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Abstract.

Floating offshore wind turbines experience complex hydrodynamic and aerodynamic loading influenced by substructure

types and stochastic environmental conditions. Accurately estimating the lifetime fatigue loads requires analyzing thousands

of operational scenarios, leading to high computational costs. Moreover, choosing the right input features driving fatigue in

floating wind systems and appropriately binning them still remains an open question. We present a fast probabilistic surrogate5

that maps the site conditions to the loads on the wind turbine. The probabilistic aspect allows the propagation and quantification

of statistical uncertainties from the stochastic input quantities on the resulting loads. A fast surrogate eliminates the need to fit a

distribution to the site conditions or bin the input data. Rather, all available met-ocean data can be directly used as input, which

automatically accounts for the joint distribution in the calculations. The surrogate model in this study uses the mixture density

network (MDN) to predict the conditional distribution of the 10-minute damage equivalent loads (DELs) for a 6 MW spar-type10

floating wind turbine. The MDN achieves high accuracy (R2 > 0.99) in capturing DEL means while efficiently propagating

the statistical uncertainties. Furthermore, the surrogate enables quick estimation of 25-year lifetime fatigue damage across a

range of potential floating wind farm sites, demonstrating its capability to facilitate rapid decision-making during preliminary

site analysis.

1 Introduction15

Floating offshore wind turbine (FOWT) technology has witnessed a surge in research interest in recent years following the

rapidly increasing demands for renewable power production. The structural response of a FOWT is a crucial indicator of its

performance, safety, and reliability. During its operational lifetime, a FOWT accumulates fatigue damage as it undergoes time-

variable loading in response to the complex and stochastic marine environment. The nature, magnitude, and extent of fatigue

are unique to the type of floating foundation, mooring line configuration, wind turbine material, control algorithms, and site20

conditions.

To ensure a safe and reliable operational life, the FOWT undergoes a certification process involving a rigorous analysis of

various design load cases (DLCs) defined by the International Electrotechnical Commission in IEC 61400-3-2 (IEC, 2024a).

The first step involves simulating the DLCs on a type-certified rotor-nacelle assembly with a reference tower and floating foun-
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dation. More detailed information about the site is included while defining the DLCs as the project progresses. Subsequently, a25

site-specific tower, foundation, and mooring line configuration are defined and a site-specific certification study is performed.

The calculations are typically made using time-domain multi-physics engineering tools (Jonkman, 2013; Larsen and Hansen,

2007; Couturier and Skjoldan, 2018; Skjoldan, Peter Fisker, 2011) throughout this process.

Fatigue is a multi-scale phenomenon that depends on the material composition, composite structure, geometry, and inflow

dynamics. The estimation of the fatigue damage for FOWTs, in particular, is computationally intense. The lifetime fatigue30

load assessment entails calculating the 10-minute damage equivalent loads (DELs) on multi-variate bins of typical variables

characterizing the site and scaling them to the observed probability of occurrence. Not all site variables can be practically

included in fatigue load analysis, as the required number of simulations increases exponentially with each additional variable.

The choice of the variables in the offshore environment that have the most impact on FOWT fatigue is currently an active

area of research (Papi and Bianchini, 2024). The total computational cost of the simulations also constrains the lower limit of35

the bin size. While industry-standard engineering tools are necessary for certification, the preliminary site analysis can benefit

from data-driven surrogate models to provide quick load estimates. Data-driven surrogates can infer complex relationships

from data observations alone and do not require prior knowledge of the underlying physics. Fatigue, which is difficult to model

using lower-fidelity physics-based approaches, can benefit from such data-driven methods. Using surrogates that can accurately

predict DELs can potentially eliminate the need to bin the site data, fit a multi-variate joint distribution to it, or limit the total40

number of parameters. Once trained, surrogate models can directly use all the available site information to estimate the site-

specific DELs quickly. In addition, probabilistic surrogates can also propagate the statistical uncertainty from the stochastic

input variables to the loads.

Data-driven surrogates for wind turbine or wind farm level loads are often designed with deterministic models. Given a

training dataset with d-dimensional input parameters x ∈ Rd, the deterministic surrogate maps them to the corresponding45

output observations y ∈ R. However, the assumption of a deterministic relationship between inputs and outputs does not hold

in our case. For instance, keeping every other input constant, a single value of 10-minute mean wind speed can correspond to an

infinite number of turbulent inflow patterns, resulting in an infinite number of DEL values with a certain probability distribution

conditioned on that wind speed. Probabilistic surrogates model the statistical uncertainty in the input variables by representing

them as a random variable X with a joint probability density function (pdf). The corresponding output is, therefore, also a50

random variable denoted as Y . The standard Gaussian process regression (GPR) (Rasmussen and Williams, 2006) is one such

probabilistic surrogate that is capable of uncertainty quantification. However, in its standard form, it is restricted to normally

distributed homoscedastic responses. Nevertheless, due to its flexibility and ease of implementation, it is widely used as a

surrogate to estimate the fatigue load response in wind turbines (Teixeira et al., 2017; Avendaño-Valencia et al., 2021; Li and

Zhang, 2019, 2020; Gasparis et al., 2020; Dimitrov et al., 2018; Slot et al., 2020).55

Further interest in quantifying the uncertainty of the short-term fatigue loads as a function of the input parameters has

initiated research into heteroscedastic surrogates. Heteroscedasticity refers to the heterogeneity in the response variance as

a function of the inputs. The variance observed in DEL at the tower bottom at, for instance, very large values of significant

wave height is generally larger than that in calm ocean conditions. It is, therefore, an important consideration when choosing

2

https://doi.org/10.5194/wes-2025-24
Preprint. Discussion started: 21 February 2025
c© Author(s) 2025. CC BY 4.0 License.

ricriv
Highlight
Of course it's correct, but you might as well write their names.

ricriv
Highlight
Maybe it's worth mentioning the universal Kriging. For example, OpenTURNS allows using the PCE as a basis for Kriging, thus enabling arbitrary probability distributions. Furthermore, it supports the Matern kernel, which is quite powerful. The main issue is that the maximum likelihood is a tough function to optimize.



the appropriate surrogate modeling approach for load uncertainty quantification. Murcia et al. (Murcia et al., 2018) use 10060

turbulent inflow realizations at each sample point to obtain the first two moments of the fatigue response. Thereafter, they

create two independent surrogates using Polynomial Chaos Expansion (PCE) to model the mean and standard deviation of the

fatigue loads on the DTU 10MW reference wind turbine. Even though they use only 140 training samples for their model, the

replications scale the computational cost by 100, eventually leading to a costly training database. Another replication-based

approach is taken by Zhu et al. (Zhu and Sudret, 2020) to model the load response using generalized lambda distributions. In65

this study, 50 inflow wind field realizations are used at each input sample to estimate the four lambda parameters. Four PCE

surrogates are then used to model the parameters independently. The main drawback of replication-based methods is the cost

of generating the training database, which makes it challenging to apply them to computationally demanding applications such

as floating wind turbines. Secondly, the goodness of fit relies heavily on estimating the statistical parameters in the first step.

