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Abstract.

Decisions on the lifetime extension of wind turbines require evaluating the remaining useful life of major load-carrying

components by making a comparison to the design lifetime. This work focuses on the lifetime assessment of two fundamentally

different components: a structural component in the form of the tower and rotating components in the form of the main bearings.

A method is presented that combines high-frequency SCADA, accelerometers, minimally intrusive strain gauge at blade and5

tower, and limited design information for continued estimates of the component loads and their subsequent fatigue damage

accumulations. The work is applied to a highly instrumented DTU research turbine, a Vestas V52 model, where strain gauges

in the blade root and in the tower bottom are calibrated for nearly 10 years using continual calibration methods without the

need for operator input. The lifetime estimates of the tower bottom and front and rear main bearings were found to be 1770

years and 166-333 years, respectively, reflecting the low average wind speed of the turbine site compared to the wind turbine10

design wind class IA. Secondly, it was investigated whether virtual load sensors can replace tower strain gauges and if one

can use only uptower sensors for lifetime evaluation. Consistent tower bottom strain signal estimate and long-term damage

accumulation were achieved with ±5% lifetime variability once SCADA, nacelle accelerometers, and blade root strain gauges

were combined for the deployment of a long short-term memory (LSTM) neural network. A systematic underprediction of the

accumulated damage of the tower bottom was observed for the virtual load sensors, and a correction method was proposed.15

Finally, the impact of environmental conditions, including turbulence intensity and shear exponent of the incoming wind, on the

main bearing lifetime was investigated using 10 years of measurements. A simple drivetrain thermal model was used to evaluate

the modified lifetime L10m of the main bearings, depending on the measured ambient temperature and the grease cleanliness

assumptions. Higher fatigue loads are observed on the main bearings at rated wind speeds with low turbulence intensity and

low shear. Changes of ±5 ◦C in the ambient temperature around 15 ◦C caused a 10-year difference in the operational life of20

the main bearings at rated wind speed. It was also found that the specification of the gearbox mounting stiffness can lead to a

60% overprediction of the main bearing loads.
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1 Introduction

The extension of the lifetime of wind turbines provides an opportunity to decrease the levelized cost of the electricity produced

by wind turbines, which is not only competitive, but in many cases the cheapest electricity source according to evaluations of25

multiple global benchmark reports such as (IEA and NEA, 2020; IRENA, 2024). At the same time, lifetime extension could

decrease the global warming potential (CO2,eq / kWh) emitted during the entire life cycle of a wind turbine (UNECE, 2022).

Lifetime extension of wind turbines is then strongly dictated by reliable technical evaluations of the consumed and of the

remaining useful lifetime of structural components such as the tower and the foundations as described by (Ziegler et al., 2018;

IEC-TS-61400-28, 2020). Such large components are site-specific and little to no experience can be found in replacement30

of those during the lifetime and beyond, as this would hinder the profitability of a wind farm. Similarly, having unexpected

and several load-carrying components failing would require long-lasting replacements that would increase the operational

expenditure (OPEX) of a wind farm and reduce its revenue. That is the case with the main bearings. OPEX estimates should

be based on the probability of failure of such components combined to their availability in the spare market.

As a failure in the main bearing means a failure in turbine operation, this decision should be made with high levels of35

certainty. A main bearing failure results in high replacement costs, between $225,000 and $400,000, loss of revenue due to

production interruption, and its failure is one of the main reasons for the increase in OPEX, especially in onshore wind turbines

of 2 to 6 MW in size according to Pulikollu et al. (2024). Although main bearings are known to have multiple failure modes,

as examined by Hart et al. (2020), including abrasive and adhesive wear and fretting, this work considers lifetime consumption

as the fatigue life consumption of the main bearing. This is due to the leading role of rolling contact fatigue (RCF) which can40

not yet be ruled out with respect to historical replacement data of the main bearings. Hart et al. (2023) carried a large review of

historical data on the damage and failure of the main bearing and identified that for a large share (80%) of the reported failure,

spalling was present, which could be a consequence of both subsurface- and surface-initiated RCF.

In this context, the end goal of a well-designed structural health monitoring (SHM) campaign is to have the most comprehen-

sive and reliable wind turbine monitoring and lifetime estimation with the least amount of instrumentation Santos et al. (2022).45

And using strain gauges often results in one key drawback: compromised long-term reliability. There has been a literature gap

on the possibility of calibrating strain gauges for many years, with some studies to mention Pacheco et al. (2024). So, the

question of how to extrapolate the lifetime of components based on limited recordings has been of interest and widely inves-

tigated (Loraux and Brühwiler, 2016; Hübler and Rolfes, 2022; Sadeghi et al., 2024; de N Santos et al., 2024). However, no

consensus has yet been reached on the methods or uncertainties related to those methods. In this context, data-driven methods50

Dimitrov and Göçmen (2022); Pimenta et al. (2024) deployed as long-term virtual load sensors could yield several advantages

by replacing real sensors and reducing the amount of instrumentation needed, being able to describe complex mathematical

correlations, with no real physical understanding of the system.

Considering the challenges and gaps identified, this work aims to maximize coverage using existing onboard sensors and

limited non-invasive hardware additions, to evaluate the lifetime of structural and rotating component simultaneously. Based55

on this objective, the following research questions guided the methodology and subsequent analysis.
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– Is it possible to continuously and reliably count the lifetime of a tower and a four-point configuration main bearing with-

out blade design information and having in hands SCADA, blade root, and tower bottom strain gauges, while meeting

ISO-281 (2007) and IEC 61400-1 (2019) standards?

– What degree of accuracy could be achieved by a tower bottom virtual load sensor based on measurements in the nacelle?60

– What are the environmental and operation conditions (EOC) which have strongest impact on the basic and modified

rating lifetime of the main bearing (L10 and L10m, respectively), based on analysis of a long-term measured dataset?

The remaining sections of this paper are organized as follows. Section 2 provides an overview of the theoretical background

relevant to this work, including the assumptions behind the tower fatigue lifetime and the main bearing lifetime, as well as the

concept of virtual load sensors applied in this study. Section 3 describes the wind turbine and the environmental measurement65

campaign used for data collection. Section 4 details the proposed methodology for the calibration of the strain gauge and

the lifetime of the tower and main bearing based on load measurements and virtual load sensors. The results obtained are

presented in Section 5, followed by a discussion in Section 6, where the findings are compared to the relevant literature and

key correlations are analyzed. Section 7 concludes the paper by summarizing the main insights and learnings from this work.

2 Theoretical background70

Behind the key assumptions of this work, mentioned in the introduction and shown in Figure 2, some require further explana-

tion. The concept of tower fatigue and main bearing lifetime is assumed as derived in standards used for design and certification.

The concept of virtual load sensors can also be very broad. In this work, we will focus on time-series and data-driven virtual

load sensors that could be used to replace tower bottom strain gauges at a wind farm level and keep instrumentation in the

nacelle. More details of each subject are described in the following subsections.75

2.1 Tower fatigue lifetime

The lifetime is estimated as described by IEC 61400-1 (2019), considering the Design Load Cases (DLCs) 1.2 (Power produc-

tion), 3.1 (Start-up) and 4.1 (Normal Shutdown). More details on how to classify these operational conditions based on 10-min

SCADA can be found in Faria et al. (2024). On the material side, the DTU research tower V52 is made of structural steel S355,

which is often used in large components and harsh environmental conditions. In this work, the fatigue assessment of critical80

welds assumes that the component has inherent defects in the welded joints and thus does not model crack initiation or growth.

The first step is to convert a measured tower bending strain ϵ [µmm/mm] to bending stress σ [Pa] as shown by Hooke’s rule

σ = E · ϵ. The bending stress can be translated into the bending moment M assuming the tower is a Euler-Bernoulli beam.

σ =
M · c

I
(1)

where I [m4] is the area moment of inertia and c [m] is the radius, in the case of a circular cross section. To evaluate fatigue, the85

stress time series is converted to stress ranges ∆σi and umber of cycles ni using the rainflow counting technique, as described
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by ASTM E1049-85 (2017). The tower bottom in this work is evaluated using the category of the stress cycle (SN) curve

category "D", for butt-weld in air as suggested by DNVGL-RP-C203 (2016), which translates ∆σi into a maximum amount

of cycle to failure Nmax,i. Finally, fatigue accumulation, in other words, fatigue lifetime is assumed to be linear, according to

Palmgren and Miner (1945), which is valid for any time window, from high-frequency to 10-min instances to lifetime.90

DT =
Nj∑

j

DT,j =
Nj∑

j

Ni∑

i

ni

Nmax,i
=

Nj∑

j

Ni∑

i

ni · (∆σi)mi

Ki
(2)

where DT is the tower accumulated fatigue damage (failure at unity), DT,j is the accumulated fatigue damage of the 10-minute

instance, mi is the exponent of the SN curve, Ki is the intercept of the SN curve on the y-axis, Nj is the number of 10 min

instances and Ni is the number of cycles in a given instance.

