is interesting but not sufficiently
explained. The authors cite HIPERWIND D5.4 but no intuition provided. Could this be because
the control system switches between modes frequently with turbulent inflow, leading to peak thrust?
(see https://doi.org/10.1115/1.4041996)
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Response: The authors agreed that the effect of the turbulence has not been sufficiently explained.
It is claimed by the authors that the higher fatigue loads observed for low turbulence is driven by
the peak of the thrust curve. The suggested reasoning given by the reviewer is valid, but the
authors believe that following the claim of ”control system switches between modes frequently
with turbulent inflow”, higher turbulence should then drive higher loads, which is not observed in
this paper.

Revised Section: Figure 15 has been added to support further discussion on the claim that lower
turbulence should lead higher fatigue loads in the locating main bearing.

See lines: 581-608, Equation 20 and Figure 15
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Abstract.

Decisions on the lifetime extension of wind turbines require evaluating the remaining useful life of major load-carrying
components by making a comparison to the design lifetime. This work focuses on the lifetime assessment of two fundamentally
different components: a structural component in the form of the tower and rotating components in the form of the main
bearings. A method is presented that combines high-frequency SCADA, accelerometers, minimally-intrusive-strain-gauge-at
blade-and-tewertower bottom and blade root strain gauge bridges, and limited design information for continued estimates of
the component loads and their subsequent fatigue damage accumulations. The work is applied to a highly instrumented DTU
research turbine, a Vestas V52 model, where strain gauges in the blade root and in the tower bottom are calibrated for nearly
10 years using continual calibration methods without the need for operator input. The lifetime estimates of the tower bottom

and front and rear main bearings were found to be 1770-yearsand166-333-2952 years, 282 years and 566 years, respectively,

reflecting the low average wind speed of the turbine site compared to the wind turbine design wind class IA. Secondly, it
was investigated whether virtual load sensors can replace tower strain gaugesand-if-one-can—use-only-uptower-sensors—for
lifetime-evalaation. Consistent tower bottom strain signal estimate and long-term damage accumulation were achieved with
+5% lifetime variability once SCADA, nacelle accelerometers, and blade root strain gauges were combined for the deployment
of a long short-term memory (LSTM) neural network. A systematic underprediction of the accumulated damage of the tower
bottom was observed for the virtual load sensors with a reduced set of inputs, and a correction method was proposed. Finally,
the impact of environmental conditions, including turbulence intensity and shear exponent of the incoming wind, on the main
bearing lifetime was investigated using10-years-ef-based on load measurements. A simple drivetrain thermal model was used

to evaluate the modified lifetime L1, of the main bearings

s-. Fatigue loads in the locating main bearin
are driven by the peak of the turbine thrust curve with higher loads observed at rated wind speeds-with-dow-tarbulenee-intensity

o [e]
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of-the-main-bearings-speed. An effect of longer main bearing lifetime with higher turbulence intensity was observed at rated

wind speed lewas-also found-that the specification of the-gearbox - mounting stiffness can-lead-to-a 60% overpredictiono

main-bearingtoads—and can be explained by the turbulence averaging of the thrust loads.

1 Introduction

The extension of the lifetime of wind turbines provides an opportunity to decrease the levelized cost of the electricity produced
by wind turbines, which is not only competitive, but in many cases the cheapest electricity source according to evaluations of
multiple global benchmark reports sach-as(IEA and NEA, 2020; IRENA, 2024). At the same time, lifetime extension could
decrease the global warming potential (C'O3 ., / kWh) emitted during the entire life cycle of a wind turbine (UNECE, 2022).

Lifetime extension of wind turbines is theastrorghy-often dictated by reliable technical evaluations of the consumed and of
the remaining useful lifetime of structural components such as the tower and the foundations as-deseribed-by-(Ziegler et al.,
2018; IEC-TS-61400-28, 2020). Such large components are site-specific and little te-ne-experience can be found in replacement
of those during the lifetime and beyond, as this would hinder the profitability of a wind farm. Similarly, having unexpected
and several load-carrying components failing would require long-lasting replacements that would increase the operational
expenditure (OPEX) of a wind farm and reduce its revenue. That is the case with the main bearings. OPEX estimates should
be based on the probability of failure of such components combined to their availability in the spare market.

As a fatlure—in-the-main-bearing-means—afailure-in—turbine-operationmain bearing replacement incurs significant costs
and turbine downtime, this decision should be made with high levels of certainty. A main bearing failure results in high
replacement costs, between $225,000 and $400,000, loss of revenue due to production interruption, and its failure is one of
the main reasons for the increase in OPEX, especially in onshore wind turbines of 2 to 6 MW in size according to Pulikollu
et al. (2024). Although main bearings are known to have multiple failure modes, as examined by Hart et al. (2020), including
abrasive and adhesive wear and fretting, this work considers lifetime consumption as the fatigue life consumption of the main
bearing. This is due to the leading role of rolling contact fatigue (RCF) which can not yet be ruled out with respect to historical
replacement data of the main bearings. Hart et al. (2023) carried a large review of historical data on the damage and failure of
the main bearing and identified that for a large share (80%) of the reported faiturefailures, spalling was present, which could
be a consequence of both subsurface- and surface-initiated RCF.

In this context, the end goal of a well-designed structural health monitoring (SHM) campaign is to have the most comprehensive
and reliable wind turbine monitoring and lifetime estimation with the least amount of instrumentation Santes-et-al—2022)
(Santos et al., 2022). And using strain gauges often results in one key drawback: compromised long-term reliability. There has

been a literature gap on the possibility of calibrating strain gauges for many years, with some stadies-to-mentionPacheco-et-al(2024)

investigations to mention (Pacheco et al., 2024). So, the question of how to extrapolate the lifetime of components based on
limited recordings has been of interest and widely investigated (Loraux and Brithwiler, 2016; Hiibler and Rolfes, 2022; Sadeghi

et al., 2024; de N Santos et al., 2024). However, no consensus has yet been reached on the methods or uncertainties related to

those methods. In this context, data-driven methods Dimitrev-and-Goemen+2022); Pimentaet-al2024)-(Dimitrov and Gocmen, 2022; Pin
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deployed as long-term virtual load sensors could yield several advantages by replacing real sensors and reducing the amount
of instrumentation needed, being able to describe complex mathematical correlations, with no real physical understanding of
the system.

Considering the challenges and gaps identified, this work aims to maximize-coverage-tusing-use existing onboard sensors and
limited non-invasive hardware additions, to evaluate the lifetime of structural and rotating component simultaneously. Based
on-this-objeetive;the-The following research questions guided the methodology and subsequent analysis.

— Is it possible to continuously and reliably count the lifetime of a tower and a four-point configuration main bearing
without blade design information and having in-hands-access to SCADA, blade root, and tower bottom strain gauges,
while meeting ISO-281 (2007) and IEC 61400-1 (2019) standards?

— What degree of accuracy could be achieved by a tower bottom virtual load sensor based on measurements in the nacelle?

— What are the environmental and operation conditions (EOC) which have strongest impact on the basic and modified

rating lifetime of the main bearing (L1 and L., respectively), based on analysis of a long-term measured dataset?

The remaining sections of this paper are organized as follows. Section 2 provides an overview of the theoretical background
relevant to this work, including the assumptions behind the tower fatigue lifetime and the main bearing lifetime, as well as the
concept of virtual load sensors applied in this study. Section 3 describes the wind turbine and the environmental measurement
campaign used for data collection. Section 4 details the proposed methodology for the calibration of the strain gauge and the
lifetime of the tower and main bearing based on load measurements and virtual load sensors. The results obtained are presented
in Section 5, feltewed-by-a-discussionin-Seetion?2-where-the-findings-are-including a discussion of the findings compared to
the relevant literature, and key correlations are analyzed. Section 6 concludes the paper by summarizing the main insights and

learnings from this work.

2 Theoretical background

The concept of tower fatigue and main bearing lifetime is assumed as derived in standards used for design and certification.

The concept of virtual load sensors can also be very broad. In this work, we will focus on time-series and data-driven virtual

load sensors that could be used to replace tower bottom strain gauges at-a—wind-farm-level-and-keep-instrumentation—in-the
naecellein case of sensor failure. More details of each subject are described in the following subsections —and with Figure 2

roviding an overview of the methodology.

2.1 Tower fatigue lifetime

The lifetime is estimated as described by IEC 61400-1 (2019), considering the Design Load Cases (DLCs) 1.2 (Power

production), 3.1 (Start-up) and 4.1 (Normal Shutdown). More details on how to classify these operational conditions based on
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+0-min-10 min SCADA can be found in Faria et al. (2024). On the material side, the DT U-researchtowertower of DTU research
V52 turbine is made of structural steel S355, which is often used in large components and harsh environmental conditions. In
this work, the fatigue assessment of critical welds assumes that the component has inherent defects in the welded joints and
thus does not model crack initiation or growth.

The first step is to convert a measured tower bending strain e [gmm/mm] to bending stress o [Pa] as shown by Hooke’s rule
o = FE - €. The bending stress can be translated into the bending moment M assuming the tower is a Euler-Bernoulli beam.

_M-c
T

g

6]

where I [m?] is the area moment of inertia and ¢ [m] is the radius, in the case of a circular cross section. To evaluate fatigue, the
stress time series is converted to stress ranges Ao; and ambernumber of cycles n; using the rainflow counting technique, as
described by ASTM E1049-85 (2017). The tower bottom in this work is evaluated using the category of the stress cycle (SN)
curve category "D", for butt-weld in air as suggested by DNVGL-RP-C203 (2016), which translates Ao; into a maximum
amount of cycle to failure Ny,q, ;. Finally, fatigue accumulation, in other words, fatigue lifetime is assumed to be linear,
according to Palmgren and Miner (1945), which is valid for any time window, from high-frequency to +0-min-10 min instances
to lifetime.

N; Ni

N; n; N; N; n; - (Aai)mi
J Jj ot ’ Jj ot

where D is the tower accumulated fatigue damage (failure at unity), D ; is the accumulated fatigue damage of the +0-mintte

10 min instance, m; is the exponent of the SN curve, K is the intercept of the SN curve on the y-axis, IV; is the number of 10
min instances and V; is the number of cycles in a given instance.

The exponential-non-linear nature of fatigue can be observed and-its-non-tinearity-due-to-from the SN curve having different
m; and K; dependent on the two regions of the SN curve where the cycle could be placed. In order to facilitate the evaluation
of virtual load sensor during training and validation, instead of comparing D1, Damage Equivalent Loads (DELs) are often
used and can be explained as single-frequency sinusoidal loads that would inflict the same damage as the initial load variable

in time, as in

N aem)
n;-Ao0;
pEL= (Y 2%

(i Nref > ©

where m is assumed to be 4, which is an average between DNV "D" curve values of m,; equal to 3 and 5 and logk, equal to
12.164 and 15.606, respectively, transitioning at N, 4. equal to 107 cycles. The N, is a normalization factor and is arbitrarily
assumed to be 107 cycles, since DEL has no absolute reasoningmeaning.

Hewever—for-For the estimation of the consumed and remaining useful lifetime of a tower, and the deployment of the
virtual load sensor in-thetong-periodover long periods, DEL has no absolute meaning and its uncertainty underestimates the
uncertainty of the useful life of the component and, therefore, D7 should be prioritized. More discussion is present in Section

5.3.
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2.2 Main bearing fatigue lifetime

The lifetime of a rotating component, such as a main bearing, can be significantly more complex to model than the tower
lifetime. In this work, the formulations from ISO-281 (2007) are followed, which also defines the linear accumulation of
damage as proposed by Palmgren, using the same DLCs as for the tower. As mentioned, rolling contact fatigue is not the only
damage mode of the main bearings, but the inclusion of additional mechanisms is not in the scope of the present work.