Heteroscedasticity can also be modeled using statistical methods. Zhu et al. (Zhu and Sudret, 2021) extend the replication-70

based approach to derive a statistical method combining generalized least-squares with maximum conditional likelihood to

estimate the lambda parameters without replications. The main advantage of this method is that it does not assume a Gaussian

distribution. However, it cannot handle multi-modality. Abdallah et al. (Abdallah et al., 2019) use parametric hierarchical

Kriging to predict blade-root-bending-moment extreme loads that are heteroscedastic on a 2MW onshore wind turbine. Their

approach combines low- and high-fidelity observations, where the low-fidelity model informs the high-fidelity GPR. They show75

that introducing hierarchy helps make the model selection process more robust than the manual tuning of GPR parameters.

Singh et. al (Singh et al., 2022) apply chained GPR that uses variational inference within a Bayesian framework to account

for heteroscedasticity in the data and make predictions of site-specific load statistics on a more complex case of offshore wind

turbines. The model can capture the heteroscedasticity in a small dataset but is not scalable to high dimensional problems. To

address the scalability constraints, the authors extend the study to use mixture density networks on the same dataset to quantify80

the uncertainty in the load response (Singh et al., 2024a). The application of probabilistic surrogates to floating wind turbines

has only been studied to a limited extent in literature. Li et al. (Li and Zhang, 2019) model the uncertainty in the site conditions

using a C-vine copula combined with ANN and GPR.

In summary, only a few approaches attempt to model the uncertainty in the load response of the turbine and the tower. Of

those that do, only some consider complex offshore floating systems. Following the promising performance of mixture density85

networks (MDNs) for fixed bottom wind turbines (Singh et al., 2024a), in this study, we aim to extend the framework to a more

complex application of a spar-buoy type wind turbine case. In the case of MDN, the target is modeled as a mixture of m ∈ N

Gaussian kernels of varying proportions, capable of generating complex distributions when combined. MDN uses feed-forward

networks to learn the parameters of the mixture model.

The main objective of this study is to present a probabilistic data-driven surrogate modeling framework that maps 10-minute90

statistics of the environmental conditions to the corresponding conditional probability distribution of the DEL on the floating

spar buoy with a 6MW Siemens Gamesa wind turbine. The DEL values are calculated using the Siemens Gamesa in-house tool

that couples the aeroelastic code, BHawC (Skjoldan, Peter Fisker, 2011), with the hydrodynamic solver, OrcaFlex (Arramounet

et al., 2019). A schematic of this mapping is shown in Figure 1. A highly flexible probabilistic machine learning approach for
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the surrogate, the mixture density network (MDN) (Bishop, 1994) is used in this study. The probabilistic estimates of DELs95

are used to subsequently calculate the lifetime fatigue loads at various potential floating wind sites.

10-min. statistics - Input 10-min. DEL - Response

Turbulence

Wind speed

Shear exponent

Yaw misalignment

Significant wave height

Spectral peak period

Wave direction

Blade root edgewise and flapwise DEL

Tower bottom and tower top DEL

Figure 1. Schematic of the surrogate modeling objective.

The rest of the paper is structured as follows. In Section 2, we introduce the floating wind turbine model, describe the

simulation tools used, and outline the input features, including their ranges and the sampling strategy. Section 3 then presents

the theoretical foundation of the Mixture Density Network (MDN), discusses the chosen hyperparameters, and explains the

criteria for evaluating model performance. The results, presented in Section 4, are divided into three sub sections. First, we100

analyze how the model’s performance converges across a range of training samples. Next, we validate the selected MDN

model’s 10-minute conditional distribution estimates under randomly chosen operating conditions, comparing them with those

generated by BHawC. Finally, we demonstrate how the probabilistic 10-minute estimates can be used to propagate the statistical

uncertainty to the lifetime fatigue damage. Concluding remarks are provided in Section 5.

2 Setup105

2.1 Definition of the floating wind turbine

The floating wind turbine in this study is based on a modified geometry of the Hywind Scotland spar buoy foundation (Equinor

ASA, 2022). It comprises a 6MW Siemens Gamesa Renewable Energy direct drive wind turbine assembly, SWT-6.0-154,

mounted on a spar buoy. The characteristic wind turbine parameters are listed in Table 1. The simulations use a tower with a

larger diameter than the tower designed for the Hywind Scotland site. It is, therefore, stiffer and has a higher natural frequency110

than its installed counterpart. The geometry details of the tower and the floating platform used in the simulation are provided

in Table 2. The floating substructure is attached to the ocean floor using catenary mooring lines, equally spaced at 120◦ in
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Table 1. Parameters of 6MW Siemens Gamesa wind turbine.

Parameter Property

Rated power 6000kW

Configuration 3-bladed

Power control Pitch

Drivetrain Direct drive

Rotor diameter 154m

Hub height 96m

Rated wind speed 12ms−1

Rated tip speed 89ms−1

Nacelle mass 360 te

crowfoot configuration using bridle lines as shown in Figure 2 (Equinor ASA, 2022). The structural properties of the main

mooring lines and the bridle lines are listed in Table 3.

Figure 2. Hywind Scotland spar buoy with crowfoot mooring line configuration (Equinor ASA, 2022).

2.2 Numerical model115

The damage equivalent loads are obtained through time-domain hydro-servo-aeroelastic simulations performed using BHawC-

OrcaFlex coupled implementation. BHawC has been used for several years at Siemens Gamesa for wind turbine load cal-

culations and is continuously validated against turbine prototypes and the entire operational fleet. Similar analysis may be

performed with OpenFAST (NREL, 2022; Jonkman, 2013) coupled with OrcaFlex (Masciola et al., 2011) via FASTLink for

5
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Table 2. Wind turbine tower and foundation properties. (Busse-

makers, 2020; Equinor ASA, 2022; Equinor, 2024)

Parameter Value

Tower bottom outer diameter 9.45m

Tower bottom thickness 0.08m

Tower top outer diameter 4.89m

Tower top thickness 0.029m

Tower bottom elevation above SWL 13m

Draft 78m

Platform length Platform top geometry- length 12m

Platform top geometry - diameter 9.4m

Platform taper length 15m

Platform bottom geometry - length 58m

Platform bottom geometry - diameter 14.4m

Table 3. Catenary mooring line properties.

Parameter Value

Number of mooring lines 3

Angle between mooring lines 120◦

Mooring bridle line length 50m

Mooring bridle line mass per unit length 0.348te/m

Mooring main line length 610m

Mooring main line mass per unit length 0.4322te/m

Mooring line anchor radius 640m

reproducibility. Arramount et al. (Arramounet et al., 2019) present the mathematical background for the software coupling.120

In short, the tower, the rotor nacelle assembly, and the blade elements are dynamically modeled in BHawC. The BHawCLink

module acts as a communication channel with the dynamic link library, connecting it to the OrcaFlex API. OrcaFlex simu-

lates the hydrodynamic response of the floater element. Time integration is performed individually on both elements while

accounting for the response of the other structure per iteration (Arramounet et al., 2019).