The exponential nature of fatigue can be observed and its non-linearity due to different mi and Ki dependent on the two95

regions of the SN curve where the cycle could be placed. In order to facilitate the evaluation of virtual load sensor during

training and validation, instead of comparing DT , Damage Equivalent Loads (DELs) are often used and can be explained as

single-frequency sinusoidal loads that would inflict the same damage as the initial load variable in time, as in

DEL =

(
Ni∑

i

ni ·∆σm
i

Nref

)1/m

(3)

where m is assumed to be 4, which is an average between DNV "D" curve values of mi equal to 3 and 5 and logKi
equal to100

12.164 and 15.606, respectively, transitioning at Nmax equal to 107 cycles. The Nref is a normalization factor and is arbitrarily

assumed to be 107 cycles, since DEL has no absolute reasoning.

However, for the estimation of the consumed and remaining useful lifetime of a tower, and the deployment of the virtual

load sensor in the long-period, DEL has no absolute meaning and its uncertainty underestimates the uncertainty of the useful

life of the component and, therefore, DT should be prioritized. More discussion is present in Section 5.3.105

2.2 Main bearing fatigue lifetime

The lifetime of a rotating component, such as a main bearing, can be significantly more complex to model than the tower

lifetime. In this work, the formulations from ISO-281 (2007) are followed, which also defines the linear accumulation of

damage as proposed by Palmgren, using the same DLCs as for the tower. As mentioned, rolling contact fatigue is not the only

damage mode of the main bearings, but the inclusion of additional mechanisms is not in the scope of the present work.110

The radial Fr [N] and axial Fa [N] load acting on the main bearings are combined into

P = X ·Fr + Y ·Fa[N ] (4)

where P is the dynamic load, X and Y are functions of the load ratio Fa/Fr and the limiting value e. The time-varying P can

be replaced by a constant load Peq that would have the same deterioration at its given operational rotation speed, similar to the

defined DEL, without involving any counting method.115

Peq =
(∑

P p
i ·ωi∑
ωi

)1/p

(5)
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where Pi [N] is the dynamic load and ωi [rpm] is the rotational speed of the main bearing at the instantaneous i timestamp.

Then, the basic rating life L10 is defined as the 90% survival time of a given population of main bearings under similar

operational conditions. In other words, 10% of the bearings would fail.

L10,j = 106

(
Cd

Peq

)p

[revolutions] L10,j=
106

60 ·ω · 8760

(
Cd

Peq

)p

[years] L10 =
1∑

ϕj/L10,j
[years] (6)120

where L10 is the basic rating life overall while L10,j is the basic rating in a given 10-minute instance j. If all instances have

the same 10-min, ϕj is the inverse of the number of instances. Cd [N] is the dynamic load rating, p is the exponent function of

the rolling body type (e.g. ball or roller) as provided by ISO-281 (2007), Peq [N] is the dynamic equivalent load and ω [rpm] is

the rotational speed of the main bearing within a 10-min instance. Once L10 is calculated as the number of hours to failure in

each instance, one can describe a main bearing damage accumulation, similar to the damage accumulation in the tower, as in125

DB =
Nj∑

j

DB,j =
toperation

L10
(7)

where DB is the accumulated fatigue damage of the main bearing (failure at unity), DB,j is the accumulated fatigue damage

of the 10-minute instance, and toperation is the evaluated time of operation in years.

In order to incorporate a more realistic effect of operating conditions on the main bearing, a life modification factor aISO

should be evaluated. The latter considers that the lubricant will be exposed to different operating temperatures and its value130

will be affected by the level of grease cleanliness, the operating viscosity (function of temperature), the rolling element type,

bearing fatigue limit, and external loads. The complete formulation can be found in ISO-281 (2007). The modified rating life

L10m of a main bearing is then calculated using

L10m = L10 · aISO (8)

2.3 Virtual load sensors135

In this work, virtual load sensors are seen as an opportunity to replace physical sensors to estimate tower bottom bending

moments and long-term fatigue lifetime, keeping the necessary measuring in the nacelle. In the literature, several efforts have

been made in the regard of data-driven (machine learning) models for lifetime predictions of components.

Benefiting from instances statistics and more available SCADA accelerometers, efforts were made to estimate target statis-

tics such as damage equivalent loads (DELs) or damage to the main bearing. Mehlan et al. (2023) estimates aerodynamic140

hub loads and tracked bearing fatigue damage using a digital-twin based virtual sensing combining SCADA and condition

monitoring. For support structures, de N Santos et al. (2024) estimates the fatigue lifetime based on different combinations of

SCADA levels, highlighting the improvement in performance using reliable nacelle accelerometers, with a novel population-

based approach for wind farm extrapolation. Focusing on time extrapolation, Hübler and Rolfes (2022) focuses on different

methodologies to extrapolate damage in time and their estimated uncertainty. On the other hand, when the time series signal145

is the target output, the model selection and training process are quite different.Complementary, Dimitrov and Göçmen (2022)

shows how machine learning time series models (e.g. LSTM) can act as virtual sensors for blade root bending moment trained
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on aeroelastic simulations. More recent efforts extend virtual sensing to floating turbines. Gräfe et al. (2024) trained neural

networks on simulated floater motions and LIDAR-derived wind to reconstruct fairlead tensions and DELs.

The same data-driven models applied by Dimitrov and Göçmen (2022) are selected to be used in this work on the DTU150

research V52 turbine dataset, all derivatives of neural network architectures. This work contribution to virtual load sensor

methods lies in the validation of a model that should accurately replicate both: (1) the time series of tower bottom bending

moments and (2) the fatigue loads of the tower and main bearings in the long term. (1) The first can have its performance

quantified by feeding the virtual load sensor as a thrust estimate to calculate the lifetime consumption of the main bearings. (2)

The latter includes the 3 most damaging operational conditions for the tower as described in Pacheco et al. (2024); Faria et al.155

(2024): power production DLC 1.2, start-up DLC 3.1, and shutdown DLC 4.1, all in a single model.

3 Measurements

In this work, SCADA data and measurements from nearly 10 years are analyzed from February 2016 to December 2024 at Risø,

Denmark. The environmental conditions are analyzed out of 10-min instances statistics from a met mast about 100 m east of the

DTU research V52 turbine. In addition to the mean wind speed Uhub at the hub height of zhub = 44 m, the turbulence intensity160

is calculated as TI = σU/U , where σU is the standard deviation of the wind speed. Moreover, vertical shear is modeled

considering the normal wind profile model IEC 61400-1 (2019) given by the power law equation U(z) = Uhub(z/zhub)α ,

where z is the height and α is the shear exponent. The latter is estimated as the best fitting factor out of five different cup

anemometers measuring heights (at 18, 31, 44, 57 and 70 m) for each 10-min instance. No shadow correction was performed

for the mast tower. In general, it is possible to observe that the Risø site has fairly low wind and constant conditions. The yearly165

wind speed Uhub, estimated as a Weibull function in the graph on the left, has a mean below 6 m/s. The site reference turbulence

Iref calculated as Iref = σU/(0.75Uhub + 5.6), has a mean value around 0.08 (closer to IEC class C) and the shear exponent

α of 0.22. The prevailing wind direction falls within the southwest quadrant across all years. The DTU research V52 turbine is

a Vestas 850 kW onshore wind turbine class IA with a rotor diameter of 52 m and a hub height of 44 m, with a active pitch and

rotor speed control. SCADA and SHM measurements are available from February 2016 to December 2024, as are statistics and170

high-frequency data. The turbine has a rated wind speed of approximately 14 m/s. Figure 1 represents the turbine schematic

and part of its instrumentation, highlighting the two measurement setups present in the tower bottom (a–a) and blade root (b–b).

SCADA includes rotor speed ω, pitch angle θ, yaw angle γ, azimuth angle φ, and power. All of the bending moments shown

are obtained from full Wheatstone bridge installed in the components. This configuration has a couple of important advantages

as higher signal-to-noise ratio, is temperature independent and optimized for measuring bending stress, see Hoffmann (1989).175

A problem in the quality of the measured azimuth angle γ, carried out by a proximity sensor on the shaft flange, was identified

before 2018 and after 2022, probably due to surface dirt. A correction was applied to all the raw signal to account for that,

by combining the controller rotor speed signal with the measured azimuth to have a more reliable estimate of the azimuth

angle (please refer to Appendix A). Taking into account Figure 1(c1), the tower bottom fore-aft bending moment Mfore−aft

(downwind) can be calculated as in Equation 9.180
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Figure 1. Schematic of an onshore wind turbine to represent the DTU research V52 turbine parameters and measurements. (a) Front view

shows the rotor coordinate system XYZR which moves with the yaw angle γ(t) around ZT and is facing the wind direction. The azimuth angle

φ(t) of blade A and pitch angle θ(t) are also shown. The Medgewise represents the edgewise (in-plane) blade root bending moment. (b) In

the lateral view, the flapwise (out-of-plane) rotor bending moment Mflapwise and the tower bottom fore-aft bending moment Mfore−aft are

shown. The θ(t) angle is the controller-defined blade root angle between the rotor plane and the chord line of the blade, as shown in the zoom

view (green dashed box). (c1) Tower bottom cross section (a–a) in the global/tower coordinate system (time-invariant) XYZT is determined.

Mfore−aft is dependent on γ(t), as a composition of the measured tower bottom bending moments MxTB and MyTB, which are installed

at the angles−βx and βy respectively. (c2) Blade root A cross section (same setup for blades B and C) shown in the blade coordinate system

XYZB, which rotates with φ(t) in respect to YR. Both measured blade root bending moments MxBRA and MyBRA shall be converted into

Mflapwise and Medgewise as function of the pitch angle θ(t).