The radial F,. [N] and axial F, [N] load acting on the main bearings are combined into
P=X-F.+Y -F,N 4)

where P-P [N] is the dynamic load, X-and-¥-X and Y are functions of the load ratio F,/F, and the limiting value e, as
often provided by the bearing manufacturer. The time-varying P can be replaced by a constant equivalent load P, that would
have the same deterioration at its given operational rotation speed, similar to the defined DEL, without involving any counting
method.
1

()
where P; [N] is the dynamic load, p is the exponent dictated by the type of rolling body (e.g. ball or roller) as provided b
1SO-281 (2007), and w; [rpm] is the rotational speed of the main bearing at the instantaneous ¢ timestamp.

Then, the basic rating life L, is defined as the 90% survival time of a given population of main bearings under similar

operational conditions. In other words, 10% of the bearings would fail.

Lip;= 106< Ca [years] (6)

€q

P 106 Cy P
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1
>-9i/Lo,;
where Ly is the basic rating life overall while L1 ; is the basic rating in a given +0-minute-10 min instance j. If all instances
have the same +0-min10 min, ¢; is the inverse of the number of instances. Cy [N] is the dynamic load rating, p-is-the-exponent
i i P4 [N] is the dynamic-equivalentload

equivalent dynamic load, and w [rpm] is the rotational speed of the main bearing within a +6-min-10 min instance. Once L1

is calculated as the number of hours to failure in each instance, one can describe a main bearing damage accumulation, similar

to the damage accumulation in the tower, as in

-DB _ ZDBJ opera;wn (7)

where Dp is the accumulated fatigue damage of the main bearing (failure at unity), Dp ; is the accumulated fatigue damage

of the +0-mintite-10 min instance, and ¢,perqation 1 the evaluated time of operation in years.

To account for operatin
conditions more realistically, the life modification factor amrsheﬂ}érb&evaltm{eé—fﬁie%ﬁe%eeﬂﬁdef&fhdkfh&}ubﬂe&m

3 ISO-281, 2007) is
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evaluated for the main bearing, This factor accounts for variations in operating temperature and lubricant condition, and
is influenced by grease cleanliness, the-operating viscosity (funetion-of-temperature—);—the-temperature dependent), rolling
element type, bearing fatigue limit, and external loads —The-complete—formulation—ean-befound-inISO-281(2007)—The
(Needelman and Zaretsky, 2014). The modified rating life £rgm-of-a-Ljg,, of the main bearing is then calculated using

Liom1om,; = L1010,5 - @150150, 5 3

where ai50,; is the modification factor calculated for each 10 min instance j. In this work, a drivetrain thermal model is used

to allow the estimation of ajsg_;, as shown in Section 4.2. The Lig,, ; can be accumulated as given in Equation 6 for L

2.3 Virtual load sensors

In this work, virtual load sensors are seen as an opportunity to replace physical sensors to estimate tower bottom bending

moments and long-term fatigue lifetime;keeping-the-neeessary-measuring-in-thenaeelle. In the literature, several efforts have

been made in the regard of data-driven (machine learning) models for lifetime predictions of components.

Benefiting from instanees—statisties—and-10 min instance statistics (e.g. mean and standard deviation) and more available
SCADA accelerometers, efforts were made to estimate target statistics such as damage equivalent loads (DELs) or damage to
the main bearing. Mehlan et al. (2023) estimates aerodynamic hub loads and tracked bearing fatigue damage using a digital-
twin based virtual sensing combining SCADA and condition monitoring. For support structures, de N Santos et al. (2024)
estimates the fatigue lifetime based on different combinations of SCADA levels, highlighting the improvement in performance
using reliable nacelle accelerometers, with a novel population-based approach for wind farm extrapolation. Focusing on time
extrapolation, Hiibler and Rolfes (2022) focuses on different methodologies to extrapolate damage in time and their estimated
uncertainty. On the other hand, when the time series signal is the target output, the model selection and training process are
quite different. Complementary, Dimitrov and Go¢gmen (2022) shows how machine learning time series models (e.g. LSTM)
can act as virtual sensors for blade root bending moment trained on aeroelastic simulations. Mere-recent-efforts-extend-virtaal
sensing-to-floating-turbines—Grife et al. (2024) trained neural networks on simulated floater motions and LIDAR-derived wind
to reconstruet-fairlead-tensions-and-DELsestimate tension and DEL of mooring lines.

The same data-driven models applied by Dimitrov and Go¢gmen (2022) are selected to be used in this work on the DTU
research V52 turbine dataset, all derivatives of neural network architectures. This work contribution to virtual load sensor
methods lies in the validation of a model that should accurately replicate both: (1) the time series of tower bottom bending
moments and (2) the fatigue loads of the tower and main bearings in the long term. (1) The first can have its performance
quantified by feeding-using the virtual load sensor as a thrust estimate to calculate the lifetime consumption of the main
bearings. (2) The latter includes the 3 most damaging operational conditions for the tower as described in Pacheco et al.

(2024); Faria et al. (2024): power production DLC 1.2, start-up DLC 3.1, and shutdown DLC 4.1, all in a single model.
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3 Measurements

In this work, SCADA data and measurements from nearly 10 years are analyzed from February-2016 to December-2024
(inclusive) at Risg, Denmark. The environmental conditions are analyzed out of +6-min-10 min instances statistics from a
met mast about 100 m east of the DTU research V52 turbine. In addition to the mean wind speed Uy, at the hub height of
Zhub = 44 m, the turbulence intensity is calculated as TI = oy /U, where oy is the standard deviation of the wind speed.
Moreover, vertical shear is modeled considering the normal wind profile model IEC 61400-1 (2019) given by the power
law equation U(z) = Upup(2/2zhup)® , where z is the height and « is the shear exponent. The latter is estimated as the best
fitting factor out of five different cup anemometers measuring heights (at 18, 31, 44, 57 and 70 m) for each +0-min-10 min
instance. No shadow correction was performed for the mast tower. In general, it is possible to observe that the Risg site has
fairly low wind and constant eonditionswind flow conditions over the years. The yearly wind speed Upy, estimated-as—a
Weibul-funetion-in-the-graph-on-the-Jeft-has a mean below-6-value of 5.6 m/s. The site reference turbulence I, calculated
as Irep = oy /(0.75Up,p + 5.6), has a mean value around 0.08 (closer to IEC class C) and the shear exponent « of 0.22. The
prevailing wind direction falls within the southwest quadrant across all years. The DTU research V52 turbine is a Vestas 850
kW onshore wind turbine class IA with a rotor diameter of 52 m and a hub height of 44 m, with a active pitch and rotor
speed control. SCADA and SHM measurements are available from February 2016 to December 2024, as are statistics and
high-frequency data. The turbine has a rated wind speed of approximately 14 m/s. Figure 1 represents the turbine schematic
and part of its instrumentation, highlighting the two measurement setups present in the tower bottom (a—a) and blade root
(b-b). SCADA includes rotor speed w, pitch angle §, yaw angle -y, azimuth angle ¢, and power. All of the bending moments
shown are obtained from full Wheatstone bridge-bridges installed in the components. This configuration has a couple of
important advantages as higher signal-to-noise ratio, is temperature independent and optimized for measuring bending stress 5
see-Hoffmann(+989)(Hoffmann, 1989). A problem in the quality of the measured-azimuth-angle~earried-ont-azimuth angle
@ measured by a proximity sensor on the shaft flange, was identified before 2018 and after 2022, probably due to surface
dirt. A correction was applied to all the raw signal to account for that, by combining the controller rotor speed signal with the
measured azimuth to have a more reliable estimate of the azimuth angle (please refer to Appendix A). Taking into account

Figure 1{er)cy, the tower bottom fore-aft bending moment Mfo,c—q s+ (downwind) can be calculated as in Equation 9.
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Figure 1. Schematic of an onshore wind turbine to represent the DTU research V52 turbine parameters and measurements. (a) Front view
shows the rotor coordinate system XYZr which meves—rotates with the yaw angle y(¢) around Zr and is facing the wind direction. The
azimuth angle ¢ (¢) of blade A and pitch angle 0(t) are also shown. The Mcqgewise represents the edgewise (in-plane) blade root bending
moment. (b) In the lateral view, the flapwise (out-of-plane) rotor bending moment M f;qpwise and the tower bottom fore-aft bending moment
M ¢ore—ayst are shown. The 0(t) angle is the controller-defined blade root angle between the rotor plane and the chord line of the blade, as
shown in the zoom view (green dashed box). (c1) Tower bottom cross section (a—a) in the global/tower coordinate system (time-invariant)
XYZr is determined. Mfore—qrt is dependent on ~y(t), as a composition of the measured tower bottom bending moments Mz B and
MyT B, which are obtained from strain gauges (stars) installed at the angles — 3, and 3, respectively. (c2) Blade root A cross section (same
setup for blades B and C) shown in the blade coordinate system XYZg, which rotates with ¢(t) in respect to Yr. Both measured blade root

bending moments M, BR 4 and My, BR 4 shall be converted into M fiapwise and Medgewsse as function of the pitch angle 0(¢).

(=M,TB(t)-sin(By —v(t) + M,TB(t) -sin (B +7(t)))
sin (8, + By)

in which the denominator factor is imposed because the two tower bottom bending moments are not perpendicular. Similarly,

Mforefaft(t) = &)

considering the measurement setup shown in Figure 1{ez)c,, the blade root flapwise M fqpwise (out-of-plane) and edgewise
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Meqgewise (in-plane) bending moments can be calculated individually for blades A,B and C.

Mflapwise,(A,B,C) (t) = MQCBR(A,B’C) (t) - COS (O(t)) — MyBR(A’B’C) (t) - sin (9(t)) (10)
Medgewise,(A,B,C) (t) = MGJBR(A,B,C) (t) -sin (a(t)) + MyBR(A,B,C) (t) + COS (e(t)) (1 l)

4 Methodology

Figure 2 shows the inputs and assumptions taken into account to investigate the research questions. From high-frequency
turbine measurements to tower (structural component) D7 and main bearings (rotating component) D p accumulation of fatigue
damage over time. The orange boxes include the continual calibration of the strain gauges and the operations to translate the
strain measurements of the tower and the blade to the tower bottom bending moment M f,,c—q ¢, and the axial I, and radial F,
main bearing loads. The standards shown (DNVGL-RP-C203, 2016; IEC 61400-1, 2019; ISO-281, 2007) provide the methods
for the fatigue lifetime evaluations of each component, as explained in Section 2. The DTU research V52 turbine is-assumed-to
have a S355 steel tower, with a measured tower geometry consisted of an 2.913 m outer diameter and 16 mm wall thickness.

Tower bottom Estimate components lifetime
virtual load

I
p——E Ny | Tower bottom
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Figure 2. Methodology flowchart presenting the steps followed in this work, starting from high frequency measurement and SCADA dataset,
to components lifetime estimates. Rectangular black boxes refers to measurement signals and estimates. Tower bottom D7 and main bearings
Dp fatigue lifetime are analyzed over time, and the equivalent dynamic load P.4, basic rating life Lo and modified rating life of the main
bearing L1o,, are analyzed as function of environmental conditions. Orange boxes identify the procedures and standards used in this work.

The orange dashed box contains the tower bottom virtual load sensor, which should replace the real sensor in case of sensor failure.

