
Authors’ response
Dear Editors, Reviewers,

We deeply appreciate the thorough and constructive review of the article titled "Data-driven probabilistic surrogate model
for floating wind turbine lifetime damage equivalent load prediction". The detailed comments of the reviewers are extremely
useful and have significantly improved the quality of the paper. Here you will find the point-by-point response to the reviewer’s5
comments in blue. The modified/added text is quoted in the reply in italics wherever necessary. The modifications in the sub-
mitted manuscript as a result of the reviewers’ comments are highlighted in blue.

In addition to the reviewers’ comments, we made the following minor changes in the manuscript:

– We noticed a typo in Equation (1) with a missing summation sign in the numerator, which has been updated in the text.10

– A square exponent term was missing in Equation (6), which has been corrected.

– The convergence plots Figure 9a and Figure 9b are changed from log scale in the X-axis to linear scale in Figure 10a
and Figure 10b as it seems to improve the readability and clarity for the reader. The contents of the plots have not been
modified.

Best regards,15
Deepali Singh, Erik Haugen, Kasper Laugesen, Richard P. Dwight, Axelle Viré

Reviewer 1

Q 1.1 The manuscript discusses quite similar topics and uses similar methodologies as another recent manuscript by the
same main author (https://doi.org/10.5194/wes-9-1885-2024, also cited in this paper). Please discuss what is the distinct
methodological novelty of the present paper (see also my next comment).20

Reply:
Indeed, the probabilistic machine learning framework used in this manuscript is the same as in the referenced article

(https://doi.org/10.5194/wes-9-1885-2024). This was a deliberate decision following a thorough review of various machine
learning methods for this application (Gaussian processes, conditional generative adversarial networks, chained Gaussian pro-
cesses, artificial neural networks, among others). From the models we tested, Mixture Density Networks (MDNs) stood out as25
the most accurate, practical, and flexible. Although we do not present a comparison of different models in this paper, we would
like to highlight that MDNs are particularly well-suited for probabilistic fatigue load modeling. The conditional response is
often heteroscedastic and can be non-Gaussian, which the model can easily handle. In recent years, there has been a grow-
ing interest in Bayesian neural networks (as pointed out later), but we haven’t evaluated it for load modeling yet. BNNs use
variational inference, which can be computationally expensive, but it does allow for the separation of aleatoric and epistemic30
uncertainties. It would be interesting to couple BNNs with MDNs in the future to harness the advantages of both methods. We
would like to highlight that the contribution of our work lies not in the ML architecture itself but in the application.

The novelty of this work is threefold:
35

1. Application of probabilistic data-driven model to Floating Offshore Wind Turbines (FOWTs):
The model is applied to FOWT DEL estimation, unlike our previous paper, where the scope was limited to fixed bottom cases.
Not only are FOWT loads affected by the nonlinear dynamic behavior of the floating wind turbine, but also the underlying
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simulations are much more complex, the stochastic hydrodynamic parameters have a bigger impact on the tower, the data is40
’noisier’, the parameter space is larger, and thereby, the number of simulations is larger. This necessitates investigations into ro-
bust surrogates. However, the literature on FOWT load modeling using probabilistic data-driven methods is currently limited to
our understanding. Probabilistic data-driven models are generally validated on simpler cases. Complex cases are modeled using
deterministic approaches, or with the assumption that the response is Gaussian or homoscedastic (Li and Zhang, 2019b, a). In
this context, mixture models present a novel solution by addressing the limitations in the literature. They allow for uncertainty45
propagation, account for heteroscedasticity, and capture higher-order moments of the response distribution.

2. Long-term probabilistic fatigue estimation with high-dimensional input: For the lifetime fatigue estimation for FOWTs,
the loads are calculated for a limited number of lumped sea states and statistically extrapolated to the lifetime loads by scaling
them based on the probability of occurrence of the sea state. The number of variables is also limited, as the addition of a new50
variable exponentially increases the number of simulations needed for fatigue calculations. How to best choose the appropriate
variables, sea states, and bin sizes to minimize errors in the extrapolated quantity is an open question (Papi and Bianchini,
2024). In the second part of the article, we use the trained surrogate model to make probabilistic estimates of fatigue loads on
all available historical site data for 25 years, bypassing the need for parametric joint distribution assumptions. An extension
of this study could also be to model the parameters of the distributions defining the site conditions and propagate them to55
the loads. Such surrogates can also be used to identify interesting sea states and bin sizes that minimize the deviation of the
extrapolated fatigue compared to the reference, where all available site data is used.

3. Insight into variance in long-term fatigue: We demonstrate that due to the law of large numbers, the influence of ran-
dom seeds on long-term tower load estimation diminishes significantly over a 25-year period, even with 500 seeds (from the60
surrogate). This indicates that stochastic inflow conditions contribute minimally to uncertainty in long-term fatigue predictions.

As both reviewers noted, the novelty of the work is not clearly presented in the introduction. Therefore, we have modified
the introduction to separate it into "Background", "Previous work on probabilistic data-driven modeling for wind turbine load65
estimation", and "Research objectives". A brief overview of the surrogate modeling task is added to the Background section,
instead of the end of the section. The research objective now reiterates the novelty of the work on page 5, line 425. The exact
text is copied here for reference:

"The objectives of this work are threefold:70

– To apply and evaluate a probabilistic machine learning model (MDN) for predicting short-term fatigue loads in floating
offshore wind turbines:
Not only are FOWT loads affected by the nonlinear dynamic behavior of the floating wind turbine, but also the under-
lying simulations are much more complex, the stochastic hydrodynamic parameters have a bigger impact on the tower,
the data is ’noisier’, the parameter space is larger, and thereby, the number of simulations is large. This necessitates75
investigations into robust surrogates. Probabilistic data-driven models are often validated on simpler cases. Complex
cases are modeled using deterministic approaches, or with the assumption that the response is Gaussian or homoscedas-
tic. Using a mixture model effectively solves many of the gaps in the literature by propagating uncertainty, including
heteroscedasticity, and modeling higher-order moments.

– To demonstrate that such a model can provide insights into long-term probabilistic fatigue estimation, especially in high-80
dimensional spaces where traditional binning approaches become computationally restrictive:
The lifetime fatigue estimation for FOWTs involves additional complexity, including the joint distribution of metocean
conditions and sensitivity to bin sizing. These issues are exacerbated by the exponential growth in simulation cost with
each added dimension. A surrogate model enables direct use of historical site condition data, bypassing the need for
parametric joint distribution assumptions.85
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– To investigate the impact of stochastic variability in site conditions on fatigue prediction over long time spans:
We select four potential floating wind sites with similar water depths and use the surrogate model to estimate probabilistic
lifetime fatigue loads. We investigate the effect of accounting for the stochastic variability in the 10-minute loads relative
to the variation in site conditions. It is demonstrated that due to the law of large numbers, the influence of random
seeds on long-term tower load estimation diminishes significantly over a 25-year period, even with 500 seeds (from the90
probabilistic surrogate). This indicates that stochastic inflow conditions contribute minimally to uncertainty in long-term
fatigue predictions.

By addressing these points, this work contributes a validated, flexible surrogate modeling framework that accounts for the
complexities of floating wind systems, advancing the state of probabilistic load modeling in floating offshore wind research."

Q 1.2 As with most surrogate modelling approaches, this one is specific to the model which has been used to run the simulations.95
This limits the direct applicability of the trained model to just the turbine configuration in question. As a result, the primary
scientific contribution of a surrogate modelling paper is normally in the methodology (or some specific findings from the results)
rather than the end product. I recommend that the authors clarify what is the methodological contribution in this paper, or
highlight some important findings that warrant the publication.

Reply: Agree with this recommendation. Based on this comment and comment number 4, we have added a discussion section100
to list the key takeaways of this study, which also includes some comments on the limitations and advantages of using MDNs.
Since the focus of the work is not the ML architecture itself, we have not made any changes to the methodology section.

Q 1.3 Bayesian Neural Networks (BNNs) are another approach to train a heteroscedastic model without the need of making
repetitions. The authors may want to mention this and cite e.g. Hlaing et al. (https://doi.org/10.1177/14759217231186048)

Reply: Thank you for sharing this article. It has been added to the literature review section in the introduction on page 5,105
line 404.

The added text is copied here for reference:
Heteroscedastic probabilistic data-driven modeling has been further explored using Bayesian neural networks (BNNs) for esti-
mating loads on non-instrumented wind turbines using information from fully-instrumented counterparts (Hlaing et al., 2024).110
Preliminary studies on fatigue load prediction using BNNs show promising results on onshore wind turbines (Omole et al.,
2021). BNNs are a powerful class of neural network architectures that assign probability distributions to the network weights
and biases, effectively allowing the separation of aleatoric and epistemic uncertainties.

Q 1.4 I am missing a discussion section, which may include thoughts on the limitations of the current study.

Reply: Agreed, a discussion section has now been included, page 29, line 833.115

The exact text is quoted here for reference:

5.2 Discussion and future work
120

This section provides a critical discussion of the study’s results, along with practical considerations and limitations asso-
ciated with the use of MDNs.

5.2.1 10-minute conditional DEL prediction
Given the stochastic nature of the site conditions, it is natural to model the 10-minute DEL response within a probabilistic125
framework. MDN is demonstrated in this study to be a reliable tool for modeling the conditional distribution of 10-minute
DELs on the spar buoy floating wind turbine’s tower and blades. MDN predictions are shown to remain robust across differ-
ent network architectures and numbers of mixture components. The conditional means of the DELs are predicted with high
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accuracy, achieving an R2 = 0.99. Additionally, the Wasserstein distance between the predicted and reference conditional
distributions shows a strong match at the blade roots and tower top. However, at the tower bottom, the conditional standard130
deviation of the 10-minute fore-aft DEL is consistently over-predicted. It is corroborated by the relatively larger normalized
Wasserstein distance value, indicating a bigger difference between the reference and predicted pdfs. Two main factors con-
tribute to this: (i) the reference BHawC distributions are not converged at all simulated test locations with 44 random seeds.
The tails of some distributions are not developed, resulting in short-tailed distributions that the MDN cannot easily capture;
and (ii) the tower bottom fatigue is shown in the literature to have a stronger correlation to the hydrodynamic parameters,135
leading to higher noise in the data. As MDN is trained to minimize the negative log-likelihood, it is rewarded for predicting
higher variance when there is less confidence.

5.2.2 Probabilistic lifetime DEL aggregation
The uncertainty in the aggregated lifetime fatigue loads due to stochastic inputs is found to be much smaller in scale compared140
to the mean. This results from summing the 10-minute DELs over a million occurrences, effectively nullifying the impact of the
outliers. The use of a probabilistic surrogate that correctly captures the conditional distribution is still useful, as it minimizes
the aggregation of error in the final response.