Mfore−aft(t) =
(−MxTB(t) · sin(βy − γ(t)) +MyTB(t) · sin(βx + γ(t)))

sin(βx + βy)
(9)

in which the denominator factor is imposed because the two tower bottom bending moments are not perpendicular. Similarly,

considering the measurement setup shown in Figure 1(c2), the blade root flapwise Mflapwise (out-of-plane) and edgewise
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Medgewise (in-plane) bending moments can be calculated individually for blades A,B and C.

Mflapwise,(A,B,C)(t) = MxBR(A,B,C)(t) · cos(θ(t))−MyBR(A,B,C)(t) · sin(θ(t)) (10)185

Medgewise,(A,B,C)(t) = MxBR(A,B,C)(t) · sin(θ(t)) +MyBR(A,B,C)(t) · cos(θ(t)) (11)

4 Methodology

Figure 2 shows the inputs and assumptions taken into account to investigate the research questions. From high-frequency

turbine measurements to tower (structural component) DT and main bearings (rotating component) DB accumulation of fatigue

damage over time. The orange boxes include the continual calibration of the strain gauges and the operations to translate the190

strain measurements of the tower and the blade to the tower bottom bending moment Mfore−aft, and the axial Fa and radial Fr

main bearing loads. The standards shown (DNVGL-RP-C203, 2016; IEC 61400-1, 2019; ISO-281, 2007) provide the methods

for the fatigue lifetime evaluations of each component, as explained in Section 2. The DTU research V52 turbine is assumed to

have a S355 steel tower, with a measured tower geometry consisted of an 2.913 m outer diameter and 16 mm wall thickness.

Bending moments in 
tower bottom (fore-aft) 

and blade root        
(flapwise and edgewise)

SCADA
+

Accelerometer
+

Strain gauges 

Radial and axial 
loads of front and 
rear main bearings

Rotating component Peq and 
L10 

Sensor quality
+

Continual strain 
gauges calibration

Coordinate system 
+

Statically indeterminate 
system 

Tower bottom 
virtual load 

sensor

IEC 61400-1 

Tower bottom 
fatigue lifetime (DT)

DNV-RP-C203 Estimate components lifetime 

 L10m

Structural component

Main bearings             
fatigue lifetime (DB)

Thermal model   
+   

Grease cleanliness

ISO 281 

Correlate to 
environmental conditions

Figure 2. Methodology flowchart presenting the steps followed in this work, starting from high frequency measurement and SCADA dataset,

to components lifetime estimates. Rectangular black boxes refers to measurement signals and estimates. Tower bottom DT and main bearings

DB fatigue lifetime are analyzed over time, and the equivalent dynamic load Peq , basic rating life L10 and modified rating life of the main

bearing L10m are analyzed as function of environmental conditions. Orange boxes identify the procedures and standards used in this work.

The orange dashed box contains the tower bottom virtual load sensor, which should replace the real sensor in case of sensor failure.

In addition, a virtual load sensor is proposed to replace real strain gauges in the event of sensor failure and its performance195

is assessed for fatigue lifetime estimations. While, the main bearings equivalent dynamic load Peq , the basic L10 and modified

L10,m rating life are evaluate as function of key environmental conditions. To compute the L10,m of the main bearings, a
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drivetrain thermal model was made to estimate the temperature of the main bearings, which is necessary to estimate the life

modification factor aISO, as introduced in Section 2.2.

4.1 Strain gauge zero-drift automatic calibration200

It is often claimed that strain gauges are only reliable for short-term (less than a year) to mid-term (couple of years) campaigns,

a limitation that would conflict with the requirement for sustained monitoring of wind turbine structural elements, most notably

in offshore installations, where replacement in case of sensor failure is expensive and can take time due to weather windows.

This work overcomes such limitation by introducing continual and automated routines for the calibration of both tower

bottom and blade root strain gauges that work on long-term datasets (almost a decade). The methods do not require operator205

intervention, stopping or curtailment, and instead take advantage of idling and parked conditions. Both methodologies are

derived from the recommendations in IEC 61400-13 (2016). The main objective is to identify the artificial offset O from the

measured strain gauges and to correct them to the original zero point. No external dynamic load should cause zero strain. The

signals of the bending moment shown in Figure 1 should be understood as M = G · (Mraw + O), where M is the corrected

bending moment, Mraw is the measured strain signal, G is the gain associated with the translation of voltage readings into210

bending moment, and O is the artificial offset of the strain sensor. It should be noted that for the tower bottom strain gauges

placed on steel, G can be analytically calculated, depending on the bridge arrangement (full bridge Wheatstone in the DTU

research V52 turbine), the elastic modulus and the geometry. However, for blade root strain gauges mounted on composite

material, a blade pull exercise must be performed to estimate G. And a crosstalk correction has to be applied considering

the geometry of the twisted and nonsymmetric blade, see Papadopoulos et al. (2000). Such calibration campaign has been215

undertaken on the DTU research V52 turbine, but the detailed results are not presented in this work for confidentiality reasons.

4.1.1 Yaw sweeps and Low-Speed Idling (LSI)

The tower bottom strain gauges calibration is based on a specific operation in which the wind turbine is parked and untwists

its power cable at low wind speed. In that case, the turbine performs full yaw rotations and the main contribution to the tower

bottom bending moment is the gravitational load from the nacelle mass hanging bending moment. In case at least 1-minute220

data points of the yaw angle γ are available, the high-frequency strain gauge signals MxTB and MyTB can be automatically

calibrated Faria et al. (2024). The Python package generated for this matter is publicly available at Faria and Jafaripour (2023).

The blade root strain gauge calibration is performed based on both idling and parked conditions at low wind speed. The first is

used to calibrate the strain gauges placed on the pressure-suction surfaces of the blade. The latter is for those on the leading-

trailing edges. The azimuth angle φ is needed at a higher sampling frequency (e.g. tested with at least 1 Hz). More information225

on the implementation can be found in Pacheco et al. (2024) and Faria et al. (2025).
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4.2 From blade and tower to main bearing loads

The front and rear main bearings of the DTU research V52 turbine are described in Table 1. The drivetrain transmits the torque

from the rotor to the gearbox through the main shaft, which is supported by two spherical roller bearings in the main bearing

housing and the gearbox upfront bearing as shown in Figure 3a.230
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0.8 m
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L1 = 

0.3 m

Lhub = 

1.0 m
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Main bearing
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Figure 3. (a) Schematic of the DTU research V52 drivetrain. The hub carries the blades and is bolted to the shaft flange. The shaft is

supported by two main bearings, which are mounted inside the main bearing housing. The latter is clamped to the nacelle bedplate through

the housing supports, similarly the gearbox is mounted by the torque-arms but in two non-rigidly stiff connection points. (b1) refers to the

lateral view used to derive the vertical radial loads in the main bearing and (b2) refers to the top view used to derive the horizontal radial

loads. The Mv and Mh are the vertical and horizontal aerodynamic resultant bending moments from the rotor, while Frotor and Fshaft are

the rotor and shaft gravitational loads due to their weight and Mrotor is the bending moment associated with the shift of Frotor from the hub

center to the shaft flange by Lhub. As for the reactions, radial loads are given by R, classified as r for rear, f for front, v for vertical and h

for horizontal. The gearbox mounting stiffness is equally estimated in both direction and represented by the spring Kg .

The main bearing housing is clamped to the nacelle bed plate, while the gearbox is mounted through its torque-arms in a

rubber support. The rubber support is assumed to have a linear and temperature-independent spring with a stiffness of 20·106

[N/m], close to the suggested values in Haastrup et al. (2011); Keller et al. (2016). A sensitivity analysis is performed later

to evaluate the importance of this assumption. The static gravitational loads acting on the main shaft, shown in Figure 3b, are

derived from a combination of public sources and visual inspections of the turbine nacelle. Similar for the lengths (e.g. Lshaft).235

The gravitational force of the rotor Frotor is calculated assuming a rotor and a hub mass of 10 tons (third party source, see

Scribd (2021)). The gravitational force of the shaft Fshaft assumes a shaft mass equal to 1 ton, between an internal estimate

of 0.8 tons and the Fingersh et al. (2006) estimate of 1.2 tons, which uses the best-fit equation mshaft = 0.0142 ·D2.888 from

historical data (given D as the rotor diameter in meters and the mass in tons).
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Table 1. Technical specification of the two main bearings in the DTU research V52 turbine given by SKF Group (2025). SRB stands for

spherical roller bearing and the bearing p is equal to 10/3.