In addition, a virtual load sensor is proposed to replace real strain gauges in the event of sensor failure and its performance
is assessed for fatigue lifetime estimations. While, the main bearings equivalent dynamic load P, the basic Lo and modified
Frrom— Loy, rating life are evaluate as function of key environmental conditions. To compute the £ri7m-Ligy of the main
bearings, a drivetrain thermal model was made to estimate the temperature of the main bearings, which is necessary to estimate

the life modification factor a;so, as introduced in Section 2.2.
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4.1 Strain gauge zero-drift automatic calibration

It is often claimed that strain gauges are only reliable for short-term (less than a year) to mid-term (couple of years) campaigns,
a limitation that would conflict with the requirement for sustained monitoring of wind turbine structural elements, most notably
in offshore installations, where replacement in case of sensor failure is expensive and can take time due to weather windows.
This work overcomes such limitation by introducing continual and automated routines for the calibration of both tower
bottom and blade root strain gauges that work on long-term datasets (almost a decade). The methods do not require operator
intervention, stopping or curtailment, and instead take advantage of idling and parked conditions. Both methodologies are

derived from the recommendations in IEC 61400-13 (2016). The main objective is to identify the artificial offset O from the

measured strain gauges and to correct them to the original zero point. Ne-external-dynamictoad-should-causezero-strain-

The signals of the bending-mementtower bottom and blade root bending moments shown in Figure 1 should be understood
as M =G - (Myqw + O), where M is the corrected bending moment, M,,, is the measured strain-voltage signal, G is the

gain associated with the translation of voltage readings into bending moment, and O is the artificial offset of the strain sensor.
It should be noted that for the tower bottom strain gauges placed on steel, G' can be analytically calculated, depending on
the bridge arrangement (full bridge Wheatstone in the DTU research V52 turbine), the elastic modulus and the geometry.
However, for blade root strain gauges mounted on composite material, a blade pull exercise must be performed to estimate G.
And a crosstalk correction has to be applied considering the geometry of the twisted and nonsymmetric blade, see Papadopoulos
et al. (2000). Such calibration campaign has been undertaken on the DTU research V52 turbine, but the detailed results are not

presented in this work for confidentiality reasons.
4.1.1 Yaw sweeps and Low-Speed Idling (LSI)

The tower bottom strain gauges calibration is based on a specific operation in which the wind turbine is parked and untwists
its power cable at low wind speed. In that case, the turbine performs full yaw rotations and the main contribution to the tower
bottom bending moment is the gravitational load from the nacelle mass hanging-overhang bending moment. In case at least
+-minute-1 min data points of the yaw angle +y are available, the high-frequency strain gauge signals M,T'B and M, T B can
be automatically calibrated Faria et al. (2024). The Python package generated for this matter is publicly available at Faria and
Jafaripour (2023). The blade root strain gauge calibration is performed based on both idling and parked conditions at low wind
speed. The first is used to calibrate the strain gauges placed on the pressure-suction surfaces of the blade. The latter is for those
on the leading-trailing edges. The azimuth angle ¢ is needed at a higher sampling frequency (e.g. tested with at least 1 Hz).

More information on the implementation can be found in Pacheco et al. (2024) and Faria et al. (2025).
4.2 Fromblade-and-tower-to-main-Main bearing loads and temperatures

The front and rear main bearings of the DTU research V52 turbine are described in Table 1. The drivetrain transmits the torque
from the rotor to the gearbox through the main shaft, which is supported by two spherical roller bearings in the main bearing

housing and the gearbox upfront bearing as shown in Figure 3a.

10
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Figure 3. (a) Schematic of the DTU research V52 drivetrain and main bearings estimated front 7'y and rear T’- temperatures. The hub carries
the blades and their aerodynamic bending moment M and axial load F,,. The hub is bolted to the shaft flange. The shaft is supported by
two main bearings, which are mounted inside the main bearing housing. The latter is clamped to the nacelle bedplate through the housing
supports, stmitarky-equivalent to the front F). r and rear F). , main bearings radial load F.. The gearbox is mounted by the torque-arms but
in twe-a non-rigidly stiff connection points with stiffness K. (btb) refers-to-Simplified thermal circuit model of the tateral-view-used-to
derive the vertieat radiatoads-drivetrain, which assumes that each 10 min instance reaches thermal equilibrium. Ambient temperature Ty,
is measured in the main-bearing-nearby met-mast and (b2)-refers-to-the top-view-used-to-derive-gearbox temperature 7, is estimated based
mw&mmthe Mwmwmm%w%wm Fhe- M)y
and %—Q}iare the verti Sk . c S : m-dissipated power by the retor-while+55ro-main
bearings. E represents the equivalent thermal resistance: 1 between front main bearing and +#5rayr-are-ambient temperature; Ep between
main bearings; 3 between rear main bearing and the rotor-ambient and memﬁwm

bearing and M7sror—is-the bending-momen assoetated-with-the-sh L5 r-the-frub-eente gvegrvb@&clvggcwwwrfzmetothe%haf&ﬂaﬂge
by—Lran m Asfor-thereactions—tadial-Hoads-Other heat exchanges are 8 - —r—for] —r

feﬁvefﬁea{ﬂﬂdj—ter—heﬂ—zeﬂfa{ggtvgg@(jggq The ¢ . m
on geometry of the drivetrain components (assumed as steel) and fepfeseﬂ{eek earings heat transfer coefficients suggested by the-spring
+zSchaeffler TPI-176 (2014).

The main bearing housing is clamped to the nacelle bed plate, while the gearbox is mounted through its torque-arms in a

rubber support. The rubber support is assumed to have a linear and temperature-independent spring with a stiffness of 20-10°
[N/m], close to the suggested-vatues-values suggested in Haastrup et al. (2011); Keller et al. (2016). A-In Section 5.5.1, a
sensmVlty analys1s is performed later-to evaluate the 1mp0rtance of this assumptlon ?he%f&&e—gfaw{a&eﬂal—}eads—aeﬁﬂgeﬂ—fhe
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Table 1. Technical specification of the two main bearings in the DTU research V52 turbine given by SKF Group (2025). SRB stands for
spherical roller bearing and the bearing p-is-equal-to—+6/3exponent p = 10/3.

Inner Outer Basic dynamic  Basic static Fatigue limiting

Main bearing  Designation  Type
diameter  diameter load rating C;  load rating C, load limit C,, factore

Front 23064 SRB 320 [mm] 480 [mm] 2348 [kN] 3800 [kN] 285 [kN] 0.23
Rear 23160 SRB 300 [mm] 500 [mm] 3368 [kN] 5100 [kN] 380 [kN] 0.3

Oneestatictoadsare-defined;the The aerodynamic bending moment )/ driven by the blades in the vertical M, and horizontal

M, directions can be estimated from the blade out-of-plane bending moments, using:

M’U(t) = Mflapw’iS&A(t) - COS ((ﬂ(t)) + Mflapwise,C(t) -+ COS ((p(t) + 120) + Mflapwise,B(t) - COS (<P(t) + 240) (12)
Mh (t) = Mflapwise7A(t) -sin (@(t)) + Mflapwise,C(t) -sin (So(t) + 120) + Mflapwise,B (t) -sin (@(t) + 240) (13)

where ¢(t) is the azimuth angle of blade A, see Figure 1. It should be noted that a positive M, should benefit the loads in the

radial main bearings to some extent, as it counter-balances F.,¢oy-

The main shaft is supported in 3-4 points, two main bearings and the gearbox s-in-both-directions-(lateral-view-and-top-view);
so-itis-mounts, and it is solved as a statically indeterminate system. Fo-selve-itThe radial clearance from the bearings is not
explicitly considered. To solve the system of equations, the shaft is modeled as a flexible beam and a double integration method
7-of the front /7 ¢ and rear F}, . main bearings (see Appendix B).

Both aerodynamic and gravitational loads are included to estimate the radial loads. The resultant radial loads of the front 2+
andrear4¢—[ y and rear [}, main bearings have a magnitude of

R(ffF(fr)_\/B(fr + Riry \/F (o T gy n (19

—whieh-where v represents the vertical direction and h the horizontal direction (no static gravitational loads) as shown in
Appendix B, and are solved individually for each main bearing.

is applied to compute the radial load

The axial load F, of the main bearings is equal to the thrust estimate, derived as the bending moment M ,.c—q ¢ divided
by the height difference between the hub height and the tower bottom strain gauge. This is an assumption of this methodology,
where the thrust estimate is linearly related to the bending moment of the bottom of the tower. Apartfrom-thatsince-both

beafmg%—afe—a%ﬂe—&e—eamf—dﬂal—}ead&nce both bearings can carry axial loads, the system eeuld-may become over-constrained-

causing additional axial stress during thermal
expansion. For these reasons, the rear bearing is considered the locating bearlng, being the larger bearing between-the-two-

and with greater axial internal clearance.

12
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Drivetrain thermal model

In case the temperature measurements of the main bearings are not available, estimates of the temperature of the main bearings
are necessary to incorporate the life modification factor ajso. The aiso is a function of viscosity, which is a function of the
lubricant temperature. Figure 3a shows the estimated temperatures from the rear 7, and front bearing 7%, together with the
measured temperatures, ambient T, and gearbox wall 7). It is proposed to simplify the heat exchange between the heat
dissipated by the bearings and the outer system (drivetrain), assuming thermal equilibrium in each 10 min instance and thermal
resistors, as shown in Figure 3b. The ambient temperature 7}, is measured using a spinner anemometer at the hub and the
gearbox temperature 7, is estimated based on 6 month monitoring campaigns that recorded the temperature of the gearbox
wall facing the rear main bearing. A SCADA-based Feedforward Neural Network (FNN) model was trained to estimate the

values of 7}, for each 10 min instance.

O - (Tr = Tame) _ (Ty =T0) _, (15)

Ry Ry
: (Tf — T'r) (T'r - Tamb) (Tg - Tv)
Qr+ % o + i 0 (16)

By applying the Kirchhoff circuit concept for thermal equilibrium, Equations 15 and 16 are obtained, which have two
target variables 7' and 7)., and the thermal resistances R; defined in Figure 3b. The dissipated power of a bearing is also

affected by the bearing temperature (e.g. ..)), as the latter influences the viscosity of the lubricant (the base oil

of the grease according to ASTM D341-93 (1998)). Because the variables depend on one another, the equations are coupled
and cannot be solved explicitly. Instead, a Newton-Raphson solver was implemented to iteratively estimate the results. This
framework can be found in more detail in HIPERWIND D5.1 (2023). The dissipated powers were modeled as suggested b
Schaeffler TPI-176 (2014), which separates them into two contributions: frictional heat driven by speed and frictional heat
driven by load. The grease has been assumed as Kliiberplex BEM 41-301, a widely distributed industrial grease for wind
turbine main bearings. Once 7 and T are estimated, the aiso can be calculated as a function of viscosity ratio #, assumed
grease cleanliness level (see Section 5.5.3), Cy and P, as given by 1SO-281 (2007).

4.3 Tower bottom virtual load sensor: thrust and fatigue loads

The selection of good candidates for the machine learning model to be deployed as virtual load sensors was carried out
from simpler to more complex neural network architectures. Pure spatial correlation between the target variable and inputs
is tested using a feedforward-neural-network(FNN--FNN baseline model (Rumelhart et al., 1986). Temporal correlation

is added through an FNN with n-lagged time steps, NlaggedENN-Dimitrov-and-Géemen(2022)the so called NlaggedFNN
Dimitrov and Gocmen, 2022), and a Long Short-Term Memory (LSTM) neural network (Bengio et al., 1994). The first

can only take a few time steps to still be "trainable", while LSTM is often a less noise sensitive model and can better

capture long-term dependencies aceording-to-Bengio-et-al(1994)(Bengio et al., 1994), at the cost of model complexity. The

hyperparameters of the models were tuned using the Keras-tuner random search method O’Malley et al. (2019) using 5-10 h

13
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of data and 3 seeds per iteration. The bounds and the optimal hyperparameters for the models thatcombine-all-pessible-inputs

are included in Appendix C. All models used the "relu" activation curve in the hidden layers and "linear" activation towards
the output layer. The LSTM model had a fixed "LSTM" layer and a second hidden layer with the same amount of neurons
(hidden units) as the first layer. The size of the training data set was 160 h of data selected using a k-means-K-means clustering
technique Pedregosa et al. (2011), spreading the training space within the rotor speed, blade pitch, power, and designload-cases
{BEE)}DLCs to cover the relevant operational conditions. Similarly to Dimitrov and Go¢gmen (2022), a training dataset size and
sampling frequency sensitivity were carried out to use optimum values. In addition to that, different input signals are tested.
Starting from most available "SCADA" alone, including blade pitch, rotor speed, power, and azimuth (which was converted
into sine and cosine), then either adding tower-tep-nacelle "Accelerometer”, or the flapwise-bending-moement-M,;, B blade
root bending moments from one or all blades (stated as "Strain"). And finally combining all available inputs as "All".