5.2.3 Notes on mixture density networks145
Mixture density networks, due to their flexibility in modeling the conditional response, are well-suited for the problem of prob-
abilistic load estimation. One big advantage of the method is the ease of implementation and robustness, as demonstrated
in this paper. Compared to deterministic models that often assume a Gaussian response to determine the conditional mean,
mixture models can account for skewness and multimodality, and improve the mean estimates. This is especially important for
quantities like DELs, which may have non-Gaussian, heteroscedastic variations. MDNs scale well and are cost-effective to150
train compared to models that use Bayesian inference or variational inference (Blei et al., 2017).

MDNs without regularization can result in overfitting. Therefore, in this study, both L1 and L2 regularization are implemented.
Secondly, MDNs rely on a stochastic optimizer that is sensitive to the initialization of the model parameters. Hence, a 10-fold
cross-validation is recommended to ensure the optimizer is not stuck on a false minimum. As seen in the tower-bottom fore-aft155
channel, minimizing the negative log-likelihood can result in the over-prediction of the standard deviation of the conditional
response when the underlying distribution is short-tailed. MDNs here are not restricted to strictly positive values; in some
cases, the tails may also extend to negative values. A potential solution is to assume a lognormal distribution for the output.
This can be done by directly predicting the parameters of a lognormal distribution during training or by transforming the
output to a normal distribution before training.160

Q 1.5 References style: many references seem to introduce repetitions, such as e.g., “ Zhu et al. (Zhu and Sudret, 2020) on line
65. If the authors use the citep command to refer to a paper, they don’t need to repeat the author names in the text as they come
automatically from the LaTeX command.

Reply: Thanks, this has been fixed throughout the document now.

Q 1.6 Simulation time of 600s seems quite short for floating wind with low-frequency response. This may affect especially the165
estimation of higher-order moments of the response and may be important for this study, which explicitly considers higher-order
statistics.

Reply: 10-minute simulations are considered sufficient according to the IEC standards for floating wind fatigue calculations
on the tower and blades, and are the standard at Siemens Gamesa for this wind turbine type. It is also in line with an extensive
study by Haid et al. (Hai, 2013), where the fatigue on the wind turbine tower and blades is more sensitive to whether the half-170
cycles are calculated than to the total duration of the simulation. Nevertheless, the optimal length of the simulation for floating
wind turbines should be looked into in more detail by the research community, as the responses can be foundation-dependent.
The surrogate model presented here is based on the current standards and is expected to evolve as the certification requirements
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evolve. Some other components, such as the mooring lines, are more sensitive to low-frequency cycles due to their low natural
frequencies and require longer simulations to capture relevant load variations. However, they are not in the scope of this article.175

Q 1.7 Section 3.2.1: The authors suggest the R-squared between the mean and the standard deviation predictions of the distri-
bution as a goodness-of-fit metric. This limits the representativeness of the comparison as it doesn’t allow comparing higher
distribution moments. Also, the R-squared is not sensitive to bias. The other metric proposed by the authors, the Wasserstein
distance, is not limited in this way. Is the R-squared then redundant? Results shown in Table 9 may hint at that, since it is only180
the dw2 that flags the tower bottom FA model as having worse performance than the other three channels.

Reply: The R2 value of the conditional mean is a simple and widely used metric that provides a reference for how good the
model is in predicting the "most likely" value of the response. It is especially useful if one wants to compare it to other deter-
ministic models that generally would only predict the conditional mean. As noted, dW2 is introduced for a holistic comparison
of the response. For the tower bottom fore-aft moment, the difference in the output of the two parameters is interesting because185
it indicates that even if the exact conditional distribution is not as accurately predicted as the other channels, the conditional
mean is still well captured. One of the limitations in the setup is that BHawC only has a limited number of seeds, so the
reference distribution is not fully converged either. It is more evident in the case of the tower bottom fore-aft moment, where
the distributions in many cases are very short-tailed. The high dW2 values are also affected by the non-converged reference
distributions. Since the mean converges faster than the higher-order moments, R2µ is not as affected.190

Q 1.8 Page 23, line 428: the authors state “Including these additional uncertainties in the feature set would likely increase the
variance of the final load estimates.”. I agree with this, but I think some nuance needs to be added. The uncertainties that are
propagated through the fatigue model will not necessarily increase the variance of the short-term outputs, they may introduce
bias in the long-term mean which will manifest as an uncertainty in the long-term (aggregated) statistics of the outputs. For
example, assuming a higher annual mean wind speed will lead to a bias in the mean estimate of total accumulated fatigue195
damage.

Reply: Agree with this, the text has been modified in page 27, line 789.

The exact text is quoted here for reference:
200

Including these additional sources of uncertainties may introduce bias in the long-term mean, which is reflected as an un-
certainty in the aggregated statistics of the outputs.

Reviewer 2

Q 2.1 Clarify the novelty with respect to your previous paper on Wind Energy Science. It seems that the only change is the
database, while the methodology is the same.205

Reply: Based on this and the previous reviewer’s comment on the clarity of the novelty of the work (Q1.1), more information
has been added to the introduction on page 5, line 425.

Q 2.2 I’m not convinced by the testing set, since it’s quite specific instead of random.

Reply: The test locations for some variables, like yaw misalignment and power law exponent, were chosen to be specific values
based on user requirements at the time the database was being generated. We agree that, in hindsight, random sampling of all210
the parameters would be a fairer way to judge the performance of the surrogate. Unfortunately, creating a new test dataset is
no longer possible for this study, but we do acknowledge your comment and have added a section in the text recommending
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random sampling for testing in the future, page 15, line 595.

The exact text is quoted here for reference:215

For future studies, jointly sampling the test points across all variables is recommended for a fairer evaluation of the surrogate’s
performance throughout the domain.

Q 2.3 The literature review is well done. Have you found any paper on Bayesian neural networks? Not necessarily from wind.
I’m only aware of a report from the HIPERWIND project.220

Reply: Thank you. We haven’t looked much into BNNs, but based on the recommendation of the other reviewer, we have
added a reference now to the literature review about two BNN papers by Hlaing and Omole, page 5, line 404.

Q 2.4 I had troubles following the hyper-parameters tuning between the main text and the appendix. Some restructuring would
be appreciated.

Reply: We had decided it was necessary to move the hyperparameter tuning section to the appendix to limit the length of the225
article as it was getting too long.

Q 2.5 Which library have you used to train the MDN?

Reply: We have used tensorflow probability (https://www.tensorflow.org/probability) for modeling MDNs. The output layer
is modeled using a mixture normal implementation that can be found here: https://www.tensorflow.org/probability/api_docs/
python/tfp/layers/MixtureNormal.230

Q 2.6 Specify the names of the time-domain simulation tools.

Reply: The names of some of the commonly used engineering tools are added on page 2, line 335.

The exact text is quoted here for reference:
235

The calculations are typically made using time-domain multi-physics engineering tools like OpenFAST (Jonkman, 2013),
HAWC2 (Larsen and Hansen, 2007), and BHawC (Couturier and Skjoldan, 2018; Skjoldan, Peter Fisker, 2011)

Q 2.7 Space between the number and the unit.

Reply: A space has been introduced between the number and the unit throughout the document. Perhaps this will be standard-
ized during the typesetting phase by the journal.240

Q 2.8 "The inflow turbulence is modeled using a spatially varying frozen wind field based on the Mann model." Have you tried
using the hipersim turbulence generator?

Reply: We only used the internal SGRE turbulence box generator for this study to keep in line with the company standards.
Thanks for sharing the hipersim package, it’s definitely worth looking at in the future, also within the industrial context.

Q 2.9 "The structural elements are modeled using the co-rotational formulation providing geometric nonlinearity." I was ex-245
pecting to read equilibrium based formulation by Philippe Coutourier
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Reply: The co-rotational formulation is modeled to capture geometric non-linearities, while the beam elements are modeled
with a variable cross-section equilibrium formulation introduced by Coutourier. The reference to the beam model by Coutourier
is added on page 9, line 483.

Q 2.10 Mention the curse of dimensionality.250

Reply: This has been added to the text on page 10, line 500.

Q 2.11 Addition of Winds to Loads paper by N. Dimitrov that uses Sobol indices.

Reply: The article has been added to the list on page 10, line 507.

Q 2.12 Formatting Uref , Iref , nref , Wdir, zref , Vhub to remove italic subscript.

Reply: The variable notation has been replaced to Uref ,Iref , nref , Wref , wref , Vhub throughout the document.255

Q 2.13 Including the tower bottom side-side moment

Reply: Only the fore-aft moment was included as the magnitude of fatigue in this direction is much larger than side-side.
However, it could be interesting for sites with large wind-wave misalignment. The side-side moment may potentially be more
difficult to model with a surrogate, as there is no aerodynamic damping of loads. Perhaps it is interesting to test the limits of
the surrogate and should be included in future investigations.260

Q 2.14 Non-dimensionalizing the DEL values

Reply: The value of the DELs could not be shared publicly, so we decided to non-dimensionalize it using the Z-score/ standard
scaler. This is now added to the text on page 11, line 534.

Q 2.15 What is the local coordinate system?

Reply: The local coordinate system here refers to the coordinate system of the individual component as defined in the BHawC265
tool and not a fixed location in the domain. But indeed, more information would be useful if we were sharing absolute load
values.

Q 2.16 Formatting of new lines after equations.

Reply: The space has been removed before the beginning of the line following an equation throughout the paper.

Q 2.17 Instead of fitting lower and upper bound, and then using a uniform distribution, you could have fitted these measure-270
ments with a multivariate distribution. For example, a n-dimensional normal with correlated inputs. It’s quite easy with both
SciPy and OpenTURNS, and you might rank which distribution performs best using the maximum likelihood.

Reply: Agree, fitting a multivariate distribution and then sampling as an alternate approach preserves the marginal distribution
and doesn’t require an arbitrary choice of feature bounds. We have added your suggestion as an alternate approach for the
reader on page 14, line 584. Thanks a lot for referencing the Python libraries. We will note it for future investigations. Thanks275
also for introducing scrambling and the advantage of using Halton sequencing over Sobol.

The exact added text is copied here for reference:

Alternatively, a multivariate distribution fitting the available data can be used to define the sampling space bounds.280
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Q 2.18 Should the wave direction be correlated to the wind direction?

Reply: It is certainly correlated to the wind direction. In this case, we are not including wind direction as an input parameter,
assuming the rotor is always facing the wind. So, essentially, the wave direction acts as the wind-wave misalignment angle.
For floating wind loads, it is considered an important parameter, and because we wanted the model to learn to predict loads at
any misalignment angle, we decided to sample it uniformly.285

Q 2.19 Please cite your previous paper with the formulas.
- In general, during training it helps normalizing the input and output, but it looks like here it’s even more important, or you’ll
get a floating point overflow when computing the std. How have you normalized the database? - The softmax function can
easily overflow. Are you using the trick by Nick Higham to prevent it?