Designation Type
Inner

diameter

Outer

diameter

Basic dynamic

load rating Cd

Basic static

load rating Co

Fatigue

load limit Cu

limiting

factor e

Front

main bearing
23064 SRB 320 [mm] 480 [mm] 2348 [kN] 3800 [kN] 285 [kN] 0.23

Rear

main bearing
23160 SRB 300 [mm] 500 [mm] 3368 [kN] 5100 [kN] 380 [kN] 0.3

Once static loads are defined, the aerodynamic bending moment driven by the blades in the vertical Mv and horizontal Mh240

directions can be estimated from the blade out-of-plane bending moments, using:

Mv(t) = Mflapwise,A(t) · cos(φ(t)) +Mflapwise,C(t) · cos(φ(t) + 120) + Mflapwise,B(t) · cos(φ(t) + 240) (12)

Mh(t) = Mflapwise,A(t) · sin(φ(t)) +Mflapwise,C(t) · sin(φ(t) + 120) + Mflapwise,B(t) · sin(φ(t) + 240) (13)

where φ(t) is the azimuth angle of blade A, see Figure 1. It should be noted that a positive Mv should benefit the loads in the

radial main bearings to some extent, as it counter-balances Frotor.245

The main shaft is supported in 3 points, two main bearings and the gearbox, in both directions (lateral view and top view),

so it is a statically indeterminate system. To solve it, the shaft is modeled as a flexible beam and a double integration method is

applied to compute the radial load Rf,v, Rf,h,Rr,v and Rr,h (see Appendix B). The resultant radial loads of the front Rf and

rear Rr main bearings have a magnitude of

R(f,r) =
√

R2
(f,r),v + R2

(f,r),h (14)250

, which are solved individually for each main bearing.

The axial load of the main bearings is equal to the thrust estimate, derived as the bending moment Mfore−aft divided by

the height difference between the hub height and the tower bottom strain gauge. This is an assumption of this methodology,

where the thrust estimate is linearly related to the bending moment of the bottom of the tower. Apart from that, since both

bearings are able to carry axial load, the system could become over-constrained. An additional axial load would be applied to255

the bearings in the case of thermal expansion. For these reasons, the rear bearing is considered the locating bearing, being the

larger bearing between the two.

4.3 Tower bottom virtual load sensor: thrust and fatigue loads

The selection of good candidates for the machine learning model to be deployed as virtual load sensors was carried out from

simpler to more complex neural network architectures. Pure spatial correlation between the target variable and inputs is tested260
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using a feedforward neural network (FNN) baseline model (Rumelhart et al., 1986). Temporal correlation is added through an

FNN with n-lagged time steps,NlaggedFNN Dimitrov and Göçmen (2022), and a Long Short-Term Memory (LSTM) neural

network (Bengio et al., 1994). The first can only take a few time steps to still be "trainable", while LSTM is often a less

noise sensitive model and can better capture long-term dependencies according to Bengio et al. (1994), at the cost of model

complexity. The hyperparameters of the models were tuned using the Keras-tuner random search method O’Malley et al. (2019)265

using 5 h of data. The bounds and the optimal hyperparameters for the models that combine all possible inputs are included in

Appendix C. All models used the "relu" activation curve in the hidden layers and "linear" activation towards the output layer.

The LSTM model had a fixed "LSTM" layer and a second hidden layer with the same amount of neurons (hidden units) as

the first layer. The size of the training data set was 160 h of data selected using a k-means clustering technique Pedregosa

et al. (2011), spreading the training space within the rotor speed, blade pitch, power, and design load cases (DLC) to cover270

the relevant operational conditions. Similarly to Dimitrov and Göçmen (2022), a training dataset size and sampling frequency

sensitivity were carried out to use optimum values. In addition to that, different input signals are tested. Starting from most

available "SCADA" alone, including blade pitch, rotor speed, power, and azimuth (which was converted into sine and cosine),

then either adding tower top "Accelerometer", or the flapwise bending moment from one or all blades (stated as "Strain"). And

finally combining all available inputs as "All".275

Figure 4 shows the power spectrum density (PSD) of the different normalized input signals. One hundred representative

instances around the rated wind speed and similar turbulence and shear were analyzed. The different dynamic components with

which the neural networks will be trained is visualized. It can be seen that all SCADA signals a high quasi-static component,

while the azimuth has pronounced spikes around 1P, 3P, and 6P.
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Figure 4. Normalized Power Spectrum Density (PSD) of the possible input signals to be used in the training of a time-series virtual load

sensor. The black line is the target variable Mfore−aft. Normalization is based on the mean and standard deviation of each 10-min instance

and signal.The spectrum is generated by averaging 100 instances at rated wind speed (14 m/s) to generate a smooth PSD chart.

However, only the accelerometer signal can well capture the first fore-aft turbine frequency (around 0.62 Hz Rinker et al.280

(2018)), while its amplification of higher frequency components compared to Mfore−aft cannot be considered pure electrical

noise. When testing in standstill/parked conditions, there is strong attenuation similar to the Mfore−aft PSD. The most consis-
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tent explanation is that the gearbox operation feeds high-frequency broadband vibrations through the bedplate into the nacelle

accelerometer, elevating the spectrum beyond a discrete peak.

The performance metrics selected are the Normalized Root Mean Square Error (NRMSE), which is normalized by the285

standard deviation σy instead of the mean signal to avoid overshoot in case of small mean values. To validate fatigue lifetime

estimates, the equivalent damage load DEL and Peq are analyzed in terms of the mean absolute error (MAE).

NRMSE =
1
σy

√∑N
i=1(Ypred,i−Ymeas,i)2

N
(15)

MAELoad=(DEL,Peq) =
1
N

N∑

i=1

∣∣∣∣
Loadpred,i−Loadmeas,i

Loadmeas,i

∣∣∣∣× 100 (16)

where Ypred is the time instant prediction, Ymeas is the measured of Mfore−aft, and N is the number of instances included.290

4.4 Drivetrain thermal model
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Figure 5. (a) Schematic of DTU research V52 turbine drivetrain with the main bearing estimated front and rear temperature Tf and Tr .

Ambient temperature Tamb is measured in the nearby met-mast and the gearbox temperature Tg is estimated based on a 6 months monitoring

campaigns which recorded the temperature of the gearbox wall facing the rear main bearing. (b) Simplified thermal circuit model of the

drivetrain, which assumes that each 10-min instance reaches thermal equilibrium and average values of load, temperature and heat are

estimated. Q̇r and Q̇f are the dissipated power by the main bearings. R represents the equivalent thermal resistance: R1 between front main

bearing and ambient temperature; R2 between main bearings; R3 between rear main bearing and the ambient and R4 between rear main

bearing and the gearbox closest surface to the main bearing housing. Other heat exchanges are not considered. The R(...) are estimates on

geometry of the drivetrain components (all assumed as steel) and bearings heat transfer coefficients suggested by Schaeffler TPI-176 (2014).
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To incorporate the life modification factor aISO in the evaluation of the main bearings, estimates of the main bearings tem-

perature are necessary, as the first is function of viscosity which is function of temperature. Figure 5a shows the estimated

temperatures from the rear Tr and front bearing Tf , together with the measured temperatures, ambient Tamb and gearbox wall

Tg . It is proposed to simplify the heat exchange between the heat dissipated by the bearings and the outer system (drivetrain),295

by assuming thermal equilibrium in each 10 min instance and thermal resistors, as shown in Figure 5b. The ambient temper-

ature Tamb is measured by a spinner anemometer at the hub and the gearbox temperature Tg is estimated based on 6 month

monitoring campaigns that recorded the temperature of the gearbox wall facing the rear main bearing. A SCADA-based small

FNN model was trained to estimate values of Tg for each 10-minute instance, and it yielded 3 ◦C MAE, which is reasonable

considering the scope of this investigation.300

Q̇f −
(Tf −Tamb)

R1
− (Tf −Tr)

R2
= 0 (17)

Q̇r +
(Tf −Tr)

R2
− (Tr −Tamb)

R3
+

(Tg −Tr)
R4

= 0 (18)

By applying the Kirchhoff circuit concept for thermal equilibrium, Equations 18 are obtained, which have two target variables,

Tf and Tr. However, the dissipated power of a bearing is also affected by the bearing temperature (e.g., Q̇f = f(Tf , ...)), as

the latter influences the viscosity of the lubricant (the base oil of the grease). Because the variables depend on one another,305

the equations are coupled and cannot be solved explicitly. Instead, a Newton-Raphson solver was implemented in Python to

iteratively estimate the results, and no convergence issue was encountered. This framework can be found in more detail in

HIPERWIND D5.1 (2023). The dissipated powers were modeled as suggested by Schaeffler TPI-176 (2014), which separates

them into two contributions: frictional heat driven by speed (and viscosity ν) and frictional heat driven by load. The grease has

been assumed as Klüberplex BEM 41-301, a widely distributed industrial grease for wind turbine main bearings. Once Tr and310

Tf are estimated, the viscosity of the base oil is calculated according to ASTM D341-93 (1998). Lastly, aISO can be calculated

as a function of viscosity ratio κ, grease cleanliness level, Cu and Peq as given by ISO-281 (2007).

5 Results

5.1 Continual calibration routines

Figure 6 shows the identified calibration factors for each of the two tower bottom strain gauges and the six blade root strain315

gauges, all converted to bending moments as explained previously in Section 4.1. The charts to the right in both Figures 6a

and 6b show the "Sensor position" represent the angle difference of the installed sensor with respect to the SCADA reference

variable, the yaw angle γ for the tower (cardinal north as the zero point) and the azimuth angle φ for the blade sensors (blade A

upward as the zero point). Automatic routines manage to identify the position of the sensors correctly with a standard deviation

(std) of less than 4 degrees, even though the azimuth correction explained in the Appendix A was not applied at this stage,320

leading to higher variability before 2018 and after 2022.
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From the left charts, it is possible to observe larger zero drifts for the blade root compared to the tower bottom strain gauges.