Figure 4 shows the power spectrum density (PSD) of the different normalized input signals. One hundred representative

instances around the rated wind speed and similar turbulence and shear were analyzed. The-different-dynamic-components-with

a caanthat < ADPA ctrenaleah
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Figure 4. Normalized Power Spectrum Density (PSD) of the possible input signals to be used in the training of a time-series virtual load

sensor: SCADA (left), nacelle accelerometer (middle) and blade root bending moments (right). The black line is added in all charts as is the

target variable Myore—ayst Of the virtual load sensors. Normalization is based on the 10 min instance mean and standard deviation of each

10-min-instaneeand-signal. The spectrum is generated by averaging 100 instances at rated wind speed (14 m/ s)to-generate-a—smooth-PSHD

1P), the blade passing frequency (3P) and the higher harmonics as well as the first

ehart. Dashed vertical lines indicate the rotor frequenc

fore-aft (FA) tower resonance.

However, only the accelerometer signat-can—wet-eaptare-input signal can capture well the first fore-aft turbine frequency
(around 0.62 Hz Rinker et al. (2018)), present in the target variable M s,.c_q s, While its amplification of higher frequency

330 components compared t0 Myore—qf: €annot-be-is not considered pure electrical noise. When testing in standstill/parked
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conditions, there is a strong attenuation similar to the Myo.c—qf: PSD. The most consistent explanation is that the gearbox

operation feeds high-frequency broadband vibrations th
to the nacelle accelerometer mounted below the bedplate near the gearbox. Virtual load sensors trained on the nacelle
accelerometer might add higher frequency oscillations to the My,..—, ¢4 estimate, as shown in Figure 8. The performance

metrics selected are the Normalized Root Mean Square Error (NRMSE), which is normalized by the standard deviation o,
instead of the mean signal to avoid overshoot in case of small mean values. To validate fatigue lifetime estimates, the equivalent
damage load DEL and P, are analyzed in terms of the mean absolute error (MAE).

N

1 i Yr i_Ym as,? 2

NRMSE = —\/Z’=1( pred, cosi) (17)
Oy N

N

1 Load,q ; — Load .
MAELoad=(DEL,Peq) = ]T/v Z pred,t meas,
=1

1 1
Loadmeas,i <100 (18)

where Y),.cq is the time instant prediction, Y,,,cqs is the measured of M¢ore—q ¢, and IV is the number of instances inetuded-—

evaluated.

4.4 Drivetrain thermal model
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5 Results

5.1 Continual calibration routines

Figure 5 shows the identified calibration factors for each of the two tower bottom strain gauges and the six blade root strain
gauges, all converted to bending moments as explained previously in Section 4.1. The charts to the right in both Figures 5a
and 5b show the "Sensor position" represent the angle difference of the installed sensor with respect to the SCADA reference
variable, the yaw angle y for the tower (cardinal north as the zero point) and the azimuth angle ¢ for the blade sensors (blade A
upward as the zero point). Automatic routines manage to identify the position of the sensors correctly with a standard deviation
(std) of less than 4 degrees, even though the azimuth correction explained in the Appendix A was not applied at this stage,

leading to higher variability before 2018 and after 2022.
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(b) Blade root strain gauge bridges

Figure 5. Identified calibration factors from 2016 to 2024 (inclusive), including offset (left), amplitude (middle), and sensor position (right

of strain gauges installed in the (a) tower bottom using yaw sweep routines and (b) blade root using Low-Speed Idling (LSI) routines. The

£)

bridge is defined with respect to the azimuth angle ©(t). (a) Note that the mean offset value has been subtracted from each strain gauge

bridge in the tower bottom for clarity, with a mean of 1240 kNm and -3326 kNm for M, T B and M, T B, respectively.

osition of the tower bottom strain gauges bridge is defined with respect to the yaw angle (¢). The position of the blade root strain gauges

From the left charts, it is possible to observe larger zero drifts for the blade root compared to the tower bottom strain gauges.
The M, BR 4, MyBR 4, and M, BRc also present an abrupt change in the zero drift in 2018 and 2020. This could be justified
by sensor replacement or data acquisition settings; however, no final explanation has been validated. —The-amplitude-The
amplitude (middle charts) in this method is the maximum gravitational overhang bending moment. In the case of the yaw
sweep, driven by the rotor-nacelle weight in respect to the tower bottom (Faria et al., 2024), and for the LSI, driven by the
blade weight in respect to the blade root (Faria et al., 2025). To have a quantitative accuracy quantification of the automatic
routines in identifying the offset and the amplitude their unexplained variability are normalized by reference values: the mean
M ¢ore—are bending equal to 3540 kNm for the tower strain gauge and the mean M flapwisea 5.c) bending equal to 500 kNm
for the blade strain gauges, both at rated wind speed. From the middle chart in Figure 5a, an amplitude std-standard deviation
of less than 4 kNm (equal to 0.04 MPa) can be observed for both sensors, which represents a variability of 0.1% to the tower

reference. For the blade, an amplitude std less than 3 kNm, representing a 0.6% variability.
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The larger variability from the blade root strain gauges calibration factors could be explained by the fact that its Wheatstone
bridge is compensated for temperature differences in the whole blade, but not for temperature gradients between the two blade

surfaces. Once the offsets, shown in the left charts, are used to remove the artificial zero drift from the sensors, there will still
be residuals that are not explained by the automatic routine. The offset residuals of the tower showed a std of less than 60 kNm
(corresponding to 0.5 MPa), which is 1.6% of the reference. While, for blade strain gauges, the offset residuals had an std of

less than 10 kNm, representing a variability of 2%.
5.2 Lifetime Fatigue lifetime of tower and main bearings

5.2.1 Fatigue-damage-aceumulation

Once all strain gauges have been calibrated and high-frequency measurements and SCADA are available, the long-term lifetime
can be estimated over time, as shown in Figure 6. Considering that failure is reached at unity, the basic lifetime of the main

bearing L( can be evaluated using Equation 7.

0.0030 100 Tower bottom 0.030 20075 Rear main bearing
0.00241 75 (fore-aft) 0.0241 — 150 Front main bearing
£0.00181 X, 50018 &
- — 50 @ = 100
Q 0.0012{ & Q00121 3
0.0006{ 25 00067 0
0.0000 0ts ] ] 0.000- 0 , , ,
© % N oy by S ® o 92 'y
X S 0 3 W > > Y 3% \
» » » » > 5 » > » ®
(a) (b)

Figure 6. Fatigue damage accumulation of (a) the tower (structural component) and (b) the main bearings (rotating components) of the DTU
research V52 turbine from 2016 to 2024 (inclusive). Fatigue damage was counted according to Equations 2 and 7. Charts have an absolute

-axis in respect to the end measured accumulated damage (D g is normalized based on the rear main bearing).

accumulation and a normalize

The front bearing L1, ¢ is +66-282 years and the rear bearing Lo, is 333-566 years. Similarly, the tower has a even larger
lifetime of +776-2952 years. This significantly longer lifetime, compared to the design lifetime of 20 years proposed by IEC
61400-1 (2019), is in part justified by the low wind potential of the Risg site, as discussed in Section 3. However, it also points

to the fact that older and smaller turbines, such as the DTU research V52 turbine, have long remaining useful lifetimes (RUL)

of key components that should be considered in lifetime extension (LTE) decisions. Fatigue-damage-aceumulation-of(a)-the
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5.2.1 Linear zero-drift assumption and simple uncertainty propagation to tower and main bearing lifetime.

It is proposed to assume linear zero drift of the different strain gauges offsets as a single linear function or a combination
of linear functions, which can be derived from continuous calibration factors over time. Then it is important to quantify the
uncertainty of this assumption in the life of the main bearings, which is based on the absolute load values P. Figure-22-shows
how-this-The analysis was carried out to-evaluate-the-effect-on-main-bearing basi i
min instances (DLCs 1.2, 3.1 and 4.1) were used to estimate the main bearing rating lifetime Lo ; assuming a-an offset with
Gaussian distribution derived from the residuals from the fitting function. Then 10000 Monte Carlo iterations were carried out

calculating the L ; based on a random selection of the offset Gaussian distribution. For all three instances, the std-standard
deviation of both bearings Lig ; was below 0.7%. Similar analysis was carried out for the fore-aft fatigue load —Hewever;

fatigue-DEL and even negligible standard deviation was found. Fatigue is not affected by the mean load value (as described in
Equation 2) and is then not sensitive to the offset, assuming there are no large yaw angle variations within 10 min instances,

see Equation 9. Usn

Effect of periodic calibration on the main bearings L

Now that continuous calibration with linear zero drift has been defined as the benchmark with a error less than 1%, it is sought to
understand how periodic calibration of strain gauges, as often carried out in the industry, eeuld-affeet-can influence the lifetime
estimation of the-main-bearings-main bearings for this methodology. Table 2 shows the difference between the Ly measured
over-9-years-from 2016 to 2024 (inclusive) with continual calibration compared to the-periodic-calibrationsearried-eutperiodic

calibrations. The absolute results of L error due to calibration periodicity are not generalizable, as they are influenced by the
zero drift behavior of each monitoring setup and the abseluate-loads of the wind turbine. However, it highlights hew-severely
poor strain gauge calibration ean-influenee-influences the lifetime estimation of main bearings for this methodology.

Table 2. Error in the Lo estimation for 7-5-years-from 2016 to 2024 (inclusive) as a function of how often strain gauges are calibrated.

Monthly 3-months 6-months Yearly 2-year 4-years Atcommissioning

Ly error [%] 8.0 9.3 11.9 13.1 34.8 70.5 90.6

19



445

450

455

460

5.3 Virtual load sensor performance validation

Meore-than-A 160 h of training data-were-dataset was used, as no significant improvements were found by enlarging the dataset,
while downsampling from 50 Hz to 10 Hz remained within the error convergence. The latter could decrease the dynamic
content and underestimate the measured fatigue damage; therefore, to verify this, a procedure proposed by D’ Antuono et al.
(2023) was carried out, and sampling frequencies lower than 8 Hz contained more than 98% of the measured fatigue damage

in representative instances, to all considered designtoad-eases{PEEs)DLCs. A sampling frequency of 10 Hz is used.
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Figure 7. Virtual load sensor validation performance applied to 160 hours of measurements. Their performance is shown based on the 3
metrics described in Equations 17 and 18. The different columns represent the feature selected as inputs and the different colors the model
type (neural network architecture). The box-plots show the mean value and the 10" and the 90%". The number in the left subplot are the

mean value of the NRMSE, whereas the bold values in the middle and right subplots, have the mean absolute error (MAE).

The 15 different combinations of virtual load sensors (5 input options and 3 model types) are validated using 160 h frem
the-2649—of data from the 2019, also selected using K-means clustering technique. From left to right, Figure 7 presents all
combinations of models tested in terms of the metrics shown in Equations 17 and 18: including NRMSE Mygre—qyt (a),
MAE DEL4.c—qyt (b), and MAE P, (c). Raw data are added for completeness as transparent markers. It-can-be-seen-that
the-The LSTM model with "All" inputs outperforms the other models significantly when comparing NRSME. The mean
error of 23:4123% is almost half the second-best performing model combination (LSTM and "SCADA + Accelerometer"),
which yields 37%. However, when no accelerometer signal was included and blade strain gauges were added, the LSTM
performance worsened compared to the FNN and NlaggedFNN models. fseems-thatI-STM-cannot-attentate-the-pronouneed

ithout-a-clear-estimate-of-the-first fore-aft-frequency-component{presentin-the-aceelerometer-signabfrequency contributions
and underpredicted the 1** FA frequency contribution, most likely due to poor model coupling of the blade strain gauges
and azimuth angle o inputs. The NlaggedFNN was chosen when no accelerometer was available in the input. Regarding the

equivalent load of the main rear bearing P, ,, influenced by the thrust estimate from the virtual load sensors, itis-observed

a—overallnegligible-differenee-a negligible difference is observed between all combinations of models. Models asing-only

" "

5 with only SCADA reached MAE errors of 2%. Thesameresults-werefound-for
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long-term-deploymentover7-5-yearsFor the deployment from June 2017 to 2024, all models within2%-ef-had an error below
10% compared to the measured main bearing Lpestimates lifetime.