Reply: The previous paper is now cited in the methodology section. The data is normalized using the standard scaler/ Z-score.290
We have not checked if the fit changes by using the trick of subtracting max(x) from xi to prevent overflow. At least in this
example, we did not encounter an overflow situation, but it is definitely something to investigate further to prevent it from
happening.

Q 2.20 How are you optimizing the hyperparameters?

Reply: In this case, we only checked the performance by manually tuning selected hyperparameters. We have not looked into295
Optuna yet. It is a good suggestion as the number of hyperparameters grows.

Q 2.21 Why are the number of layers and nodes in a separate table?

Reply: This is to name the models with different node numbers and link them to the convergence plots in the results section.

Q 2.22 Number of mixture components

Reply: In most cases, the response does look Gaussian, but for instance in Figure 12c, the distribution is better represented with300
some skewness. This is only possible if we use more than one Gaussian component. Perhaps 2 or 3 components would also
suffice, but having more does not necessarily increase the training cost by much while making sure there are enough parameters
available to model any kind of response. In the previous paper on fixed-bottom wind turbines, we encountered multi-modal
output where one component would not have captured the response correctly.

Q 2.23 Choice of feature bounds305

Reply: The feature bounds are just arbitrary functions defined using trial and error, that encapsulate the observed site data. This
is only an example, and perhaps using a multi-variate distribution as you suggested is a better approach to define the bounds.

Data-driven probabilistic surrogate model for floating wind turbine
lifetime damage equivalent load prediction
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Abstract.

Floating offshore wind turbines experience complex hydrodynamic and aerodynamic loading influenced by substructure

types and stochastic environmental conditions. Accurately estimating the lifetime fatigue loads requires analyzing thousands310

of operational scenarios, leading to high computational costs. Moreover, choosing the right input features driving fatigue in

floating wind systems and appropriately binning them still remains an open question. We present a fast probabilistic surrogate

that maps the site conditions to the loads on the wind turbine. The probabilistic aspect allows the propagation and quantification

of statistical uncertainties from the stochastic input quantities toonDS the resulting loads. A fast surrogate eliminates the need

to fit a distribution to the site conditions or bin the input data. Rather, all available met-ocean data can be directly used as315

input, which automatically accounts for the joint distribution in the calculations. The surrogate model in this study uses the

mixture density network (MDN) to predict the conditional distribution of the 10-minute damage equivalent loads (DELs)

for a 6 MW spar-type floating wind turbine. The MDN achieves high accuracy (R2 > 0.99) in capturing DEL means while

efficiently propagating the statistical uncertainties. Furthermore, the surrogate enables quick estimation of 25-year lifetime

fatigue damage across a range of potential floating wind farm sites, demonstrating its capability to facilitate rapid decision-320

making during preliminary site analysis.

1 Introduction

1.1 Background

Floating offshore wind turbine (FOWT) technology has witnessed a surge in research interest in recent years following the

rapidly increasing demandsDS for renewable power production. The structural response of anaDS FOWT is a crucial indicator325

of its performance, safety, and reliability. During its operational lifetime, a FOWT accumulates fatigue damage as it undergoes

time-variable loading in response to the complex and stochastic offshoremarineDS environment. The nature, magnitude, and

extent of fatigue are unique to the type of floating foundation, mooring line configuration, wind turbine material, control

algorithms, and site conditions.

To ensure a safe and reliable operational life, the FOWT undergoes a certification process involving a rigorous analysis of330

various design load cases (DLCs) defined by the International Electrotechnical Commission (IEC, 2024a)in IEC 61400-3-2

(IEC, 2024a)DS. The first step involves simulating the DLCs on a type-certified rotor-nacelle assembly with a reference tower

and floating foundation. More detailed information about the site is included while defining the DLCs as the project progresses.

Subsequently, a site-specific tower, foundation, and mooring line configuration are defined, and a site-specific certification

study is performed. The calculations are typically made using time-domain multi-physics engineering tools like OpenFAST335

(Jonkman, 2013), HAWC2 (Larsen and Hansen, 2007), and BHawC (Couturier and Skjoldan, 2018; Skjoldan, Peter Fisker, 2011)

(Jonkman, 2013; Larsen and Hansen, 2007; Couturier and Skjoldan, 2018; Skjoldan, Peter Fisker, 2011)DS throughout this pro-

cess.

Fatigue is a multi-scale phenomenon that depends on the material composition, composite structure, geometry, and inflow

dynamics. The estimation of the fatigue damage for FOWTs, in particular, is computationally intense. The lifetime fatigue340
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load assessment entails calculating the 10-minute damage equivalent loads (DELs) on multi-variate bins of typical variables

characterizing the site and scaling them to the observed probability of occurrence. Not all site variables can be practically

included in fatigue load analysis, as the required number of simulations increases exponentially with each additional variable.

The choice of the variables in the offshore environment that have the most impact on FOWT fatigue is currently an active

area of research (Papi and Bianchini, 2024). The total computational cost of the simulations also constrains the lower limit of345

the bin size. While industry-standard engineering tools are necessary for certification, the preliminary site analysis can benefit

from data-driven surrogate models to provide quick load estimates. Data-driven surrogates can infer complex relationships

from data observations alone and do not require prior knowledge of the underlying physics. Fatigue, which is difficult to model

using lower-fidelity physics-based approaches, can benefit from such data-driven methods. Using surrogates that can accurately

predict DELs can potentially eliminate the need to bin the site data, fit a multi-variate joint distribution to it, or limit the total350

number of parameters. Once trained, surrogate models can directly use all the available site information to estimate the site-

specific DELs quickly. In addition, probabilistic surrogates can also propagate the statistical uncertainty from the stochastic

input variables to the loads.

Data-driven surrogates for wind turbine or wind farm level loads are often designed with deterministic models. Given a

training dataset with d-dimensional input parameters x ∈ Rd, the deterministic surrogate maps them to the corresponding355

output observations y ∈ R. However, the assumption of a deterministic relationship between inputs and outputs does not hold

in our case. For instance, keeping every other input constant, a single value of 10-minute mean wind speed can correspond to an

infinite number of turbulent inflow patterns, resulting in an infinite number of DEL values with a certain probability distribution

conditioned on that wind speed. Probabilistic surrogates model the statistical uncertainty in the input variables by representing

them as a random variable X with a joint probability density function (pdf). The corresponding output is, therefore, also a360

random variable denoted as Y .

This study is focused on using a probabilistic data-driven surrogate to map 10-minute statistics of the environmental con-

ditions to the corresponding conditional probability distribution of the DEL on the floating spar buoy with a 6 MW Siemens

Gamesa wind turbine. The DEL values are calculated using the Siemens Gamesa in-house tool that couples the aeroelastic

code, BHawC (Skjoldan, Peter Fisker, 2011), with the hydrodynamic solver, OrcaFlex (Arramounet et al., 2019). A schematic365

of this mapping is shown in Figure 1. A highly flexible probabilistic machine learning approach for the surrogate, the mixture

density network (MDN) (Bishop, 1994) is used in this study. The probabilistic estimates of DELs are used to subsequently

calculate the lifetime fatigue loads at various potential floating wind sites.DS

1.2 Previous work on probabilistic data-driven modeling for wind turbine load estimation

The standard Gaussian process regression (GPR) (Rasmussen and Williams, 2006) is one such probabilistic surrogate that370

is capable of uncertainty quantification. However, in its standard form, it is restricted to normally distributed homoscedastic

responses. Nevertheless, due to its flexibility and ease of implementation, it is widely used as a surrogate to estimate the fatigue

load response in wind turbines (Teixeira et al., 2017; Avendaño-Valencia et al., 2021; Li and Zhang, 2019b, 2020; Gasparis

et al., 2020; Dimitrov et al., 2018a; Slot et al., 2020).
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Figure 1. Schematic of the surrogate modeling objective.

Further interest in quantifying the uncertainty of the short-term fatigue loads as a function of the input parameters has375

initiated research into heteroscedastic surrogates. Heteroscedasticity refers to the heterogeneity in the response variance as

a function of the inputs. The variance observed in DEL at the tower bottom at, for instance, for very large values of signif-

icant wave height, is generally larger than that in calm ocean conditions. It is, therefore, an important consideration when

choosing the appropriate surrogate modeling approach for load uncertainty quantification. Murcia et al. (2018)Murcia et al.

(Murcia et al., 2018)DS use 100 turbulent inflow realizations at each sample point to obtain the first two moments of the fatigue380

response. Thereafter, they create two independent surrogates using Polynomial Chaos Expansion (PCE) to model the mean

and standard deviation of the fatigue loads on the DTU 10MW reference wind turbine. Even though they use only 140 training

samples for their model, the replications scale the computational cost by 100, eventually leading to a costly training database.

Another replication-based approach is taken by Zhu and Sudret (2020)Zhu et al. (Zhu and Sudret, 2020)DS to model the load

response using generalized lambda distributions. In this study, 50 inflow wind field realizations are used at each input sample385

to estimate the four lambda parameters. Four PCE surrogates are then used to model the parameters independently. The main

drawback of replication-based methods is the cost of generating the training database, which makes it challenging to apply

them to computationally demanding applications such as floating wind turbines. Secondly, the goodness of fit relies heavily on

estimating the statistical parameters in the first step.

Heteroscedasticity can also be modeled using statistical methods. Zhu and Sudret (2021)Zhu et al. (Zhu and Sudret, 2021)DS390

extend the replication-based approach to derive a statistical method combining generalized least-squares with maximum con-

ditional likelihood to estimate the lambda parameters without replications. The main advantage of this method is that it does

not assume a Gaussian distribution. However, it cannot handle multi-modality.

Abdallah et al. (2019)Abdallah et al. (Abdallah et al., 2019)DS use parametric hierarchical Kriging to predict blade-root-

bending-moment extreme loads that are heteroscedastic on a 2MW onshore wind turbine. Their approach combines low- and395
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high-fidelity observations, where the low-fidelity model informs the high-fidelity GPR. They show that introducing hierarchy

helps make the model selection process more robust than the manual tuning of GPR parameters. Singh et al. (2022)Singh

et al. (Singh et al., 2022)DS apply chained GPR that uses variational inference within a Bayesian framework to account for

heteroscedasticity in the data and make predictions of site-specific load statistics on a more complex case of offshore wind

turbines. The model can capture the heteroscedasticity in a small dataset but is not scalable to high-DSdimensional problems. To400

address the scalability constraints, the authors extend the study to use mixture density networks on the same dataset to quantify

the uncertainty in the load response (Singh et al., 2024a). The application of probabilistic surrogates to floating wind turbines

has only been studied to a limited extent in theDS literature. Li and Zhang (2019b)Li et al. (Li and Zhang, 2019b)DS model the

uncertainty in the site conditions using a C-vine copula combined with ANN and GPR. Heteroscedastic probabilistic data-

driven modeling has been further explored using Bayesian neural networks (BNNs) for estimating loads on non-instrumented405

wind turbines using information from fully-instrumented counterparts (Hlaing et al., 2024). Preliminary studies on fatigue load

prediction using BNNs show promising results on onshore wind turbines (Omole et al., 2021). BNNs are a powerful class of

neural network architectures that assign probability distributions to the network weights and biases, effectively allowing the

separation of aleatoric and epistemic uncertainties.DS

In summary, only a few approaches attempt to model the uncertainty in the load response of the turbine and the tower.410

Of those that do, only some consider complex offshore floating systems. This presents a key research gap as the dynamic

behavior of floating platforms introduces additional complexity not present in fixed-bottom systems.DS Following the promising

performance of mixture density networks (MDNs) for fixed bottom wind turbines (Singh et al., 2024a), in this study, we aim

to extend the framework to a more complex application of a spar-buoy type wind turbine case. In the case of MDN, the target

is modeled as a mixture of m ∈ N Gaussian kernels of varying proportions, capable of generating complex distributions when415

combined. MDN uses feed-forward networks to learn the parameters of the mixture model.