The MxBRA, MyBRA, and MxBRC also present an abrupt change in the zero drift in 2018 and 2020. This could be justified

by sensor replacement or data acquisition settings; however, no final explanation has been validated. . The amplitude in this

method is the maximum gravitational overhang bending moment. In the case of the yaw sweep, driven by the rotor-nacelle325

weight in respect to the tower bottom, and for the LSI, driven by the blade weight in respect to the blade root. To have a

quantitative accuracy quantification of the automatic routines in identifying the offset and the amplitude their unexplained

variability are normalized by reference values: the mean Mfore−aft bending equal to 3540 kNm for the tower strain gauge and

the mean Mflapwise(A,B,C) bending equal to 500 kNm for the blade strain gauges, both at rated wind speed. From the middle

chart in Figure 6a, an amplitude std of less than 4 kNm (equal to 0.04 MPa) can be observed for both sensors, which represents330

a variability of 0.1% to the tower reference. For the blade, an amplitude std less than 3 kNm, representing a 0.6% variability.
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Figure 6. Identified calibration factors for a period of nearly 9 years, including offset, amplitude and sensor position. Each marker represents

one identified yaw sweep for the tower bottom strain gauges and its calibration factors(a) and one Low-Speed Idling (LSI) for the blade root

strain gauges and its calibration factors (b). In average, 2 calibration instances are available per month. The tower bottom sensors position is

defined in respect to the yaw angle γ(t). The blade root sensor position is defined in respect to the azimuth angle φ(t).

Once the offsets, shown in the left charts, are used to remove the artificial zero drift from the sensors, there will still be

residuals that are not explained by the automatic routine. The offset residuals of the tower showed a std of less than 60 kNm
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(corresponding to 0.5 MPa), which is 1.6% of the reference. While, for blade strain gauges, the offset residuals had an std of

less than 10 kNm, representing a variability of 2%.335

5.2 Lifetime of tower and main bearings

5.2.1 Fatigue damage accumulation

Once all strain gauges have been calibrated and high-frequency measurements and SCADA are available, the long-term lifetime

can be estimated over time, as shown in Figure 7. Considering that failure is reached at unity, the basic lifetime of the main

bearing L10 can be evaluated using Equation 7. The front bearing L10,f is 166 years and the rear bearing L10,r is 333 years.340

Similarly, the tower has a even larger lifetime of 1770 years. This significantly longer lifetime, compared to the design lifetime

of 20 years proposed by IEC 61400-1 (2019), is in part justified by the low wind potential of the Risø site, as discussed in

Section 3. However, it also points to the fact that older and smaller turbines, such as the DTU research V52 turbine, have long

remaining useful lifetimes (RUL) of key components that should be considered in lifetime extension (LTE) decisions.

(a) (b)

Figure 7. Fatigue damage accumulation of (a) the tower (structural component) and (b) the main bearings (rotating components) of the DTU

research V52 turbine for 9 years. Fatigue damage was counted according to Equations 2 and 7. Charts have an absolute accumulation and a

normalize y-axis in respect to the end measured accumulated damage (normalization of DB considers the rear main bearing).

5.2.2 Linear zero-drift assumption and simple uncertainty propagation to tower and main bearing lifetime.345

It is proposed to assume linear zero drift of the different strain gauges as a single linear function or a combination of linear

functions, which can be derived from continuous calibration factors over time. Then it is important to quantify the uncertainty

of this assumption in the life of the main bearings, which is based on the absolute load values P . Figure 8 shows how this

analysis was carried out to evaluate the effect on main bearing basic rating life L10 as described by Equation 6. Representative

10-min instances (DLCs 1.2, 3.1 and 4.1) were used to estimate the main bearing rating lifetime L10,j assuming a offset with350

Gaussian distribution. Then 10000 Monte Carlo iterations were carried out. For all three instances, the std of both bearings

L10,j was below 0.7%. Similar analysis was carried out for the fore-aft fatigue load. However, fatigue is not affected by the

mean load value (as described in Equation 2 and is then not sensitive to the offset, assuming there are no large yaw angle

variations within 10 min instances, see Equation 9.
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Sensor example: MyBRB

1.Offset 
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all 8 strain 
gauges

5.Evaluate 
L10

Monte Carlo 
iterations

Representative

10-min instance

MxBRC

12m/s

Instance example: rated wind speed

Figure 8. Uncertainty quantification flowchart to estimate the variability in the main bearings basic lifetime L10,j in a 10 min instance j due

to the linear assumption of the zero-drift strain gauges once continual calibration is applied. Each strain gauge offset is randomly sampled

from its deterministic linear fit and the residuals distribution. Monte Carlo is applied for 10000 iterations.

5.2.3 Effect of periodic calibration on the main bearings L10355

Now that continuous calibration with linear zero drift has been defined as the benchmark with a error less than 1%, it is sought

to understand how periodic calibration of strain gauges, as often carried out in the industry, could affect the lifetime estimation

of the main bearings. Table 2 shows the difference between the L10 measured over 9 years with continual calibration compared

to the periodic calibrations carried out. The absolute results of L10 error due to calibration periodicity are not generalizable, as

they are influenced by the zero drift behavior of each monitoring setup and the absolute loads of the wind turbine. However, it360

highlights how severely poor strain gauge calibration can influence the lifetime estimation of main bearings.

Table 2. Error in the L10 estimation for 7.5 years as a function of how often strain gauges are calibrated.

Monthly 3-months 6-months Yearly 2-year 4-years At commissioning

L10 error [%] 8.0 9.3 11.9 13.1 34.8 70.5 90.6

5.3 Virtual load sensor performance validation

More than 160 h of training data were used, as no significant improvements were found by enlarging the dataset, while down-

sampling from 50 Hz to 10 Hz remained within the error convergence. The latter could decrease the dynamic content and
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underestimate the measured fatigue damage; therefore, to verify this, a procedure proposed by D’Antuono et al. (2023) was365

carried out, and sampling frequencies lower than 8 Hz contained more than 98% of the measured fatigue damage in represen-

tative instances, to all considered design load cases (DLCs). A sampling frequency of 10 Hz is used.

(a) (b) (c)

FNN NlaggedFNN LSTM

Figure 9. Virtual load sensor validation performance applied to 160 hours. Their performance is shown based on the 3 metrics described in

Equations 15 and 16. The different columns represent the feature selected as inputs and the different colors the model type (neural network

architecture). The box-plots show the mean value and the 10th and the 90th. The number in the left subplot are the mean value of the

NRMSE, whereas the bold values in the middle and right subplots, have the mean absolute error (MAE).

The 15 different combinations of virtual load sensors (5 input options and 3 model types) are validated using 160 h from

the 2019. From left to right, Figure 9 presents all combinations of models tested in terms of the metrics shown in Equations 15

and 16: including NRMSE Mfore−aft (a), MAE DELfore−aft (b), and MAE Peq (c). Raw data are added for completeness as370

transparent markers. It can be seen that the LSTM model with "All" inputs outperforms the other models significantly when

comparing NRSME. The mean error of 23.41% is almost half the second-best performing model combination (LSTM and

"SCADA+Accelerometer"), which yields 37%. However, when no accelerometer signal was included and blade strain gauges

were added, the LSTM performance worsened compared to the FNN and NlaggedFNN models. It seems that LSTM cannot

attenuate the pronounced 1P, 2P, and 3P contributions of the blades, without a clear estimate of the first fore-aft frequency375

component (present in the accelerometer signal). Regarding the equivalent load of the main rear bearing Peq,r, influenced

by the thrust estimate from the virtual load sensors, it is observed a overall negligible difference between all combinations

of models. Models using only "SCADA" already reach MAE errors below 2%. The same results were found for long-term

deployment over 7.5 years, all models within 2% of main bearing L10 estimates.

For the equivalent damage loads at the tower bottom fore-aft DELfore−aft, models solely using SCADA had a minimum380

MAE error of 23.76%. Looking at Figure 10, it can be observed that the model with SCADA (LSTM) had an overprediction

for very low amplitude cycles, while underprediction for larger amplitude cycles. This becomes more predominant for above

rated wind speed conditions (refer to Figure 10b). Looking at its PSD, the model also does not properly capture the frequency

components of the reference signal Mfore−aft. Adding the accelerometer yielded strong improvements. The best performing

combination with "SCADA + Accelerometer" and LSTM had an MAE of 8.27%, very close to the overall best performing385

combination of "All" and LSTM with 6.98%.
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Below rated wind speed (8 m/s)

(a)

Above rated wind speed (16 m/s)

(b)

Start-up and Shutdown

(c)

Figure 10. Stress cycle histogram and Power Spectrum Density (PSD) chart (inset top right) of tower bottom Mfore−atf estimate for the

different input signal combined with their best performing model compared to the measured (black). All stress histograms are the summation

and the PSD charts the averaging of 100 instances from 2019. (a) Below rated wind speed 8 m/s (DLC 1.2). (b) Above rated wind speed 16

m/s (DLC 1.2). (c) Start-up and shutdown (DLC 3.1 and 4.1)
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The models that included strain without accelerometer have a worsened performance of 20.71% and 24.23% for the best

combination with NlaggedFNN, and also included undesired, sharp and narrow-band peaks, most likely coming from the blade

modes, that are not transmitted to the tower in reality.Looking close to the two best performing model combinations overall,

"SCADA + Accelerometer" and "All" with LSTM, it is worth taking a closer look at Figures 10a and 10b. It is observed390

that only the model "All" is consistent in predicting stress ranges at both below and above rated wind speed, while rarely

overpredicting the energy content for frequencies components above 0.62 Hz. Figure 10c shows the models performance under

DLC 3.1 and 4.1 together. Again, LSTM with "All" shows the most consistent results. However, all the possible combinations

under-predict large oscillations, and consequently large stress ranges.