For the equivalent damage loads at the tower bottom fore-aft DELf,c—qf¢, models solely using SCADA had a minimum
MAE error of 23.76%. Looking at Figure 8, it can be observed that the model with SCADA (LSTM) had an overprediction
for very low amplitude cycles, while underprediction for larger amplitude cycles. This becomes more predominant for above
rated wind speed conditions (refer to Figure 8b). Looking at its PSD, the model also does not properly capture the frequency

components of the reference signal M., r¢. Adding the accelerometer yielded strong improvements. The best performing

combination with "SCADA + Accelerometer" and LSTM had an MAE of 8.27%, very close to the overall best performing
combination of "All" and LSTM with 6.98%.

The-And the models that included strain without accelerometer have a-worsened-performance-of 20-1%-and24-23%for-the
bestcombination-with-NlaggedFENN;-and-also-included undesired, sharp and narrow-band peaks, most likely coming from the
blade modes, that are not transmitted to the tower in reality-, see Figure 8 "SCADA + Strain (one blade) or (all blades).
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PSD) chart (inset top right) of tower bottom M fore—at
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— | Measured
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estimate for the

different input signal combined with their best performing model compared to the measured (black). All stress histograms are the summation

and the PSD charts the averaging of 100 instances from 2019. (a) Below rated wind speed 8 m /s (DLC 1.2). (b) Above rated wind speed 16

m/s (DLC 1.2). (c) Start-up and shutdown (DLC 3.1 and 4.1
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480 Looking close to the two best performing model combinations overall, "SCADA + Accelerometer" and "All" with LSTM, it
is worth taking a closer look at Figures 8a and 8b. It is observed that only the model "All" is consistent in predicting stress ranges
at both below and above rated wind speed, while rarely overpredicting the energy content for frequencies components above
0.62 Hz. Figure-8e-shows-the-models-performanee-under-However, as shown in Figure 8c for DLC 3.1 and 4.1together—Again;
ESTM-with"Al-shews-the-most-consistentresults—However;, all the possible combinations under-predict large oseillations;
gauges once the blade is fully pitched.

5.4 Tower fatigue estimation using virtual load sensors

LSTM is chosen as the best model to combine with "SCADA", "SCADA + Accelerometer", and "All", while NlaggedFNN
is chosen for "SCADA + Strain" (one and all blades). The long-term deployment of these is then—performed to verify their

490 reliability in estimating the ifetime-of the-tower—Unfortunately,sinee-tower fatigue. Since the high-frequency database before
Juby-June 2017 is sampled at 35 Hz, in contrast to 50 Hz after Juty-June 2017, the results related to the implementation of virtual

load sensors do not include athe 35 Hz dataset. Downsampling 35

Hz to 10 Hz requires interpolationrather-than-a—elean-deeimation(50-Hzte—10-Hz), which may affect consistency. Figure 9

shows the accumulated tower fatigue damage of each virtual load sensor combination D7 normalized by the final accumulated

495 damagemeasured. It is interesting to note that more damaging contributions are present at the beginning of each year because
the Danish winter has higher wind speeds. In-terms-of-virtual-Hoad-sensors;-al-All combinations of models have underpredicted
the accumulated damage (under-conservative), which is expected by looking at the analysis done-performed during validation
and shown in Figure 8. The difference between the best-performing model "All" and the second model "SCADA + Accelerometer"
is equal to 11%, from 64% to 75%. The remaining three models perform considerably worse in the long term with estimates

500 below 30% of the reference damage.

10016~ SCADA --&- SCADA + Strain (all blades) o w@*;je"
75 |-~ SCADA + Accelerometer -%- All eee@eaa&-"@egw_e 0 04%
< --a-- SCADA + Strain (one blade) --e-- Measur%% Ooegeeeeeoeee gttt X ale .___i/
e e e &
= 50 poo° Sttt S o ne - pae B O S50; 28%
= 00 o omnEaEEet 0
Q 57 s AT EOSETE
251 S gas == U
21%
0 ] T T T T T T T T
A S S Q N Vv ™ ™ “
\Y \ \ Y { {V/ {V {V M
D » » » » » » »

Figure 9. Tower bottom fore-aft fatigue damage accumulation comparison between different virtual load sensors models. It shows the total

accumulation fer-a-peried-of-7-5-yearsfrom June 2017 to 2024 (inclusive) normalized, for the sake of comparison, by the final measured

fatigue accumulated damage. The different model combinations are shown by inputs used (marker) and by model type (marker fill color).

The latter for sake of consistence maintains the colors from Figure 7, blue for NlaggedFNN and orange for LSTM.
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5.4.1 Proposed experimental slope correction for tower damage accumulation and statistical uncertainty

If a virtual load sensor is consistent throughout the majority of operating conditions over the year, it would underestimate
different years with a similar error. Figure 10a shows the comparison for a full year (2018 as the first round year available)
of estimated and measured accumulated damage. The slope n; represents the under-prediction ratio, calculated as the linear

fit slope between the estimate and the measured accumulated damage yearly. And-the-greater—the-linearfit-coefficient-of

determinationR2—thelowe anexplained-variability-of-the ? ofa-g wal-Hoad-sensor-Then, one could have an
accumulated damage from the virtual load sensor adjusted by the yearly slope as in
D VLS
Dy =—"" (19)
Nk

where D7 ;5 is the original and D7, is the adjusted accumulated damage of the virtual load sensor. The slope 7, is the linear
fit slope between the virtual load sensor and the measured damage for a given year k&, and it is used as a correction factor.
An-issue-with-the-The proposed experimental correction is the error associated with the choice of a given year k to calculate
the slope by chance. Figure 10b shows the calculated 7, for each yearindependentlty—. Note that small differences in annual
mean wind speed were measured (see Section 3). The "All" and "SCADA + Accelerometer" models have the slope closest to
unity for-at-years-compared to the remaining models, while the first has the lowest variability. FigureH-then- 11 attempts to
evaluate the uncertainty by individually calculating the slope correction factor for each year of-the-7-years-available-from 2018
to 2024 (inclusive) and adjusting the expected accumulated damage of the two best performing virtual load sensors by the
average slope 7gyg = 1/N - ZkN N, w(where N is the number of years—Aceording-to-Sehillaci(2022)toreach-an-estimate-) and
the annual slope variability with the standard deviation (std) and minimum/maximum values. The slope variability could be
driven by annual wind statistics and model performances (see Figure 8). To reach an estimate std accuracy of £10% with limited

samples with confidence 90%, more than 100 samples are required, considering a Gaussian distribution (Schillaci, 2022). Since

our available NV is low (7 years), both the {std-)-std and the maximum/minimum bounds are evaluated.

right-red-y-axis: J-ean-be-said-that-the-The model "All" with LSTM has the shortest error convergence time nearly within 6

months, and has a mean error for the adjusted accumulated damage equal to -1.8% and variability within 3.5% and -6.5%. The

second best performing model "SCADA + Accelerometer" with LSTM has a mean error of -4.2% and a variability bounded
within 13% and -15%. The remaining virtual load sensors are also—shewn;—but-should-not-be-considered-asreliable-as-the

latter;sinee-these-do-not-ecapture neitherthe PSD-nerthestressrangesnot shown since they capture the PSD and the stress
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range distribution in a less consistent manner.
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Figure 10. (a) Comparison between accumulated damage from virtual load sensors (D7 .;5) and measured (D) for 2018. The slope

of each model refers to the linear fit slope, while "R?" refers to the coefficient of determination (markers are shown once per month). (b) The

slope 7y, calculated for each full year . Blue for NlaggedFNN and orange for LSTM.
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Figure 11. Measured Dt ,, and adjusted D7, damage accumulation of the virtual load sensors based on the yearly slope correction are

shown. The two best performing models are shown. The adjusted damage by the average slope value from 2018 to 2024 (inclusive) is shown

as the markers. The filled areas represent the variation around the standard deviation (inner) and bounded between maximum and minimum

values observed (outer). The error between virtual load sensor and measured damage accumulation in shown on the right red y-axis.

The experimental slope correction results should not be seen as fully validated, but as a trial to adjust models that consistent]

capture the dynamic content of the tower bottom while underpredicting the peaks and valleys, leading to stress range underprediction.
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5.5 Main bearings loads and fatigue lifetime analysis
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Figure 12. Front and rear main bearing loads as function of the wind speed. The obtained axial load Fj, radial as function of the tower

bottom bending moment M ¢, ¢, the radial load F’., the ratio with the rear bearing limiting factor, and the dynamic equivalent load P,

are presented. Mean value is represented by the marker while the 10*"-90'" percentiles by the filled area from 2016 to 2024 (inclusive).

As detailed in Section 2.2, the main bearing life is calculated directly from the applied radial and axial loads. The axial load
of the main bearing Fy, is linearly linked to the tower bottom bending moment as in F, = M fore—qft/h, Where h is the height
difference between hub height (44 m) and the height of the sensor (3.787 m). Here, M f,yc—q ¢ is assumed to be representative
of the turbine thrust curve. The radial load of the main bearings F}. is equal to the estimated #2-F, ; (front) and £2—F;. . (rear),
respectively. For a more detailed explanation, see Sections 3 and 4.2. The +0-min-10 min mean loads are shown in Figure 12 as
a function of wind speed. The front and rear bearings F). have different behavior with respect to the wind speed. The front main
bearing has a fairly flat distribution at higher load, while, for the rear main bearing, the radial load is-inerementalincrementally
increases. The F,, /F, ratio for the rear main bearing is almost in its entirety above the limiting factor, which will worsen the
estimated rating life, as the Y factor increases (see Equation 4). Finally, P, of the front bearing has a slight positive trend,
most probably due to higher rotor speeds with higher wind speed, while the rear bearing’s dynamic equivalent load is driven
by the axial load F,. A similar analysis shown in Figure 9 was performed for the main bearing fatigue damage, D5, with the
Dr.
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5.5.1 Sampling frequency and gearbox mounting stiffness assumptions

Before moving on to the long-term results, it is important to verify some of the assumptions made in this work. As in the
fatigue estimation of the tower bottom, the P, and the-Lo were calculated based on a dewm&mﬁmgef—fhe—meawed»d&f&

measured data downsampled from 50 to 10 Hz.

+0HzAL 10 Hz, there will be a mean error of less than 2% with a 10¢"-90'" ;-withinpercentile within 5%.
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Flgure 13. Results of sensitivity analysis of +60-h-data-the stiffness of gearbox mounts on the main bearings dynamic equivalent load P,

atsbased on 160 h randomly selected

dataset. The used value (black dashed line) for the gearbox mounting stiffness refers to a stiffness of 20-10° [N/m], close to the literature
values found in Haastrup et al. (2011) and Keller et al. (2016).

On-the-other-hand;-the-assumption-on-which-stiffnessshould-be-Figure 13 shows the effect of the stiffness used to model the

gearbox mounting fixation points 1

subploetof-on the P, of the front and rear main bearing. Small variation is observed if the stiffness is neglected or used as in

the literature (Haastrup et al., 2011; Keller et al., 2016). However, as shown in Figure 13, nearly-an overprediction of 10% and
60% overpredietion-of the front and rear dynamic equivalent loads P, could be reached +if a gearbox is assumed-te-be-rigidly

fixed in a 4-point drivetrain, see-Figure-3which is not a realistic assumption.

5.5.2 Environmental and operational conditions (EOCs) mapping of the main bearings dynamic equivalent loads P,

Having-7-5-years-of the The main bearing P, available-it-waspossible-to-couplesuch-values-was mapped with the environmental

conditions of each mean 10 min instance to visualize potential patterns. Figure 14 confirms the intuitive reasoning that the

equivalent loads of the front main bearing P, ¢ are driven more by the static gravitational load of the rotor. However, Py ¢
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still contains almost 10% fluctuations due to the shear exponent from 0.05 to 0.15 in all wind ranges and a similar turbulence
effect at the rated wind speed. In a different manner, for the rear main bearing, the turbine thrust curve dictates the value of
Peg ..

Wind speed [m/s] Wind speed [m/s]

Figure 14. Equivalent dynamic loads of the front {Peq, ¢ (top) and rear {Peq, (bottom) main bearing-bearings of the DTU research V52

turbine mapped as function of wind speed, turbulence intensity TI and shear exponent o.. The measurement period covers from Faty-2016 to

Fuly-2024 (ineludedinclusive).