1.3 Research objectives

The main objective of this study is to present a probabilistic data-driven surrogate modeling framework that maps 10-minute

statistics of the environmental conditions to the corresponding conditional probability distribution of the DEL on the floating

spar buoy with a 6 MW Siemens Gamesa wind turbine. The DEL values are calculated using the Siemens Gamesa in-house tool420

that couples the aeroelastic code, BHawC (Skjoldan, Peter Fisker, 2011), with the hydrodynamic solver, OrcaFlex (Arramounet et al., 2019).

A schematic of this mapping is shown in Figure 1. A highly flexible probabilistic machine learning approach for the surrogate,

the mixture density network (MDN) (Bishop, 1994) is used in this study. The probabilistic estimates of DELs are used to

subsequently calculate the lifetime fatigue loads at various potential floating wind sites.DS

The objectives of this work are threefold:DS425

– To apply and evaluate a probabilistic machine learning model (MDN) for predicting short-term fatigue loads in floating

offshore wind turbines:

Not only are FOWT loads affected by the nonlinear dynamic behavior of the floating wind turbine, but also the underlying
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simulations are much more complex, the stochastic hydrodynamic parameters have a bigger impact on the tower, the data

is ’noisier’, the parameter space is larger, and thereby, the number of simulations is large. This necessitates investigations430

into robust surrogates. Probabilistic data-driven models are often validated on simpler cases. Complex cases are modeled

using deterministic approaches, or with the assumption that the response is Gaussian or homoscedastic. Using a mixture

model effectively solves many of the gaps in the literature by propagating uncertainty, including heteroscedasticity, and

modeling higher-order moments.

– To demonstrate that such a model can provide insights into probabilistic long-term fatigue estimation, especially in high-435

dimensional spaces where traditional binning approaches become computationally restrictive:

The lifetime fatigue estimation for FOWTs involves additional complexity, including the joint distribution of metocean

conditions and sensitivity to bin sizing. These issues are exacerbated by the exponential growth in simulation cost with

each added dimension. A surrogate model enables direct use of historical site condition data, bypassing the need for

parametric joint distribution assumptions.440

– To investigate the impact of stochastic variability in site conditions on fatigue prediction over long time spans:

We select four potential floating wind sites with similar water depths and use the surrogate model to estimate probabilistic

lifetime fatigue loads. We investigate the effect of accounting for the stochastic variability in the 10-minute loads relative

to the variation in site conditions. It is demonstrated that due to the law of large numbers, the influence of random

seeds on long-term tower load estimation diminishes significantly over a 25-year period, even with 500 seeds (from the445

probabilistic surrogate). This indicates that stochastic inflow conditions contribute minimally to uncertainty in long-term

fatigue predictions.

By addressing these points, this work contributes a validated, flexible surrogate modeling framework that accounts for the

complexities of floating wind systems, advancing the state of probabilistic load modeling in floating offshore wind research.DS

The rest of the paper is structured as follows. In Section 2, we introduce the floating wind turbine model, describe the450

simulation tools used, and outline the input features, including their ranges and the sampling strategy. Section 3 then presents

the theoretical foundation of the Mixture Density Network (MDN), discusses the chosen hyperparameters, and explains the

criteria for evaluating model performance. The results, presented in Section 4, are divided into three sub-sectionssub sectionsDS.

First, we analyze how the model’s performance converges across a range of training samples. Next, we validate the selected

MDN model’s 10-minute conditional distribution estimates under randomly chosen operating conditions, comparing them with455

those generated by BHawC. Finally, we demonstrate how the probabilistic 10-minute estimates can be used to propagate the

statistical uncertainty to the lifetime fatigue damage. Concluding remarks are provided in Section 5.
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2 Setup

2.1 Definition of the floating wind turbine

The floating wind turbine in this study is based on a modified geometry of the Hywind Scotland spar buoy foundation (Equinor460

ASA, 2022). It comprises a 6MW Siemens Gamesa Renewable Energy direct drive wind turbine assembly, SWT-6.0-154,

mounted on a spar buoy. The characteristic wind turbine parameters are listed in Table 1. The simulations use a tower with a

larger diameter than the tower designed for the Hywind Scotland site. It is, therefore, stiffer and has a higher natural frequency

than its installed counterpart. The geometry details of the tower and the floating platform used in the simulation are provided

in Table 2. The floating substructure is attached to the ocean floor using catenary mooring lines, equally spaced at 120◦ in465

crowfoot configuration using bridle lines as shown in Figure 2 (Equinor ASA, 2022). The structural properties of the main

mooring lines and the bridle lines are listed in Table 3.

Figure 2. Hywind Scotland spar buoy with crowfoot mooring line configuration (Equinor ASA, 2022).

2.2 Numerical model

The damage equivalent loads are obtained through time-domain hydro-servo-aeroelastic simulations performed using BHawC-

OrcaFlex coupled implementation. BHawC has been used for several years at Siemens Gamesa for wind turbine load cal-470

culations and is continuously validated against turbine prototypes and the entire operational fleet. Similar analysis may be

performed with OpenFAST (NREL, 2022; Jonkman, 2013) coupled with OrcaFlex (Masciola et al., 2011) via FASTLink for

reproducibility. Arramounet et al. (2019)Arramount et al. (Arramounet et al., 2019)DS present the mathematical background

for the software coupling. In short, the tower, the rotor nacelle assembly, and the blade elements are dynamically modeled in
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Table 1. Parameters of 6MW Siemens Gamesa wind turbine.

Parameter Property

Rated power 6000 kW

Configuration 3-bladed

Power control Pitch

Drivetrain Direct drive

Rotor diameter 154 m

Hub height 96 m

Rated wind speed 12 ms−1

Rated tip speed 89 ms−1

Nacelle mass 360 te

Table 2. Wind turbine tower and foundation properties. (Busse-

makers, 2020; Equinor ASA, 2022; Equinor, 2024)

Parameter Value

Tower bottom outer diameter 9.45 m

Tower bottom thickness 0.08 m

Tower top outer diameter 4.89 m

Tower top thickness 0.029 m

Tower bottom elevation above SWL 13 m

Draft 78 m

Platform top geometry- lengthPlatform length Platform top geometry- lengthDS 12 m

Platform top geometry - diameter 9.4 m

Platform taper length 15 m

Platform bottom geometry - length 58 m

Platform bottom geometry - diameter 14.4 m

Table 3. Catenary mooring line properties.

Parameter Value

Number of mooring lines 3

Angle between mooring lines 120◦

Mooring bridle line length 50 m

Mooring bridle line mass per unit length 0.348 te/m

Mooring main line length 610 m

Mooring main line mass per unit length 0.4322 te/m

Mooring line anchor radius 640 m
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BHawC. The BHawCLink module acts as a communication channel with the dynamic link library, connecting it to the Or-475

caFlex API. OrcaFlex simulates the hydrodynamic response of the floater element. Time integration is performed individually

on both elements while accounting for the response of the other structure per iteration (Arramounet et al., 2019).

The inflow turbulence is modeled using a spatially varying frozen wind field based on the Mann model (Mann, 1998). The

tangential and axial induced velocities are calculated on several aerodynamic nodes on the blades using the blade element mo-

mentum theory coupled with Prandtl’s tip loss correction and thrust correction at high induction values. Skewed and unsteady480

inflow is modeled using the method introduced by Björck (2000)Björck et al. (Björck, 2000)DS.

The structural elements are modeled using the co-rotational formulation,DS providing geometric nonlinearity (Rubak and

Petersen, 2005). The tower, shaft, and blade substructures are modeled using beam elements (Couturier and Skjoldan, 2018)DS.

The Torsethaugen two-peak wave spectrum generates swell and local wind-driven waves (Torsethaugen and Haver, 2004). The

various elements of the OrcaFlex model are shown in Figure 3. A 6-DOF rigid buoy in OrcaFlex represents the floating485

substructure. The mooring lines are modeled in OrcaFlex. Each line is divided into several massless spring segments, joined

by elements with lumped properties such as mass, damping, added mass, buoyancy, and material properties.

X Y

Z
30 m

X Y

Z

X Y

Z
30 m

X Y

Z

OrcaFlex 11.2b: Hs0Tp730Wdir81.8.yml (modified 4:45 PM on 4/18/2023)
azimuth=50; elevation=0; gamma=0
Statics complete

Interface vessel

6D-Buoy
Line elements

Mean sea level

Figure 3. Schematic of the OrcaFlex simulation elements.

9



The simulations are initialized in BHawC with a quasi-static approach where the environmental loads (wind and wavesDS)

and inertial loads (gravity and buoyancy) are slowlyDS ramped up in small steps. For every load step, OrcaFlex determines the

mooring line static equilibrium based on the floater position determined by BHawC. BHawC calculates the global equilibrium490

position based on the stiffness matrices and interface loads provided by OrcaFlex. Once the global equilibrium is calculated,

the next load step is applied. The dynamic part of the simulations consists of an initialization phase of 300 s to eliminate

any initial transients as the wave dynamics, turbulence and substructure motion build up as the artificial structural damping

is slowly ramped down. The final post-processing is performed on 600 s dynamic simulations that follow the initialization

phase. The simulations for training the surrogate may be performed for a longer duration if necessary, mainly to estimate495

mooring line fatigue correctly due to its long natural period. The effect on the tower and blade fatigue is shown to not change

significantly with larger simulation windows, but rather with the fatigue calculation algorithm used to account for the unclosed

cycles (Stewart et al., 2013).

