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Abstract.

Decisions on the lifetime extension of wind turbines require evaluating the remaining useful life of major load-carrying
components by making a comparison to the design lifetime. This work focuses on the lifetime assessment of two fundamentally
different components: a structural component in the form of the tower and rotating components in the form of the main bearings.
A method is presented that combines high-frequency SCADA, accelerometers, minimally intrusive strain gauge at blade and
tower, and limited design information for continued estimates of the component loads and their subsequent fatigue damage
accumulations. The work is applied to a highly instrumented DTU research turbine, a Vestas V52 model, where strain gauges
in the blade root and in the tower bottom are calibrated for nearly 10 years using continual calibration methods without the
need for operator input. The lifetime estimates of the tower bottom and front and rear main bearings were found to be 1770
years and 166-333 years, respectively, reflecting the low average wind speed of the turbine site compared to the wind turbine
design wind class TA. Secondly, it was investigated whether virtual load sensors can replace tower strain gauges and if one
can use only uptower sensors for lifetime evaluation. Consistent tower bottom strain signal estimate and long-term damage
accumulation were achieved with +5% lifetime variability once SCADA, nacelle accelerometers, and blade root strain gauges
were combined for the deployment of a long short-term memory (LSTM) neural network. A systematic underprediction of the
accumulated damage of the tower bottom was observed for the virtual load sensors, and a correction method was proposed.
Finally, the impact of environmental conditions, including turbulence intensity and shear exponent of the incoming wind, on the
main bearing lifetime was investigated using 10 years of measurements. A simple drivetrain thermal model was used to evaluate
the modified lifetime L1, of the main bearings, depending on the measured ambient temperature and the grease cleanliness
assumptions. Higher fatigue loads are observed on the main bearings at rated wind speeds with low turbulence intensity and
low shear. Changes of +5 °C in the ambient temperature around 15 °C caused a 10-year difference in the operational life of
the main bearings at rated wind speed. It was also found that the specification of the gearbox mounting stiffness can lead to a

60% overprediction of the main bearing loads.
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1 Introduction

The extension of the lifetime of wind turbines provides an opportunity to decrease the levelized cost of the electricity produced
by wind turbines, which is not only competitive, but in many cases the cheapest electricity source according to evaluations of
multiple global benchmark reports such as (IEA and NEA, 2020; IRENA, 2024). At the same time, lifetime extension could
decrease the global warming potential (C'O2 ., / kWh) emitted during the entire life cycle of a wind turbine (UNECE, 2022).

Lifetime extension of wind turbines is then strongly dictated by reliable technical evaluations of the consumed and of the
remaining useful lifetime of structural components such as the tower and the foundations as described by (Ziegler et al., 2018;
IEC-TS-61400-28, 2020). Such large components are site-specific and little to no experience can be found in replacement
of those during the lifetime and beyond, as this would hinder the profitability of a wind farm. Similarly, having unexpected
and several load-carrying components failing would require long-lasting replacements that would increase the operational
expenditure (OPEX) of a wind farm and reduce its revenue. That is the case with the main bearings. OPEX estimates should
be based on the probability of failure of such components combined to their availability in the spare market.

As a failure in the main bearing means a failure in turbine operation, this decision should be made with high levels of
certainty. A main bearing failure results in high replacement costs, between $225,000 and $400,000, loss of revenue due to
production interruption, and its failure is one of the main reasons for the increase in OPEX, especially in onshore wind turbines
of 2 to 6 MW in size according to Pulikollu et al. (2024). Although main bearings are known to have multiple failure modes,
as examined by Hart et al. (2020), including abrasive and adhesive wear and fretting, this work considers lifetime consumption
as the fatigue life consumption of the main bearing. This is due to the leading role of rolling contact fatigue (RCF) which can
not yet be ruled out with respect to historical replacement data of the main bearings. Hart et al. (2023) carried a large review of
historical data on the damage and failure of the main bearing and identified that for a large share (80%) of the reported failure,
spalling was present, which could be a consequence of both subsurface- and surface-initiated RCF.

In this context, the end goal of a well-designed structural health monitoring (SHM) campaign is to have the most comprehen-
sive and reliable wind turbine monitoring and lifetime estimation with the least amount of instrumentation Santos et al. (2022).
And using strain gauges often results in one key drawback: compromised long-term reliability. There has been a literature gap
on the possibility of calibrating strain gauges for many years, with some studies to mention Pacheco et al. (2024). So, the
question of how to extrapolate the lifetime of components based on limited recordings has been of interest and widely inves-
tigated (Loraux and Brithwiler, 2016; Hiibler and Rolfes, 2022; Sadeghi et al., 2024; de N Santos et al., 2024). However, no
consensus has yet been reached on the methods or uncertainties related to those methods. In this context, data-driven methods
Dimitrov and Go¢men (2022); Pimenta et al. (2024) deployed as long-term virtual load sensors could yield several advantages
by replacing real sensors and reducing the amount of instrumentation needed, being able to describe complex mathematical
correlations, with no real physical understanding of the system.

Considering the challenges and gaps identified, this work aims to maximize coverage using existing onboard sensors and
limited non-invasive hardware additions, to evaluate the lifetime of structural and rotating component simultaneously. Based

on this objective, the following research questions guided the methodology and subsequent analysis.
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— Is it possible to continuously and reliably count the lifetime of a tower and a four-point configuration main bearing with-
out blade design information and having in hands SCADA, blade root, and tower bottom strain gauges, while meeting
ISO-281 (2007) and IEC 61400-1 (2019) standards?

— What degree of accuracy could be achieved by a tower bottom virtual load sensor based on measurements in the nacelle?

— What are the environmental and operation conditions (EOC) which have strongest impact on the basic and modified

rating lifetime of the main bearing (L1 and L., respectively), based on analysis of a long-term measured dataset?

The remaining sections of this paper are organized as follows. Section 2 provides an overview of the theoretical background
relevant to this work, including the assumptions behind the tower fatigue lifetime and the main bearing lifetime, as well as the
concept of virtual load sensors applied in this study. Section 3 describes the wind turbine and the environmental measurement
campaign used for data collection. Section 4 details the proposed methodology for the calibration of the strain gauge and
the lifetime of the tower and main bearing based on load measurements and virtual load sensors. The results obtained are
presented in Section 5, followed by a discussion in Section 6, where the findings are compared to the relevant literature and

key correlations are analyzed. Section 7 concludes the paper by summarizing the main insights and learnings from this work.

2 Theoretical background

Behind the key assumptions of this work, mentioned in the introduction and shown in Figure 2, some require further explana-
tion. The concept of tower fatigue and main bearing lifetime is assumed as derived in standards used for design and certification.
The concept of virtual load sensors can also be very broad. In this work, we will focus on time-series and data-driven virtual
load sensors that could be used to replace tower bottom strain gauges at a wind farm level and keep instrumentation in the

nacelle. More details of each subject are described in the following subsections.
2.1 Tower fatigue lifetime

The lifetime is estimated as described by IEC 61400-1 (2019), considering the Design Load Cases (DLCs) 1.2 (Power produc-
tion), 3.1 (Start-up) and 4.1 (Normal Shutdown). More details on how to classify these operational conditions based on 10-min
SCADA can be found in Faria et al. (2024). On the material side, the DTU research tower V52 is made of structural steel S355,
which is often used in large components and harsh environmental conditions. In this work, the fatigue assessment of critical
welds assumes that the component has inherent defects in the welded joints and thus does not model crack initiation or growth.

The first step is to convert a measured tower bending strain e [gmm/mm)] to bending stress o [Pa] as shown by Hooke’s rule
o = E - €. The bending stress can be translated into the bending moment )M assuming the tower is a Euler-Bernoulli beam.

_M—c
T

g

ey

where I [m*] is the area moment of inertia and ¢ [m] is the radius, in the case of a circular cross section. To evaluate fatigue, the

stress time series is converted to stress ranges Ao; and umber of cycles n; using the rainflow counting technique, as described
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by ASTM E1049-85 (2017). The tower bottom in this work is evaluated using the category of the stress cycle (SN) curve
category "D", for butt-weld in air as suggested by DNVGL-RP-C203 (2016), which translates Ac; into a maximum amount
of cycle to failure IV, ;. Finally, fatigue accumulation, in other words, fatigue lifetime is assumed to be linear, according to

Palmgren and Miner (1945), which is valid for any time window, from high-frequency to 10-min instances to lifetime.

N; Ni

Nj ’I’Li Nj Ni ni . (Ao_z)ml
Dr=3 Drj=3.> N——=2.0. " f — 2)
J J 7 7

mazx,: -
J

where D is the tower accumulated fatigue damage (failure at unity), D ; is the accumulated fatigue damage of the 10-minute
instance, m; is the exponent of the SN curve, K; is the intercept of the SN curve on the y-axis, N; is the number of 10 min
instances and V; is the number of cycles in a given instance.

The exponential nature of fatigue can be observed and its non-linearity due to different m; and K; dependent on the two
regions of the SN curve where the cycle could be placed. In order to facilitate the evaluation of virtual load sensor during
training and validation, instead of comparing D7, Damage Equivalent Loads (DELs) are often used and can be explained as
single-frequency sinusoidal loads that would inflict the same damage as the initial load variable in time, as in
DEL = (Ni W) l/m 3)

—~ Ny
where m is assumed to be 4, which is an average between DNV "D" curve values of m; equal to 3 and 5 and logk, equal to
12.164 and 15.606, respectively, transitioning at N, equal to 107 cycles. The N, is a normalization factor and is arbitrarily
assumed to be 107 cycles, since D E L has no absolute reasoning.

However, for the estimation of the consumed and remaining useful lifetime of a tower, and the deployment of the virtual
load sensor in the long-period, DEL has no absolute meaning and its uncertainty underestimates the uncertainty of the useful

life of the component and, therefore, D7 should be prioritized. More discussion is present in Section 5.3.
2.2 Main bearing fatigue lifetime

The lifetime of a rotating component, such as a main bearing, can be significantly more complex to model than the tower
lifetime. In this work, the formulations from ISO-281 (2007) are followed, which also defines the linear accumulation of
damage as proposed by Palmgren, using the same DLCs as for the tower. As mentioned, rolling contact fatigue is not the only
damage mode of the main bearings, but the inclusion of additional mechanisms is not in the scope of the present work.

The radial F). [N] and axial F, [N] load acting on the main bearings are combined into
P=X-F.+Y F,[N] 4

where P is the dynamic load, X and Y are functions of the load ratio F,/ F;. and the limiting value e. The time-varying P can
be replaced by a constant load P, that would have the same deterioration at its given operational rotation speed, similar to the
defined DEL, without involving any counting method.

PP .w; 1/p
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where P; [N] is the dynamic load and w; [rpm] is the rotational speed of the main bearing at the instantaneous ¢ timestamp.
Then, the basic rating life L, is defined as the 90% survival time of a given population of main bearings under similar
operational conditions. In other words, 10% of the bearings would fail.

Ca\’ . 10° Ca\"
Lyg,; = 10° lut Lij=———( 5 L
10,5 <Peq) [revolutions] 100= 5570 8760 P, [years] 10

1
- 6
> 95/ Lo, [years ©

where L is the basic rating life overall while L1y ; is the basic rating in a given 10-minute instance j. If all instances have
the same 10-min, ¢; is the inverse of the number of instances. Cy [N] is the dynamic load rating, p is the exponent function of
the rolling body type (e.g. ball or roller) as provided by ISO-281 (2007), P, [N] is the dynamic equivalent load and w [rpm] is
the rotational speed of the main bearing within a 10-min instance. Once L is calculated as the number of hours to failure in

each instance, one can describe a main bearing damage accumulation, similar to the damage accumulation in the tower, as in

N;

t .

Dp=Y Dp,= L‘}JTS" (7)
J

where Dp is the accumulated fatigue damage of the main bearing (failure at unity), Dp ; is the accumulated fatigue damage
of the 10-minute instance, and ¢,perqtion 1S the evaluated time of operation in years.

In order to incorporate a more realistic effect of operating conditions on the main bearing, a life modification factor ajso
should be evaluated. The latter considers that the Iubricant will be exposed to different operating temperatures and its value
will be affected by the level of grease cleanliness, the operating viscosity (function of temperature), the rolling element type,
bearing fatigue limit, and external loads. The complete formulation can be found in ISO-281 (2007). The modified rating life

L10m, of a main bearing is then calculated using
Liom = L1o - aiso 3)

2.3 Virtual load sensors

In this work, virtual load sensors are seen as an opportunity to replace physical sensors to estimate tower bottom bending
moments and long-term fatigue lifetime, keeping the necessary measuring in the nacelle. In the literature, several efforts have
been made in the regard of data-driven (machine learning) models for lifetime predictions of components.

Benefiting from instances statistics and more available SCADA accelerometers, efforts were made to estimate target statis-
tics such as damage equivalent loads (DELs) or damage to the main bearing. Mehlan et al. (2023) estimates aerodynamic
hub loads and tracked bearing fatigue damage using a digital-twin based virtual sensing combining SCADA and condition
monitoring. For support structures, de N Santos et al. (2024) estimates the fatigue lifetime based on different combinations of
SCADA levels, highlighting the improvement in performance using reliable nacelle accelerometers, with a novel population-
based approach for wind farm extrapolation. Focusing on time extrapolation, Hiibler and Rolfes (2022) focuses on different
methodologies to extrapolate damage in time and their estimated uncertainty. On the other hand, when the time series signal
is the target output, the model selection and training process are quite different.Complementary, Dimitrov and Go¢men (2022)

shows how machine learning time series models (e.g. LSTM) can act as virtual sensors for blade root bending moment trained
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on aeroelastic simulations. More recent efforts extend virtual sensing to floating turbines. Grife et al. (2024) trained neural
networks on simulated floater motions and LIDAR-derived wind to reconstruct fairlead tensions and DELSs.

The same data-driven models applied by Dimitrov and Go¢gmen (2022) are selected to be used in this work on the DTU
research V52 turbine dataset, all derivatives of neural network architectures. This work contribution to virtual load sensor
methods lies in the validation of a model that should accurately replicate both: (1) the time series of tower bottom bending
moments and (2) the fatigue loads of the tower and main bearings in the long term. (1) The first can have its performance
quantified by feeding the virtual load sensor as a thrust estimate to calculate the lifetime consumption of the main bearings. (2)
The latter includes the 3 most damaging operational conditions for the tower as described in Pacheco et al. (2024); Faria et al.

(2024): power production DLC 1.2, start-up DLC 3.1, and shutdown DLC 4.1, all in a single model.

3 Measurements

In this work, SCADA data and measurements from nearly 10 years are analyzed from February 2016 to December 2024 at Risg,
Denmark. The environmental conditions are analyzed out of 10-min instances statistics from a met mast about 100 m east of the
DTU research V52 turbine. In addition to the mean wind speed U}, at the hub height of 2., = 44 m, the turbulence intensity
is calculated as T'I = oy /U, where oy is the standard deviation of the wind speed. Moreover, vertical shear is modeled
considering the normal wind profile model IEC 61400-1 (2019) given by the power law equation U(2) = Unus(2/2hup)®
where z is the height and « is the shear exponent. The latter is estimated as the best fitting factor out of five different cup
anemometers measuring heights (at 18, 31, 44, 57 and 70 m) for each 10-min instance. No shadow correction was performed
for the mast tower. In general, it is possible to observe that the Risg site has fairly low wind and constant conditions. The yearly
wind speed Up,,p, estimated as a Weibull function in the graph on the left, has a mean below 6 m/s. The site reference turbulence
I,y calculated as I,..; = oy /(0.75Upy, + 5.6), has a mean value around 0.08 (closer to IEC class C) and the shear exponent
a of 0.22. The prevailing wind direction falls within the southwest quadrant across all years. The DTU research V52 turbine is
a Vestas 850 kW onshore wind turbine class IA with a rotor diameter of 52 m and a hub height of 44 m, with a active pitch and
rotor speed control. SCADA and SHM measurements are available from February 2016 to December 2024, as are statistics and
high-frequency data. The turbine has a rated wind speed of approximately 14 m/s. Figure 1 represents the turbine schematic
and part of its instrumentation, highlighting the two measurement setups present in the tower bottom (a—a) and blade root (b-b).
SCADA includes rotor speed w, pitch angle 6, yaw angle , azimuth angle ¢, and power. All of the bending moments shown
are obtained from full Wheatstone bridge installed in the components. This configuration has a couple of important advantages
as higher signal-to-noise ratio, is temperature independent and optimized for measuring bending stress, see Hoffmann (1989).
A problem in the quality of the measured azimuth angle ~, carried out by a proximity sensor on the shaft flange, was identified
before 2018 and after 2022, probably due to surface dirt. A correction was applied to all the raw signal to account for that,
by combining the controller rotor speed signal with the measured azimuth to have a more reliable estimate of the azimuth
angle (please refer to Appendix A). Taking into account Figure 1(cq ), the tower bottom fore-aft bending moment M ope—q ft

(downwind) can be calculated as in Equation 9.
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Figure 1. Schematic of an onshore wind turbine to represent the DTU research V52 turbine parameters and measurements. (a) Front view
shows the rotor coordinate system XYZg which moves with the yaw angle ~(¢) around Zr and is facing the wind direction. The azimuth angle
©(t) of blade A and pitch angle 6(t) are also shown. The Meggewise represents the edgewise (in-plane) blade root bending moment. (b) In
the lateral view, the flapwise (out-of-plane) rotor bending moment M f;4p.wise and the tower bottom fore-aft bending moment Moy —q f¢ are
shown. The 0(t) angle is the controller-defined blade root angle between the rotor plane and the chord line of the blade, as shown in the zoom
view (green dashed box). (c1) Tower bottom cross section (a—a) in the global/tower coordinate system (time-invariant) XYZr is determined.
M ¢ore—agt is dependent on 7(t), as a composition of the measured tower bottom bending moments M a7 B and MyT B, which are installed
at the angles — 3, and 3, respectively. (c2) Blade root A cross section (same setup for blades B and C) shown in the blade coordinate system
XYZg, which rotates with (t) in respect to Yr. Both measured blade root bending moments M, BR 4 and M, BR 4 shall be converted into
Miapwise and Meagewise as function of the pitch angle 6(t).

(=M,TB(¢)-sin(8y —v(t) + M,TB(t) -sin (B +7(t)))
sin (8, + 6y)

in which the denominator factor is imposed because the two tower bottom bending moments are not perpendicular. Similarly,

Mforefaft(t) = &)

considering the measurement setup shown in Figure 1(c2), the blade root flapwise M iqpwise (out-of-plane) and edgewise
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Meqgewise (in-plane) bending moments can be calculated individually for blades A,B and C.

Mflap'wise,(A,B,C) (t) = MmBR(A,B,C) (t) - COS (a(t)) - MyBR(A,B,C) (t) -sin (Q(t)) (10)
Medgewism(A,B,C) (t) = MJL’BR(A7B,C) (t) -sin (H(t)) + MyBR(A7B,C) (t) - COs (G(t)) (1 1)

4 Methodology

Figure 2 shows the inputs and assumptions taken into account to investigate the research questions. From high-frequency
turbine measurements to tower (structural component) D7 and main bearings (rotating component) D p accumulation of fatigue
damage over time. The orange boxes include the continual calibration of the strain gauges and the operations to translate the
strain measurements of the tower and the blade to the tower bottom bending moment M ;.. r¢, and the axial F,, and radial F;.
main bearing loads. The standards shown (DNVGL-RP-C203, 2016; IEC 61400-1, 2019; ISO-281, 2007) provide the methods
for the fatigue lifetime evaluations of each component, as explained in Section 2. The DTU research V52 turbine is assumed to

have a S355 steel tower, with a measured tower geometry consisted of an 2.913 m outer diameter and 16 mm wall thickness.

Estimate components lifetime

—_—_——m——— e I
Tower bottom |

e "o Tower bottom
______________ 3 virwal oad | [Siucul component|
sensor | fatigue lifetime (Dr)

e
i 1
)

|
|
|
SCADA | o === . |
|
|
|
|

+

p=—=x | Main bearings

Bending moments in

Radial and axial | P and | |
Accelerometer :> tower bottom (fore-aft) :> loads of front and eq |:> . . .
+ and blade root rear main bearings | L | | fatlgue hfetll‘l‘le (DB)
. (flapwise and edgewise) | 10 | S e
Strain gauges | |
-
I I
|| Liom| |
| |

Correlate to
environmental conditions

Figure 2. Methodology flowchart presenting the steps followed in this work, starting from high frequency measurement and SCADA dataset,
to components lifetime estimates. Rectangular black boxes refers to measurement signals and estimates. Tower bottom D7 and main bearings
Dp fatigue lifetime are analyzed over time, and the equivalent dynamic load P.4, basic rating life Lo and modified rating life of the main
bearing Lo, are analyzed as function of environmental conditions. Orange boxes identify the procedures and standards used in this work.

The orange dashed box contains the tower bottom virtual load sensor, which should replace the real sensor in case of sensor failure.

In addition, a virtual load sensor is proposed to replace real strain gauges in the event of sensor failure and its performance
is assessed for fatigue lifetime estimations. While, the main bearings equivalent dynamic load P, the basic Lo and modified

Lo, rating life are evaluate as function of key environmental conditions. To compute the L1 ,, of the main bearings, a
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drivetrain thermal model was made to estimate the temperature of the main bearings, which is necessary to estimate the life

modification factor ajsg, as introduced in Section 2.2.
4.1 Strain gauge zero-drift automatic calibration

It is often claimed that strain gauges are only reliable for short-term (less than a year) to mid-term (couple of years) campaigns,
a limitation that would conflict with the requirement for sustained monitoring of wind turbine structural elements, most notably
in offshore installations, where replacement in case of sensor failure is expensive and can take time due to weather windows.
This work overcomes such limitation by introducing continual and automated routines for the calibration of both tower
bottom and blade root strain gauges that work on long-term datasets (almost a decade). The methods do not require operator
intervention, stopping or curtailment, and instead take advantage of idling and parked conditions. Both methodologies are
derived from the recommendations in IEC 61400-13 (2016). The main objective is to identify the artificial offset O from the
measured strain gauges and to correct them to the original zero point. No external dynamic load should cause zero strain. The
signals of the bending moment shown in Figure 1 should be understood as M = G - (M, .., + O), where M is the corrected
bending moment, M,.,,, is the measured strain signal, G is the gain associated with the translation of voltage readings into
bending moment, and O is the artificial offset of the strain sensor. It should be noted that for the tower bottom strain gauges
placed on steel, G can be analytically calculated, depending on the bridge arrangement (full bridge Wheatstone in the DTU
research V52 turbine), the elastic modulus and the geometry. However, for blade root strain gauges mounted on composite
material, a blade pull exercise must be performed to estimate GG. And a crosstalk correction has to be applied considering
the geometry of the twisted and nonsymmetric blade, see Papadopoulos et al. (2000). Such calibration campaign has been

undertaken on the DTU research V52 turbine, but the detailed results are not presented in this work for confidentiality reasons.
4.1.1 Yaw sweeps and Low-Speed Idling (LSI)

The tower bottom strain gauges calibration is based on a specific operation in which the wind turbine is parked and untwists
its power cable at low wind speed. In that case, the turbine performs full yaw rotations and the main contribution to the tower
bottom bending moment is the gravitational load from the nacelle mass hanging bending moment. In case at least 1-minute
data points of the yaw angle +y are available, the high-frequency strain gauge signals M,T'B and M,T' B can be automatically
calibrated Faria et al. (2024). The Python package generated for this matter is publicly available at Faria and Jafaripour (2023).
The blade root strain gauge calibration is performed based on both idling and parked conditions at low wind speed. The first is
used to calibrate the strain gauges placed on the pressure-suction surfaces of the blade. The latter is for those on the leading-
trailing edges. The azimuth angle ¢ is needed at a higher sampling frequency (e.g. tested with at least 1 Hz). More information

on the implementation can be found in Pacheco et al. (2024) and Faria et al. (2025).
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4.2 From blade and tower to main bearing loads

The front and rear main bearings of the DTU research V52 turbine are described in Table 1. The drivetrain transmits the torque
from the rotor to the gearbox through the main shaft, which is supported by two spherical roller bearings in the main bearing

housing and the gearbox upfront bearing as shown in Figure 3a.

G Lateral view

L1 = L2 = L3 = e . ng
, 03m, 08m , 03m, <« Lshate |
i > T ” R
1 1 1 3
| | ! : Main shaft
1 1
:Main bearing: :
1 housing : 1
1
: : L1 Lo L3
Gearbox (b2) Top view .
7 Wind
(f Yr —
Xr
Main shaft
1 Housing
Shaft Front main supports Rear main L, L, L3
flange bearing bearing
(@ (b)

Figure 3. (a) Schematic of the DTU research V52 drivetrain. The hub carries the blades and is bolted to the shaft flange. The shaft is
supported by two main bearings, which are mounted inside the main bearing housing. The latter is clamped to the nacelle bedplate through
the housing supports, similarly the gearbox is mounted by the torque-arms but in two non-rigidly stiff connection points. (b1) refers to the
lateral view used to derive the vertical radial loads in the main bearing and (b2) refers to the top view used to derive the horizontal radial
loads. The M, and M}, are the vertical and horizontal aerodynamic resultant bending moments from the rotor, while F.o¢or and Fipqp: are
the rotor and shaft gravitational loads due to their weight and M,.4¢0r is the bending moment associated with the shift of F).ot0, from the hub
center to the shaft flange by L.5. As for the reactions, radial loads are given by R, classified as ;- for rear, ; for front, ,, for vertical and 5

for horizontal. The gearbox mounting stiffness is equally estimated in both direction and represented by the spring K.

The main bearing housing is clamped to the nacelle bed plate, while the gearbox is mounted through its torque-arms in a
rubber support. The rubber support is assumed to have a linear and temperature-independent spring with a stiffness of 20-10°
[N/m], close to the suggested values in Haastrup et al. (2011); Keller et al. (2016). A sensitivity analysis is performed later
to evaluate the importance of this assumption. The static gravitational loads acting on the main shaft, shown in Figure 3b, are
derived from a combination of public sources and visual inspections of the turbine nacelle. Similar for the lengths (e.g. Lspq 1)
The gravitational force of the rotor Fi.,.,, is calculated assuming a rotor and a hub mass of 10 tons (third party source, see
Scribd (2021)). The gravitational force of the shaft Fl,, ¢, assumes a shaft mass equal to 1 ton, between an internal estimate
of 0.8 tons and the Fingersh et al. (2006) estimate of 1.2 tons, which uses the best-fit equation mgpq ¢ = 0.0142 - D*¥8 from

historical data (given D as the rotor diameter in meters and the mass in tons).

10



240

245

250

255

260

https://doi.org/10.5194/wes-2025-233 WIND

Preprint. Discussion started: 11 November 2025 —~ ENERGY
(© Author(s) 2025. CC BY 4.0 License. e we \ SCIENCE

® european academy of wind energy
m

Table 1. Technical specification of the two main bearings in the DTU research V52 turbine given by SKF Group (2025). SRB stands for
spherical roller bearing and the bearing p is equal to 10/3.

. . Inner Outer Basic dynamic  Basic static Fatigue limiting
Designation  Type

diameter  diameter  load rating C;  load rating C, load limit C,, factor e

Front
ron 23064 SRB 320 [mm] 480 [mm] 2348 [kN] 3800 [kN] 285 [kN] 023
main bearing
Rear
23160 SRB 300 [mm] 500 [mm] 3368 [kN] 5100 [kN] 380 [kN] 03

main bearing

Once static loads are defined, the aerodynamic bending moment driven by the blades in the vertical M, and horizontal M,

directions can be estimated from the blade out-of-plane bending moments, using:

M, (t) = Mfiapwise,A(t) - cos (p(t)) + M piapwise,c (t) - cos (o(t) +120) + M fiapwise, B(t) - cos (¢(t) 4 240) (12)
My (t) = Mpiapwise,a(t) - sin(o(t)) + Mfiapwise,c(t) - sin (o(t) +120) + M piapwise,B(t) - sin (p(t) + 240) (13)

where ¢(t) is the azimuth angle of blade A, see Figure 1. It should be noted that a positive M, should benefit the loads in the
radial main bearings to some extent, as it counter-balances F.o¢op-

The main shaft is supported in 3 points, two main bearings and the gearbox, in both directions (lateral view and top view),
so it is a statically indeterminate system. To solve it, the shaft is modeled as a flexible beam and a double integration method is
applied to compute the radial load Ry ,,, Rf .2, and R, ;, (see Appendix B). The resultant radial loads of the front Ry and

rear R, main bearings have a magnitude of

_ 2 2
Ry = \/R(f,r),'u + Rt (14)

, which are solved individually for each main bearing.

The axial load of the main bearings is equal to the thrust estimate, derived as the bending moment M yore—q ¢ divided by
the height difference between the hub height and the tower bottom strain gauge. This is an assumption of this methodology,
where the thrust estimate is linearly related to the bending moment of the bottom of the tower. Apart from that, since both
bearings are able to carry axial load, the system could become over-constrained. An additional axial load would be applied to
the bearings in the case of thermal expansion. For these reasons, the rear bearing is considered the locating bearing, being the

larger bearing between the two.
4.3 Tower bottom virtual load sensor: thrust and fatigue loads

The selection of good candidates for the machine learning model to be deployed as virtual load sensors was carried out from

simpler to more complex neural network architectures. Pure spatial correlation between the target variable and inputs is tested

11
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using a feedforward neural network (FNN) baseline model (Rumelhart et al., 1986). Temporal correlation is added through an
FNN with n-lagged time steps,NlaggedFNN Dimitrov and Gé¢men (2022), and a Long Short-Term Memory (LSTM) neural
network (Bengio et al., 1994). The first can only take a few time steps to still be "trainable", while LSTM is often a less
noise sensitive model and can better capture long-term dependencies according to Bengio et al. (1994), at the cost of model
complexity. The hyperparameters of the models were tuned using the Keras-tuner random search method O’Malley et al. (2019)
using 5 h of data. The bounds and the optimal hyperparameters for the models that combine all possible inputs are included in
Appendix C. All models used the "relu” activation curve in the hidden layers and "linear" activation towards the output layer.
The LSTM model had a fixed "LSTM" layer and a second hidden layer with the same amount of neurons (hidden units) as
the first layer. The size of the training data set was 160 h of data selected using a k-means clustering technique Pedregosa
et al. (2011), spreading the training space within the rotor speed, blade pitch, power, and design load cases (DLC) to cover
the relevant operational conditions. Similarly to Dimitrov and G¢men (2022), a training dataset size and sampling frequency
sensitivity were carried out to use optimum values. In addition to that, different input signals are tested. Starting from most
available "SCADA" alone, including blade pitch, rotor speed, power, and azimuth (which was converted into sine and cosine),
then either adding tower top "Accelerometer", or the flapwise bending moment from one or all blades (stated as "Strain"). And
finally combining all available inputs as "All".

Figure 4 shows the power spectrum density (PSD) of the different normalized input signals. One hundred representative
instances around the rated wind speed and similar turbulence and shear were analyzed. The different dynamic components with
which the neural networks will be trained is visualized. It can be seen that all SCADA signals a high quasi-static component,

while the azimuth has pronounced spikes around 1P, 3P, and 6P.

| SCADA Accelerometer Strain gauges
1077 ; : r(?tolrl speed [-] ] ; accelerometer [-] ] | —— Mpapwise,  [-]
N - pitch [ <y H — Mrore -aft ~ —— Mgapwise, 8 [-]
E -1 power [-] E ! E ! P
& 10 azimuth angle [-] By 1 3 "/\.\/—/“ a 1 \\A\‘ —— Miapwise, c [-]
= | — Mrore - aft = % 2 g % 3 = Mrore - aft
210 A e | 21 g Sy
= =lE
| S aabad 5z o iz s | o4
0 2 4 0 2 4 0 2 4
Frequency [Hz] Frequency [Hz] Frequency [Hz]

Figure 4. Normalized Power Spectrum Density (PSD) of the possible input signals to be used in the training of a time-series virtual load
sensor. The black line is the target variable M f,rc—q f¢. Normalization is based on the mean and standard deviation of each 10-min instance

and signal. The spectrum is generated by averaging 100 instances at rated wind speed (14 m/s) to generate a smooth PSD chart.

However, only the accelerometer signal can well capture the first fore-aft turbine frequency (around 0.62 Hz Rinker et al.
(2018)), while its amplification of higher frequency components compared to M f,.c—q ¢ cannot be considered pure electrical

noise. When testing in standstill/parked conditions, there is strong attenuation similar to the M ,,¢—q ¢ PSD. The most consis-
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tent explanation is that the gearbox operation feeds high-frequency broadband vibrations through the bedplate into the nacelle
accelerometer, elevating the spectrum beyond a discrete peak.

The performance metrics selected are the Normalized Root Mean Square Error (NRMSE), which is normalized by the
standard deviation o, instead of the mean signal to avoid overshoot in case of small mean values. To validate fatigue lifetime

estimates, the equivalent damage load DE L and P, are analyzed in terms of the mean absolute error (MAE).

N
1 1 (Yiredii — Yimeas.i )2
NRMSE = \/Zz—l( pred,i cas, ) (15)
Oy N
1 ZN Loadpreq,; — Loadmeas,s
MAELoad:(DEL’PEQ) - N Loadmeas’i <100 (16)

=1

where Y),,.¢q is the time instant prediction, Y,,cqs is the measured of Mf,-c—qft, and NN is the number of instances included.

4.4 Drivetrain thermal model

Ly = L= L,= L,=
1.0m 03m, 08m

) Rein  Rehatemid ~ Rein Q.-(t):

iy

Main bearing

1
1
1
1
1
1
i 1
i housing ,
1
1

Rf,out Rhousing Rr,uu(

Gearbox
Rf,in Rf,out Rr,out Rr,in
Rshaft-lefl Rsupporl-left Rsupporl-right Rshaft-righl
1 Housing
supports
Shaft Front main PP Rear main Tamb(t) Te(t)
flange bearing bearing Tamb(t)
(@) (b)

Figure 5. (a) Schematic of DTU research V52 turbine drivetrain with the main bearing estimated front and rear temperature 7 and 7.
Ambient temperature 7,5 is measured in the nearby met-mast and the gearbox temperature 7, is estimated based on a 6 months monitoring
campaigns which recorded the temperature of the gearbox wall facing the rear main bearing. (b) Simplified thermal circuit model of the
drivetrain, which assumes that each 10-min instance reaches thermal equilibrium and average values of load, temperature and heat are
estimated. Q, and Q ¢ are the dissipated power by the main bearings. R represents the equivalent thermal resistance: R; between front main
bearing and ambient temperature; R between main bearings; Rz between rear main bearing and the ambient and R4 between rear main
bearing and the gearbox closest surface to the main bearing housing. Other heat exchanges are not considered. The ...y are estimates on

geometry of the drivetrain components (all assumed as steel) and bearings heat transfer coefficients suggested by Schaeffler TPI-176 (2014).
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To incorporate the life modification factor ajsp in the evaluation of the main bearings, estimates of the main bearings tem-
perature are necessary, as the first is function of viscosity which is function of temperature. Figure Sa shows the estimated
temperatures from the rear 7). and front bearing 7', together with the measured temperatures, ambient 7,,,,;, and gearbox wall
T,. It is proposed to simplify the heat exchange between the heat dissipated by the bearings and the outer system (drivetrain),
by assuming thermal equilibrium in each 10 min instance and thermal resistors, as shown in Figure 5b. The ambient temper-
ature Ty, is measured by a spinner anemometer at the hub and the gearbox temperature T}, is estimated based on 6 month
monitoring campaigns that recorded the temperature of the gearbox wall facing the rear main bearing. A SCADA-based small
FNN model was trained to estimate values of T}, for each 10-minute instance, and it yielded 3 °C MAE, which is reasonable

considering the scope of this investigation.

Ty —Tarmp) (T —T3)

T Y Tl a7
- (Tf _T’f‘) _ (Tr _Tamb) (Tg —T,-) o
Qv+ = L =0 (18)

By applying the Kirchhoff circuit concept for thermal equilibrium, Equations 18 are obtained, which have two target variables,
Ty and T,.. However, the dissipated power of a bearing is also affected by the bearing temperature (e.g., Q r=f(Ty,...)), as
the latter influences the viscosity of the lubricant (the base oil of the grease). Because the variables depend on one another,
the equations are coupled and cannot be solved explicitly. Instead, a Newton-Raphson solver was implemented in Python to
iteratively estimate the results, and no convergence issue was encountered. This framework can be found in more detail in
HIPERWIND D5.1 (2023). The dissipated powers were modeled as suggested by Schaeffler TPI-176 (2014), which separates
them into two contributions: frictional heat driven by speed (and viscosity v) and frictional heat driven by load. The grease has
been assumed as Kliiberplex BEM 41-301, a widely distributed industrial grease for wind turbine main bearings. Once 7;. and
T are estimated, the viscosity of the base oil is calculated according to ASTM D341-93 (1998). Lastly, ajso can be calculated

as a function of viscosity ratio x, grease cleanliness level, C', and P4 as given by ISO-281 (2007).

5 Results
5.1 Continual calibration routines

Figure 6 shows the identified calibration factors for each of the two tower bottom strain gauges and the six blade root strain
gauges, all converted to bending moments as explained previously in Section 4.1. The charts to the right in both Figures 6a
and 6b show the "Sensor position" represent the angle difference of the installed sensor with respect to the SCADA reference
variable, the yaw angle y for the tower (cardinal north as the zero point) and the azimuth angle ¢ for the blade sensors (blade A
upward as the zero point). Automatic routines manage to identify the position of the sensors correctly with a standard deviation
(std) of less than 4 degrees, even though the azimuth correction explained in the Appendix A was not applied at this stage,

leading to higher variability before 2018 and after 2022.
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From the left charts, it is possible to observe larger zero drifts for the blade root compared to the tower bottom strain gauges.
The M, BR 4, MyBR 4, and M, BRc also present an abrupt change in the zero drift in 2018 and 2020. This could be justified
by sensor replacement or data acquisition settings; however, no final explanation has been validated. . The amplitude in this
method is the maximum gravitational overhang bending moment. In the case of the yaw sweep, driven by the rotor-nacelle
weight in respect to the tower bottom, and for the LSI, driven by the blade weight in respect to the blade root. To have a
quantitative accuracy quantification of the automatic routines in identifying the offset and the amplitude their unexplained
variability are normalized by reference values: the mean M., r¢ bending equal to 3540 kNm for the tower strain gauge and
the mean M fiapwise (AB.C) bending equal to 500 kNm for the blade strain gauges, both at rated wind speed. From the middle
chart in Figure 6a, an amplitude std of less than 4 kNm (equal to 0.04 MPa) can be observed for both sensors, which represents

a variability of 0.1% to the tower reference. For the blade, an amplitude std less than 3 kNm, representing a 0.6% variability.
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Figure 6. Identified calibration factors for a period of nearly 9 years, including offset, amplitude and sensor position. Each marker represents
one identified yaw sweep for the tower bottom strain gauges and its calibration factors(a) and one Low-Speed Idling (LSI) for the blade root
strain gauges and its calibration factors (b). In average, 2 calibration instances are available per month. The tower bottom sensors position is

defined in respect to the yaw angle ~(¢). The blade root sensor position is defined in respect to the azimuth angle o (¢).

Once the offsets, shown in the left charts, are used to remove the artificial zero drift from the sensors, there will still be

residuals that are not explained by the automatic routine. The offset residuals of the tower showed a std of less than 60 kNm
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(corresponding to 0.5 MPa), which is 1.6% of the reference. While, for blade strain gauges, the offset residuals had an std of
less than 10 kNm, representing a variability of 2%.

5.2 Lifetime of tower and main bearings
5.2.1 Fatigue damage accumulation

Once all strain gauges have been calibrated and high-frequency measurements and SCADA are available, the long-term lifetime
can be estimated over time, as shown in Figure 7. Considering that failure is reached at unity, the basic lifetime of the main
bearing L1 can be evaluated using Equation 7. The front bearing L1,y is 166 years and the rear bearing L1, is 333 years.
Similarly, the tower has a even larger lifetime of 1770 years. This significantly longer lifetime, compared to the design lifetime
of 20 years proposed by IEC 61400-1 (2019), is in part justified by the low wind potential of the Risg site, as discussed in
Section 3. However, it also points to the fact that older and smaller turbines, such as the DTU research V52 turbine, have long

remaining useful lifetimes (RUL) of key components that should be considered in lifetime extension (LTE) decisions.

0.0030{ 100 Thwer borio M 00301 2997 o Rear main bearing
0.00241 75 (fore-aft) 0.0241 _ 1501 ©o  Front main bearing
£20.00181 X, 250018 2,
- = 50 o 100
Q 0.00121 & Q 0.012- Q“‘
000061 23 0.006{  °
0.0000 01 ¢ : : 0.000 0
o S Q Vv ™ o S Q W I
N A W) Q) QY S A W\ Q) V
D o D D D D D o >
(a) (b)

Figure 7. Fatigue damage accumulation of (a) the tower (structural component) and (b) the main bearings (rotating components) of the DTU
research V52 turbine for 9 years. Fatigue damage was counted according to Equations 2 and 7. Charts have an absolute accumulation and a

normalize y-axis in respect to the end measured accumulated damage (normalization of D p considers the rear main bearing).

5.2.2 Linear zero-drift assumption and simple uncertainty propagation to tower and main bearing lifetime.

It is proposed to assume linear zero drift of the different strain gauges as a single linear function or a combination of linear
functions, which can be derived from continuous calibration factors over time. Then it is important to quantify the uncertainty
of this assumption in the life of the main bearings, which is based on the absolute load values P. Figure 8 shows how this
analysis was carried out to evaluate the effect on main bearing basic rating life L1 as described by Equation 6. Representative
10-min instances (DLCs 1.2, 3.1 and 4.1) were used to estimate the main bearing rating lifetime Lo ; assuming a offset with
Gaussian distribution. Then 10000 Monte Carlo iterations were carried out. For all three instances, the std of both bearings
Lq,; was below 0.7%. Similar analysis was carried out for the fore-aft fatigue load. However, fatigue is not affected by the
mean load value (as described in Equation 2 and is then not sensitive to the offset, assuming there are no large yaw angle

variations within 10 min instances, see Equation 9.
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Figure 8. Uncertainty quantification flowchart to estimate the variability in the main bearings basic lifetime L1¢,; in a 10 min instance j due
to the linear assumption of the zero-drift strain gauges once continual calibration is applied. Each strain gauge offset is randomly sampled

from its deterministic linear fit and the residuals distribution. Monte Carlo is applied for 10000 iterations.
5.2.3 Effect of periodic calibration on the main bearings Lo

Now that continuous calibration with linear zero drift has been defined as the benchmark with a error less than 1%, it is sought
to understand how periodic calibration of strain gauges, as often carried out in the industry, could affect the lifetime estimation
of the main bearings. Table 2 shows the difference between the L,y measured over 9 years with continual calibration compared
to the periodic calibrations carried out. The absolute results of L1 error due to calibration periodicity are not generalizable, as
they are influenced by the zero drift behavior of each monitoring setup and the absolute loads of the wind turbine. However, it

highlights how severely poor strain gauge calibration can influence the lifetime estimation of main bearings.

Table 2. Error in the L1 estimation for 7.5 years as a function of how often strain gauges are calibrated.

Monthly 3-months 6-months Yearly 2-year 4-years Atcommissioning

Ly error [%] 8.0 9.3 11.9 13.1 34.8 70.5 90.6

5.3 Virtual load sensor performance validation

More than 160 h of training data were used, as no significant improvements were found by enlarging the dataset, while down-

sampling from 50 Hz to 10 Hz remained within the error convergence. The latter could decrease the dynamic content and

17



365

370

375

380

385

https://doi.org/10.5194/wes-2025-233 WIND
Preprint. Discussion started: 11 November 2025

~
© Author(s) 2025. CC BY 4.0 License. e We \ EZ:EEIT\I%YE

underestimate the measured fatigue damage; therefore, to verify this, a procedure proposed by D’ Antuono et al. (2023) was
carried out, and sampling frequencies lower than 8 Hz contained more than 98% of the measured fatigue damage in represen-

tative instances, to all considered design load cases (DLCs). A sampling frequency of 10 Hz is used.
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Figure 9. Virtual load sensor validation performance applied to 160 hours. Their performance is shown based on the 3 metrics described in
Equations 15 and 16. The different columns represent the feature selected as inputs and the different colors the model type (neural network
architecture). The box-plots show the mean value and the 10" and the 90*". The number in the left subplot are the mean value of the

NRMSE, whereas the bold values in the middle and right subplots, have the mean absolute error (MAE).

The 15 different combinations of virtual load sensors (5 input options and 3 model types) are validated using 160 h from
the 2019. From left to right, Figure 9 presents all combinations of models tested in terms of the metrics shown in Equations 15
and 16: including NRMSE My ;..o ¢ (2), MAE DEL ;¢ (b), and MAE P, (c). Raw data are added for completeness as
transparent markers. It can be seen that the LSTM model with "All" inputs outperforms the other models significantly when
comparing NRSME. The mean error of 23.41% is almost half the second-best performing model combination (LSTM and
"SCADA+Accelerometer"), which yields 37%. However, when no accelerometer signal was included and blade strain gauges
were added, the LSTM performance worsened compared to the FNN and NlaggedFNN models. It seems that LSTM cannot
attenuate the pronounced 1P, 2P, and 3P contributions of the blades, without a clear estimate of the first fore-aft frequency
component (present in the accelerometer signal). Regarding the equivalent load of the main rear bearing P, ., influenced
by the thrust estimate from the virtual load sensors, it is observed a overall negligible difference between all combinations
of models. Models using only "SCADA" already reach MAE errors below 2%. The same results were found for long-term
deployment over 7.5 years, all models within 2% of main bearing L, estimates.

For the equivalent damage loads at the tower bottom fore-aft DEL f,rc—q ¢, models solely using SCADA had a minimum
MAE error of 23.76%. Looking at Figure 10, it can be observed that the model with SCADA (LSTM) had an overprediction
for very low amplitude cycles, while underprediction for larger amplitude cycles. This becomes more predominant for above
rated wind speed conditions (refer to Figure 10b). Looking at its PSD, the model also does not properly capture the frequency
components of the reference signal M¢ore—qp¢. Adding the accelerometer yielded strong improvements. The best performing
combination with "SCADA + Accelerometer" and LSTM had an MAE of 8.27%, very close to the overall best performing
combination of "All" and LSTM with 6.98%.
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Figure 10. Stress cycle histogram and Power Spectrum Density (PSD) chart (inset top right) of tower bottom Mfore—qt ¢ estimate for the

different input signal combined with their best performing model compared to the measured (black). All stress histograms are the summation
and the PSD charts the averaging of 100 instances from 2019. (a) Below rated wind speed 8 m/s (DLC 1.2). (b) Above rated wind speed 16
m/s (DLC 1.2). (c) Start-up and shutdown (DLC 3.1 and 4.1)
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The models that included strain without accelerometer have a worsened performance of 20.71% and 24.23% for the best
combination with NlaggedFNN, and also included undesired, sharp and narrow-band peaks, most likely coming from the blade
modes, that are not transmitted to the tower in reality.Looking close to the two best performing model combinations overall,
"SCADA + Accelerometer”" and "All" with LSTM, it is worth taking a closer look at Figures 10a and 10b. It is observed
that only the model "All" is consistent in predicting stress ranges at both below and above rated wind speed, while rarely
overpredicting the energy content for frequencies components above 0.62 Hz. Figure 10c shows the models performance under
DLC 3.1 and 4.1 together. Again, LSTM with "All" shows the most consistent results. However, all the possible combinations

under-predict large oscillations, and consequently large stress ranges.
5.4 Tower fatigue estimation using virtual load sensors

LSTM is chosen as the best model to combine with "SCADA", "SCADA + Accelerometer"”, and "All", while NlaggedFNN
is chosen for "SCADA + Strain" (one and all blades). The long-term deployment of these is then performed to verify their
reliability in estimating the lifetime of the tower. Unfortunately, since the high-frequency database before July 2017 is sampled
at 35 Hz, in contrast to 50 Hz after July 2017, the results related to the implementation of virtual load sensors do not include
this initial period, as the models were trained on 10 Hz data. Downsampling 35 Hz to 10 Hz requires interpolation rather than
a clean decimation (50 Hz to 10 Hz), which may affect consistency. Figure 11 shows the accumulated tower fatigue damage
of each virtual load sensor combination D normalized by the final accumulated damage measured. It is interesting to note
that more damaging contributions are present at the beginning of each year because the Danish winter has higher wind speeds.
In terms of virtual load sensors, all have underpredicted the accumulated damage (under-conservative), which is expected
looking at the analysis done during validation and shown in Figure 10. The difference between the best-performing model
"All" and the second model "SCADA + Accelerometer” is equal to 11%, from 64% to 75%. The remaining three models

perform considerably worse in the long term with estimates below 30% of the reference damage.
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Figure 11. Tower bottom fore-aft fatigue damage accumulation comparison between different virtual load sensors models. It shows the total
accumulation for a period of 7.5 years normalized, for the sake of comparison, by the final measured fatigue accumulated damage. The
different model combinations are shown by inputs used (marker) and by model type (marker fill color). The latter for sake of consistence

maintains the colors from Figure 9, blue for NlaggedFNN and orange for LSTM.
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5.4.1 Proposed experimental slope correction for tower damage accumulation and statistical uncertainty

If a virtual load sensor is consistent throughout the majority of operating conditions over the year, it would underestimate
different years with a similar error. Figure 12a shows the comparison for a full year (2018 as the first round year available)
of estimated and measured accumulated damage. The slope 1 represents the under-prediction ratio, calculated as the linear
fit slope between the estimate and the measured accumulated damage yearly. And the greater the linear fit coefficient of
determination R? , the lower the unexplained variability of the linear fit of a given virtual load sensor. Then, one could have an
accumulated damage from the virtual load sensor adjusted by the yearly slope as in

D, = 2Lt (19)

Nk

where D7 ;5 is the original and D7 , is the adjusted accumulated damage of the virtual load sensor. The slope 7, is the linear
fit slope between the virtual load sensor and the measured damage for a given year k&, and it is used as a correction factor.

An issue with the proposed experimental correction is the error associated with the choice of a given year & to calculate the
slope by chance. Figure 12b shows the calculated 7;, for each year independently. The "All" and "SCADA + Accelerometer"
models have the slope closest to unity for all years compared to the remaining models, while the first has the lowest variability.
Figure 13 then attempts to evaluate the uncertainty by individually calculating the slope correction factor for each year of the 7
years available and adjusting the expected accumulated damage of the two best performing virtual load sensors by the average
slope 7gpg = 1/N - Ziv Nk, where N is the number of years. According to Schillaci (2022), to reach an estimate standard
deviation (std) accuracy of +10% with limited samples with confidence 90%, more than 100 samples are required, considering

a Gaussian distribution. Since our available IV is low (7 years), both the (std) and the maximum/minimum bounds are evaluated.
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Figure 12. (a) Comparison between accumulated damage from virtual load sensors (D7) and measured (Dr,,,) for 2018. The slope 7y,
of each model refers to the linear fit slope, while "R2" refers to the coefficient of determination (markers are shown once per month). (b) The

slope 7y, calculated for each full year . Blue for NlaggedFNN and orange for LSTM.
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Figure 13. Measured D7, and adjusted D7 , damage accumulation of the virtual load sensors based on the yearly slope correction are
shown. Only the two best performing models are shown. The adjusted damage by the average slope value for the 8 years is shown as the
markers. The filled areas represent the variation around the standard deviation (inner) and bounded between the maximum and minimum

possible values observed (outer). The error between virtual load sensor and measured damages accumulation in shown on the right red y-axis.

It can be said that the model "All" with LSTM has the shortest error convergence time nearly within 6 months, and has
a mean error for the adjusted accumulated damage equal to -1.8% and variability within 3.5% and -6.5%. The second best
performing model "SCADA + Accelerometer" with LSTM has a mean error of -4.2% and a variability bounded within 13%
and -15%. The remaining virtual load sensors are also shown, but should not be considered as reliable as the latter, since these
do not capture neither the PSD nor the stress ranges distribution in a consistent manner. In other words, the final damage will

match but with a very different estimated M ¢ore—qf+ Signal compared to the measured.
5.5 Main bearings loads and fatigue lifetime analysis

As detailed in Section 2.2, the main bearing life is calculated directly from the applied radial and axial loads. The axial
load of the main bearing F,, is linearly linked to the tower bottom bending moment as in Fy, = Mfore—qst/h, Where h is
the height difference between hub height (44 m) and the height of the sensor (3.787 m). Here, Mforc—qs: is assumed to be
representative of the turbine thrust curve. The radial load of the main bearings F’. is equal to the estimated Ry (front) and R,
(rear), respectively. For a more detailed explanation, see Sections 3 and 4.2. The 10-min mean loads are shown in Figure 14
as a function of wind speed. The front and rear bearings F;. have different behavior with respect to the wind speed. The front
main bearing has a fairly flat distribution at higher load, while, for the rear main bearing, the radial load is incremental. The
F,/ F, ratio for the rear main bearing is almost in its entirety above the limiting factor, which will worsen the estimated rating
life, as the Y factor increases (see Equation 4). Finally, P, of the front bearing has a slight positive trend, most probably due

to higher rotor speeds with higher wind speed, while the rear bearing’s dynamic equivalent load is driven by the axial load F,.
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Figure 14. Front and rear main bearing loads as function of the wind speed. The obtained axial load F, radial as function of the tower

bottom bending moment M,,c—q ¢, the radial load F’., the ratio with the rear bearing limiting factor, and the dynamic equivalent load P,

are presented. The 9 years mean value is represented by the marker while the 10*"-90" percentiles by the filled area.

5.5.1 Sampling frequency and gearbox mounting stiffness assumptions

Before moving on to the long-term results, it is important to verify some of the assumptions made in this work. As in the fatigue

estimation of the tower bottom, the P, and the Ly were calculated based on a downsampling of the measured data from 50 to

10 Hz. Figure 15 shows the effect of this assumption on the estimated loads, as the variation from the estimated downsampled

load less the measured load at 50 Hz (normalized). It seems fair to conclude that at 10Hz, there will be a mean error of less

than 2% with a 10"-90*", within 5%.
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Figure 15. Results of sensitivity analysis of 160 h data on the main bearings dynamic equivalent load Peg; left: influence of sampling

frequency of measurements; right: influence of stiffness of gearbox mounts. The used value for the gearbox mounting stiffness refers to the

literature values found in Haastrup et al. (2011) and Keller et al. (2016).
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On the other hand, the assumption on which stiffness should be used to model the gearbox mounting fixation points into the
bedplate has been shown to be one order of magnitude more relevant. In the right subplot of Figure 15, nearly 10% and 60%
overprediction of the front and rear dynamic equivalent loads P, could be reached, if a gearbox is assumed to be rigidly fixed

in a 4-point drivetrain, see Figure 3.
5.5.2 Environmental and operational conditions (EOCs) mapping of the main bearings dynamic equivalent loads P,

Having 7.5 years of the main bearing P, available, it was possible to couple such values with the environmental conditions of
each mean 10 min instance to visualize potential patterns. Figure 16 confirms the intuitive reasoning that the equivalent loads
of the front main bearing P, s are driven more by the static gravitational load of the rotor. However, P4, ¢ still contains almost
10% fluctuations due to the shear exponent from 0.05 to 0.15 in all wind ranges and a similar turbulence effect at the rated

wind speed. In a different manner, for the rear main bearing, the turbine thrust curve dictates the value of P, ,..

<30 ﬁ0.4

= 7

= 'g 278
- O Q =
=2 8 2 268 24,
.8 g -
= 1) N
= 3 502 g

EJ 5 258 Q)

2 z

E 01 248

F

0
§ ﬁ0.4* 430
]

= i

Z 03 P

5} S
52 2 350 4,
Q= 15 “
% g S 0.2 310 &

= © 4

|5} 5 Q

= 3 270

5 % 01 230

F

5
Wind speed [m/s] Wind speed [m/s]

Figure 16. Equivalent dynamic loads of the front (Peq,7) and rear (Peq,) main bearing mapped as function of wind speed, turbulence

intensity and shear exponent. The measurement period covers from July 2016 to July 2024 (included).

Looking closely at P, ¢, the results fairly resemble Kenworthy et al. (2024) for a 3-point drive train for the effect of lower
shear on increased bearing loads. However, a more substantial effect of low turbulence is found at the rated wind speed, which
is comparable and can exceed the shear influence, as also suggested by the HIPERWIND D5.4 (2024) report. An increase of
10% of Peq, ¢ loads (from 248 to 268 kNm) can be seen in the rated wind speed for the turbulence values of 15% to 10%. A
similar load increase is observed for shear exponents of 0.15 to 0.08 at rated wind.

In terms of the load on the rear main bearing P, , (locating), in addition to the dominant influence of the mean wind speed
in general, the effects of turbulence are similar to the main front bearing at the rated wind speed. Approximately 10% increase

in load driven by a change in turbulence from 15% to 8%. Although shear also has an influence on loads, it is to a lesser extent.
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Important to note, the discussion above does not imply an overall longer or shorter lifetime of the main bearing, as Figure 16
zooms in on the most damaging environmental combinations and disregards, for example, the effect of shear and turbulence at
smaller loads, as the color bar was limited to focus on higher loads (50" percentile minimum). The goal is to discuss possible

load reductions in the case of more damaging conditions.
5.5.3 Main bearing lifetime using thrust estimate from virtual load sensors

The application of virtual load sensors as a thrust estimate and then the axial load of the rear main bearing resulted, for all
models, in an estimation error of Ly , around 10% for 7.5 years. The model with only "SCADA" with LSTM was the best
performing model. This might come from the fact that the main bearing loads, and, consequently, their useful life, are not
affected by the dynamic component of the axial load, but only by the mean load level. In this manner, there was no significant

performance difference between deploying the different virtual load sensors, in agreement with the results in Figure 9(c).
5.5.4 Main bearings modified rating life: L,¢,,, and a;so

Applying the drivetrain thermal model, consistent temperature ranges were found for the normal operating conditions (DLC
1.2) of the main bearings. The temperatures of the front and rear main bearings had maximum values of 55 and 61 °C,

respectively, while  (viscosity ratio) had minimum values of 0.84 and 0.64 respectively.
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Figure 17. The modified rating life of the front Liom,s and rear L1, » main bearings of the DTU research V52 turbine is mapped as
function of relevant environmental conditions. It is assumed a severe level of contamination for the grease lubricant. The latter represents
a scenario in which re-greasing intervals recommended by the OEM are not followed. Important to note that there are limits related to
aiso implementation as defined by ISO-281 (2007): at aiso = 50 and at e.Cy /Peq = 5 (maximum bound) and at viscosity ratio x = 0.1
(minimum bound) which has not been reached in this work. The lower limit of the color bar (yellow color) was chosen to match the turbine

design lifetime of 20 years. The measurement period covers from July 2016 to July 2024 (included).
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The seasonal variation corresponded to approximately +10 °C in the front bearing and £8 °C in the rear bearing tem-
peratures, while the operational variability reached around 15 °C variation in the front and +20 °C in the rear bearing
temperatures. The results of such environmental and operation conditions (EOCs) can be visualized in Figure 17, assuming
a severe level of grease contamination. The grease cleanliness affects the parameters to estimate the variable contamination
factor e., which by consequence affects the ajso (see ISO-281 (2007)). This assumption represents a worse scenario in which
re-greasing of the main bearings is not performed in the long-term as suggested by the manufactures. It highlights the large
impact of the ambient temperature on the modified rating lifetimes of main bearings in which there is no nacelle temperature
control. For the rear main bearing, even for such an overdesigned bearing, at rated wind speed and ambient temperatures above
20 °C, the bearing lifetime is reduced to below the design lifetime of 20 years. In addition to that, once ajso is considered, it
seems that turbulence overcomes shear as the most influential factor for the rear main bearing at the rated wind speed.

Even though significant variations can be observed on the Li¢,, due to EOCs, it is important to mention that the grease
cleanliness level affects the bearing lifetime more severely. A severe level of contamination could be reached at the end of
the design lifetime in case no periodic re-greasing are carried out, as described by ISO-281 (2007). However, there are better
and worse scenarios. Figure 18 shows in a log scale the distribution of ajso as function of the grease cleanliness assumed or
inspected in a wind turbine. In the worst case scenario with "very severe contamination" around 70% of instances are penalized

and Loy, goes from the initial Ly, of 315 years to 130 years lifetime, more than 50% lifetime reduction.
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Figure 18. Normalized histogram showing the distribution of the rear main bearing life modification factor arso,» as function of the grease

cleanliness levels. The red dashed line shows the limit for L1op = L10,m. The bound of arso < 50 is not applied for the sake of clarity.

6 Discussion

The assumption that the strain gauge zero-drift in a wind turbine tower and blade follows a linear curve might be an oversim-
plification. Many factors can influence the zero drift of the strain gauges. As described by Hoffmann (1989), the measuring
grid has its own fatigue deterioration, the adhesive can wear over time, and the bending of the connecting wires and several

impurities (e.g., mold) that can add unwanted electrical resistance to the circuit over time. However, it is interesting to observe
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that eight independent strain gauges from the DTU research V52 turbine have presented similar behavior over time, with low
unexplained variability after the proposed correction. Similar variability was also found for a 5 MW offshore turbine in Faria
et al. (2025). The larger variability from the blade root strain gauges calibration factors could be explained by the fact that its
Wheatstone bridge is compensated for temperature differences in the whole blade, but not for temperature gradients between
the two blade surfaces. It would be interesting to see if this result holds in more case studies.

One last detail worth mentioning about the strain gauge methodology is that the configuration of the Wheatstone bridge
chosen to measure bending moments will highly affect the reliability of the sensors output. The full bridge of the blade root
strain gauges was not inherently compensated for temperature gradients between the blade faces, differently from the full-
bridge of the tower bottom strain gauges. Because of that, the residuals had a small seasonality effect present. So, temperature
effects can also add variability and bias to the zero drift of strain gauges.

In terms of virtual load sensors, it was a methodological decision to use k-means to select and generate training and validation
datasets. Rather than a more generalizable conclusion usually sought by methods such as the Latin-Hyper cube, the goal here
was to test and deploy the best-performing model for the long-term monitoring of the DTU research V52 turbine, as it is rare to
find similar results in the literature. The performance of the virtual load sensor for DEL estimation is worse than that found in
works such as de N Santos et al. (2024). The addition from the present work comes from the deployment of long-term and time
series virtual load sensor. In which it is interesting to highlight that a mere 1% difference in MAE DEL between models led to
a 11% difference in the lifetime estimation. The experimental slope correction results should not be seen as fully validated, but
as a trial to adjust models that consistently capture the dynamic content of the tower bottom while underpredicting the peaks
and valleys, leading to constant stress range underprediction. Using in this work 7 years of measurements showed very low
variability, within around +5 % for the best performing model (LSTM with "All" inputs). More advances in machine learning
models and training techniques could still be tried.

Regarding monitoring the bearing lifetime, it was interesting to observe that the initial gearbox assumption could lead to
large errors in the estimation of the lifetime of the components. The stiffness of the gearbox mounting could lead to an error of
60% P.q4, which, due to the bearing exponent p equal to 10/3, would mean underestimating the lifetime L by 198% for the
location of the main bearing.

The lifetime estimate of the main bearings was an order of magnitude higher than the required lifetime of 20 years, making it
less probable to fail due to rolling contact fatigue in the DTU research V52 turbine. However, mapping of their loads facing key
environmental conditions can provide more generalizable lessons on how to operate and maintain such expensive components
in the long term for other turbines with similar drivetrain setup. At a wind farm level, if farm power curtailment is required,
turbines with low inflow turbulence could be prioritized to be curtailed to have a more significant reduction of main bearing
loads. In contrast to what one would intuitively expect in the field of wind energy research, lower intensities of turbulence could
penalize the useful life of the main bearings, as also shown in HIPERWIND D5.4 (2024). In fact, good estimates of operating
temperature and grease cleanliness were identified as key drivers in the estimation of main bearings lifetime. Although the

thermal model resulted in realistic temperature ranges, validation with measurement values is the logical next step.
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7 Conclusion

In this work, methods were investigated to allow for reliable lifetime counting of large load-carrying components, both struc-
tural in the form of a tower and rotating in the form of main bearings. The work was validated on the DTU research V52 wind
turbine for a continuous period of almost a decade.

From the proposed research questions that guided this study, the main learnings and possible limitations are as follows.

— The strain gauges at the bottom of the tower and the root of the blade were continual calibrated for 9.5 years with at
least 20 calibration instances per year. The yaw sweeps and Low-Speed Idling (LSI) routines were verified for long-term
calibration, and all strain gauges presented reliable behavior. We assumed linear behavior to model the zero drift, which

has to be validated by carrying larger case-study comparisons.

— Lifetime counting of a structural component, such as the tower, and other load-carrying components, such as main bear-
ings, was carried out for almost a decade, without having design information from the blade or mid-fidelity aeroelastic

models in hands. Attention should be paid to the quality of SCADA sensors and drivetrain modeling assumptions.

— The use of virtual load sensors based on data-driven methods is promising in the field of wind energy, where Structural
Health Monitoring (SHM) campaigns can be expensive and take a long time (even more for offshore assets). These
could serve as a continuous high-frequency thrust estimate. In this work, the counting of 7.5 years of the fatigue lifetime
of the tower bottom using a virtual load sensor yielded in its best model a prediction of damage of 75%, and after an
experimental correction, assuming a year of available measurement data, +5 % lifetime error. However, in the field
of data-driven methodologies, there are many models, training techniques, and deployment cases that could bias the
results. For this reason, the results from this work might not be seen as the state of the art or entirely generalizable but
as a discussion on the challenges of applying and validating virtual load sensors on operating wind turbines considering
several DLCs.

— Finally, the main bearings loads P, and modified lifetime Lq,,, were mapped in terms of relevant environmental
conditions and grease cleanliness. The first showed that a front main bearing in a 4-point drivetrain has longer life by
a higher shear exponent, whereas the rear main bearing, at rated wind speed, has higher loads for lower turbulence
intensities. Neglecting the stiffness of the gearbox mount renders unrealistically high P,,, but having the stiffness values
within realistic ranges results in little influence on the lifetime. Finally, ISO-281 (2007) life corrections for lubricant
cleanliness result in significantly different lifetimes but are not validated for large grease-lubricated bearings. Future

research might focus on establishing these factors with bearings and lubricants typically used in wind turbines.

28



565

570

575

580

https://doi.org/10.5194/wes-2025-233 WIND

Preprint. Discussion started: 11 November 2025 e WE ENERGY
(© Author(s) 2025. CC BY 4.0 License. \
SCIENCE

® european academy of wind energy
m

Appendix A: Azimuth angle correction for the DTU research V52

Figure A1 presents the problem and the solution applied for the azimuth angle sensor. For periods before 2018 and after 2020,
the measured azimuth angles contained severe variations in regular patterns, which did not extend to variability in the edgewise
bending moment M,ggewise Of the blades. In this manner, such variations were triggered as a sensor malfunctioning.

To correct for such an issue, an azimuth angle estimate ¢, was derived as a constant-gain blend between two complementary
signals. The first signal is the measured azimuth angle ¢,,, sampled at 10 Hz, shown in Figure A1 as the black line (left y-axis).
The second signal is the controller-defined rotor speed (SCADA) w sampled at 10 Hz, which has a lower resolution, and shown

in the same figure as the red line (right y-axis). The period At is defined as the inverse of the sampling frequency.

—e— measured ¢ at 10Hz »— estimated ¢ at 10Hz rotor speed [rpm]
2016 - 2020 2024
22300 300 ﬂ 24
s 20 { Al 7 g
P § £ # 2=
2200 200 ¢ £ 3
g 18 ; i &
E] 20 5
E 100 100 K B =
< 16 18
0 | 0
315 320 325 330 390 395 400 405 356 358 360 362 364
Time [s] Time [s] Time [s]

Figure Al. Representative examples of the azimuth angle in the SCADA from the DTU research V52 turbine showing problems with the
measurement data acquired in 2016 and 2024. An estimated azimuth angle (orange) is performed based on the controller SCADA rotor speed

(red) and the measured azimuth angle (black).

The correction method works by first identifying the best phase shift ¢, o of the azimuth angle in a 10 min instance, which
is the initial point between the cumulative ¢, and ), w; - At, using a few sequential data points. The instantaneous angle
based on the rotor speed will be ¢, ; = w; - At + ¢, ;_1, for i > 1, and ¢, ; = @, o, for ¢ = 1. The final estimated azimuth is
defined as e ; = @r; + K - d, if d < djipmir and e ; = @r s, if d > digmse - In which, d is the difference between the measured
instantaneous angle and the estimation of the rotor speed d = ¢, ; — ¢,,;. The two manually tuned variables are the gain /K
and the distance limit dj;,,,;;. The first defines how reliable are the fluctuations from the measured azimuth. The latter correlates
with the threshold of how many degrees the measured azimuth can realistically change within At. In this work, the parameters
were tuned to KX = 0.1 and dj;,,,;+ = 30°.

The validation was carried out in a good year (2019) by applying the method on 160 h of representative instances containing

the Design Load Cases (DLC) 1.2, 3.1 and 4.1. The maximum instantaneous error /¢,, — @,/ was below 5°.
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Appendix B: Statically indeterminate system of equations for a 4-point drivetrain considering a the gearbox mounting

stiffness

Figure B1 shows the drivetrain schematic that allows one to derive the radial loads in the main bearings while considering the
stiffness of the gearbox mounting. The vertical direction is chosen as it includes the most significant resultant loads (gravita-

tional and aerodynamic), and the horizontal direction can be solved in the same manner.

X
—
I—‘shaft Wiﬂ.d
Main shaft
L L, Ls

— > — P>

Figure B1. Drivetrain schematic used to represent the external loads applied and the supporting elements in the vertical direction. F,ot0, and
Fsnaye are the rotor and shaft gravitational loads respectively, Lsnq ¢ the shaft center of mass distance, My.o¢0r the bending resultant from
the rotor weight as the hub is not modeled, and M, is the aerodynamical loading at the vertical direction. The main shaft is supported by the

front Ry ,, and rear R, main bearings and by the gearbox through the equivalent spring K, which results in the force F,.

The system of equations for the forces and bending moments is composed of:

ZFZO: —Frotor — sha,ft"*'Rf,v"'an"'_Fq (B1)
ZM(x = 0) =0= _Mv + Mrotor + Rf,'uLl - Fshafthhaft + Rr,'u(Ll + L2) + Fg(Ll + L2 + Ld) (BZ)

where the assumed sign conversion is upwards and anticlockwise as positive.

Since the system is statically indeterminate, there are two independent equations B1 and B2 and 3 unknowns reactions Ry ,,,
R, and F,. To add a third equation, the main shaft is modeled as a flexible beam, with small deflections, linear material,
and young modulus F and second area moment of inertia / constants along the length, as explained by Budynas and Nisbett
(2020).

The following equations are used to describe the bending moment as a function of = and the beam deflection w along x

through a double integration step.

d?w
EI@ =M =—M,~+ M,otor + Frotor 'x+Fshaft : <$_Lshaft> _Rf,v . <$—L1> _Rr,v : <l'_ (Ll +L2)> (B3)
M, Motor Frotor Fina
Elw=-— B x4 2t -z? 6t -m3+%~<x—[/shaft>3
Ry, R, .
- g '<x_L1>3_T,'<(L’-(L1+L2)>3+Cl'$+02 (B4)
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where () is the Macaulay bracket or discontinuity function. To solve the constants C; and Ca, two known boundary conditions

(deflection at the main bearings) can be used as such:
w(x=L;)=0 and w(x=L1+Ly)=0 (BS)

Finally, once the constants are calculated, the third independent equation can be derived by applying a third known boundary

condition (deflection at the gearbox):

F,
w($:L1+L2+L3):?g (B6)

g

The resultant third independent equation is then:

F MU M'() or F"
EIZ* == =5 (Lt Lo+ Ls)® + =5 (Ly + Lo + Ly)* + =2 (Ly + Lo + Ls)°®
g 6
Fshaft 3 Rf”U 3 R”‘,U 3
+T(L1 + Lo+ Lg— Lopayt)” — 5 (L2 + L) _T(LS) +C1(Ly + Ly + L3) + Cy (B7)

The complete derivation are omitted for conciseness, consisting primarily of algebraic manipulation and variable substitu-
tion. Using the three independent equations B1, B2 and B7, and assuming quasi-static equilibrium at each time instant, one

can calculate the 3 independent unknowns Ry ,,, R, , and F,.

Appendix C: Hyperparameters tuning of the data-driven virtual load sensors

The models described in Section 4.3 are tuned using a random search tuner (O’Malley et al., 2019) to improve the model per-
formance. Table C1 shows the hyperparameters possible range and optimal value found for each virtual load sensor. Similarly
to the methodology applied by Dimitrov and Go¢men (2022) and Griife et al. (2024), there are hyperparameters related to the
data architecture, such as the number of lags 145 in a NlaggedFNN and the window size in a LSTM, as well as hyperparam-
eters related to the model architecture and training itself. The latter includes, for example, regularization features to improve
the model generalization, such as the L2 regularizer and dropout. While, the model training was optimized in terms of batch

size and learning rate. The range of parameters was similar to that used in Dimitrov and Go¢men (2022).
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Table C1. Hyperparameter tuning, including the bound limits and optimum values for each model and feature possible combination.

Optimal values

SCADA + SCADA +
Parameter SCADA +
Model Hyperparameter Strain Strain All
range Accelerometer
(one blade) (all blade)
Batch size 32:32:256 32 32 160 96 160
Feedf
cedforward | mingrate  10-4:10-2 251073 5810°% 72107  3.0.10~% 3.5.1073
Neural

e Hidden units 50:20:200 150 190 70 130 150
Network . —6.1n—1 6 —6 -6 -6 -6

L2 regularizer 107°:10 2.0-10 3.6:10 1.2-10 11.3-10 2.8-10
(FNIN) Second layer 0:1:2 1 1 1 0 0
Batch size 32:32:256 32 32 96 96 96
Learning rate 10~4:1072 0.8:1073 0.8:1073 1.8-1073 2.8:107% 1.7:1073
lagged FNN Hidden units 50:20:200 50 190 150 70 70
(NlaggedFNN) L2 regularizer 10-6:10~1 1.4.1076 12107  4610°% 1.6107% 521076
Second layer 0:1:3 0 1 0 0 0
Niags 1:1:6 5 5 6 5 6
Long Batch size 32:32:256 128 64 64 64 64
Short-Term Learning rate 10-4:1072 9.7-1073 29-107%  9.7.107%  7.3-107% 3.4.1073
Memory NN Window size [s] 2,5,10,30 5 10 10 10
(LSTM) Dropout 0:0.1:0.5 0.1 0.2 0.2 0 0

Author contributions. BF and AB participated in the conceptualization and design of the work together with DR and XZ. BF performed the

620

draft manuscript. AB, MS, ND and AK supported the results analysis. All reviewed and edited the manuscript.

Competing interests. Some authors are members of the editorial board of journal Wind Energy Science (WES).

measurements processing and conducted the data analysis. BF and ND performed the models training and deployment. BF and NS wrote the

Acknowledgements. This work is funded by the Department of Wind and Energy Systems at the Technical University of Denmark (DTU).

The university also made the DTU research V52 turbine measurements available. The authors greatly appreciate the support. Special thanks to

625 Steen Arne Sgrensen and Sgren Oemann Lind for their valuable support with the turbine database and for discussions on the instrumentation.

32



630

635

640

645

650

655

660

https://doi.org/10.5194/wes-2025-233 WIND
Preprint. Discussion started: 11 November 2025

~
© Author(s) 2025. CC BY 4.0 License. e we \ EZ:EEIT\I%YE

References

ASTM D341-93: Viscosity—Temperature Charts for Liquid Petroleum Products, ASTM Standard ASTM D341-93 (Reapproved 1998),
ASTM International, West Conshohocken, PA, USA, an American National Standard., 1998.

ASTM E1049-85: Standard Practices for Cycle Counting in Fatigue Analysis, ASTM Standard ASTM E1049-85 (Reapproved 2017), ASTM
International, West Conshohocken, PA, USA, 2017.

Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient descent is difficult, IEEE Transactions on Neural
Networks, 5, 157-166, https://doi.org/10.1109/72.279181, 1994.

Budynas, R. G. and Nisbett, J. K.: Shigley’s Mechanical Engineering Design, McGraw-Hill Education, New York, NY, 11th edn., professor
Emeritus, Kate Gleason College of Engineering, Rochester Institute of Technology; Associate Professor of Mechanical Engineering,
Missouri University of Science and Technology, 2020.

D’ Antuono, P., Weijtjens, W., and Devriendt, C.: On the Minimum Required Sampling Frequency for Reliable Fatigue Lifetime Estimation
in Structural Health Monitoring. How Much is Enough?, in: European Workshop on Structural Health Monitoring, edited by Rizzo, P. and
Milazzo, A., pp. 133-142, Springer International Publishing, Cham, ISBN 978-3-031-07254-3, 2023.

de N Santos, F., Noppe, N., Weijtjens, W., and Devriendt, C.: Farm-wide interface fatigue loads estimation: A data-driven approach based on
accelerometers, Wind Energy, 27, 321-340, https://doi.org/https://doi.org/10.1002/we.2888, 2024.

Dimitrov, N. and Gé¢men, T.: Virtual sensors for wind turbines with machine learning-based time series models, Wind Energy, 25, 1626—
1645, https://doi.org/https://doi.org/10.1002/we.2762, 2022.