The inflow turbulence is modeled using a spatially varying frozen wind field based on the Mann model (Mann, 1998). The125

tangential and axial induced velocities are calculated on several aerodynamic nodes on the blades using the blade element mo-

mentum theory coupled with Prandtl’s tip loss correction and thrust correction at high induction values. Skewed and unsteady

inflow is modeled using the method introduced by Björck et al. (Björck, 2000).

The structural elements are modeled using the co-rotational formulation providing geometric nonlinearity (Rubak and Pe-

tersen, 2005). The tower, shaft, and blade substructures are modeled using beam elements. The Torsethaugen two-peak wave130

spectrum generates swell and local wind-driven waves (Torsethaugen and Haver, 2004). The various elements of the OrcaFlex

model are shown in Figure 3. A 6-DOF rigid buoy in OrcaFlex represents the floating substructure. The mooring lines are

modeled in OrcaFlex. Each line is divided into several massless spring segments, joined by elements with lumped properties

such as mass, damping, added mass, buoyancy, and material properties.

The simulations are initialized in BHawC with a quasi-static approach where the environmental loads (wind and waves)135

and inertial loads (gravity and buoyancy) are slowly ramped up in small steps. For every load step, OrcaFlex determines the

mooring line static equilibrium based on the floater position determined by BHawC. BHawC calculates the global equilibrium

position based on the stiffness matrices and interface loads provided by OrcaFlex. Once the global equilibrium is calculated,

the next load step is applied. The dynamic part of the simulations consists of an initialization phase of 300s to eliminate any

6
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Figure 3. Schematic of the OrcaFlex simulation elements.

initial transients as the wave dynamics, turbulence and substructure motion build up as the artificial structural damping is140

slowly ramped down. The final post-processing is performed on 600s dynamic simulations that follow the initialization phase.

The simulations for training the surrogate may be performed for a longer duration if necessary, mainly to estimate mooring line

fatigue correctly due its long natural period. The effect on the tower and blade fatigue is shown to not change significantly with

larger simulation windows, but rather with the fatigue calculation algorithm used to account for the unclosed cycles (Stewart

et al., 2013).145

2.3 Definition of relevant site features and responses

Having a large feature space can lead to a very expensive surrogate training process, as the number of training samples needed

grow with the number of input variables. It is, therefore, important to identify which variables have the largest impact on

the fatigue. Several studies in the past have focused on addressing the sensitivity of wind turbine loads to environmental

conditions (Robertson et al., 2018, 2019; Teixeira et al., 2019; Shaler et al., 2023; Singh et al., 2024b). The combined effect150

of environmental and structural parameters has been analyzed on fixed-bottom (Hübler et al., 2017; Velarde et al., 2019) and

floating wind turbines(Wang et al., 2023; Wiley et al., 2023; Lin et al., 2021; Reddy et al., 2024; Singh et al., 2024b).
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Wiley et al. (Wiley et al., 2023) demonstrate that for the OC4-DeepCwind semi-submersible platform, the standard devi-

ation of wind speed in the inflow is the most influential parameter affecting the fatigue and ultimate loads on the tower and

blades. Secondary drivers of fatigue on the tower bottom moment include turbulence coherence parameters as well as wave155

characteristics, such as significant wave height and peak spectral period. For blade pitching fatigue, secondary factors include

the yaw misalignment angle and geometric features like the blade twist angle. Whereas, the wind-wave misalignment and the

current speed and direction seem to have a secondary effect on the blade root bending moment fatigue. Reddy et al. (Reddy

et al., 2024) perform elementary effects analysis to determine the most significant parameters affecting tower bottom fatigue on

the OC3-Hywind Spar platform and the OC4-DeepCwind semi-submersible design. In both cases, the significant wave height160

is found to be the primary driver. Current-related parameters are shown to have a strong effect mainly on the mooring line

fatigue. Singh et al. (Singh et al., 2024b) use measurement data from the TetraSpar demonstrator to find that the tower and

blade fatigue are most highly correlated with the wind speed mean and standard deviation, and significant wave height values.

As observed, although current has a big impact on the mooring line loads, its effect is found to not be as significant on the

tower and blades in literature. Therefore, it is not included as a variable feature in the training of the surrogate. A variation in165

the water depth was also not considered because the mooring line system must be redesigned for any new value of water depth.

A framework for automating this process is non-trivial. Furthermore, for slack mooring lines, Lin et al. (Lin et al., 2021) show

a negligible impact on the tower fatigue with an increase in water depth.

Table 4. The list of input features provided to the surrogate

model and their corresponding notation.

Feature Label

Wind speed [ms−1] Uref

Shear exponent [−] α

Turbulence Intensity [%] TI

Significant wave height [m] Hs

Spectral peak period [s] Tp

Wave direction [◦] Wdir

Yaw error/ misalignment [◦] Y aw

Table 5. The list of output channels that the surrogate models

are trained to predict.

Response

Tower bottom fore-aft DEL [−]

Tower top fore-aft DEL [−]

Blade root edgewise DEL [−]

Blade root flapwise DEL [−]

The targets the surrogates are trained on are listed in Table 5. Each target is trained with a separate surrogate model. This

study only calculates the short-term DELs in the local coordinate system. DELs result from the conversion of the irregular170

load time series to a constant amplitude and frequency signal that produces an equivalent fatigue damage. Rainflow counting

(Matsuishi and Endo, 1968) algorithm is used to obtain the load ranges Si and the number of load cycles ni needed to calculate

the DEL as,

DEL :=
(

niS
m
i

nref

)1/m

, (1)
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where nref is 600 for 1Hz DELs over 10 minutes. m is the Wöhler coefficient with values 3.5 for the tower, 10 for blade175

flapwise, and 8 for blade edgewise moments.

2.4 Feature bounds

The feature bounds are defined based on the observations of data on sites where floating wind farms could potentially exist

(Creane et al., 2024) and where data was readily available. Table A1 lists the selected sites with their location and water depth

values. The ERA5 reanalysis data, produced by the European Center for Medium-Range Weather Forecasts (ECMWF) on180

behalf of the European Union’s Copernicus Climate Change Service (C3S), is used for the analysis in this section.

2.4.1 Average wind speed at hub height

The wind speed at hub height (Uref ) varies between 3 and 28ms−1, which is the operational range of the wind turbine investi-

gated in this study.

2.4.2 Shear exponent185

The shear exponent α is defined according to the wind profile power law as,

U

Uref
=
(

z

zref

)α

, (2)

where, U is the wind speed at height z, and Uref is the known wind speed at height zref .

We used the ERA5 reanalysis data to obtain wind speed values at 10m and 100m for the sites listed in Table A1. Assuming

the wind profile follows the power law, the shear exponent is calculated using Equation (2). The distribution of the shear190

exponent is shown in Figure 4a, with values primarily ranging between 0 and 0.2. It is also plotted against wind speed in

Figure 4b. In our database, the shear exponent is uniformly distributed in the region corresponding to the dashed box in

Figure 4b.