2.3 Definition of relevant site features and responses

Having a large feature space can lead to a very expensive surrogate training process, as the number of training samples required500

grows rapidly with the number of input variables due to the curse of dimensionality. It is, therefore, important to identify which

variables have the most significant impact on theDS fatigue to reduce the input space effectively. Having a large feature space

can lead to a very expensive surrogate training process, as the number of training samples needed growsgrowDS with the

number of input variables. It is, therefore, important to identify which variables have the largest impact on theDS fatigue.DS

Several studies in the past have focused on addressing the sensitivity of wind turbine loads to environmental conditions505

(Robertson et al., 2018, 2019; Teixeira et al., 2019; Shaler et al., 2023; Singh et al., 2024c). The combined effect of environmen-

tal and structural parameters has been analyzed on fixed-bottom (Hübler et al., 2017; Velarde et al., 2019; Dimitrov et al., 2018b)

(Hübler et al., 2017; Velarde et al., 2019)DS and floating wind turbines(Wang et al., 2023; Wiley et al., 2023; Lin et al., 2021;

Reddy et al., 2024; Singh et al., 2024c).

Wiley et al. (2023)Wiley et al. (Wiley et al., 2023)DS demonstrate that for the OC4-DeepCwind semi-submersible platform,510

the standard deviation of wind speed in the inflow is the most influential parameter affecting the fatigue and ultimate loads on

the tower and blades. Secondary drivers of fatigue on the tower bottom moment include turbulence coherence parameters as

well as wave characteristics, such as significant wave height and peak spectral period. For blade pitching fatigue, secondary

factors include the yaw misalignment angle and geometric features like the blade twist angle. Whereas, the wind-wave mis-

alignment and the current speed and direction seem to have a secondary effect on the blade root bending moment fatigue.515

Reddy et al. (2024)Reddy et al. (Reddy et al., 2024)DS perform elementary effects analysis to determine the most significant

parameters affecting tower bottom fatigue on the OC3-Hywind Spar platform and the OC4-DeepCwind semi-submersible de-

sign. In both cases, the significant wave height is found to be the primary driver. Current-related parameters are shown to have

a strong effect,DS mainly on the mooring line fatigue. Singh et al. (2024c)Singh et al. (Singh et al., 2024c)DS use measurement

data from the TetraSpar demonstrator to find that the tower and blade fatigue are most highly correlated with the wind speed520

mean and standard deviation, and significant wave height values.
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As observed, although current has a big impact on the mooring line loads, its effect is found to not be as significant on

the tower and blades in theDS literature. Therefore, it is not included as a variable feature in the training of the surrogate. A

variation in the water depth was also not considered because the mooring line system must be redesigned for any new value of

water depth. A framework for automating this process is non-trivial. Furthermore, for slack mooring lines, Lin et al. (2021)Lin525

et al. (Lin et al., 2021)DS show a negligible impact on the tower fatigue with an increase in water depth.

Table 4. The list of input features provided to the surrogate

model and their corresponding notation.

Feature Label

Wind speed [ms−1] Uref

Shear exponent [−] α

Turbulence Intensity [%] TI

Significant wave height [m] Hs

Spectral peak period [s] Tp

Wave direction [◦] Wdir

Yaw error/ misalignment [◦] Y aw

Table 5. The list of output channels that the surrogate models

are trained to predict.

Response

Tower bottom fore-aft DEL [−]

Tower top fore-aft DEL [−]

Blade root edgewise DEL [−]

Blade root flapwise DEL [−]

The targets the surrogates are trained on are listed in Table 5. Each target is trained with a separate surrogate model. This

study only calculates the short-term DELs in the local coordinate system of the componentDS. DELs result from the conversion

of the irregular load time series to a constant amplitude and frequency signal that produces anDS equivalent fatigue damage.

The Rainflow counting (Matsuishi and Endo, 1968) algorithm is used to obtain the load ranges Si and the number of load530

cycles ni needed to calculate the DEL as,

DEL :=

(∑
niS

m
i

nref

)1/m

, (1)

where nref is 600 for 1Hz DELs over 10 minutes. m is the Wöhler coefficient with values 3.5 for the tower, 10 for blade

flapwise, and 8 for blade edgewise moments. Finally, Z-score normalization is used to scale the DEL to its dimensionless

form.DS535

2.4 Feature bounds

The feature bounds are defined based on the observations of data on sites where floating wind farms could potentially exist

(Creane et al., 2024) and where data was readily available. Table A1 lists the selected sites with their location and water depth

values. The ERA5 reanalysis data, produced by the European Center for Medium-Range Weather Forecasts (ECMWF) on

behalf of the European Union’s Copernicus Climate Change Service (C3S), is used for the analysis in this section.540
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2.4.1 Average wind speed at hub height

The wind speed at hub height (Uref ) varies between 3 and 28 ms−1, which is the operational range of the wind turbine

investigated in this study.

2.4.2 Shear exponent

The shear exponent α is defined according to the wind profile power law as,545

U

Uref
=

(
z

zref

)α

, (2)

where, U is the wind speed at height z, and Uref is the known wind speed at height zref . We used the ERA5 reanalysis data to

obtain wind speed values at 10 m and 100 m for the sites listed in Table A1. Assuming the wind profile follows the power law,

the shear exponent is calculated using Equation (2). The distribution of the shear exponent is shown in Figure 4a, with values

primarily ranging between 0 and 0.2. It is also plotted against wind speed in Figure 4b. In our database, the shear exponent is550

uniformly distributed in the region corresponding to the dashed box in Figure 4b.
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Figure 4. (a) Histograms of the shear exponent α for selected sites for ERA5 reanalysis data from 1990 to 2019. (b) Shear exponent shown

as a function of wind speed, marked by a box denoting the selected sampling domain.

2.4.3 Turbulence intensity

The lower range of turbulence intensity is 0.1%, and the upper limit is designed to be 20% greater than the prescribed IEC Class

C standard (IEC, 2010) for the Normal Turbulence Model (NTM). The function for class C turbulence intensity (in percentage)

is given by,555

TI = 100× Iref(0.75Vhub +5.6)

Vhub
(3)
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where, Iref = 0.12 is the expected value of turbulence intensity at 15 ms−1. The upper limit of turbulence intensity for sampling

is, therefore, 1.2×TI . Figure 5 shows the chosen range, with the IEC class C turbulence and the measured turbulence at the

FINO 3 metmast,-DS which is referenced in the Buchanan deep met-ocean report (Equinor ASA, 2022).
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Figure 5. Chosen turbulence intensity range in dashed lines, along with the IEC class C turbulence profile for NTM, and measured turbulence

at FINO 3 (German Bight) from the met-ocean analysis report on the Hywind Scotland project (Equinor ASA, 2022).

2.4.4 Significant wave height560

Waves in deep water primarily originate from two sources: wind-induced waves and swell waves. It is useful to consider the

correlation between wind speed and significant wave height while training the surrogate to avoid including non-physical wind-

wave combinations. Figure 6a illustrates a scatter plot of significant wave height (Hs) versus wind speed, based on ERA5

reanalysis data for the selected sites. The sampling domain is also a function of wind speed, highlighted with the dashed lines.

The upper and lower ranges of sampling for the significant wave height are defined empirically based on these observations.565

In this case, the functions are rather conservative and subject to modification based on the kind of sites the user would want to

use the surrogate model on. The equations for the upper and lower limits for Hs are listed in Appendix B1.

2.4.5 Peak spectral period

The empirical functions are defined for the spectral period range based on the significant wave height. Figure 6b illustrates the

sampling domain with dashed lines, overlaid on observational data from the ERA5 reanalysis. This plot also includes Hs−Tp570

values corresponding to wind speeds below the cut-in speed and above the cut-out speed. The functions defining this range are

detailed in Appendix B2. As with the significant wave height, these bounding functions can be adjusted based on the region of

primary interest to the user.
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(a) Hs vs. Uref (b) Tp vs. Hs

Figure 6. Scatter plots of (a) the significant wave height vs. the wind speed at 100 m, and (b) peak spectral period vs. significant wave height

for the selected sites (Table A1) based on the ERA5 reanalysis data from 1990 to 2019.

2.4.6 Wave direction

The wind turbine is always assumed to face the inflowing wind. Therefore, only the wave direction is varied to introduce wind-575

wave misalignment. Wave direction is considered to be an independent variable and sampled uniformly between 0◦ and 360◦.

For asymmetric floating foundations, however, wind directions would also need to be considered as an independent parameter.

2.4.7 Initial yaw misalignment

The effect of the initial yaw misalignment is chosen to be evaluated at −5.6◦, 0◦ and 5.6◦ while performing fatigue calculations.

Therefore, we selected the sampling bounds between 1.1×−5.6◦ and 1.1× 5.6◦.580

2.5 Training and testing database generation

2.5.1 Training database

Sobol sampling (Sobol, 1967) is used to jointly sample uniformly in seven dimensions to generate the training dataset. The sam-

ples lying outside the aforementioned feature bounds are discarded, resulting in a total of 9041 training samples. Alternatively,

a multivariate distribution fitting the available data can be used to define the sampling space bounds.DS Each sample corre-585

sponds to a unique wave seed in OrcaFlex and a single inflow turbulence seed in BHawC. This approach is designed to emulate

the inherent stochasticity of real-world inflow variables. Note that the statistical variation in the flow field is constrained by the

BHawC implementation to only 45 turbulence seeds. Consequently, these seeds had to be reused, and the inflow turbulence

box could not be uniquely defined for every case.
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2.5.2 Testing database590

The values of the shear exponent, turbulence intensity,DS and yaw misalignment are not randomly assigned to the test cases.

Instead, they take the values used commonly while performing fatigue design load case evaluations. The shear exponent was

fixed at 0.08, with yaw misalignment values of −5.6◦, 0◦, and 5.6◦, and turbulence intensity corresponding to IEC Class C val-

ues. Hs, Tp, TI , and Uref were jointly sampled in a random manner, without being tied to any specific location, but constrained

within the defined feature bounds. For future studies, jointly sampling the test points across all variables is recommended for595

a fairer evaluation of the surrogate’s performance.DS In total, ntest = 47 test samples were used in this study. Each test sample

simulation was repeated with nseeds = 44 random seeds for turbulence and waves to capture the statistical variation in the DEL

values from the variation in the wind and wave fields. The seed repetition establishes a reference conditional distribution for

each sample, which is used to compare against the probabilistic predictions of the surrogate model in Section 4.2. The samples

used for training and testing the surrogate models are shown in Figure 7.600

Figure 7. Paired scatter plots and marginal distributions of the training and testing datasets.
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3 Methodology

This section briefly describes the theoretical basis of the mixture density network models investigated in this study, as well as

the accuracy metrics considered to evaluate the surrogate’s goodness of fit. The database {xq,yq}q=1...n consists of n pairs of

inputs x ∈ Rd, and the corresponding output y ∈ R. The surrogate is calibrated separately for each target.

3.1 Mixture density networks605

A mixture density network is a probabilistic regression method that combines Gaussian mixture models with artificial neural

networks (Bishop, 1994). The conditional distribution of the target is represented as a linear combination of m ∈ N Gaussian

kernel functions,

p(y | x) =
m∑
i=1

αi(x)N (y | µi(x),σ
2
i (x)), (4)

where αi(x) are the weights or mixing coefficients assigned to the ith mixture component. N (y | µi(x),σ
2
i (x)) is a Gaussian610

kernel representing the conditional density of the ith component of the target distribution, with parameters µi(x) and σi(x).