5.4 Tower fatigue estimation using virtual load sensors395

LSTM is chosen as the best model to combine with "SCADA", "SCADA + Accelerometer", and "All", while NlaggedFNN

is chosen for "SCADA + Strain" (one and all blades). The long-term deployment of these is then performed to verify their

reliability in estimating the lifetime of the tower. Unfortunately, since the high-frequency database before July 2017 is sampled

at 35 Hz, in contrast to 50 Hz after July 2017, the results related to the implementation of virtual load sensors do not include

this initial period, as the models were trained on 10 Hz data. Downsampling 35 Hz to 10 Hz requires interpolation rather than400

a clean decimation (50 Hz to 10 Hz), which may affect consistency. Figure 11 shows the accumulated tower fatigue damage

of each virtual load sensor combination DT normalized by the final accumulated damage measured. It is interesting to note

that more damaging contributions are present at the beginning of each year because the Danish winter has higher wind speeds.

In terms of virtual load sensors, all have underpredicted the accumulated damage (under-conservative), which is expected

looking at the analysis done during validation and shown in Figure 10. The difference between the best-performing model405

"All" and the second model "SCADA + Accelerometer" is equal to 11%, from 64% to 75%. The remaining three models

perform considerably worse in the long term with estimates below 30% of the reference damage.
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Figure 11. Tower bottom fore-aft fatigue damage accumulation comparison between different virtual load sensors models. It shows the total

accumulation for a period of 7.5 years normalized, for the sake of comparison, by the final measured fatigue accumulated damage. The

different model combinations are shown by inputs used (marker) and by model type (marker fill color). The latter for sake of consistence

maintains the colors from Figure 9, blue for NlaggedFNN and orange for LSTM.
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5.4.1 Proposed experimental slope correction for tower damage accumulation and statistical uncertainty

If a virtual load sensor is consistent throughout the majority of operating conditions over the year, it would underestimate

different years with a similar error. Figure 12a shows the comparison for a full year (2018 as the first round year available)410

of estimated and measured accumulated damage. The slope ηk represents the under-prediction ratio, calculated as the linear

fit slope between the estimate and the measured accumulated damage yearly. And the greater the linear fit coefficient of

determination R2 , the lower the unexplained variability of the linear fit of a given virtual load sensor. Then, one could have an

accumulated damage from the virtual load sensor adjusted by the yearly slope as in

DT,a =
DT,vls

ηk
(19)415

where DT,vls is the original and DT,a is the adjusted accumulated damage of the virtual load sensor. The slope ηk is the linear

fit slope between the virtual load sensor and the measured damage for a given year k, and it is used as a correction factor.

An issue with the proposed experimental correction is the error associated with the choice of a given year k to calculate the

slope by chance. Figure 12b shows the calculated ηk for each year independently. The "All" and "SCADA + Accelerometer"

models have the slope closest to unity for all years compared to the remaining models, while the first has the lowest variability.420

Figure 13 then attempts to evaluate the uncertainty by individually calculating the slope correction factor for each year of the 7

years available and adjusting the expected accumulated damage of the two best performing virtual load sensors by the average

slope ηavg = 1/N ·∑N
k ηk, where N is the number of years. According to Schillaci (2022), to reach an estimate standard

deviation (std) accuracy of±10% with limited samples with confidence 90%, more than 100 samples are required, considering

a Gaussian distribution. Since our available N is low (7 years), both the (std) and the maximum/minimum bounds are evaluated.425
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Figure 12. (a) Comparison between accumulated damage from virtual load sensors (DT,vls) and measured (DT,m) for 2018. The slope ηk

of each model refers to the linear fit slope, while "R2" refers to the coefficient of determination (markers are shown once per month). (b) The

slope ηk calculated for each full year k. Blue for NlaggedFNN and orange for LSTM.
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Figure 13. Measured DT,m and adjusted DT,a damage accumulation of the virtual load sensors based on the yearly slope correction are

shown. Only the two best performing models are shown. The adjusted damage by the average slope value for the 8 years is shown as the

markers. The filled areas represent the variation around the standard deviation (inner) and bounded between the maximum and minimum

possible values observed (outer). The error between virtual load sensor and measured damages accumulation in shown on the right red y-axis.

It can be said that the model "All" with LSTM has the shortest error convergence time nearly within 6 months, and has

a mean error for the adjusted accumulated damage equal to -1.8% and variability within 3.5% and -6.5%. The second best

performing model "SCADA + Accelerometer" with LSTM has a mean error of -4.2% and a variability bounded within 13%

and -15%. The remaining virtual load sensors are also shown, but should not be considered as reliable as the latter, since these

do not capture neither the PSD nor the stress ranges distribution in a consistent manner. In other words, the final damage will430

match but with a very different estimated Mfore−aft signal compared to the measured.

5.5 Main bearings loads and fatigue lifetime analysis

As detailed in Section 2.2, the main bearing life is calculated directly from the applied radial and axial loads. The axial

load of the main bearing Fa is linearly linked to the tower bottom bending moment as in Fa = Mfore−aft/h, where h is

the height difference between hub height (44 m) and the height of the sensor (3.787 m). Here, Mfore−aft is assumed to be435

representative of the turbine thrust curve. The radial load of the main bearings Fr is equal to the estimated Rf (front) and Rr

(rear), respectively. For a more detailed explanation, see Sections 3 and 4.2. The 10-min mean loads are shown in Figure 14

as a function of wind speed. The front and rear bearings Fr have different behavior with respect to the wind speed. The front

main bearing has a fairly flat distribution at higher load, while, for the rear main bearing, the radial load is incremental. The

Fa/Fr ratio for the rear main bearing is almost in its entirety above the limiting factor, which will worsen the estimated rating440

life, as the Y factor increases (see Equation 4). Finally, Peq of the front bearing has a slight positive trend, most probably due

to higher rotor speeds with higher wind speed, while the rear bearing’s dynamic equivalent load is driven by the axial load Fa.
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Figure 14. Front and rear main bearing loads as function of the wind speed. The obtained axial load Fa radial as function of the tower

bottom bending moment Mfore−aft, the radial load Fr , the ratio with the rear bearing limiting factor, and the dynamic equivalent load Peq

are presented. The 9 years mean value is represented by the marker while the 10th-90th percentiles by the filled area.

5.5.1 Sampling frequency and gearbox mounting stiffness assumptions

Before moving on to the long-term results, it is important to verify some of the assumptions made in this work. As in the fatigue

estimation of the tower bottom, the Peq and the L10 were calculated based on a downsampling of the measured data from 50 to445

10 Hz. Figure 15 shows the effect of this assumption on the estimated loads, as the variation from the estimated downsampled

load less the measured load at 50 Hz (normalized). It seems fair to conclude that at 10Hz, there will be a mean error of less

than 2% with a 10th-90th, within 5%.
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Figure 15. Results of sensitivity analysis of 160 h data on the main bearings dynamic equivalent load Peq; left: influence of sampling

frequency of measurements; right: influence of stiffness of gearbox mounts. The used value for the gearbox mounting stiffness refers to the

literature values found in Haastrup et al. (2011) and Keller et al. (2016).
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On the other hand, the assumption on which stiffness should be used to model the gearbox mounting fixation points into the

bedplate has been shown to be one order of magnitude more relevant. In the right subplot of Figure 15, nearly 10% and 60%450

overprediction of the front and rear dynamic equivalent loads Peq could be reached, if a gearbox is assumed to be rigidly fixed

in a 4-point drivetrain, see Figure 3.

5.5.2 Environmental and operational conditions (EOCs) mapping of the main bearings dynamic equivalent loads Peq

Having 7.5 years of the main bearing Peq available, it was possible to couple such values with the environmental conditions of

each mean 10 min instance to visualize potential patterns. Figure 16 confirms the intuitive reasoning that the equivalent loads455

of the front main bearing Peq,f are driven more by the static gravitational load of the rotor. However, Peq,f still contains almost

10% fluctuations due to the shear exponent from 0.05 to 0.15 in all wind ranges and a similar turbulence effect at the rated

wind speed. In a different manner, for the rear main bearing, the turbine thrust curve dictates the value of Peq,r.
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Figure 16. Equivalent dynamic loads of the front (Peq,f ) and rear (Peq,r) main bearing mapped as function of wind speed, turbulence

intensity and shear exponent. The measurement period covers from July 2016 to July 2024 (included).

Looking closely at Peq,f , the results fairly resemble Kenworthy et al. (2024) for a 3-point drive train for the effect of lower

shear on increased bearing loads. However, a more substantial effect of low turbulence is found at the rated wind speed, which460

is comparable and can exceed the shear influence, as also suggested by the HIPERWIND D5.4 (2024) report. An increase of

10% of Peq,f loads (from 248 to 268 kNm) can be seen in the rated wind speed for the turbulence values of 15% to 10%. A

similar load increase is observed for shear exponents of 0.15 to 0.08 at rated wind.