Looking closely at P4, ¢, the results fairty-resemble Kenworthy et al. (2024) for a 3-point drive-train-drivetrain for the effect
of lower shear on increased bearing loads. Hewever;-a-more-substantial-A comparable effect of low turbulence is found at the

rated wind speed;-whieh

report. An increase of 10% of P, s loads (from 248 to 268 kNm) can be seen in the rated wind speed for the turbulence values
of 15% to 10%. A similar load increase is observed for shear exponents of 0.15 to 0.08 at rated wind.

In terms of the load on the rear main bearing P, ,- (locating), 1

shear influence at rated wind speed, as also suggested by the HIPERWIND D5.4 (2024) report. This is a result of keeping the
level of axial load F, at the peak of the thrust curve. Approximately 10% increase in load driven by a change in turbulence

from 15% to 8%. shear-also-has« ads,

The peak of the thrust curve is claimed to
Kenworthy et al., 2024; Qui .). However, Figure 14

highlights the effect of the low turbulence intensity at the rated wind speed, referring to the most damaging operating condition

mapped, and that should affect the lifetime of the main bearing s-as
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The-application—ofvirtaal-loadsensers—as—a—thrust-estimate—and-then—the-more severely depending on the probability of
occurrence, as described in Equation 6. To explain this observation, Figure 15 shows a simplified representation of the increase
in fatigue load of a locating main bearing at low turbulence. Wind speed is defined as a normal distribution with a mean value

at rated U,.,;.q4. the peak of the thrust curve, and a standard deviation o defined by T1 = 0/U,.4404. The dynamic load P is

calculated according to Equation 4 and the axial load F}, has been replaced by a scaled thrust curve of a reference wind turbine
Bak et al., 2013) in order to have a complete curve below and above rated conditions. A decrease from 20% to 10% in T'1

in the wind speed distribution increased the mean dynamic load P of the rear main bearing resulted;—for-all-models;—in-an
estimation-error-of Lyg—aroundin the DTU research V52 turbine by nearly 10%fer7-5-years—The-modelwith-only "SCADA"

RO satfheant-performance—d erence-between—deplovine—th d o = g HA oad-SenSers;Hag

results-in-Figure-7(e)— Similar results were observed for P, ,. in Figure 14. This effect arises from the turbulence averagin
of the dynamic load P, as expressed in the following equation.

P / pn(U) - PU)AU (20)

where P is the mean of the dynamic load P is the normal distribution that represents the wind speed, and P(U) is the
dynamic load P as a function of the wind speed U.
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Figure 15. Conceptual representation of the effect of turbulence intensity 7' at rated wind speed on the wind speed distribution U, modeled

as a normal distribution (see bottom inset), and its influence on the dynamic load P distribution on the rear main bearing of the DTU

research V52 turbine (see top right inset). In this simple exercise, the turbine thrust values are derived from a simplified DTU 10 MW
(Bak et al., 2013) thrust curve scaled to the DTU research V52 turbine by the maximum axial load I, as shown in Figure 12, in order to
generate a representative and complete thrust curve. A Monte Carlo sampling is used with 10° samples to generate the  histogram. The
numerically obtained mean dynamic load P can also be calculated using Equation 20 at rated wind speed and is shown as horizontal dashed

5.5.3 Mainbearingsmedified-ratinglife: L1gmand-arso

5.5.3 Main bearings Lqg,, and a

Applying the drivetrain thermal model, consistent temperature ranges were found for the normal operating conditions (DLC 1.2)

of the main bearings. The temperatures of the front and rear main bearings had minimum/mean/maximum values of 8/34/55and
°C and 18/40/61°C, respectively, while the viscosity ratio x {viseesityratio--had minimum values of 0.84 and 0.64respeetively-,
respectively. The gearbox temperature model yielded 3 °C MAE, which is reasonable considering the scope of this investigation.

{ineladed)— The seasonal variation corresponded to approximately £10°C in the front bearing and £8 °C in the rear bearing
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temperatures, while the operational variability reached around +15°C variation in the front and £20°C in the rear bearing
temperatures. The results of such environmental and operation conditions (EOCs) can be visualized in Figure 16, assuming
a severe level of grease contamination. The grease cleanliness affects the parameters to estimate the variable contamination
factor e., which by consequence affects the aiso (see1SO-281H-(2067)(1SO-281, 2007). This assumption represents a worse
scenario in which re-greasing of the main bearings is not performed in the long-term as suggested by the manufactures. ¥t
Figure 16 highlights the large impact of the ambient temperature on the modified rating lifetimes of main bearings in which
there is no nacelle temperature control. For the rear main bearing, even for such an overdesigned bearing, at rated wind speed
and-with low T'I or with ambient temperatures above 20°C, the bearing lifetime is reduced to below the design lifetime of 20
years. In addition to that, once ajso is considered, it seems that turbulence overcomes shear as the most influential factor for

the rear main bearing at the rated wind speed.
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Wind speed [m/s] Wind speed [m/s] Wind speed [m/s]

Figure 16. The modified rating life of the front L1y, ¢ (top) and rear Lyom. (bottom) main bearings of the DTU research V52 turbine as
function of wind speed, turbulence intensity TI, shear exponent o, and ambient temperature Tony, together with pointers to the rear 7, and
front Ty main bearing temperatures. It is assumed a severe level of contamination for the grease lubricant. The latter represents a scenario in
which re-greasing intervals recommended by the OEM are not followed. Tmportant to note that there are limits related to aiso implementation
as defined by ISO-281 (2007): at ayso = 50 and at e.C., /P,

has not been reached in this work. The lower limit of the color bar (yellow color) was chosen to match the turbine design lifetime of 20 years.

= 5 (maximum bound) and at viscosity ratio £ = 0.1 (minimum bound) which

Significant variations can be observed on the L, due to EOCs, but it is important to mention that the grease cleanliness

level affeets-should affect the bearing lifetime more severely -

worse-seenarios—(Kenworthy et al., 2024). Figure 17 shows in-ateg-on a logarithmic scale the distribution of a;so as a function
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640 of the grease cleanliness assumed or inspected in a wind turbine. In the worst case scenario with "very severe contamination”

areund-70% of instances are penalized and Lgr—goesfrom-the-initial-Lro—of 315-years-to130-years-lifetime;more-than
SO0 ifeti Jetion-
L1y, = 566 years goes to L1 = 200 years lifetime.
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Figure 17. Normalized histogram showing the distribution of the rear main bearing life modification factor arso,» as function of the grease
cleanliness levels. The red dashed line shows the limit for Zro=-",107mL1g = Ligm. The bound of a;so < 50 is not applied for the sake of

clarity.
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6 Conclusion

In this work, methods were investigated to allow for reliable lifetime counting of large load-carrying components, both
685 structural in the form of a tower and rotating in the form of main bearings. The work was validated on the DTU research

V52 wind turbine for a continuous period of almost a decade.

The strain gauges at the bottom of the tower and the root of the blade were eontinual-calibrated-for-9-5-years-continually
calibrated from 2016 to 2024 (inclusive) with at least 20 calibration instances per year. The yaw sweeps and Low-Speed Idling
690 (LSI) routines were verified for long-term calibration, and all strain gauges presented reliable behavior. We assumed linear

behavior to model the zero drift of the strain gauges, which has to be validated by carrying larger case-study comparisons
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—accounting for different Wheatstone bridge configurations. However, it is interesting to observe that eight full strain gauge
bridges from the DTU research V52 turbine have presented similar behavior over time, with low unexplained variability after
the proposed correction,

Lifetime counting of a structural component, such as the tower, and other load-carrying components, such as main bearings,

was carried out for almost a decade, without having design information from the blade or mid-fidelity aeroelastic modelsin

The use of virtual load sensors based on data-driven methods is promising in the field of wind energy, where Structural
Health Monitoring (SHM) campaigns can be expensive and take a long timefeven—mere—for-offshore-assets). These could
serve as a continuous high-frequency thrust estimate. In this work, the-counting-of-counting 7.5 years of the fatigue lifetime
of the tower bottom using a virtual load sensor yielded in-its-best-model-a—prediction-of-damage-of-a_damage prediction
models with and without blade root strain gauges resulted in a 11% difference in the lifetime estimation. After an experimental
correction, assuming a year of available measurement data, the lifetime error was reduced to +5%lifetime-error—Howeverin
MMMWW

the training of the data-driven me
clustering K-means and the error function (de N Santos et al., 2024), and test cases that could bias the results—For-thisreason;

the-analysis. The results from this work might not be seen-as-the-considered state of the art er-entirely-generalizable-but-but be

seen as a discussion en-of the challenges of applying-and-validating-long-term and continuous deploying of virtual load sensors
onr-operating-in wind turbines considering severalDECs— DLCs.

models, such as

Finally, the main bearings loads P,, and modified lifetime £rg7-L1o, were mapped in terms of relevant environmental

conditions and grease cleanliness. The first showed that a front main bearing in a 4-point drivetrain has lengerlife-by-a-higher

shear-exponent-a longer life as the shear exponent increases, whereas the fatigue loads in the locating rear main bearing s-are
dictated by the peak of the thrust curve and are larger at rated wind speed;-has-higherloadsforlower-turbulence-intensities:

signifieantty different fifetimes-but-are-not- The rear main bearing was observed to have a longer lifetime as the shear and
turbulence intensity increase, which can be explained by the turbulence averaging of the thrust loads. Estimates of operating
temperature and grease cleanliness (Kenworthy et al., 2024) were identified as key drivers in the modified rating lifetime
Ligm of the main bearings. Although the drivetrain thermal model resulted in realistic temperature ranges, validation with
measurement values is the logical next step. Lubricant cleanliness corrections significantly affect predicted lifetime but have

not been validated for large grease-lubricated bearings—F

and-tubricants-typteally-used-in-wind-turbines, unlike smaller bearings (Needelman and Zaretsky, 2014).
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Appendix A: Azimuth angle correction for the DTU research V52 turbine

Figure A1 presents the problem and the solution applied for the azimuth angle sensor. For periods before 2018 and after 2020,
the measured azimuth angles contained severe variations in regular patterns, which did not extend to variability in the edgewise
bending moment M, jgewise Of the blades. In this manner, such variations were triggered as a sensor malfunctioning.

To correct for such an issue, an azimuth angle estimate ¢, was derived as a constant-gain blend between two complementary
signals. The first signal is the measured azimuth angle ¢,,, sampled at 10 Hz, shown in Figure A1 as the black line (left y-axis).
The second signal is the controller-defined rotor speed (SCADA) w sampled at 10 Hz, which has a lower resolution, and shown

in the same figure as the red line (right y-axis). The period At is defined as the inverse of the sampling frequency.

—e— measured ¢ at 10Hz »— estimated ¢ at 10Hz rotor speed [rpm]
2016 - 2020 2024
22300 300 ﬂ 24
s A A A LE
P § £ # 2=
2200 200 ¢ £ 3
= 18 I ; A &
E] 20 5
g 100 100 [ 5 £
< 16 18
0 | 0
315 320 325 330 390 395 400 405 356 358 360 362 364
Time [s] Time [s] Time [s]

Figure Al. Representative examples of the azimuth angle in the SCADA from the DTU research V52 turbine showing problems with the
measurement data acquired in 2016 and 2024. An estimated azimuth angle (orange) is performed based on the controller SCADA rotor speed

(red) and the measured azimuth angle (black).

The correction method works by first identifying the best phase shift ¢, o of the azimuth angle in a 10 min instance, which
is the initial point between the cumulative ¢,,, and ), w; - At, using a few sequential data points. The instantaneous angle
based on the rotor speed will be ¢, ; = w; - At + ¢, ;_1, for i > 1, and ¢, ; = @, o, for ¢ = 1. The final estimated azimuth is
defined as @, ; = @, + K - d, if d < djjmie and 7y ; = @ri, if d > djimie - In which, d is the difference between the measured
instantaneous angle and the estimation of the rotor speed d = ¢, ; — ¢r,;. The two manually tuned variables are the gain K
and the distance limit dj;,,,;:. The first defines how reliable are the fluctuations from the measured azimuth. The latter correlates
with the threshold of how many degrees the measured azimuth can realistically change within At. In this work, the parameters
were tuned to K = 0.1 and dj;,,,;: = 30°.