Instead of mapping the inflow features x to the load statistics y directly, the neural network is trained to predict the parameter

vector, z ∈ R consisting of αi(x),µi(x) and σi(x) for 1< i <m (Singh et al., 2024b)DS.

Figure 8. Schematic representation of Mixture Density Networks.

The mixing coefficients αi(x) must sum up to exactly 1. A softmax function is used to handle this constraint. Positive values

of the standard deviation are ensured by representing them as exponential functions of the corresponding network outputs, zσi .615

The means are not constrained.

The error function Eq is defined as the negative log of the likelihood. For pattern q, it is given by,
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Eq =− ln

(
m∑
i=1

αi(x
q)N (yq | µi(x

q),σ2
i (x

q))

)
. (5)

The likelihood of the dataset is the product of the likelihoods of the individual data samples.

The derivative of the error function is calculated at the output layer and is back-propagated to get its gradient with respect to620

the network weights. The values of the network parameters are adjusted to minimize the error function using a gradient descent

optimization. This study uses the Adam optimizer (Kingma and Ba, 2017) to perform stochastic gradient descent. The model is

initialized ten times for any given case in order to choose the best initial conditions for the optimizer. The hidden layers in our

network use the rectified linear unit (ReLU). The output layer of the network does not have an activation function; therefore,

the outputs are just linear combinations of the inputs from the previous layer.625

Minimizing the error function is an ill-posed problem as there is a conflict between learning the function that fits the data

perfectly and remaining robust under varying sets of training data. As the network size grows, the function space increases and

the neural network tends to overfit. ThetheDS MDN model training especially seemed susceptible to it. Among several ways to

avoid overfitting (Montavon et al., 2012), in this study, we implemented a combination of early-stopping (Yao et al., 2007) and

L1 and L2 regularization (Ng, 2004).630

The main hyperparameters used in this study to train the models to obtain the results in Section 4 are summarized in Table 6.

In subsequent sections, we test the performance of the MDN model with various architectures. The features and targets are

scaled with the standard scaler before training.

3.2 Accuracy metric

The qualitative assessment of the performance of the surrogate model is based on two criteria: the coefficient of determination635

(R2) and the Wasserstein distance (dW2), as described hereafter.

3.2.1 Coefficient of determination R2

The coefficient of determination, also known as the R2, is a common measure of the goodness of fit of a model. It is defined

as,

R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2
, (6)640

where ŷi is the predicted output, yi is the observed value and ȳ is the mean of the observed values. R2 is interpreted as the linear

correlation between the predicted and observed values of the output vector. To assess the accuracy of the predicted conditional

distribution of the response compared to the BHawC reference, we calculate the R2 value for the conditional probability density

function’s (pdf’s) mean and standard deviation. These two quantities are derived empirically by obtaining 5000 samples from

the surrogate-predicted conditional distribution and nseeds seed (turbulence and wave) repetitions per test case.645
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Table 6. Summary of the network hyperparameters

Network hyperparameter Value

Number of mixture components 4

Activation function (hidden layers) ReLU

Activation function (output layer) None

Learning rate 5e−3

Maximum epochs 5000

Mini-batch size 100

Optimizer Adam

Regularization

λ for L1−regularization 1e−3

λ for L2−regularization 1e−3

Early-stopping

Early-stopping patience 100

Early-stopping monitor validation loss

Number of early-stopping validation samples 600

Steps per epoch number of training samples / batch size

3.2.2 Wasserstein distance

The Wasserstein metric is a distance function that compares the difference between the pdfs of two random variables. It is sym-

metric, non-negative, and satisfies the triangle inequality, making it a proper distance metric. In the case of 1-D distributions,

the Wasserstein-2 distance between a reference empirical measure Y and predicted measure Ŷ , is defined as (Villani, 2009;

Peyré and Cuturi, 2019; Ramdas et al., 2015),650

W2(Y, Ŷ ) = (

1∫
0

|F−1(t)−G−1(t)|2dt)1/2 (7)

where F−1 and G−1 are the quantile functions of Y and Ŷ respectively. The individual quantile functions are obtained from

the samples of the empirical distributions and then integrated. In this paper, we calculate the Wasserstein distance between the

conditional distribution predicted for each sample (Ŷ ) and the conditional distribution obtained as a reference through seed

repetitions in BHawC/OrcaFlex (Y ). Ŷ consists of 5000 samples from the surrogate’s estimate, and Y is obtained from nseeds655

turbulence and wave seed repetitions in BHawC/OrcaFlex. The distance metric is normalized by the standard deviation of the

reference conditional distribution, Y . Therefore, a value of W2

σ(Y ) = 1 is the distance between a distribution with mean µ(Y ),

18



scale σ(Y ), and a degenerate distribution with the same mean. We calculate the global performance of the model by averaging

the normalized Wasserstein distance over ntest test samples as,

dW2 = Entest

(
W2

σ(Y )

)
. (8)660

4 Results

This section is divided into three parts. The first part presents a convergence study on the number of training samples, high-

lighting the model’s robustness and demonstrating a clear trade-off between the computational cost of data generation and

the resulting accuracy. A related hyperparameter study to determine the network architecture is presented in Appendix C. The

second part validates the performance of the surrogate on the test dataset. The validated model is used to make lifetime fatigue665

damage estimates on the wind turbine components in response to different site conditions in the third section.

4.1 Choice of training data size

This section shows the convergence study with respect to the number of training samples for the tower bottom fore-aft DEL.

It is assumed that the same architecture can be used to predict the remaining channels. Three networks for the mixture density

networks are compared to test the robustness of the approach, as listed in Table 7. The MDNs contain four mixture elements.670

The rest of the hyperparameters are as specified in Table 6. In Figure 10, at each Ntrain value, the models are trained on 25

different subsets of the total training data space to capture the sensitivity of the model’s fit to the choice of the training samples.

The boxes reflect the variation in the R2 values as a result of the choice of training data points. The boxes extend between the

data’s first (Q1) and third (Q3) quartile, and the horizontal line across the box indicates the median. The difference between Q1

and Q3 defines the interquartile range (IQR). The upper whisker extends to the largest data values within 1.5IQR above Q3.675

The lower whisker, similarly, extends to the lowest data point within 1.5IQR below Q1. Outliers are visible as dots beyond the

whisker boundaries. Figure 10a is the R2 value obtained from predicting the mean of the conditional pdf of the tower bottom

fore-aft DEL, averaged over the test dataset. The mean in the BHawC reference is calculated using 44 realizations of the wind

and wave fields. The diminishing size of the IQR as the number of samples growsgrowDS is a combination of the increasing

robustness of the model, and the smaller variability in the test samples as fewer untrained samples remain in the dataset.680

Table 7. The MDN architectures considered for the convergence study.

Notation Number of layers Number of nodes per layer

MDN[10,10] 2 10

MDN[30,30] 2 30

MDN[50,50] 2 50
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MDN uses a neural network framework capable of inferring extremely complex underlying functions given sufficient data.

In this case,DS MDN convergescovergesDS to consistent values of both R2 of the conditional mean and dW2 above 4250

samples. We also see that MDN estimates are closer to the ground truth with larger networks of 30 or 50 nodes per layer.

The performance of MDN[30,30] and MDN[50,50] is almost identical in this region, indicating good model robustness with

respect to the size of the layer.685
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Figure 9. Convergence plots for the tower bottom fore-aft DEL channel. (a) Shows the convergence of the predicted mean as a function of

the number of training samples for three MDN architectures. (b) Shows the normalized Wasserstein distance as a function of the training

samples.
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Figure 10. Convergence plots for the tower bottom fore-aft DEL channel. (a) Shows the convergence of the predicted mean as a function

of the number of training samples for three MDN architectures. (b) Shows the normalized Wasserstein distance as a function of the training

samples.
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Figure 10b shows the normalized 2-Wasserstein distance between the predicted and reference pdf. The Wasserstein distance

quantifies the similarities between the predictions and the reference. It is, thus,DS a good indicator of whether or not the

surrogate can correctly estimate the variation in the target resulting from a combination of epistemic and aleatoric sources.

The predicted pdf is based on 5000 realizations from the estimated Gaussian mixture in MDN. The reference is based on

nseeds = 44 BHawC/OrcaFlex realizations. Since 44 samples are insufficient to characterize the reference pdf fully, there is690

certainly an error associated with the dW2 values; therefore, dW2 cannot be expected to be zero in practice. Beyond 4250

samples, there is a small but marginal improvement in the dW2 values from MDN[30, 30] and MDN[50, 50].

In conclusion, the two-layered MDN surrogates (MDN[30, 30] and MDN[50, 50]) reach convergence in terms of dW2

at 4250 samples. For subsequent sections, the MDN models will be trained with a dataset of 8250 points, as this provides

marginally better predictions with only a slight increase in model fitting cost.695

The choice of the number of layers and nodes in the neural network, as well as the number of mixture components,DS is

based on a hyperparameter study, presented in Appendix C.

4.2 Surrogate model validation

In this section, the performance of the MDN model is evaluated for the load channels listed in Table 5, on the selected test

dataset presented in Section 2.5.2. Based on studies in Section 4.1 and Appendix C, the values of hyperparameters used in700

training the models, in addition to Table 6, are listed in Table 8.

Table 8. List of hyperparameters used for training the MDN model for the final load prediction.

MDN hyperparameter Value

Number of hidden layers 3

Width layer 1 30

Width layer 2 30

Width layer 3 50

Number of mixture components 4

Number of training samples 8250

Table 9 provides a quantitative analysis of the modelmodel’sDS performance in terms of the average R2 and dW2 values. The

conditional mean is accurately captured by the MDN model with R2 exceeding 0.99 on the test dataset. The goodness of fit

on the conditional distribution is evaluated using dW2. Lower dW2 values indicate a smaller difference between the predicted

and reference conditional distributions across the test database. As the dW2 values are normalized by the local reference705

standard deviation, we can compare the performance of the models across different load channels. MDN’s performance remains

consistently good on the tower top and blade targets. The tower bottom channel shows a larger deviation in the dW2 values,

which is investigated further in Figure 11.

Figure 11 shows the statistics of the conditional distribution of the DEL variation at the tower bottom fore-aft direction Since

44 seeds is a relatively small sample size to determine the true mean and standard deviation of the population, a gray area is710
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Table 9. Quantitative analysis of MDN model’s predictions using dW2 and R2 as evaluation metrics.