In terms of the load on the rear main bearing Peq,r (locating), in addition to the dominant influence of the mean wind speed

in general, the effects of turbulence are similar to the main front bearing at the rated wind speed. Approximately 10% increase465

in load driven by a change in turbulence from 15% to 8%. Although shear also has an influence on loads, it is to a lesser extent.
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Important to note, the discussion above does not imply an overall longer or shorter lifetime of the main bearing, as Figure 16

zooms in on the most damaging environmental combinations and disregards, for example, the effect of shear and turbulence at

smaller loads, as the color bar was limited to focus on higher loads (50th percentile minimum). The goal is to discuss possible

load reductions in the case of more damaging conditions.470

5.5.3 Main bearing lifetime using thrust estimate from virtual load sensors

The application of virtual load sensors as a thrust estimate and then the axial load of the rear main bearing resulted, for all

models, in an estimation error of L10,r around 10% for 7.5 years. The model with only "SCADA" with LSTM was the best

performing model. This might come from the fact that the main bearing loads, and, consequently, their useful life, are not

affected by the dynamic component of the axial load, but only by the mean load level. In this manner, there was no significant475

performance difference between deploying the different virtual load sensors, in agreement with the results in Figure 9(c).

5.5.4 Main bearings modified rating life: L10m and aISO

Applying the drivetrain thermal model, consistent temperature ranges were found for the normal operating conditions (DLC

1.2) of the main bearings. The temperatures of the front and rear main bearings had maximum values of 55 and 61 °C,

respectively, while κ (viscosity ratio) had minimum values of 0.84 and 0.64 respectively.480

20 years

50 years 20 years

70 years

4000 years

10000 years

100 years

Figure 17. The modified rating life of the front L10m,f and rear L10m,r main bearings of the DTU research V52 turbine is mapped as

function of relevant environmental conditions. It is assumed a severe level of contamination for the grease lubricant. The latter represents

a scenario in which re-greasing intervals recommended by the OEM are not followed. Important to note that there are limits related to

aISO implementation as defined by ISO-281 (2007): at aISO = 50 and at ecCu/Peq = 5 (maximum bound) and at viscosity ratio κ = 0.1

(minimum bound) which has not been reached in this work. The lower limit of the color bar (yellow color) was chosen to match the turbine

design lifetime of 20 years. The measurement period covers from July 2016 to July 2024 (included).
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The seasonal variation corresponded to approximately ±10 °C in the front bearing and ±8 °C in the rear bearing tem-

peratures, while the operational variability reached around ±15 °C variation in the front and ±20 °C in the rear bearing

temperatures. The results of such environmental and operation conditions (EOCs) can be visualized in Figure 17, assuming

a severe level of grease contamination. The grease cleanliness affects the parameters to estimate the variable contamination

factor ec, which by consequence affects the aISO (see ISO-281 (2007)). This assumption represents a worse scenario in which485

re-greasing of the main bearings is not performed in the long-term as suggested by the manufactures. It highlights the large

impact of the ambient temperature on the modified rating lifetimes of main bearings in which there is no nacelle temperature

control. For the rear main bearing, even for such an overdesigned bearing, at rated wind speed and ambient temperatures above

20 °C, the bearing lifetime is reduced to below the design lifetime of 20 years. In addition to that, once aISO is considered, it

seems that turbulence overcomes shear as the most influential factor for the rear main bearing at the rated wind speed.490

Even though significant variations can be observed on the L10m due to EOCs, it is important to mention that the grease

cleanliness level affects the bearing lifetime more severely. A severe level of contamination could be reached at the end of

the design lifetime in case no periodic re-greasing are carried out, as described by ISO-281 (2007). However, there are better

and worse scenarios. Figure 18 shows in a log scale the distribution of aISO as function of the grease cleanliness assumed or

inspected in a wind turbine. In the worst case scenario with "very severe contamination" around 70% of instances are penalized495

and L10m,r goes from the initial L10,r of 315 years to 130 years lifetime, more than 50% lifetime reduction.

Figure 18. Normalized histogram showing the distribution of the rear main bearing life modification factor aISO,r as function of the grease

cleanliness levels. The red dashed line shows the limit for L10 = L10,m. The bound of aISO < 50 is not applied for the sake of clarity.

6 Discussion

The assumption that the strain gauge zero-drift in a wind turbine tower and blade follows a linear curve might be an oversim-

plification. Many factors can influence the zero drift of the strain gauges. As described by Hoffmann (1989), the measuring

grid has its own fatigue deterioration, the adhesive can wear over time, and the bending of the connecting wires and several500

impurities (e.g., mold) that can add unwanted electrical resistance to the circuit over time. However, it is interesting to observe
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that eight independent strain gauges from the DTU research V52 turbine have presented similar behavior over time, with low

unexplained variability after the proposed correction. Similar variability was also found for a 5 MW offshore turbine in Faria

et al. (2025). The larger variability from the blade root strain gauges calibration factors could be explained by the fact that its

Wheatstone bridge is compensated for temperature differences in the whole blade, but not for temperature gradients between505

the two blade surfaces. It would be interesting to see if this result holds in more case studies.

One last detail worth mentioning about the strain gauge methodology is that the configuration of the Wheatstone bridge

chosen to measure bending moments will highly affect the reliability of the sensors output. The full bridge of the blade root

strain gauges was not inherently compensated for temperature gradients between the blade faces, differently from the full-

bridge of the tower bottom strain gauges. Because of that, the residuals had a small seasonality effect present. So, temperature510

effects can also add variability and bias to the zero drift of strain gauges.

In terms of virtual load sensors, it was a methodological decision to use k-means to select and generate training and validation

datasets. Rather than a more generalizable conclusion usually sought by methods such as the Latin-Hyper cube, the goal here

was to test and deploy the best-performing model for the long-term monitoring of the DTU research V52 turbine, as it is rare to

find similar results in the literature. The performance of the virtual load sensor for DEL estimation is worse than that found in515

works such as de N Santos et al. (2024). The addition from the present work comes from the deployment of long-term and time

series virtual load sensor. In which it is interesting to highlight that a mere 1% difference in MAE DEL between models led to

a 11% difference in the lifetime estimation. The experimental slope correction results should not be seen as fully validated, but

as a trial to adjust models that consistently capture the dynamic content of the tower bottom while underpredicting the peaks

and valleys, leading to constant stress range underprediction. Using in this work 7 years of measurements showed very low520

variability, within around ±5 % for the best performing model (LSTM with "All" inputs). More advances in machine learning

models and training techniques could still be tried.

Regarding monitoring the bearing lifetime, it was interesting to observe that the initial gearbox assumption could lead to

large errors in the estimation of the lifetime of the components. The stiffness of the gearbox mounting could lead to an error of

60% Peq , which, due to the bearing exponent p equal to 10/3, would mean underestimating the lifetime L10 by 198% for the525

location of the main bearing.

The lifetime estimate of the main bearings was an order of magnitude higher than the required lifetime of 20 years, making it

less probable to fail due to rolling contact fatigue in the DTU research V52 turbine. However, mapping of their loads facing key

environmental conditions can provide more generalizable lessons on how to operate and maintain such expensive components

in the long term for other turbines with similar drivetrain setup. At a wind farm level, if farm power curtailment is required,530

turbines with low inflow turbulence could be prioritized to be curtailed to have a more significant reduction of main bearing

loads. In contrast to what one would intuitively expect in the field of wind energy research, lower intensities of turbulence could

penalize the useful life of the main bearings, as also shown in HIPERWIND D5.4 (2024). In fact, good estimates of operating

temperature and grease cleanliness were identified as key drivers in the estimation of main bearings lifetime. Although the

thermal model resulted in realistic temperature ranges, validation with measurement values is the logical next step.535
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7 Conclusion

In this work, methods were investigated to allow for reliable lifetime counting of large load-carrying components, both struc-

tural in the form of a tower and rotating in the form of main bearings. The work was validated on the DTU research V52 wind

turbine for a continuous period of almost a decade.

From the proposed research questions that guided this study, the main learnings and possible limitations are as follows.540

– The strain gauges at the bottom of the tower and the root of the blade were continual calibrated for 9.5 years with at

least 20 calibration instances per year. The yaw sweeps and Low-Speed Idling (LSI) routines were verified for long-term

calibration, and all strain gauges presented reliable behavior. We assumed linear behavior to model the zero drift, which

has to be validated by carrying larger case-study comparisons.

– Lifetime counting of a structural component, such as the tower, and other load-carrying components, such as main bear-545

ings, was carried out for almost a decade, without having design information from the blade or mid-fidelity aeroelastic

models in hands. Attention should be paid to the quality of SCADA sensors and drivetrain modeling assumptions.

– The use of virtual load sensors based on data-driven methods is promising in the field of wind energy, where Structural

Health Monitoring (SHM) campaigns can be expensive and take a long time (even more for offshore assets). These

could serve as a continuous high-frequency thrust estimate. In this work, the counting of 7.5 years of the fatigue lifetime550

of the tower bottom using a virtual load sensor yielded in its best model a prediction of damage of 75%, and after an

experimental correction, assuming a year of available measurement data, ±5 % lifetime error. However, in the field

of data-driven methodologies, there are many models, training techniques, and deployment cases that could bias the

results. For this reason, the results from this work might not be seen as the state of the art or entirely generalizable but

as a discussion on the challenges of applying and validating virtual load sensors on operating wind turbines considering555

several DLCs.