The validation was carried out in a good year (2019) by applying the method on 160 h of representative instances containing

the Design Load Cases (DLC) 1.2, 3.1 and 4.1. The maximum instantaneous error /@, — ¢./ was below 5°.
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Appendix B: Statically indeterminate system of-equatiensfor a 4-point drivetrain considering a-the gearbox mounting

stiffness

Figure B1 shows the drivetrain schematic that allows one to derive the radial loads in the main bearings while considering the
stiffness of the gearbox mounting, as shown in Figure 3a. The vertical direction is chosen as it includes the most significant
resultant loads (gravitational and aerodynamic), and the horizontal direction can be solved in the same manner. The static

ravitational loads acting on the main shaft are derived from a combination of public sources and visual inspections of the

turbine nacelle. Similar for lengths (e.g. L

and a hub mass of 10 tons (third party source, see Scribd (2021)). The gravitational force of the shaft F assumes a shaft
mass equal to 1 ton, between an internal estimate of 0.8 tons and the Fingersh et al. (2006) estimate of 1.2 tons, which uses the

= 0.0142 - D%8%8 from historical data

. The gravitational force of the rotor F). ;.. is calculated assuming a rotor

best-fit equation m iven D as the rotor diameter in meters and the mass in tons).

(@) Lateral view _ () Top view
“ Wind 2 Wind
L R Yr —_— R Yr —_—
shaft
Zr Xr
Main shaft Main shaft
L1 Lz L3 Ll L2 L3

Figure B1. Drivetrain schematic used to represent the external loads applied and the supporting elements in the vertieal-direetion(a) lateral

view and (b) top view, in respect to the rotor coordinate system XYZp. Frotor and Fspaye are the rotor and shaft gravitational loads

respectively, Lsnayt the shaft center of mass distance, Mrotor the bending resultant from the rotor weight Fy.qo, and Ly, as the hub is
not modeled (see Figure 3), and M +-is the aerodynamical loading at the vertical direction. The main shaft is supported by the front Rz

and rear Rioy main bearings (refereed in the main text as F,.  and F}. ), in the vertical v and horizontal h directions. Lastly, it is supported

by the gearbox through the equivalent spring K, which results in the force F,.

The system of equations for the forces and bending moments for Figure Bla is composed of:

Y F=0=—Frotor = Funast+ Rpus+ Rror +Fy (B1)
ZM(m =0)=0=—-M,+ Myotor + Rf v L1 — FshaptLshaft +RHT(L1 + L2) + Fy(L1+ Lo+ L3) (B2)

where the assumed sign conversion is upwards and anticlockwise as positive. The "Top view" (Figure B1b) has the same
formulation, it is solved independently, but without gravitational loads F}.,t0rs Myotor and F: .

Since the system is statically indeterminate, there are two independent equations B1 and B2 and 3 unknowns reactions Ry
R+, R, and F,. To add a third equation, the main shaft is modeled as a flexible beam, with small deflections, linear material
sand-(young modulus F) and second area moment of inertia I eonstants-along the length, as explained by Budynas and Nisbett
(2020).
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Thefollowing-equations-are-used-to-deseribe-Equation B4 describes the bending moment as a function of #-and-the-beam

deflection w along x through a double integration step.

d?w
Eldxz =M= _Mv+Mr0t0r+Frotor'x+Fshaft : <$_Lshaft> _Rf,v' <LIJ—L1> _Rr,u : <$_(L1 +L2)> (B3)
M, M otor Frotor Fina
Elwz—7~x2+ 2t x4 6t '$3+%'<$—Lshaft>3
Ry, R,
- g '<x7L1>SfT,'<I*(L1+L2)>3+01'I+CQ (B4)

where () is the Macaulay bracket or discontinuity function. To solve the constants C; and Co, twe-and generate a third
independent equation, three known boundary conditions {deflection-at-the-main-bearings)-can be used as such:

F,
w(x=L1)=0 andw(x=L1+ Ly)=0 w(x =L, +L2+L3):Fg (B3)
g

Finally, once the constants are calculated, the third independent equation can be derived by applying a third known boundary
condition (deflection at the gearbox }:-

F
’IU(ZI,‘ = L] +L2 +L;3) = K]
g

Fy/K,). The resultant third independent equation is then:

F M M, Fooror
BEI-% =—="(L1+ Ly+ Ly)® + 2" (Ly + Ly + L3)* + —"2°" (L + Ly + L3)?
K, 2 2 6
Fs a R U R Rr,v Rr
+hTft(L1+L2+L3_Lshaft)3_ (f %(L2+L3)3— 5o (Ls)® + Cr(Ly + Lo+ Ls) + C (B6)

The complete derivation are omitted for conciseness, consisting primarily of algebraic manipulation and variable substitution.

Using the three independent equations B1, B2 and B6, and assuming quasi-static equilibrium at each time instant, one can

calculate the 3-independent unknowns Ry+Rs5-f, R,. and F, referred on the main text as I}, ¢, F}.,7 and F.

Appendix C: Hyperparameters tuning of the data-driven virtual load sensors

The models described in Section 4.3 are tuned using a random search tuner (O’Malley et al., 2019) to improve the model
performance. Table C1 shows the hyperparameters possible range and optimal value found for each virtual load sensor.
Similarly to the methodology applied by Dimitrov and Go¢men (2022) and Grife et al. (2024), there are hyperparameters
related to the data architecture, such as the number of lags 7445 in a NlaggedFNN and the window size in a LSTM, as well as
hyperparameters related to the model architecture and training itself. The latter includes, for example, regularization features
to improve the model generalization, such as the L2 regularizer and dropout. While, the model training was optimized in terms

of batch size and learning rate. The range of parameters was similar to that used in Dimitrov and Go¢men (2022).
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Table C1. Hyperparameter tuning, including the bound limits and optimum values for each model and feature possible combination.

Optimal values

SCADA + SCADA +

Parameter SCADA +
Model Hyperparameter SCADA Strain Strain All
range Accelerometer
(one blade) (all blade)
Batch size 32:32:256 32 32 160 96 160
Feedfi
cedforward ) mingrate  10-4:10-2 2,510~ 581073 72107  3.01073 3.5.10°3
Neural
e Hidden units 50:20:200 150 190 70 130 150
Network . —6.1n—1 -6 -6 -6 —6 -6
L2 regularizer 107°:10 2.0-10 3.6:10 1.2-10 11.3-10 2.8:10
(FNN) Second layer 0:1:2 1 1 1 0 0
Batch size 32:32:256 32 32 96 96 96
Learning rate 10-%:102  0.8:1073 0.8:1073 1.8:107% 281072 1.7.1073
lagged FNN Hidden units 50:20:200 50 190 150 70 70
(NlaggedFNN) L2 regularizer 1076:107' 1.4.10°6 1.2:10~6 46107 1.6107% 52107
Second layer 0:1:3 0 1 0 0 0
Niags 1:1:6 5 5 6 5 6
Long Batch size 32:32:256 128 64 64 64 64
Short-Term Learning rate 10-%:1072 9.7.1073 2.9-1073 9.7.107%  7.3-107% 3.4-1073
Memory NN Window size [s] 2,5,10,30 5 10 5 10 10
(LSTM) Dropout 0:0.1:0.5 0.1 0.2 0.2 0 0

785 . BF and AB participated in the conceptualization and design of the work together with DR and XZ. BF performed the measurements
processing and conducted the data analysis. BF and ND performed the models training and deployment. BF and NS wrote the draft
manuscript. AB, MS, ND and AK supported the results analysis. All reviewed and edited the manuscript.
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of the Real.CoE project. The methodology has been inspired by research carried out by the HIPERWIND and the IEA TCP WIND Task 42.

38



795

800

805

810

815

820

825

References

ASTM D341-93: Viscosity—Temperature Charts for Liquid Petroleum Products, ASTM Standard ASTM D341-93 (Reapproved 1998),
ASTM International, West Conshohocken, PA, USA, an American National Standard., 1998.

ASTM E1049-85: Standard Practices for Cycle Counting in Fatigue Analysis, ASTM Standard ASTM E1049-85 (Reapproved 2017), ASTM
International, West Conshohocken, PA, USA, 2017.

Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M. H.: Description of the DTU 10 MW
Reference Wind Turbine, Dtu wind energy report-i-0092, DTU Wind Energy, Technical University of Denmark, Roskilde, Denmark,
https://gitlab.windenergy.dtu.dk/rwts/dtu- 10mw-rwt/-/raw/master/docs/DTU_Wind_Energy_Report-1-0092.pdf, 2013.

Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural
Networks, 5, 157-166, https://doi.org/10.1109/72.279181, 1994.

Budynas, R. G. and Nisbett, J. K.: Shigley’s Mechanical Engineering Design, McGraw-Hill Education, New York, NY, 11th edn., professor
Emeritus, Kate Gleason College of Engineering, Rochester Institute of Technology; Associate Professor of Mechanical Engineering,
Missouri University of Science and Technology, 2020.

D’ Antuono, P., Weijtjens, W., and Devriendt, C.: On the Minimum Required Sampling Frequency for Reliable Fatigue Lifetime Estimation
in Structural Health Monitoring. How Much is Enough?, in: European Workshop on Structural Health Monitoring, edited by Rizzo, P. and
Milazzo, A., pp. 133-142, Springer International Publishing, Cham, ISBN 978-3-031-07254-3, 2023.

de N Santos, F., Noppe, N., Weijtjens, W., and Devriendt, C.: Farm-wide interface fatigue loads estimation: A data-driven approach based on
accelerometers, Wind Energy, 27, 321-340, https://doi.org/https://doi.org/10.1002/we.2888, 2024.

Dimitrov, N. and Gé¢men, T.: Virtual sensors for wind turbines with machine learning-based time series models, Wind Energy, 25, 1626—
1645, https://doi.org/https://doi.org/10.1002/we.2762, 2022.

DNVGL-RP-C203: Fatigue Design of Offshore Steel Structures — Recommended Practice, Edition April 2016, DNVGL RP DNVGL-RP-
C203:2016, DNV GL AS, Hgvik, Norway, 2016.

Faria, B. R. and Jafaripour, L. Z.: yaw-sweep-sg-cali: Strain-gauge yaw-sweep calibration for wind turbine towers, https://pypi.org/project/
yaw-sweep-sg-cali/, version 3.2, 2023.

Faria, B. R., Sadeghi, N., Dimitrov, N., Kolios, A., and Abrahamsen, A. B.: Inclusion of low-frequency cycles on tower fatigue
lifetime assessment through relevant environmental and operational conditions, Journal of Physics: Conference Series, 2767, 042021,
https://doi.org/10.1088/1742-6596/2767/4/042021, 2024.

Faria, B. R., Dimitrov, N., Perez, V., Kolios, A., and Abrahamsen, A. B.: Virtual load sensors based on calibrated wind turbine
strain sensors for damage accumulation estimation: a gap-filling technique, Journal of Physics: Conference Series, 3025, 012011,
https://doi.org/10.1088/1742-6596/3025/1/012011, 2025.

Fingersh, L., Hand, M., and Laxson, A.: Wind Turbine Design Cost and Scaling Model, Technical Report NREL/TP-500-40566, National
Renewable Energy Laboratory (NREL), Golden, CO, USA, https://doi.org/10.2172/897434, 2006.

Grife, M., Pettas, V., Dimitrov, N., and Cheng, P. W.: Machine-learning-based virtual load sensors for mooring lines using simulated motion
and lidar measurements, Wind Energy Science, 9, 2175-2193, https://doi.org/10.5194/wes-9-2175-2024, 2024.

Haastrup, M., Hansen, M. R., and Ebbesen, M. K.: Modeling of Wind Turbine Gearbox Mounting, Modeling, Identification and Control, 32,
141-149, https://doi.org/10.4173/mic.2011.4.2, 2011.