Model Tower bottom FA Tower top FA Blade root edgewise Blade root flapwise

dW2 0.86 0.35 0.36 0.36

R2µ 0.99 0.99 0.99 0.99

highlighted in Figure 11a and Figure 11b to reflect the uncertainty in the reference values. For the mean, the 95% confidence

interval (CIt) is calculated with the t-distribution (Rouaud, 2013), assuming the response is normal. It is defined as,

CIt = µreference ± t.
σreference√

nseeds
, (9)

where µreference is the mean and σreference is the standard deviation calculated from the simulation samples. nseeds = 44 is the

number of seeds with which the simulations were repeated. t is the t-score for 95% confidence, given nseeds samples from a715

normally distributed population. The bounds are similarly calculated using the χ2 distribution for the standard deviation. The

bounds are asymmetric as the χ2 distribution is skewed. χL and χR are based on 5% and 95% tails of the χ2 distribution. The

true standard deviation, σ, is expected to lie between the bounds,

√
(nseeds − 1)

χ2
L

σreference ≤ σ ≤
√

(nseeds − 1)

χ2
R

σreference. (10)

The individual pdfs are shown in Figure 11 for two site conditions. The reference BHawC realizations are plotted as histograms720

overlayed with kernel density estimate (KDE) plots generated from 5000 samples from the conditional pdf predicted by the

surrogate model. The estimates include two sources of uncertainty. The first is the epistemic uncertainty of inferring a function

from limited data. The second is due to the irreducible noise term (aleatoric)DS, which is a part of the observed stochastic

process. The subsequent plots assume the standard deviation of the combined uncertainty.

Figure 11a shows the predicted conditional mean (µsurrogate) of the normalized tower bottom fore-aft DEL as a function725

of the reference conditional mean (µreference) derived from BHawC/Orcaflex simulations. As already indicated in Table 9,

the R2 values are greater than 0.99 for MDN, indicating an excellent fit. Similarly, the standard deviation derived from the

surrogates (σsurrogate) is plotted against the ground truth reference (σreference) in Figure 11b. Despite the slight overprediction

of the standard deviation, MDN is able to capture the heteroscedastic trend in the data. Figure 11c corresponds to a below-rated

velocity of 9.8 ms−1 and a wind-wave misalignment of 105◦. Under these conditions, the BHawC reference is a short-tailed730

conditional pdf. Since MDN assumes a medium-tailed Gaussian mixture conditional, there is a tendency for the surrogate

model to overestimate the standard deviation (Figure 11b). The reason for the tower bottom fore-aft DELs to be restricted

between a very small range resulting in such a short-tailed distribution is not obvious and demands a deeper investigation into

the behavior of the tower structure and control laws, which is beyond the scope of this paper. A similar pattern is not observed

in the other three load channels. Figure 11d corresponds to an example of a near-rated wind speed case, where the MDN735

predictions show a closer match to the reference conditional distribution.
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Figure 11. Load predictions using MDN for the tower bottom fore-aft DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf. Figures (c) and (d) compare the conditional pdf plots between the surrogate and the simulation at below-DSrated and

near-DSrated conditions ,DS respectively. The values in vector x denote: [Uref ,α,T I,Hs,Tp,Wdir,Y aw] with units specified in Table 4.

A similar analysis is performed for the tower top fore-aft DEL channel in Figure 12. The conditional standard deviation

estimated from the MDN surrogate isare within the error bounds of the small population assumption, indicating a very good

fit.

Figure 13 and Figure 14 show the surrogate models’ performance on the blade root flapwise and edgewise DEL ,DS respec-740

tively. Similar to the tower top, the standard deviation and mean estimates from the MDN surrogate agree very well with the

BHawC reference in both blade channels.

These results indicate that the surrogate model demonstrates a good level of reliability in accurately predicting the DELs

with respect to the BHawC/OrcaFlex reference. Consequently, we assume that the model can be extended to other operating

conditions without necessitating further verification.745
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Figure 12. Load predictions using MDN for the tower top fore-aft DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf. Figures (c) and (d) compare the conditional pdf plots between the surrogate and the simulation at below-DSrated and

near-DSrated conditions ,DS respectively. The values in vector x denote: [Uref ,α,T I,Hs,Tp,Wdir,Y aw] with units specified in Table 4.

4.3 Lifetime damage equivalent loads

The calculation of aggregated fatigue loads in onshore wind cases consists of binning the wind speed and scaling the loads at

each bin by the probability of occurrence of the wind speed during the operating lifetime of the wind turbine. Floating wind

turbine fatigue evaluations are more complex becauseDS, firstly, many more environmental parameters must be considered to

characterize the site. Secondly, the bins need to be defined on a joint probability space. The process of choosing the right750

variables for the fatigue analysis and the size of the bins is not yet standardized and is a topic of ongoing research (Papi and

Bianchini, 2024). With a fast surrogate model, however, it is possible to account for every single observation in the previous

years, without the need to lump probabilities or limit the number of variables. The joint probabilities of the sea states are,

therefore, automatically accounted for.

In this section, we use the validated surrogate model from Section 4.2 to make probabilistic estimates of the equivalent loads755

(Meq) for 10 million reference load cycles on the floating wind turbine structure. The site data is obtained from the ERA5
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Figure 13. Load predictions using MDN for the blade root flapwise DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf.
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Figure 14. Load predictions using MDN for the blade root edgewise DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf.

database for four sites with an approximate water depth of 100 m, namely Sud de la Bretagne II, Emerald, Hywind Scotland

and HIP Atlantic (Table A1). Figure 15 provides an overview of the site conditions observed at the four selected sites. For

simplicity, the foundation and mooring line design are assumed to be the same across the four sites. It is assumed that the

difference in the load distributions between the design in use and the site-optimized foundation will not be significant. The760

ERA5 hourly conditions are converted to 10-minute inputs by repeating each set of values six times. An alternative approach

could be to draw the 10-minute values from a normal distribution with the hourly values asa the mean and an assumed standard

deviation. The observations below cut-in and above the cut-out wind speed are excluded from the calculations. The site data

consists of the average wind speed at 100m, significant wave height, peak spectral period, wind-wave misalignment (converted
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to wave direction in OrcaFlex coordinates) and the shear exponent. The yaw misalignment values are sampled from a normal765

distribution with zero mean and a standard deviation of 2◦. The turbulence intensity is calculated for each case based on the

wind speed, assuming the IEC 61400-1 turbulence class C classification.
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Figure 15. Comparison of the site conditions at the four floating wind sites considered in this study (Table A1).

The value Meq, represents the cyclic load amplitude which produces the equivalent lifetime damage given neq cycles of

oscillation over L= 25 years. In Equation (11), Mi is the DEL for the ith 10-minutes of operation, nref is the reference

number of cycles per 10-minutes, set to 600. m is the Wöhler coefficient, with part-specific values listed in Section 2.3. nL770

is the number of 10-minute periods in L years. The loads do not have to be scaled as the probability of occurrence of each

condition is equal. Since the surrogate has been validated in previous sections, we assume here that its predictions are accurate,

and we can treat each Mi as a probabilistic output from the MDN model. From each Mi pdf, we draw 500 samples, resulting

in a probabilistic estimation of Meq. Meq is defined as,

Meq =

(
nref

neq

nL∑
Mm

i

)1/m

(11)775

where neq is 106 and nref is fixed to 600 oscillations per 10 minute period. The probabilistic Meq value can be further used

to calculate the stress reserve factor when re-designing the tower, or to calculate the fatigue damage during the structure’s

operating lifetime.
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Figure 16. The 25-year normalized Meq calculated for four sites at the tower bottom fore-aft direction (top-left), tower top fore-aft (top-

right), blade root flapwise (bottom-left) and blade root edgewise (bottom-right) channels. The mean Meq obtained at the Hywind Scotland

site is used as the reference to normalize the loads at the remaining locations.

Figure 16 shows the kernel density estimate of the normalized Meq values from the surrogate for the four selected sites.

Meq has been normalized by the average of the predicted Meq values at the Hywind Scotland site for every channel. Firstly,780

it is interesting to note that the uncertainty in Meq at each site is very small compared to the mean. This aligns with the

law of large numbers, which states that for Mi with a mean µ and variance σ2, the standard deviation of the average of the

distribution of (
∑

Mi) decreases as σ/
√
nL. Since nL is in the order of 106, the standard deviation becomes extremely small

as we get closer to the true mean. Even though the effect of Mi being raised to the power of m means that any variability in

the sum is amplified, subsequently taking the mth root has the opposite, damping effect. Therefore, the effect of the outliers785

is essentially nullified due to the averaging. It is important to note that this study considers only the statistical uncertainty

arising from stochastic input sources. In practice, other sources of uncertainty may contribute to the analysis (IEC, 2024b).

For example, uncertainties related to the underlying joint distribution of site conditions represent another significant source of

variability. Including these additional sources of uncertainties may introduce bias in the long-term mean, which is reflected as

an uncertainty in the aggregated statistics of the outputs.Including these additional uncertainties in the feature set would likely790

increase the variance of the final load estimates.DS

Secondly, the loads on different channels do not scale uniformly across sites. At the HIP Atlantic site, for instance, the

cumulative tower bottom fore-aft moment is the highest, as shown in Figure 16. This is primarily due to the influence of the

significant wave height, which is expected to have a larger impact on the tower bottom fatigue (Singh et al., 2024c; Wiley
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et al., 2023; Edwards et al., 2023). The marginal distribution of significant wave height at this site shows a higher probability795

of larger waves compared to other locations, supporting the observed increase in tower bottom loads.

The distributions of wind speed, turbulence intensity, and significant wave height at the Emerald and Hywind Scotland sites

(Figure 15) are nearly identical. This results in comparable tower top fore-aft and blade root edgewise damage. However, there

remains a significant difference in blade root flapwise fatigue accumulation. This result is surprising, given that the loads at

this location are primarily wind-driven. Nevertheless, it underscores the complexity of fatigue damage accumulation, which800

can yield different outcomes with minor variations in site conditions even with respect to non-dominant variables.

5 Conclusions

5.1 Summary

This paper presents a framework to develop probabilistic surrogate models for predicting floating offshore wind turbine fatigue

loads for site analysis. The surrogate maps the environmental conditions from potential farm sites to the 10-minute damage805

equivalent loads experienced by a spar-type floating wind turbine. The main advantage of using probabilistic surrogates for this

application is the ability to estimate conditional statistics with high accuracy to account for the statistical uncertainty resulting

from the stochastic site conditions while minimizing the computational cost of training by avoiding seed repetitions. Based on

the reanalysis data from the ERA5 database for several comparable floating sites, the surrogate model is used to propagate the

statistical uncertainties to the 25-year fatigue loads on the wind turbine.810

In this study, the analysis is performed on a spar-buoy floating foundation based on a modified Hywind-Scotland 6MW

wind turbine. The damage equivalent loads are considered on critical locations on the tower and blades and are calculated

using a coupled implementation of BHawC/OrcaFlex for training and validating the surrogate. The features characterizing a

floating farm site and the appropriate ranges are defined. The probabilistic model considered in this study is the mixture density

network, as it is flexible, robust, and interpretable, and has performed well for fixed bottom load emulation in the literature.815

Since MDN is based on a neural network parametrization, several hyperparameters require tuning prior to training. There-

fore, a hyperparameter study is performed to find the appropriate neural network layout and the minimum number of training

samples required to reach a high accuracy in terms of R2µ and dW2and the number of training samples to maximize the

prediction accuracy of the MDN surrogate modelDS. The conditional distribution predicted by the chosen model is validated

on a set of 47 operating conditions, each simulated with 44 random seeds in BHawC/Orcaflex to obtain a reference conditional820

distribution for each test case. The R2 value for estimating the conditional mean is > 0.99 on all channels with the surrogate,

indicating an excellent fit. The standard deviation of the conditional distribution is over-predicted by the model in the case of

the tower bottom fore-aft moment, but within the range of uncertainty bounds for the tower top and blade root channels.