DNVGL-RP-C203: Fatigue Design of Offshore Steel Structures — Recommended Practice, Edition April 2016, DNVGL RP DNVGL-RP-
C203:2016, DNV GL AS, Hgvik, Norway, 2016.

Faria, B. R. and Jafaripour, L. Z.: yaw-sweep-sg-cali: Strain-gauge yaw-sweep calibration for wind turbine towers, https://pypi.org/project/
yaw-sweep-sg-cali/, version 3.2, 2023.

Faria, B. R., Sadeghi, N., Dimitrov, N., Kolios, A., and Abrahamsen, A. B.: Inclusion of low-frequency cycles on tower fatigue life-
time assessment through relevant environmental and operational conditions, Journal of Physics: Conference Series, 2767, 042021,
https://doi.org/10.1088/1742-6596/2767/4/042021, 2024.

Faria, B. R., Dimitrov, N., Perez, V., Kolios, A., and Abrahamsen, A. B.: Virtual load sensors based on calibrated wind turbine
strain sensors for damage accumulation estimation: a gap-filling technique, Journal of Physics: Conference Series, 3025, 012011,
https://doi.org/10.1088/1742-6596/3025/1/012011, 2025.

Fingersh, L., Hand, M., and Laxson, A.: Wind Turbine Design Cost and Scaling Model, Technical Report NREL/TP-500-40566, National
Renewable Energy Laboratory (NREL), Golden, CO, USA, https://doi.org/10.2172/897434, 2006.

Grife, M., Pettas, V., Dimitrov, N., and Cheng, P. W.: Machine-learning-based virtual load sensors for mooring lines using simulated motion
and lidar measurements, Wind Energy Science, 9, 2175-2193, https://doi.org/10.5194/wes-9-2175-2024, 2024.

Haastrup, M., Hansen, M. R., and Ebbesen, M. K.: Modeling of Wind Turbine Gearbox Mounting, Modeling, Identification and Control, 32,
141-149, https://doi.org/10.4173/mic.2011.4.2, 2011.

Hart, E., Clarke, B., Nicholas, G., Kazemi Amiri, A., Stirling, J., Carroll, J., Dwyer-Joyce, R., McDonald, A., and Long, H.: A review of
wind turbine main bearings: Design, operation, modelling, damage mechanisms and fault detection, Wind Energy Science, 5, 105-124,
https://doi.org/10.5194/WES-5-105-2020, 2020.

33



665

670

675

680

685

690

695

https://doi.org/10.5194/wes-2025-233 WIND

Preprint. Discussion started: 11 November 2025 e WE\ ENERGY
Auth 2025. BY 4.0 Li .
© " Or(S) O 5 CC O reense european academy of wind energy S C I E N C E

Hart, E., Raby, K., Keller, J., Sheng, S., Long, H., Carroll, J., Brasseur, J., and Tough, F.: Main Bearing Replacement and Damage - A Field
Data Study on 15 Gigawatts of Wind Energy Capacity, vol. NREL/TP-5000-86228, published by the US National Renewable Energy
Laboratory (NREL) as Technical Report NREL/TP-5000-86228, July 2023., 2023.

HIPERWIND D5.1: Component Life Models, Project Deliverable Deliverable D5.1, HIPERWIND Project — HIghly advanced Probabilistic
design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND, Lyngby, Denmark, https://www.hiperwind.eu/
deliverables-and-publications, 2023.

HIPERWIND D5.4: Development and implementation of probabilistic and uncertainty quantification methods for reliability sensitivity
analysi, Project Deliverable Deliverable D5.4, HIPERWIND Project — HIghly advanced Probabilistic design and Enhanced Reliabil-
ity methods for high-value, cost-efficient offshore WIND, Lyngby, Denmark, https://www.hiperwind.eu/deliverables-and-publications,
2024.

Hoffmann, K.: An Introduction to Measurements Using Strain Gages, Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany, all
rights reserved. © Hottinger Baldwin Messtechnik GmbH, 1989. Reproduction or distribution, in whole or in part, requires express
written permission from the publisher., 1989.

Hibler, C. and Rolfes, R.: Probabilistic temporal extrapolation of fatigue damage of offshore wind turbine substructures based on strain
measurements, Wind Energy Science, 7, 1919-1940, https://doi.org/10.5194/wes-7-1919-2022, 2022.

IEA and NEA: Projected Costs of Generating Electricity: 2020 Edition, Tech. rep., International Energy Agency and OECD Nuclear Energy
Agency, Paris, ISBN 978-92-64-55471-9, https://doi.org/10.1787/a6002f3b-en, 2020.

IEC 61400-1: Wind energy generation systems — Part 1: Design requirements, Edition 4, IEC 61400-1:2019, International Electrotechnical
Commission, Geneva, Switzerland, 2019.

IEC 61400-13: Wind energy generation systems — Part 13: Measurement of mechanical loads, IEC 61400-13:2016, International Electrotech-
nical Commission, Geneva, Switzerland, 2016.

IEC-TS-61400-28: Wind energy generation systems — Part 28: Through life management and life extension of wind power assets, IEC TS
61400-28:2020, International Electrotechnical Commission, Geneva, Switzerland, 2020.

IRENA: Renewable Power Generation Costs in 2023, Tech. rep., International Renewable Energy Agency, Abu Dhabi, ISBN 978-92-9260-
621-3, https://www.irena.org/Publications/2024/Sep/Renewable- Power-Generation- Costs-in-2023, 2024.

ISO-281: Rolling bearings — Dynamic load ratings and rating life, ISO 281:2007, International Organization for Standardization, Geneva,
Switzerland, 2007.

Keller, J., Guo, Y., and Sethuraman, L.: Gearbox Reliability Collaborative: Investigation of Gearbox Motion and High-Speed-
Shaft Loads, Technical Report NREL/TP-5000-65321, National Renewable Energy Laboratory (NREL), Golden, CO, USA,
https://doi.org/10.2172/1243302, 2016.

Kenworthy, J., Hart, E., Stirling, J., Stock, A., Keller, J., Guo, Y., Brasseur, J., and Evans, R.: Wind turbine main bearing rat-
ing lives as determined by IEC 61400-1 and ISO 281: A critical review and exploratory case study, Wind Energy, 27, 179-197,
https://doi.org/https://doi.org/10.1002/we.2883, 2024.

Loraux, C. and Brithwiler, E.: The use of long term monitoring data for the extension of the service duration of existing wind turbine support
structures, Journal of Physics: Conference Series, 753, 072 023, https://doi.org/10.1088/1742-6596/753/7/072023, 2016.

Mehlan, F. C., Keller, J., and Nejad, A. R.: Virtual sensing of wind turbine hub loads and drivetrain fatigue damage, Forschung im Ingenieur-
wesen, 87, 207-218, https://doi.org/https://doi.org/10.1007/s10010-023-00627-0, 2023.

Miner, M. A.: Cumulative Damage in Fatigue, Journal of Applied Mechanics, 12, A159—-A164, https://doi.org/10.1115/1.4009458, 1945.

34



700

705

710

715

720

725

730

https://doi.org/10.5194/wes-2025-233 WIND
Preprint. Discussion started: 11 November 2025

~
© Author(s) 2025. CC BY 4.0 License. e we \ EZ:EEIT\I%YE

O’Malley, T., Bursztein, E., Long, J., Chollet, F,, Jin, H., Invernizzi, L., et al.: KerasTuner, https://github.com/keras-team/keras-tuner, 2019.

Pacheco, J., Pimenta, F., Guimaries, S., Castro, G., Alvaro Cunha, Matos, J. C., and Magalhaes, F.: Experimental evaluation of fatigue in wind
turbine blades with wake effects, Engineering Structures, 300, 117 140, https://doi.org/https://doi.org/10.1016/j.engstruct.2023.117140,
2024.

Papadopoulos, K., Morfiadakis, E., Philippidis, T. P., and Lekou, D. J.: Assessment of the strain gauge technique for measurement of wind
turbine blade loads, Wind Energy, 3, 35-65, https://doi.org/https://doi.org/10.1002/1099-1824(200001/03)3:1<35:: AID-WE30>3.0.CO;2-
D, 2000.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., et al.: scikit-learn: Machine Learning in Python,
https://scikit-learn.org/, journal of Machine Learning Research, 12:2825-2830, 2011.

Pimenta, F., Ribeiro, D., Roman, A., and Magalhaes, F.: Predictive model for fatigue evaluation of floating wind turbines validated with
experimental data, Renewable Energy, 223, 119 981, https://doi.org/https://doi.org/10.1016/j.renene.2024.119981, 2024.

Pulikollu, R., Haus, L., Mclaughlin, J., and Sheng, S.: Wind Turbine Main Bearing Reliability Analysis, Operations, and Maintenance
Considerations: Electric Power Research Institute (EPRI), https://www.epri.com/research/products/000000003002029874, 2024.

Rinker, J. M., Hansen, M. H., and Larsen, T. J.: Calibrating a wind turbine model using diverse datasets, Journal of Physics: Conference
Series, 1037, 062 026, https://doi.org/10.1088/1742-6596/1037/6/062026, 2018.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533-536,
https://doi.org/10.1038/323533a0, 1986.

Sadeghi, N., Noppe, N., Morato, P. G., Weijtjens, W., and Devriendt, C.: Uncertainty quantification of wind turbine fatigue lifetime predic-
tions through binning, Journal of Physics: Conference Series, 2767, 032 024, https://doi.org/10.1088/1742-6596/2767/3/032024, 2024.
Santos, F. D. N., Noppe, N., Weijtjens, W., and Devriendt, C.: Data-driven farm-wide fatigue estimation on jacket-foundation OWTs for

multiple SHM setups, WIND ENERGY SCIENCE, 7, 299-321, https://doi.org/10.5194/wes-7-299-2022, 2022.

Schaeffler TPI-176: Lubrication of Rolling Bearings, Technical Product Information TPI 176, Schaeffler Technologies AG & Co. KG,
Herzogenaurach, Germany, principles; Lubrication methods; Lubricant selection and testing; Storage and handling., 2014.

Schillaci, M. A.: Estimating the population variance, standard deviation and coefficient of variation: sample size and accuracy, Statistics &
Probability Letters, 188, 110420, https://doi.org/10.1016/j.spl.2022.110420, 2022.

Scribd: V52-850 kW Wind Turbine Technical Specification (Vestas Document), https://www.scribd.com/document/524089466/v52, ac-
cessed: 2025-10-29, 2021.

SKF Group: SKF Product Select — Single Bearing, https://productselect.skf.com/#/type-arrangement/single-bearing, accessed: 2025-10-27,
2025.

UNECE: Carbon Neutrality in the UNECE Region: Integrated Life-cycle Assessment of Electricity Sources, ECE Energy Series, United
Nations, ISBN 978-92-1-001485-4, https://doi.org/10.18356/9789210014854, 2022.

Ziegler, L., Gonzalez, E., Rubert, T., Smolka, U., and Melero, J. J.: Lifetime extension of onshore wind turbines: A review covering Germany,
Spain, Denmark, and the UK, Renewable and Sustainable Energy Reviews, 82, 1261-1271, https://doi.org/10.1016/j.rser.2017.09.100, 277
citations (Semantic Scholar/DOI) [2025-02-12], 2018.

35