39


https://gitlab.windenergy.dtu.dk/rwts/dtu-10mw-rwt/-/raw/master/docs/DTU_Wind_Energy_Report-I-0092.pdf
https://doi.org/10.1109/72.279181
https://doi.org/https://doi.org/10.1002/we.2888
https://doi.org/https://doi.org/10.1002/we.2762
https://pypi.org/project/yaw-sweep-sg-cali/
https://pypi.org/project/yaw-sweep-sg-cali/
https://pypi.org/project/yaw-sweep-sg-cali/
https://doi.org/10.1088/1742-6596/2767/4/042021
https://doi.org/10.1088/1742-6596/3025/1/012011
https://doi.org/10.2172/897434
https://doi.org/10.5194/wes-9-2175-2024
https://doi.org/10.4173/mic.2011.4.2

830

835

840

845

850

855

860

865

Hart, E., Clarke, B., Nicholas, G., Kazemi Amiri, A., Stirling, J., Carroll, J., Dwyer-Joyce, R., McDonald, A., and Long, H.: A review of
wind turbine main bearings: Design, operation, modelling, damage mechanisms and fault detection, Wind Energy Science, 5, 105-124,
https://doi.org/10.5194/WES-5-105-2020, 2020.

Hart, E., Raby, K., Keller, J., Sheng, S., Long, H., Carroll, J., Brasseur, J., and Tough, F.: Main Bearing Replacement and Damage - A Field
Data Study on 15 Gigawatts of Wind Energy Capacity, vol. NREL/TP-5000-86228, published by the US National Renewable Energy
Laboratory (NREL) as Technical Report NREL/TP-5000-86228, July 2023., 2023.

HIPERWIND DS5.1: Component Life Models, Project Deliverable Deliverable D5.1, HIPERWIND Project — Hlghly advanced Probabilistic
design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND, Lyngby, Denmark, https://www.hiperwind.eu/
deliverables-and-publications, 2023.

HIPERWIND D5.4: Development and implementation of probabilistic and uncertainty quantification methods for reliability sensitivity
analysi, Project Deliverable Deliverable D5.4, HIPERWIND Project — HlIghly advanced Probabilistic design and Enhanced Reliability
methods for high-value, cost-efficient offshore WIND, Lyngby, Denmark, https://www.hiperwind.eu/deliverables-and-publications, 2024.

Hoffmann, K.: An Introduction to Measurements Using Strain Gages, Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany, all
rights reserved. © Hottinger Baldwin Messtechnik GmbH, 1989. Reproduction or distribution, in whole or in part, requires express
written permission from the publisher., 1989.

Hiibler, C. and Rolfes, R.: Probabilistic temporal extrapolation of fatigue damage of offshore wind turbine substructures based on strain
measurements, Wind Energy Science, 7, 1919-1940, https://doi.org/10.5194/wes-7-1919-2022, 2022.

IEA and NEA: Projected Costs of Generating Electricity: 2020 Edition, Tech. rep., International Energy Agency and OECD Nuclear Energy
Agency, Paris, ISBN 978-92-64-55471-9, https://doi.org/10.1787/a6002{3b-en, 2020.

IEC 61400-1: Wind energy generation systems — Part 1: Design requirements, Edition 4, IEC 61400-1:2019, International Electrotechnical
Commission, Geneva, Switzerland, 2019.

IEC 61400-13: Wind energy generation systems — Part 13: Measurement of mechanical loads, IEC 61400-13:2016, International
Electrotechnical Commission, Geneva, Switzerland, 2016.

IEC-TS-61400-28: Wind energy generation systems — Part 28: Through life management and life extension of wind power assets, IEC TS
61400-28:2020, International Electrotechnical Commission, Geneva, Switzerland, 2020.

IRENA: Renewable Power Generation Costs in 2023, Tech. rep., International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-
621-3, https://www.irena.org/Publications/2024/Sep/Renewable- Power-Generation- Costs-in-2023, 2024.

ISO-281: Rolling bearings — Dynamic load ratings and rating life, ISO 281:2007, International Organization for Standardization, Geneva,
Switzerland, 2007.

Keller, J., Guo, Y., and Sethuraman, L.: Gearbox Reliability Collaborative: Investigation of Gearbox Motion and High-Speed-
Shaft Loads, Technical Report NREL/TP-5000-65321, National Renewable Energy Laboratory (NREL), Golden, CO, USA,
https://doi.org/10.2172/1243302, 2016.

Kenworthy, J., Hart, E., Stirling, J., Stock, A., Keller, J., Guo, Y., Brasseur, J., and Evans, R.: Wind turbine main bearing rating
lives as determined by IEC 61400-1 and ISO 281: A critical review and exploratory case study, Wind Energy, 27, 179-197,
https://doi.org/https://doi.org/10.1002/we.2883, 2024.

Loraux, C. and Briithwiler, E.: The use of long term monitoring data for the extension of the service duration of existing wind turbine support

structures, Journal of Physics: Conference Series, 753, 072 023, https://doi.org/10.1088/1742-6596/753/7/072023, 2016.

40


https://doi.org/10.5194/WES-5-105-2020
https://www.hiperwind.eu/deliverables-and-publications
https://www.hiperwind.eu/deliverables-and-publications
https://www.hiperwind.eu/deliverables-and-publications
https://www.hiperwind.eu/deliverables-and-publications
https://doi.org/10.5194/wes-7-1919-2022
https://doi.org/10.1787/a6002f3b-en
https://www.irena.org/Publications/2024/Sep/Renewable-Power-Generation-Costs-in-2023
https://doi.org/10.2172/1243302
https://doi.org/https://doi.org/10.1002/we.2883
https://doi.org/10.1088/1742-6596/753/7/072023

870

875

880

885

890

895

900

Mehlan, F. C., Keller, J., and Nejad, A. R.: Virtual sensing of wind turbine hub loads and drivetrain fatigue damage, Forschung im
Ingenieurwesen, 87, 207-218, https://doi.org/https://doi.org/10.1007/s10010-023-00627-0, 2023.

Miner, M. A.: Cumulative Damage in Fatigue, Journal of Applied Mechanics, 12, A159-A164, https://doi.org/10.1115/1.4009458, 1945.

Needelman, W. M. and Zaretsky, E. V.: Review of Rolling-Element Bearing Life Rating Methods, Tech. Rep. NASA/TM-2014-218141,
National Aeronautics and Space Administration, Cleveland, OH, nASA Glenn Research Center; available from the NASA Technical
Reports Server (NTRS), 2014.

O’Malley, T., Bursztein, E., Long, J., Chollet, F,, Jin, H., Invernizzi, L., et al.: KerasTuner, https://github.com/keras-team/keras-tuner, 2019.

Pacheco, J., Pimenta, F., Guimardes, S., Castro, G., Alvaro Cunha, Matos, J. C., and Magalhdes, F.: Experimental evaluation of fatigue in
wind turbine blades with wake effects, Engineering Structures, 300, https://doi.org/https://doi.org/10.1016/j.engstruct.2023.117140, 2024.

Papadopoulos, K., Morfiadakis, E., Philippidis, T. P., and Lekou, D. J.: Assessment of the strain gauge technique for measurement of wind
turbine blade loads, Wind Energy, 3, 3565, https://doi.org/https://doi.org/10.1002/1099-1824(200001/03)3:1<35:: AID-WE30>3.0.CO;2-
D, 2000.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., et al.: scikit-learn: Machine Learning in Python,
https://scikit-learn.org/, journal of Machine Learning Research, 12:2825-2830, 2011.

Pimenta, F., Ribeiro, D., Romén, A., and Magalhdes, F.: Predictive model for fatigue evaluation of floating wind turbines validated with
experimental data, Renewable Energy, 223, 119 981, https://doi.org/https://doi.org/10.1016/j.renene.2024.119981, 2024.

Pulikollu, R., Haus, L., Mclaughlin, J., and Sheng, S.: Wind Turbine Main Bearing Reliability Analysis, Operations, and Maintenance
Considerations: Electric Power Research Institute (EPRI), https://www.epri.com/research/products/000000003002029874, 2024.

Quick, J., Hart, E., Nilsen, M. B., Lund, R. S., Liew, J., Huang, P., Rethore, P.-E., Keller, J., Song, W., and Guo, Y.: Reductions in wind farm
main bearing rating lives resulting from wake impingement, Wind Energy Science preprint, 2025, https://doi.org/10.5194/wes-2025-63.

Rinker, J. M., Hansen, M. H., and Larsen, T. J.: Calibrating a wind turbine model using diverse datasets, Journal of Physics: Conference
Series, 1037, 062 026, https://doi.org/10.1088/1742-6596/1037/6/062026, 2018.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533-536,
https://doi.org/10.1038/323533a0, 1986.

Sadeghi, N., Noppe, N., Morato, P. G., Weijtjens, W., and Devriendt, C.: Uncertainty quantification of wind turbine fatigue lifetime
predictions through binning, Journal of Physics: Conference Series, 2767, 032 024, https://doi.org/10.1088/1742-6596/2767/3/032024,
2024.

Santos, F. D. N., Noppe, N., Weijtjens, W., and Devriendt, C.: Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for
multiple SHM setups, WIND ENERGY SCIENCE, 7, 299-321, https://doi.org/10.5194/wes-7-299-2022, 2022.

Schaeffler TPI-176: Lubrication of Rolling Bearings, Technical Product Information TPI 176, Schaeffler Technologies AG & Co. KG,
Herzogenaurach, Germany, principles; Lubrication methods; Lubricant selection and testing; Storage and handling., 2014.

Schillaci, M. A.: Estimating the population variance, standard deviation and coefficient of variation: sample size and accuracy, Statistics &
Probability Letters, 188, 110420, https://doi.org/10.1016/j.spl.2022.110420, 2022.

Scribd: V52-850 kW Wind Turbine Technical Specification (Vestas Document), https://www.scribd.com/document/524089466/v52,
accessed: 2025-10-29, 2021.

SKF Group: SKF Product Select — Single Bearing, https://productselect.skf.com/#/type-arrangement/single-bearing, accessed: 2025-10-27,
2025.

41


https://doi.org/https://doi.org/10.1007/s10010-023-00627-0
https://doi.org/10.1115/1.4009458
https://github.com/keras-team/keras-tuner
https://doi.org/https://doi.org/10.1016/j.engstruct.2023.117140
https://doi.org/https://doi.org/10.1002/1099-1824(200001/03)3:1%3C35::AID-WE30%3E3.0.CO;2-D
https://doi.org/https://doi.org/10.1002/1099-1824(200001/03)3:1%3C35::AID-WE30%3E3.0.CO;2-D
https://doi.org/https://doi.org/10.1002/1099-1824(200001/03)3:1%3C35::AID-WE30%3E3.0.CO;2-D
https://scikit-learn.org/
https://doi.org/https://doi.org/10.1016/j.renene.2024.119981
https://www.epri.com/research/products/000000003002029874
https://doi.org/10.5194/wes-2025-63
https://doi.org/10.1088/1742-6596/1037/6/062026
https://doi.org/10.1038/323533a0
https://doi.org/10.1088/1742-6596/2767/3/032024
https://doi.org/10.5194/wes-7-299-2022
https://doi.org/10.1016/j.spl.2022.110420
https://www.scribd.com/document/524089466/v52
https://productselect.skf.com/#/type-arrangement/single-bearing

905 UNECE: Carbon Neutrality in the UNECE Region: Integrated Life-cycle Assessment of Electricity Sources, ECE Energy Series, United
Nations, ISBN 978-92-1-001485-4, https://doi.org/10.18356/9789210014854, 2022.
Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., and Melero, J. J.: Lifetime extension of onshore wind turbines: A review covering Germany,
Spain, Denmark, and the UK, Renewable and Sustainable Energy Reviews, 82, 1261-1271, https://doi.org/10.1016/j.rser.2017.09.100, 277
citations (Semantic Scholar/DOI) [2025-02-12], 2018.

42


https://doi.org/10.18356/9789210014854
https://doi.org/10.1016/j.rser.2017.09.100

	Response to Reviewer 1
	Comments and suggestions:
	Response to Reviewer 2
	Comments and suggestions:

