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Abstract. Accurate wind resource assessment depends on wind speed data that capture local wind conditions, which are crucial 

for energy yield estimates and site selection. While tThe International Electrotechnical Commission (IEC) recommends at least 

one year of data collection, yet this duration may be insufficient tonot fully account for interannual variability. While Although 

studies often maximize data length, limited guidance exists on the minimum duration required tofor reliablye estimate wind 10 

wind statistics and energy potentialspeed and power estimates remains limited. To address this gap, we propose a method to 

quantify the errors in wind speed distribution parameters introduced by using wind speedtime series of different varying lengths 

for wind speed distributions fitting, relative tocompared to long-term reference data. This allows enables us to determine the 

minimum number of hourly observations needed to achieve for a given accuracy level. We apply our this method to both in-

situ weather station observations and ERA5 reanalysis data at 10 -meter and 100 -meter heights. Our results show that basickey 15 

parameters, including such as mean, standard deviation, and Weibull parameters, can stabilize with relatively short records 

(~1 month of hourly data), whereas while higher-order moments such as skewness and kurtosis require substantiallys longer 

records at least (≥ 1.6 years, and kurtosis requires 88.6 years, respectively) to stabilize. Although ERA5 data stabilizes with 

fewer observationsfaster, it exhibits systematic biases compared tobut differ from in-situ measurements., requiring careful use.  

Moreover, random sampling (combining available hourly data) can yield comparablefor distribution parameters tofitting 20 

produces parameters comparable to those obtained when controlling for  diurnally orand seasonally effectscontrolled sampling, 

while continuous sampling demands far longer records for the same accuracy. suggesting discontinuous data can be viable 

under certain conditions. These findings provideoffer a practical framework for optimizing data collection in wind resource 

assessments, balancing accuracy, temporal coverage, and cost-effectivenessresource constraints. 

1 Introduction 25 

Wind energy production critically depends on strengths and persistence of winds in the lower earth’s atmosphere. Precise and 

cost-effective assessment of wind speed is crucial for evaluating wind energy potential and designing wind farms and power 

generators, because accurate assessments ensure that the selected site has adequate wind conditions, making the investment 

economically viable and optimizing energy production efficiency (Wang et al., 2022).  
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Quantifying wind speed characteristics, a crucial component of wind speed assessment, typically relies on analysing wind 

speed distribution from collected data. Ideally, long-term meteorological measurements at the proposed wind turbine locations 

are preferred, as they account for a broader range of wind variability. Wind speed measurements spanning four years are 

typically considered suitable for short-term analysis, while datasets extending beyond this period fall into the category of long-

term analysis. A ten-year dataset is generally recommended for the most accurate wind resource assessment, if available 35 

(Murthy and Rahi, 2017). However, despite the high demand for such data, collecting such long-term measurementsdatasets 

is often impractical due to the extensive time required and significant associated costfinancial constraints involved, particularly 

in the early planning stages of before the wind farm developments being contructed (Wais, 2016). 

 

As a more practical alternative, wind energy potential is often assessed using wind speed data spanning a single year or several 40 

a few years (Ouarda et al., 2015). A review of 46 studies revealed that 31 of them (67.4%) used wind speed time series of six 

years or less. However, such datasets lack year-to-year (interannual) variability, which can significantly affect wind speed and, 

consequently, wind power output (Jung and Schindler, 2018). For example, decadal changes in wind speed can result in a 

17 ± 2% variation in potential wind energy (Zeng et al., 2019). Since wind farms typically operate for 20 to 30 years (Pryor et 

al., 2020), relying on such short-term datasets without accounting for interannual variability can introduce significant biases 45 

in wind energy assessments. Additionally, short-term datasets may lack seasonal or diurnal characteristics due to sampling 

frequency or other factors that lead to data gaps. For instance, the Sentinel-1 Ocean wind product, aligning well with in-situ 

observations and reanalysis products (Khachatrian et al., 2024), revisits the same location only once every one or two days, 

making it unable to capture the diurnal characteristics of wind speed.  

 50 

This discussion highlights a critical research gap: the optimal duration of wind observation time series required to adequately 

account for wind variability in resource assessments remains poorly quantified. Specifically, is one year of data, as 

recommended by IEC (International Electrotechnical Commission, 2019), sufficient to provide accurate assessments of wind 

distributions given the interannual variability of wind? Furthermore, considering the challenges in obtaining long-term 

observations, if we must reply on short-term datasets that may lack interannual, seasonal, or diurnal variability, how do errors 55 

vary with the length of data time series?  