2.4.3 Turbulence intensity

The lower range of turbulence intensity is 0.1%, and the upper limit is designed to be 20% greater than the prescribed IEC Class195

C standard (IEC, 2010) for the Normal Turbulence Model (NTM). The function for class C turbulence intensity (in percentage)

is given by,

TI = 100× Iref (0.75Vhub + 5.6)
Vhub

(3)

where, Iref = 0.12 is the expected value of turbulence intensity at 15ms−1. The upper limit of turbulence intensity for

sampling is, therefore, 1.2×TI . Figure 5 shows the chosen range, with the IEC class C turbulence and the measured turbulence200

at the FINO 3 metmast- which is referenced in the Buchanan deep met-ocean report (Equinor ASA, 2022).
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Figure 4. (a) Histograms of the shear exponent α for selected sites for ERA5 reanalysis data from 1990 to 2019. (b) Shear exponent shown

as a function of wind speed, marked by a box denoting the selected sampling domain.
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Figure 5. Chosen turbulence intensity range in dashed lines, along with the IEC class C turbulence profile for NTM, and measured turbulence

at FINO 3 (German Bight) from the met-ocean analysis report on the Hywind Scotland project (Equinor ASA, 2022).

2.4.4 Significant wave height

Waves in deep water primarily originate from two sources: wind-induced waves and swell waves. It is useful to consider the

correlation between wind speed and significant wave height while training the surrogate to avoid including non-physical wind-

wave combinations. Figure 6a illustrates a scatter plot of significant wave height (Hs) versus wind speed, based on ERA5205

reanalysis data for the selected sites. The sampling domain is also a function of wind speed, highlighted with the dashed lines.

The upper and lower ranges of sampling for the significant wave height are defined empirically based on these observations.

In this case, the functions are rather conservative and subject to modification based on the kind of sites the user would want to

use the surrogate model on. The equations for the upper and lower limits for Hs are listed in Appendix B1.
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(a) Hs vs. Uref (b) Tp vs. Hs

Figure 6. Scatter plots of (a) the significant wave height vs. the wind speed at 100 m, and (b) peak spectral period vs. significant wave height

for the selected sites (Table A1) based on the ERA5 reanalysis data from 1990 to 2019.

2.4.5 Peak spectral period210

The empirical functions are defined for the spectral period range based on the significant wave height. Figure 6b illustrates the

sampling domain with dashed lines, overlaid on observational data from the ERA5 reanalysis. This plot also includes Hs−Tp

values corresponding to wind speeds below the cut-in speed and above the cut-out speed. The functions defining this range are

detailed in Appendix B2. As with the significant wave height, these bounding functions can be adjusted based on the region of

primary interest to the user.215

2.4.6 Wave direction

The wind turbine is always assumed to face the inflowing wind. Therefore, only the wave direction is varied to introduce wind-

wave misalignment. Wave direction is considered to be an independent variable and sampled uniformly between 0◦ and 360◦.

For asymmetric floating foundations, however, wind directions would also need to be considered as an independent parameter.

2.4.7 Initial yaw misalignment220

The effect of the initial yaw misalignment is chosen to be evaluated at−5.6◦, 0◦ and 5.6◦ while performing fatigue calculations.

Therefore, we selected the sampling bounds between 1.1×−5.6◦ and 1.1× 5.6◦.

2.5 Training and testing database generation

2.5.1 Training database

Sobol sampling (Sobol, 1967) is used to jointly sample uniformly in seven dimensions to generate the training dataset. The225

samples lying outside the aforementioned feature bounds are discarded, resulting in a total of 9041 training samples. Each

11

https://doi.org/10.5194/wes-2025-24
Preprint. Discussion started: 21 February 2025
c© Author(s) 2025. CC BY 4.0 License.

ricriv
Highlight
I would never ask you to change this, but shouldn't it be correlated with the wind direction?

ricriv
Highlight
Not a bad choice, but the Sobol sequence already shows correlations in 2 dimensions. In the future, you could try the Halton sequence with scrambling. It's easy to use with OpenTURNS, and to some extent also in SciPy. Scrambling is important to reduce the correlation with many dimensions (7 is already many).

ricriv
Highlight
I'm getting the impression that you are sampling a uniform distribution, and then discarding the points that end up out of the bounds. Instead, you could use OpenTURNS BayesDistribution to generate the correct ones. Unfortunately, that distribution is horribly slow with quasi-random sequences, so you would be forced to use the Latin hypercube.



sample corresponds to a unique wave seed in OrcaFlex and a single inflow turbulence seed in BHawC. This approach is

designed to emulate the inherent stochasticity of real-world inflow variables. Note that the statistical variation in the flow field

is constrained by the BHawC implementation to only 45 turbulence seeds. Consequently, these seeds had to be reused, and the

inflow turbulence box could not be uniquely defined for every case.230

2.5.2 Testing database

The values of the shear exponent, turbulence intensity and yaw misalignment are not randomly assigned to the test cases.

Instead, they take the values used commonly while performing fatigue design load case evaluations. The shear exponent was

fixed at 0.08, with yaw misalignment values of −5.6◦, 0◦, and 5.6◦, and turbulence intensity corresponding to IEC Class

C values. Hs, Tp, TI , and Uref were jointly sampled in a random manner, without being tied to any specific location, but235

constrained within the defined feature bounds. In total, ntest = 47 test samples were used in this study. Each test sample

simulation was repeated with nseeds = 44 random seeds for turbulence and waves to capture the statistical variation in the

DEL values from the variation in the wind and wave fields. The seed repetition establishes a reference conditional distribution

for each sample, which is used to compare against the probabilistic predictions of the surrogate model in Section 4.2 . The

samples used for training and testing the surrogate models are shown in Figure 7.240

3 Methodology

This section briefly describes the theoretical basis of the mixture density network models investigated in this study, as well as

the accuracy metrics considered to evaluate the surrogate’s goodness of fit. The database {xq,yq}q=1...n consists of n pairs of

inputs x ∈ Rd, and the corresponding output y ∈ R. The surrogate is calibrated separately for each target.

3.1 Mixture density networks245

A mixture density network is a probabilistic regression method that combines Gaussian mixture models with artificial neural

networks (Bishop, 1994). The conditional distribution of the target is represented as a linear combination of m ∈ N Gaussian

kernel functions,

p(y | x) =
m∑

i=1

αi(x)N (y | µi(x),σ2
i (x)), (4)

where αi(x) are the weights or mixing coefficients assigned to the ith mixture component.N (y | µi(x),σ2
i (x)) is a Gaussian250

kernel representing the conditional density of the ith component of the target distribution, with parameters µi(x) and σi(x).

Instead of mapping the inflow features x to the load statistics y directly, the neural network is trained to predict the parameter

vector, z ∈ R consisting of αi(x),µi(x) and σi(x) for 1 < i < m.

The mixing coefficients αi(x) must sum up to exactly 1. A softmax function is used to handle this constraint. Positive values

of the standard deviation are ensured by representing them as exponential functions of the corresponding network outputs, zσ
i .255

The means are not constrained.
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Figure 7. Paired scatter plots and marginal distributions of the training and testing datasets.

The error function Eq is defined as the negative log of the likelihood. For pattern q, it is given by,

Eq =− ln

(
m∑

i=1

αi(xq)N (yq | µi(xq),σ2
i (xq))

)
. (5)

The likelihood of the dataset is the product of the likelihoods of the individual data samples.

The derivative of the error function is calculated at the output layer and is back-propagated to get its gradient with respect to260

the network weights. The values of the network parameters are adjusted to minimize the error function using a gradient descent

optimization. This study uses the Adam optimizer (Kingma and Ba, 2017) to perform stochastic gradient descent. The model is

initialized ten times for any given case in order to choose the best initial conditions for the optimizer. The hidden layers in our

network use the rectified linear unit (ReLU). The output layer of the network does not have an activation function; therefore,

the outputs are just linear combinations of the inputs from the previous layer.265
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Figure 8. Schematic representation of Mixture Density Networks.

Minimizing the error function is an ill-posed problem as there is a conflict between learning the function that fits the data

perfectly and remaining robust under varying sets of training data. As the network size grows, the function space increases and

the neural network tends to overfit. the MDN model training especially seemed susceptible to it. Among several ways to avoid

overfitting (Montavon et al., 2012), in this study, we implemented a combination of early-stopping (Yao et al., 2007) and L1

and L2 regularization (Ng, 2004).270

The main hyperparameters used in this study to train the models to obtain the results in Section 4 are summarized in Table 6.

In subsequent sections, we test the performance of the MDN model with various architectures. The features and targets are

scaled with the standard scaler before training.

3.2 Accuracy metric

The qualitative assessment of the performance of the surrogate model is based on two criteria: the coefficient of determination275

(R2) and the Wasserstein distance (dW2), as described hereafter.

3.2.1 Coefficient of determination R2

The coefficient of determination, also known as the R2, is a common measure of the goodness of fit of a model. It is defined

as,

R2 = 1−
∑

(yi− ŷi)∑
(yi− ȳ)

, (6)280

where ŷi is the predicted output, yi is the observed value and ȳ is the mean of the observed values. R2 is interpreted as the linear

correlation between the predicted and observed values of the output vector. To assess the accuracy of the predicted conditional

distribution of the response compared to the BHawC reference, we calculate the R2 value for the conditional probability density
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Table 6. Summary of the network hyperparameters

Network hyperparameter Value

Number of mixture components 4

Activation function (hidden layers) ReLU

Activation function (output layer) None

Learning rate 5e−3

Maximum epochs 5000

Mini-batch size 100

Optimizer Adam

Regularization

λ for L1−regularization 1e−3

λ for L2−regularization 1e−3

Early-stopping

Early-stopping patience 100

Early-stopping monitor validation loss

Number of early-stopping validation samples 600

Steps per epoch number of training samples / batch size

function’s (pdf’s) mean and standard deviation. These two quantities are derived empirically by obtaining 5000 samples from

the surrogate-predicted conditional distribution and nseeds seed (turbulence and wave) repetitions per test case.285

3.2.2 Wasserstein distance

The Wasserstein metric is a distance function that compares the difference between the pdfs of two random variables. It is sym-

metric, non-negative, and satisfies the triangle inequality, making it a proper distance metric. In the case of 1-D distributions,

the Wasserstein-2 distance between a reference empirical measure Y and predicted measure Ŷ , is defined as (Villani, 2009;

Peyré and Cuturi, 2019; Ramdas et al., 2015),290

W2(Y, Ŷ ) = (

1∫

0

|F−1(t)−G−1(t)|2dt)1/2 (7)

where F−1 and G−1 are the quantile functions of Y and Ŷ respectively. The individual quantile functions are obtained from

the samples of the empirical distributions and then integrated. In this paper, we calculate the Wasserstein distance between the

conditional distribution predicted for each sample (Ŷ ) and the conditional distribution obtained as a reference through seed

repetitions in BHawC/OrcaFlex (Y ). Ŷ consists of 5000 samples from the surrogate’s estimate, and Y is obtained from nseeds295

turbulence and wave seed repetitions in BHawC/OrcaFlex. The distance metric is normalized by the standard deviation of the
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reference conditional distribution, Y . Therefore, a value of W2
σ(Y ) = 1 is the distance between a distribution with mean µ(Y ),

scale σ(Y ), and a degenerate distribution with the same mean. We calculate the global performance of the model by averaging

the normalized Wasserstein distance over ntest test samples as,

dW2 = Entest

(
W2

σ(Y )

)
(8)300

4 Results

This section is divided into three parts. The first part presents a convergence study on the number of training samples, high-

lighting the model’s robustness and demonstrating a clear trade-off between the computational cost of data generation and

the resulting accuracy. A related hyperparameter study to determine the network architecture is presented in Appendix C. The

second part validates the performance of the surrogate on the test dataset. The validated model is used to make lifetime fatigue305

damage estimates on the wind turbine components in response to different site conditions in the third section.

4.1 Choice of training data size

This section shows the convergence study with respect to the number of training samples for the tower bottom fore-aft DEL.

It is assumed that the same architecture can be used to predict the remaining channels. Three networks for the mixture density

networks are compared to test the robustness of the approach, as listed in Table 7. The MDNs contain four mixture elements.310

The rest of the hyperparameters are as specified in Table 6. In Figure 9, at each Ntrain value, the models are trained on 25

different subsets of the total training data space to capture the sensitivity of the model’s fit to the choice of the training samples.

The boxes reflect the variation in the R2 values as a result of the choice of training data points. The boxes extend between the

data’s first (Q1) and third (Q3) quartile, and the horizontal line across the box indicates the median. The difference between Q1

and Q3 defines the interquartile range (IQR). The upper whisker extends to the largest data values within 1.5IQR above Q3.315

The lower whisker, similarly, extends to the lowest data point within 1.5IQR below Q1. Outliers are visible as dots beyond the

whisker boundaries. Figure 9a is the R2 value obtained from predicting the mean of the conditional pdf of the tower bottom

fore-aft DEL, averaged over the test dataset. The mean in the BHawC reference is calculated using 44 realizations of the wind

and wave fields. The diminishing size of the IQR as the number of samples grow is a combination of the increasing robustness

of the model, and the smaller variability in the test samples as fewer untrained samples remain in the dataset.320

Table 7. The MDN architectures considered for the convergence study.

Notation Number of layers Number of nodes per layer

MDN[10,10] 2 10

MDN[30,30] 2 30

MDN[50,50] 2 50
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MDN uses a neural network framework capable of inferring extremely complex underlying functions given sufficient data.

In this case MDN coverges to consistent values of both R2 of the conditional mean and dW2 above 4250 samples. We also

see that MDN estimates are closer to the ground truth with larger networks of 30 or 50 nodes per layer. The performance of

MDN[30,30] and MDN[50,50] is almost identical in this region, indicating good model robustness with respect to the size of

the layer.325
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Figure 9. Convergence plots for the tower bottom fore-aft DEL channel. (a) Shows the convergence of the predicted mean as a function of

the number of training samples for three MDN architectures. (b) Shows the normalized Wasserstein distance as a function of the training

samples.

Figure 9b shows the normalized 2-Wasserstein distance between the predicted and reference pdf. The Wasserstein distance

quantifies the similarities between the predictions and the reference. It is, thus a good indicator of whether or not the surrogate

can correctly estimate the variation in the target resulting from a combination of epistemic and aleatoric sources. The pre-

dicted pdf is based on 5000 realizations from the estimated Gaussian mixture in MDN. The reference is based on nseeds = 44

BHawC/OrcaFlex realizations. Since 44 samples are insufficient to characterize the reference pdf fully, there is certainly an330

error associated with the dW2 values; therefore, dW2 cannot be expected to be zero in practice. Beyond 4250 samples, there is

a small but marginal improvement in the dW2 values from MDN[30, 30] and MDN[50, 50].

In conclusion, the two-layered MDN surrogates (MDN[30, 30] and MDN[50, 50]) reach convergence in terms of dW2

at 4250 samples. For subsequent sections, the MDN models will be trained with a dataset of 8250 points, as this provides

marginally better predictions with only a slight increase in model fitting cost.335

The choice of the number of layers and nodes in the neural network, as well as the number of mixture components is based

on a hyperparameter study, presented in Appendix C.
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4.2 Surrogate model validation

In this section, the performance of the MDN model is evaluated for the load channels listed in Table 5, on the selected test

dataset presented in Section 2.5.2. Based on studies in Section 4.1 and Appendix C, the values of hyperparameters used in340

training the models, in addition to Table 6, are listed in Table 8.

Table 8. List of hyperparameters used for training the MDN model for the final load prediction.

MDN hyperparameter Value

Number of hidden layers 3

Width layer 1 30

Width layer 2 30

Width layer 3 50

Number of mixture components 4

Number of training samples 8250

Table 9 provides a quantitative analysis of the model’s performance in terms of the average R2 and dW2 values. The con-

ditional mean is accurately captured by the MDN model with R2 exceeding 0.99 on the test dataset. The goodness of fit on

the conditional distribution is evaluated using dW2. Lower dW2 values indicate a smaller difference between the predicted and

reference conditional distributions across the test database. As the dW2 values are normalized by the local reference standard345

deviation, we can compare the performance of the models across different load channels. MDN’s performance remains consis-

tently good on the tower top and blade targets. The tower bottom channel shows a larger deviation in the dW2 values, which is

investigated further in Figure 10.

Table 9. Quantitative analysis of MDN model’s predictions using dW2 and R2 as evaluation metrics.

Model Tower bottom FA Tower top FA Blade root edgewise Blade root flapwise

dW2 0.86 0.35 0.36 0.36

R2µ 0.99 0.99 0.99 0.99

Figure 10 shows the statistics of the conditional distribution of the DEL variation at the tower bottom fore-aft direction Since

44 seeds is a relatively small sample size to determine the true mean and standard deviation of the population, a gray area is350

highlighted in Figure 10a and Figure 10b to reflect the uncertainty in the reference values. For the mean, the 95% confidence

interval (CIt) is calculated with the t-distribution (Rouaud, 2013), assuming the response is normal. It is defined as,

CIt = µreference± t.
σreference√

nseeds
, (9)

where µreference is the mean and σreference is the standard deviation calculated from the simulation samples. nseeds = 44 is

the number of seeds with which the simulations were repeated. t is the t-score for 95% confidence, given nseeds samples from355
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a normally distributed population. The bounds are similarly calculated using the χ2 distribution for the standard deviation. The

bounds are asymmetric as the χ2 distribution is skewed. χL and χR are based on 5% and 95% tails of the χ2 distribution. The

true standard deviation, σ, is expected to lie between the bounds,

√
(nseeds− 1)

χ2
L

σreference ≤ σ ≤
√

(nseeds− 1)
χ2

R

σreference. (10)

The individual pdfs are shown in Figure 10 for two site conditions. The reference BHawC realizations are plotted as his-360

tograms overlayed with kernel density estimate (KDE) plots generated from 5000 samples from the conditional pdf predicted

by the surrogate model. The estimates include two sources of uncertainty. The first is the epistemic uncertainty of inferring a

function from limited data. The second is due to the irreducible noise term, which is a part of the observed stochastic process.

The subsequent plots assume the standard deviation of the combined uncertainty.

Figure 10a shows the predicted conditional mean (µsurrogate) of the normalized tower bottom fore-aft DEL as a function of365

the reference conditional mean (µreference) derived from BHawC/Orcaflex simulations. As already indicated in Table 9, the R2

values are greater than 0.99 for MDN, indicating an excellent fit. Similarly, the standard deviation derived from the surrogates

(σsurrogate) is plotted against the ground truth reference (σreference) in Figure 10b. Despite the slight overprediction of the

standard deviation, MDN is able to capture the heteroscedastic trend in the data. Figure 10c corresponds to a below-rated

velocity of 9.8ms−1 and a wind-wave misalignment of 105◦. Under these conditions, the BHawC reference is a short-tailed370

conditional pdf. Since MDN assumes a medium-tailed Gaussian mixture conditional, there is a tendency for the surrogate

model to overestimate the standard deviation (Figure 10b). The reason for the tower bottom fore-aft DELs to be restricted

between a very small range resulting in such a short-tailed distribution is not obvious and demands a deeper investigation into

the behavior of the tower structure and control laws, which is beyond the scope of this paper. A similar pattern is not observed

in the other three load channels. Figure 10d corresponds to an example of a near-rated wind speed case, where the MDN375

predictions show a closer match to the reference conditional distribution.

A similar analysis is performed for the tower top fore-aft DEL channel in Figure 11. The conditional standard deviation

estimated from the MDN surrogate are within the error bounds of the small population assumption, indicating a very good fit.

Figure 12 and Figure 13 show the surrogate models’ performance on the blade root flapwise and edgewise DEL respectively.

Similar to the tower top, the standard deviation and mean estimates from the MDN surrogate agree very well with the BHawC380

reference in both blade channels.

These results indicate that the surrogate model demonstrates a good level of reliability in accurately predicting the DELs

with respect to the BHawC/OrcaFlex reference. Consequently, we assume that the model can be extended to other operating

conditions without necessitating further verification.

4.3 Lifetime damage equivalent loads385

The calculation of aggregated fatigue loads in onshore wind cases consists of binning the wind speed and scaling the loads at

each bin by the probability of occurrence of the wind speed during the operating lifetime of the wind turbine. Floating wind
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Figure 10. Load predictions using MDN for the tower bottom fore-aft DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf. Figures (c) and (d) compare the conditional pdf plots between the surrogate and the simulation at below rated and near

rated conditions respectively. The values in vector x denote: [Uref ,α,T I,Hs,Tp,Wdir,Y aw] with units specified in Table 4.

turbine fatigue evaluations are more complex, firstly, many more environmental parameters must be considered to characterize

the site. Secondly, the bins need to be defined on a joint probability space. The process of choosing the right variables for the

fatigue analysis and the size of the bins is not yet standardized and is a topic of ongoing research (Papi and Bianchini, 2024).390

With a fast surrogate model, however, it is possible to account for every single observation in the previous years, without the

need to lump probabilities or limit the number of variables. The joint probabilities of the sea states are, therefore, automatically

accounted for.

In this section, we use the validated surrogate model from Section 4.2 to make probabilistic estimates of the equivalent loads

(Meq) for 10 million reference load cycles on the floating wind turbine structure. The site data is obtained from the ERA5395

database for four sites with an approximate water depth of 100m, namely Sud de la Bretagne II, Emerald, Hywind Scotland

and HIP Atlantic (Table A1). Figure 14 provides an overview of the site conditions observed at the four selected sites. For

simplicity, the foundation and mooring line design are assumed to be the same across the four sites. It is assumed that the
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Figure 11. Load predictions using MDN for the tower top fore-aft DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf. Figures (c) and (d) compare the conditional pdf plots between the surrogate and the simulation at below rated and near

rated conditions respectively. The values in vector x denote: [Uref ,α,T I,Hs,Tp,Wdir,Y aw] with units specified in Table 4.

difference in the load distributions between the design in use and the site-optimized foundation will not be significant. The

ERA5 hourly conditions are converted to 10-minute inputs by repeating each set of values six times. An alternative approach400

could be to draw the 10-minute values from a normal distribution with the hourly values a the mean and an assumed standard

deviation. The observations below cut-in and above the cut-out wind speed are excluded from the calculations. The site data

consists of the average wind speed at 100m, significant wave height, peak spectral period, wind-wave misalignment (converted

to wave direction in OrcaFlex coordinates) and the shear exponent. The yaw misalignment values are sampled from a normal

distribution with zero mean and a standard deviation of 2◦. The turbulence intensity is calculated for each case based on the405

wind speed assuming the IEC 61400-1 turbulence class C classification.

The value Meq , represents the cyclic load amplitude which produces the equivalent lifetime damage given neq cycles of

oscillation over L = 25 years. In Equation (11), Mi is the DEL for the ith 10-minutes of operation, nref is the reference

number of cycles per 10-minutes, set to 600. m is the Wöhler coefficient, with part-specific values listed in Section 2.3. nL
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Figure 12. Load predictions using MDN for the blade root flapwise DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf.
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Figure 13. Load predictions using MDN for the blade root edgewise DEL (normalized). Figure (a) shows the surrogate predicted conditional

mean at the test locations vs. the conditional mean calculated using BHawC. Figure (b) shows the predicted and reference standard deviations

of the conditional pdf.

is the number of 10-minute periods in L years. The loads do not have to be scaled as the probability of occurrence of each410

condition is equal. Since the surrogate has been validated in previous sections, we assume here that its predictions are accurate,

and we can treat each Mi as a probabilistic output from the MDN model. From each Mi pdf, we draw 500 samples, resulting

in a probabilistic estimation of Meq . Meq is defined as,

Meq =

(
nref

neq

nL∑
Mm

i

)1/m

(11)
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Figure 14. Comparison of the site conditions at the four floating wind sites considered in this study (Table A1).

where neq is 106 and nref is fixed to 600 oscillations per 10 minute period. The probabilistic Meq value can be further415

used to calculate the stress reserve factor when re-designing the tower, or to calculate the fatigue damage during the structure’s

operating lifetime.

Figure 15 shows the kernel density estimate of the normalized Meq values from the surrogate for the four selected sites. Meq

has been normalized by the average of the predicted Meq values at the Hywind Scotland site for every channel. Firstly, it is

interesting to note that the uncertainty in Meq at each site is very small compared to the mean. This aligns with the law of large420

numbers, which states that for Mi with a mean µ and variance σ2, the standard deviation of the average of the distribution of

(
∑

Mi) decreases as σ/
√

nL. Since nL is in the order of 106, the standard deviation becomes extremely small as we get closer

to the true mean. Even though the effect of Mi being raised to the power of m means that any variability in the sum is amplified,

subsequently taking the mth root has the opposite, damping effect. Therefore, the effect of the outliers is essentially nullified

due to the averaging. It is important to note that this study considers only the statistical uncertainty arising from stochastic425

input sources. In practice, other sources of uncertainty may contribute to the analysis (IEC, 2024b). For example, uncertainties

related to the underlying joint distribution of site conditions represent another significant source of variability. Including these

additional uncertainties in the feature set would likely increase the variance of the final load estimates.

Secondly, the loads on different channels do not scale uniformly across sites. At the HIP Atlantic site, for instance, the

cumulative tower bottom fore-aft moment is the highest, as shown in Figure 15. This is primarily due to the influence of the430

significant wave height, which is expected to have a larger impact on the tower bottom fatigue (Singh et al., 2024b; Wiley
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Figure 15. The 25-year normalized Meq calculated for four sites at the tower bottom fore-aft direction (top-left), tower top fore-aft (top-

right), blade root flapwise (bottom-left) and blade root edgewise (bottom-right) channels. The mean Meq obtained at the Hywind Scotland

site is used as the reference to normalize the loads at the remaining locations.

et al., 2023; Edwards et al., 2023). The marginal distribution of significant wave height at this site shows a higher probability

of larger waves compared to other locations, supporting the observed increase in tower bottom loads.

The distributions of wind speed, turbulence intensity, and significant wave height at the Emerald and Hywind Scotland sites

(Figure 14) are nearly identical. This results in comparable tower top fore-aft and blade root edgewise damage. However, there435

remains a significant difference in blade root flapwise fatigue accumulation. This result is surprising, given that the loads at

this location are primarily wind-driven. Nevertheless, it underscores the complexity of fatigue damage accumulation, which

can yield different outcomes with minor variations in site conditions even with respect to non-dominant variables.

5 Conclusions

This paper presents a framework to develop probabilistic surrogate models for predicting floating offshore wind turbine fatigue440

loads for site analysis. The surrogate maps the environmental conditions from potential farm sites to the 10-minute damage

equivalent loads experienced by a spar-type floating wind turbine. The main advantage of using probabilistic surrogates for this

application is the ability to estimate conditional statistics with high accuracy to account for the statistical uncertainty resulting

from the stochastic site conditions while minimizing the computational cost of training by avoiding seed repetitions. Based on
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the reanalysis data from the ERA5 database for several comparable floating sites, the surrogate model is used to propagate the445

statistical uncertainties to the 25-year fatigue loads on the wind turbine.

In this study, the analysis is performed on a spar-buoy floating foundation based on a modified Hywind-Scotland 6MW

wind turbine. The damage equivalent loads are considered on critical locations on the tower and blades and are calculated

using a coupled implementation of BHawC/OrcaFlex for training and validating the surrogate. The features characterizing a

floating farm site and the appropriate ranges are defined. The probabilistic model considered in this study is the mixture density450

network, as it is flexible, robust, and interpretable and has performed well for fixed bottom load emulation in the literature.

Since MDN is based on a neural network parametrization, several hyperparameters require tuning prior to training. There-

fore, a hyperparameter study is performed to find the appropriate neural network layout and the number of training samples to

maximize the prediction accuracy of the MDN surrogate model. The conditional distribution predicted by the chosen model is

validated on a set of 47 operating conditions, each simulated with 44 random seeds in BHawC/Orcaflex to obtain a reference455

conditional distribution for each test case. The R2 value for estimating the conditional mean is > 0.99 on all channels with

the surrogate, indicating an excellent fit. The standard deviation of the conditional distribution is over-predicted by the model

in the case of the tower bottom fore-aft moment but within the range of uncertainty bounds for the tower top and blade root

channels.

Finally, the validated surrogate model is used to make probabilistic estimates of the 25-year equivalent damage on the tower460

and blades for four different sites. Since the surrogate model is fast, load predictions can be made quickly on all observed site

conditions without lumping or binning the sea states a priori. The uncertainty in the aggregated lifetime fatigue loads due to

statistical variance in the inputs is found to be much smaller in scale compared to the mean. This results from summing the

10-minute DELs over a million occurrences, effectively nullifying the impact of the outliers. We demonstrate that surrogate

models can be powerful tools for site analysis, especially for floating wind turbines, where the choice of variables and binning465

methods is still an open question. Additionally, using probabilistic surrogates like MDNs helps reduce bias in calculating the

aggregate mean fatigue, as the conditional distributions are not always normally distributed.

Future studies could use such surrogates to identify optimal methods for grouping sea states in order to reduce the number

of physics-based simulations required to achieve the same lifetime fatigue loads as using all observed site data. This type of

analysis would be computationally impractical with an engineering tool, as it would require performing millions of simulations470

to establish a baseline reference. Surrogates offer an alternative for reducing the computational demands while maintaining

accuracy. Surrogate models can also be used in this context to isolate combinations of sea states that produce the highest

fatigue on the wind turbine structure. Furthermore, it is interesting to include other sources of uncertainty in the analysis of

loads. Once trained, probabilistic surrogate models can be used to propagate the different uncertainty sources to the loads to

study the combined effect without additional costs. This approach opens new opportunities for integrating reliability-based475

decision-making into the design process.
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Table A1. Description of the sites used for defining the feature ranges.

Site Location ERA5 approx. location

Latitude [◦] Longitude [◦] Latitude [◦] Longitude [◦] Depth [m]

Dyning (Creane et al., 2024) 58.218 17.860 58.00 17.75 141

Mareld (Creane et al., 2024) 58.161 10.575 58.25 10.50 233

Sørlige Nørdsjo Phase II (Creane et al., 2024) 56.783 4.918 56.75 5.00 60

Tetraspar 59.15 5.013 59.00 5.00 200

Utsira Nord Phase I (Creane et al., 2024) 59.276 4.540 59.00 4.50 273

Buchanan Deep (Equinor ASA, 2014) 57.45 −1.31 57.50 −1.25 100

West of Barra (Vigara et al., 2019) 56.885 −7.947 57.00 −7.75 100

Gran Canaria (Vigara et al., 2019) 27.75 −15.33 27.75 −15.00 200

Morro Bay (Vigara et al., 2019) 35.083 −121.5 35.5 −121.75 870

Sud de la Bretagne II (Creane et al., 2024) 47.3247 -3.6594 47 -3.7 94

Emerald (Creane et al., 2024; Wind, 2025) 51.3565 -8.0761 51.5 -8 90

Moneypoint Offshore I (Creane et al., 2024; ESB) 52.519 -10.276 52.5 -10.5 102

HIP Atlantic (Creane et al., 2024) 63.6325 -16.3756 63.5 -16.5 98

Appendix A: ERA5 locations used for defining feature ranges

Table A1 lists the locations used for defining the feature ranges in Section 2. The data is downloaded from the years 1979 to

2020. The database consists of the hourly average wind speeds at 10 m and 100 m, the significant wave height, spectral peak

period, and wave direction. The shear law exponent is derived from the wind speed values assuming a power law profile for480

the atmospheric boundary layer.

Appendix B: Feature bounds

B1 Significant wave height

The upper and lower limits for the significant wave height are defined as functions of the wind speed at hub height Uref .

The upper limit is a quadratic function of the form:485

HsU
=−0.008U2

ref + 0.45Uref + 5 (B1)

The lower limit is defined as:

HsL
= 0.719e(0.0832Uref )− e(0.04Uref ) (B2)
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B2 Peak spectral period

The peak spectral period range is designed to be a function of the significant wave height (which is in turn, a function of the490

wind speed at hub height). We define scaling functions A, B and C as,

A = a1 + a2H
a3
s (B3)

B = b1 + b2e
−b3Hs (B4)

C = c1 + c2e
−c3Hs (B5)

The scaling functions are used to define the upper bound TpU
and lower bound TpL

as,495

Tpµ = e(A+0.5B) (B6)

TpL
= Tpµ

(1− 3×
√

(eB − 1)) (B7)

TpU
= Tpµ(1 +3×

√
(eC − 1)) (B8)

The coefficients used to fit the curve in this study are listed in Table B1.

a1 a2 a3 b1 b2 b3 c1 c2 c3

1.3 0.57 0.37 0.005 0.1 0.43 0.005 0.75 0.6

Table B1. Tuning coefficients for defining the range functions for the spectral wave period.

Appendix C: Choice of hyperparameters500

C1 Number of layers and nodes

Large networks are better at capturing complex expressions in data but are susceptible to overfitting with a small training set.

The objective of this study is first, to observe the robustness of the model relative to the number of network parameters for a

particular training data size. And second, to choose a network architecture suitable for the rest of the study.

A sensitivity study on the number of nodes and layers is performed in this section for a training dataset of 8250 samples.505

The number of mixture parameters is 4 in all cases, and the rest of the network hyperparameters are fixed to the values listed

in Table 6. Networks with 2, 3, and 4 layers with various widths are tested. The x-axis in Figure C1 lists the combinations of

widths per layer evaluated in this study. The tower bottom fore-aft DEL channel is chosen for this study.

The R2 values of the DEL are notably good for the architectures tested, indicating good model robustness. The main dif-

ferences observed are in dW2, where the large 3 or 4-layer networks are generally better at capturing the complete conditional510
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Figure C1. Study on the network architecture. The x-axis reflects the number of nodes per layer. The rows correspond to 2, 3, and 4-layer

networks. The left column shows the R2 value for the mean of the conditional pdf of the tower bottom fore-aft DEL channel. The dashed

line corresponds to an R2 value of 0.99. The right column plots the dW2 values for the same channel with the dashed line corresponding to

dW2 of 1.

pdf. For the remainder of this study, we chose a 3-layer network with 30 nodes in layer 1, 30 nodes in layer 2, and 50 nodes in

layer 3 in combination with 8250 training samples.

C2 Number of mixture elements

The number of Gaussian distributions in the mixture controls the complexity of the predicted conditional pdf. However, a large

number of unnecessary mixture elements add redundancy and increase the computational complexity of the surrogate. In this515

section, we use 6250 and 8250 training samples with a 3-layer architecture width = (30, 30, 50) and test the performance of 4,

12, and 20 mixture elements on the tower bottom fore-aft DEL channel.

The number of components does not affect the estimation of the tower bottom fore-aft DEL mean. A slight improvement can

be seen in Figure C2b with four components. The model, therefore, appears to be robust regarding the choice of the number of
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Figure C2. Sensitivity of the MDN surrogate to the number of mixture components.

mixture components. In other words, it does not necessarily benefit from a large set of mixture components. MDN models in520

the remainder of the study are trained with four kernels.
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