– Finally, the main bearings loads Peq and modified lifetime L10,m were mapped in terms of relevant environmental

conditions and grease cleanliness. The first showed that a front main bearing in a 4-point drivetrain has longer life by

a higher shear exponent, whereas the rear main bearing, at rated wind speed, has higher loads for lower turbulence

intensities. Neglecting the stiffness of the gearbox mount renders unrealistically high Peq , but having the stiffness values560

within realistic ranges results in little influence on the lifetime. Finally, ISO-281 (2007) life corrections for lubricant

cleanliness result in significantly different lifetimes but are not validated for large grease-lubricated bearings. Future

research might focus on establishing these factors with bearings and lubricants typically used in wind turbines.
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Appendix A: Azimuth angle correction for the DTU research V52

Figure A1 presents the problem and the solution applied for the azimuth angle sensor. For periods before 2018 and after 2020,565

the measured azimuth angles contained severe variations in regular patterns, which did not extend to variability in the edgewise

bending moment Medgewise of the blades. In this manner, such variations were triggered as a sensor malfunctioning.

To correct for such an issue, an azimuth angle estimate φe was derived as a constant-gain blend between two complementary

signals. The first signal is the measured azimuth angle φm sampled at 10 Hz, shown in Figure A1 as the black line (left y-axis).

The second signal is the controller-defined rotor speed (SCADA) ω sampled at 10 Hz, which has a lower resolution, and shown570

in the same figure as the red line (right y-axis). The period ∆t is defined as the inverse of the sampling frequency.
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Figure A1. Representative examples of the azimuth angle in the SCADA from the DTU research V52 turbine showing problems with the

measurement data acquired in 2016 and 2024. An estimated azimuth angle (orange) is performed based on the controller SCADA rotor speed

(red) and the measured azimuth angle (black).

The correction method works by first identifying the best phase shift φr,0 of the azimuth angle in a 10 min instance, which

is the initial point between the cumulative φm and
∑

i ωi ·∆t, using a few sequential data points. The instantaneous angle

based on the rotor speed will be φr,i = ωi ·∆t + φr,i−1, for i > 1, and φr,i = φr,0, for i = 1. The final estimated azimuth is

defined as φe,i = φr,i + K · d, if d < dlimit and γe,i = φr,i, if d > dlimit . In which, d is the difference between the measured575

instantaneous angle and the estimation of the rotor speed d = φm,i−φr,i. The two manually tuned variables are the gain K

and the distance limit dlimit. The first defines how reliable are the fluctuations from the measured azimuth. The latter correlates

with the threshold of how many degrees the measured azimuth can realistically change within ∆t. In this work, the parameters

were tuned to K = 0.1 and dlimit = 30◦.

The validation was carried out in a good year (2019) by applying the method on 160 h of representative instances containing580

the Design Load Cases (DLC) 1.2, 3.1 and 4.1. The maximum instantaneous error /φm−φe/ was below 5◦.

29

https://doi.org/10.5194/wes-2025-233
Preprint. Discussion started: 11 November 2025
c© Author(s) 2025. CC BY 4.0 License.



Appendix B: Statically indeterminate system of equations for a 4-point drivetrain considering a the gearbox mounting

stiffness

Figure B1 shows the drivetrain schematic that allows one to derive the radial loads in the main bearings while considering the

stiffness of the gearbox mounting. The vertical direction is chosen as it includes the most significant resultant loads (gravita-585

tional and aerodynamic), and the horizontal direction can be solved in the same manner.

WindFrotor

Rf,v Rr,v Kg
L2 L3

Mv

Fshaft
Lshaft

L1

Main shaft

Mrotor

x

Figure B1. Drivetrain schematic used to represent the external loads applied and the supporting elements in the vertical direction. Frotor and

Fshaft are the rotor and shaft gravitational loads respectively, Lshaft the shaft center of mass distance, Mrotor the bending resultant from

the rotor weight as the hub is not modeled, and Mv is the aerodynamical loading at the vertical direction. The main shaft is supported by the

front Rf,v and rear Rr,v main bearings and by the gearbox through the equivalent spring Kg , which results in the force Fg .

The system of equations for the forces and bending moments is composed of:
∑

F = 0 =−Frotor −Fshaft + Rf,v + Rr,v + Fg (B1)
∑

M(x = 0) = 0 =−Mv + Mrotor + Rf,vL1−FshaftLshaft + Rr,v(L1 + L2) +Fg(L1 + L2 + L3) (B2)

where the assumed sign conversion is upwards and anticlockwise as positive.590

Since the system is statically indeterminate, there are two independent equations B1 and B2 and 3 unknowns reactions Rf,v ,

Rr,v and Fg . To add a third equation, the main shaft is modeled as a flexible beam, with small deflections, linear material,

and young modulus E and second area moment of inertia I constants along the length, as explained by Budynas and Nisbett

(2020).

The following equations are used to describe the bending moment as a function of x and the beam deflection w along x595

through a double integration step.

EI
d2w

dx2
= M =−Mv + Mrotor + Frotor ·x + Fshaft · ⟨x−Lshaft⟩−Rf,v · ⟨x−L1⟩−Rr,v · ⟨x− (L1 + L2)⟩ (B3)

EIw =− Mv

2
·x2 +

Mrotor

2
·x2 +

Frotor

6
·x3 +

Fshaft

6
· ⟨x−Lshaft⟩3

− Rf,v

6
· ⟨x−L1⟩3−

Rr,v

6
· ⟨x− (L1 + L2)⟩3 + C1 ·x + C2 (B4)
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where ⟨⟩ is the Macaulay bracket or discontinuity function. To solve the constants C1 and C2, two known boundary conditions600

(deflection at the main bearings) can be used as such:

w(x = L1) = 0 and w(x = L1 + L2) = 0 (B5)

Finally, once the constants are calculated, the third independent equation can be derived by applying a third known boundary

condition (deflection at the gearbox):

w(x = L1 + L2 + L3) =
Fg

Kg
(B6)605

The resultant third independent equation is then:

EI
Fg

Kg
=− Mv

2
(L1 + L2 + L3)2 +

Mrotor

2
(L1 + L2 + L3)2 +

Frotor

6
(L1 + L2 + L3)3

+
Fshaft

6
(L1 + L2 + L3−Lshaft)3−

Rf,v

6
(L2 + L3)3−

Rr,v

6
(L3)3 + C1(L1 + L2 + L3) +C2 (B7)

The complete derivation are omitted for conciseness, consisting primarily of algebraic manipulation and variable substitu-

tion. Using the three independent equations B1, B2 and B7, and assuming quasi-static equilibrium at each time instant, one

can calculate the 3 independent unknowns Rf,v, Rr,v and Fg .610

Appendix C: Hyperparameters tuning of the data-driven virtual load sensors

The models described in Section 4.3 are tuned using a random search tuner (O’Malley et al., 2019) to improve the model per-

formance. Table C1 shows the hyperparameters possible range and optimal value found for each virtual load sensor. Similarly

to the methodology applied by Dimitrov and Göçmen (2022) and Gräfe et al. (2024), there are hyperparameters related to the

data architecture, such as the number of lags nlags in a NlaggedFNN and the window size in a LSTM, as well as hyperparam-615

eters related to the model architecture and training itself. The latter includes, for example, regularization features to improve

the model generalization, such as the L2 regularizer and dropout. While, the model training was optimized in terms of batch

size and learning rate. The range of parameters was similar to that used in Dimitrov and Göçmen (2022).
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Table C1. Hyperparameter tuning, including the bound limits and optimum values for each model and feature possible combination.

Optimal values

Model Hyperparameter
Parameter

range

SCADA +

Accelerometer

SCADA +

Strain

(one blade)

SCADA +

Strain

(all blade)

All

Feedforward

Neural

Network

(FNN)

Batch size 32:32:256 32 32 160 96 160

Learning rate 10−4:10−2 2.5·10−3 5.8·10−3 7.2·10−3 3.0·10−3 3.5·10−3

Hidden units 50:20:200 150 190 70 130 150

L2 regularizer 10−6:10−1 2.0·10−6 3.6·10−6 1.2·10−6 11.3·10−6 2.8·10−6

Second layer 0:1:2 1 1 1 0 0

lagged FNN

(NlaggedFNN)

Batch size 32:32:256 32 32 96 96 96

Learning rate 10−4:10−2 0.8·10−3 0.8·10−3 1.8·10−3 2.8·10−3 1.7·10−3

Hidden units 50:20:200 50 190 150 70 70

L2 regularizer 10−6:10−1 1.4·10−6 1.2·10−6 4.6·10−6 1.6·10−6 5.2·10−6

Second layer 0:1:3 0 1 0 0 0

nlags 1:1:6 5 5 6 5 6

Long

Short-Term

Memory NN

(LSTM)

Batch size 32:32:256 128 64 64 64 64

Learning rate 10−4:10−2 9.7·10−3 2.9·10−3 9.7·10−3 7.3·10−3 3.4·10−3

Window size [s] 2,5,10,30 5 10 5 10 10

Dropout 0:0.1:0.5 0.1 0.2 0.2 0 0
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