Finally, the validated surrogate model is used to make probabilistic estimates of the 25-year equivalent damage on the tower

and blades for four different sites. Since the surrogate model is fast, load predictions can be made quickly on all observed site825

conditions without lumping or binning the sea states a priori. The uncertainty in the aggregated lifetime fatigue loads due to

statistical variance in the inputs is found to be much smaller in scale compared to the mean. This results from summing the
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10-minute DELs over a million occurrences, effectively nullifying the impact of the outliers.DS We demonstrate that surrogate

models can be powerful tools for site analysis, especially for floating wind turbines, where the choice of variables and binning

methods is still an open question. Additionally, using probabilistic surrogates like MDNs helps reduce bias in calculating the830

aggregate mean fatigue, as the conditional distributions are not always normally distributed.

5.2 Discussion and future work

This section provides a critical discussion of the study’s results, along with practical considerations and limitations associated

with the use of MDNs.DS

5.2.1 10-minute conditional DEL prediction835

Given the stochastic nature of the site conditions, it is natural to model the 10-minute DEL response within a probabilistic

framework. MDN is demonstrated in this study to be a reliable tool for modeling the conditional distribution of 10-minute DELs

on the spar buoy floating wind turbine’s tower and blades. MDN predictions are shown to remain robust across different network

architectures and numbers of mixture components. The conditional means of the DELs are predicted with high accuracy,

achieving an R2 = 0.99. Additionally, the Wasserstein distance between the predicted and reference conditional distributions840

shows a strong match at the blade roots and tower top. However, at the tower bottom, the conditional standard deviation of

the 10-minute fore-aft DEL is consistently over-predicted. It is corroborated by the relatively larger normalized Wasserstein

distance value, indicating a bigger difference between the reference and predicted pdfs. Two main factors contribute to this: (i)

the reference BHawC distributions are not converged at all simulated test locations with 44 random seeds. The tails of some

distributions are not developed, resulting in short-tailed distributions that the MDN cannot easily capture; and (ii) the tower845

bottom fatigue is shown in the literature to have a stronger correlation to the hydrodynamic parameters, leading to higher noise

in the data. As MDN is trained to minimize the negative log-likelihood, it is rewarded for predicting higher variance when there

is less confidence. DS

5.2.2 Probabilistic lifetime DEL aggregation

The uncertainty in the aggregated lifetime fatigue loads due to stochastic inputs is found to be much smaller in scale compared850

to the mean. This results from summing the 10-minute DELs over a million occurrences, effectively nullifying the impact of the

outliers. The use of a probabilistic surrogate that correctly captures the conditional distribution is still useful, as it minimizes

the aggregation of error in the final response.DS

5.2.3 Notes on mixture density networks

Mixture density networks, due to their flexibility in modeling the conditional response, are well-suited for the problem of855

probabilistic load estimation. One big advantage of the method is the ease of implementation and robustness, as demonstrated

in this paper. Compared to deterministic models that often assume a Gaussian response to determine the conditional mean,
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mixture models can account for skewness and multimodality, and improve the mean estimates. This is especially important

for quantities like DELs, which may have non-Gaussian, heteroscedastic variations. MDNs scale well and are cost-effective to

train compared to models that use Bayesian inference or variational inference (Blei et al., 2017). DS860

MDNs without regularization can result in overfitting. Therefore, in this study, both L1 and L2 regularization are imple-

mented. Secondly, MDNs rely on a stochastic optimizer that is sensitive to the initialization of the model parameters. Hence, a

10-fold cross-validation is recommended to ensure the optimizer is not stuck on a false minimum. As seen in the tower-bottom

fore-aft channel, minimizing the negative log-likelihood can result in the over-prediction of the standard deviation of the con-

ditional response when the underlying distribution is short-tailed. MDNs here are not restricted to strictly positive values; in865

some cases, the tails may also extend to negative values. A potential solution is to assume a lognormal distribution for the

output. This can be done by directly predicting the parameters of a lognormal distribution during training or by transforming

the output to a normal distribution before training.DS

5.2.4 Future work

Future studies could use such surrogates to identify optimal methods for grouping sea states in order to reduce the number870

of physics-based simulations required to achieve the same lifetime fatigue loads as using all observed site data. This type of

analysis would be computationally impractical with an engineering tool, as it would require performing millions of simulations

to establish a baseline reference. Surrogates offer an alternative for reducing the computational demands while maintaining

accuracy. Surrogate models can also be used in this context to isolate combinations of sea states that produce the highest

fatigue on the wind turbine structure. Furthermore, it is interesting to include other sources of uncertainty in the analysis of875

loads, such as introducing an uncertainty on the parameters defining the joint distribution of the site conditionsDS. Once trained,

probabilistic surrogate models can be used to propagate the different uncertainty sources to the loads to study the combined

effect without additional costs. This approach opens new opportunities for integrating reliability-based decision-making into

the design process.

Appendix A: ERA5 locations used for defining feature ranges880

Table A1 lists the locations used for defining the feature ranges in Section 2. The data is downloaded from the years 1979 to

2020. The database consists of the hourly average wind speeds at 10 m and 100 m, the significant wave height, spectral peak

period, and wave direction. The shear law exponent is derived from the wind speed values assuming a power law profile for

the atmospheric boundary layer.

Appendix B: Feature bounds885

B1 Significant wave height

The upper and lower limits for the significant wave height are defined as functions of the wind speed at hub height Uref .
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Table A1. Description of the sites used for defining the feature ranges.

Site Location ERA5 approx. location

Latitude [◦] Longitude [◦] Latitude [◦] Longitude [◦] Depth [m]

Dyning (Creane et al., 2024) 58.218 17.860 58.00 17.75 141

Mareld (Creane et al., 2024) 58.161 10.575 58.25 10.50 233

Sørlige Nørdsjo Phase II (Creane et al., 2024) 56.783 4.918 56.75 5.00 60

Tetraspar 59.15 5.013 59.00 5.00 200

Utsira Nord Phase I (Creane et al., 2024) 59.276 4.540 59.00 4.50 273

Buchanan Deep (Equinor ASA, 2014) 57.45 −1.31 57.50 −1.25 100

West of Barra (Vigara et al., 2019) 56.885 −7.947 57.00 −7.75 100

Gran Canaria (Vigara et al., 2019) 27.75 −15.33 27.75 −15.00 200

Morro Bay (Vigara et al., 2019) 35.083 −121.5 35.5 −121.75 870

Sud de la Bretagne II (Creane et al., 2024) 47.3247 -3.6594 47 -3.7 94

Emerald (Creane et al., 2024; Wind, 2025) 51.3565 -8.0761 51.5 -8 90

Moneypoint Offshore I (Creane et al., 2024; ESB) 52.519 -10.276 52.5 -10.5 102

HIP Atlantic (Creane et al., 2024) 63.6325 -16.3756 63.5 -16.5 98

The upper limit is a quadratic function of the form:

HsU =−0.008U2
ref +0.45Uref +5 (B1)

The lower limit is defined as:890

HsL = 0.719e(0.0832Uref ) − e(0.04Uref ) (B2)

B2 Peak spectral period

The peak spectral period range is designed to be a function of the significant wave height (which is in turn, a function of the

wind speed at hub height). We define scaling functions A, B and C as,

A= a1 + a2H
a3
s (B3)895

B = b1 + b2e
−b3Hs (B4)

C = c1 + c2e
−c3Hs (B5)

The scaling functions are used to define the upper bound TpU
and lower bound TpL

as,
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Tpµ
= e(A+0.5B) (B6)

TpL
= Tpµ

(1− 3×
√
(eB − 1)) (B7)900

TpU
= Tpµ(1+3×

√
(eC − 1)) (B8)

The coefficients used to fit the curve in this study are listed in Table B1.

a1 a2 a3 b1 b2 b3 c1 c2 c3

1.3 0.57 0.37 0.005 0.1 0.43 0.005 0.75 0.6

Table B1. Tuning coefficients for defining the range functions for the spectral wave period.

Appendix C: Choice of hyperparameters

C1 Number of layers and nodes

Large networks are better at capturing complex expressions in data but are susceptible to overfitting with a small training set.905

The objective of this study is first, to observe the robustness of the model relative to the number of network parameters for a

particular training data size. And second, to choose a network architecture suitable for the rest of the study.

A sensitivity study on the number of nodes and layers is performed in this section for a training dataset of 8250 samples.

The number of mixture parameters is 4 in all cases, and the rest of the network hyperparameters are fixed to the values listed

in Table 6. Networks with 2, 3, and 4 layers with various widths are tested. The x-axis in Figure C1 lists the combinations of910

widths per layer evaluated in this study. The tower bottom fore-aft DEL channel is chosen for this study.

The R2 values of the DEL are notably good for the architectures tested, indicating good model robustness. The main dif-

ferences observed are in dW2, where the large 3 or 4-layer networks are generally better at capturing the complete conditional

pdf. For the remainder of this study, we chose a 3-layer network with 30 nodes in layer 1, 30 nodes in layer 2, and 50 nodes in

layer 3 in combination with 8250 training samples.915

C2 Number of mixture elements

The number of Gaussian distributions in the mixture controls the complexity of the predicted conditional pdf. However, a large

number of unnecessary mixture elements add redundancy and increase the computational complexity of the surrogate. In this

section, we use 6250 and 8250 training samples with a 3-layer architecture width = (30, 30, 50) and test the performance of 4,

12, and 20 mixture elements on the tower bottom fore-aft DEL channel.920

The number of components does not affect the estimation of the tower bottom fore-aft DEL mean. A slight improvement can

be seen in Figure C2b with four components. The model, therefore, appears to be robust regarding the choice of the number of
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Figure C1. Study on the network architecture. The x-axis reflects the number of nodes per layer. The rows correspond to 2, 3, and 4-layer

networks. The left column shows the R2 value for the mean of the conditional pdf of the tower bottom fore-aft DEL channel. The dashed

line corresponds to an R2 value of 0.99. The right column plots the dW2 values for the same channel with the dashed line corresponding to

dW2 of 1.

mixture components. In other words, it does not necessarily benefit from a large set of mixture components. MDN models in

the remainder of the study are trained with four kernels.
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Figure C2. Sensitivity of the MDN surrogate to the number of mixture components.
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