 

This research gap has been highlighted in previous studies. For instance, Barthelmie and Pryor, (2003) and Pryor et al., (2004) 

evaluated the accuracy of satellite sampling in representing offshore wind speed distributions. They quantified the numbers of 

satellite observations required to estimate key probability distribution parameters with an uncertainty of ±10%. Specifically, 60 

mean and Weibull scale parameter required about 60-70 random selected half-hourly observations, respectively. In contrast, 

the variance requires 150 observations, and the Weibull shape parameter and energy density require nearly 2000 observations, 

while skewness and kurtosis required 9712 and more than 10000 observations. However, these results are specific to satellite 
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observations and may not directly apply to in-situ measurements without further analysis. In-situ measurements, such as 

meteorological weather stations, are more widely distributed, accessible, and frequently used in wind energy studies (Ouarda 65 

et al., 2015; Wang et al., 2016). To the authors’ knowledge, relatively few studies have examined in-situ observations, 

particularly those from weather stations certified by the World Meteorological Organization (WMO). These stations are more 

widely distributed, accessible, and frequently used in wind energy studies (Ouarda et al., 2015; Wang et al., 2016).  

 

Our study aims to evaluate the potential biases and uncertainties that may arise when short-term wind speed data from WMO 70 

weather stations are used for wind energy assessments. Previous work by Barthelmie and Pryor (2003) proposedused athe 

random sampling approach to examine how sampling protocols affects the estimation of wind speed distribution 

parametersmethod to create wind speed datasets under varying sampling density. However, this approach random sampling 

may overlook the significant diurnal-cycle and seasonal cycleeffects that are intrinsic to commonly observed in terrestrial wind 

speeds from in-situ weather terrestrial wind observations and critical for reliablestations. As a result, it may introduce biases 75 

in wind energy assessmentsanalysis. Therefore, we also investigate whether random sampling can replace sampling that retains 

these temporal effects, and under what specific conditions this substitution would still yield reliable results. To address this 

limitation, we first compare random sampling with sampling strategies that explicitly retain diurnal and seasonal cycles. This 

comparison allows us to isolate and quantify the influence of temporal structures on wind speed statistics. In addition, we 

evaluate the practical relevance of random sampling by contrasting it with continuous sampling, that preserves the 80 

chronological sequence of wind speed data and more closely reflects real-world wind resource assessment practices. 

Continuous datasets, such as those from anemometer towers, are commonly used in the wind energy industry, typically 

covering at least one year of measurements to characterize site-specific wind conditions prior to turbine installation (Yang et 

al., 2024; Liu et al., 2023). By integrating these multiple sampling strategies, our study provides a comprehensive assessment 

of how sampling choices affect the robustness of wind energy evaluations based on limited-duration datasets. 85 

 

We are also interested infurther investigateing whether how results derived from reanalysis products differ from those obtained 

using WMO weather station data under various sampling strategiescan replicate the results from meteorological observations. 

Reanalysis products become have emerged as a primary alternative for wind resource assessment, especially given the spatial 

and temporal limitations of traditional meteorological datin-situ observationsa (Gil et al., 2021; Gualtieri, 2021). Reanalysis 90 

productsThese datasets provide spatially continuous and temporally offer consistent, comprehensive coverage of wind speed 

data because they are generated byby assimilating integrating numerical weather prediction models with observational data 

from various multiple sources, including satellite instruments, surface synoptic observations, ships, and drifting buoys, into 

numerical weather prediction models (Hersbach et al., 2022). By focusing on ERA5, stands out as the most current and widely 

used and up-to-datetilized reanalysis product, we can evaluate its potential to replace in-situ observations in the statistical 95 

distribution fitting process for wind speed analysis. We used ERA5 in our study is chosen not only forbecause its strong 

agreement with observational observed wind data aton turbine-relevant heights, especially acrossparticularly in Europe and 
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North America, in terms of mean values and interannual variability (Ramon et al., 2019)., but also because itERA5 provides 

wind speed data at both 10 -meter and 100 -meter heights, which is crucial for wind turbine analysis. This allows forenabling 

direct analysis at typical wind turbine hub heights, and thus avoidingeliminating the need for extrapolation methods, such as 100 

that are often required with other datasets. In contrast, other studies have commonly employed wind profile log or power-law 

extrapolations methods, to estimate wind speeds at hub height (e.g., Soares et al., 2020; Jung and Schindler, 2019). 

 

The main objectives of our study are as follows:  

1. To evaluate how the wind speed statistics (e.g., distribution parameters) derived from short-term WMO station data 105 

different those obtained from longer-term recordsInvestigate whether short-term wind speed data from WMO weather stations 

realistically represent the wind speed statistics.  

2. To dDetermine the optimal length of wind datatime series length required for fitting accurate estimation of wind 

speed distribution parameters, with quantified uncertainty  fitting by identifying the error margins across different time series 

lengths.  110 

3. To eExplore whether ERA5 reanalysis products, at both 10-meter and 100-meter heights, yield consistent results 

with ground-based like those from observations.  

Through these objectives, we aim to enhance the understanding of the limitations and capabilities of short-term meteorological 

data in wind speed assessment, contributing to more reliable wind energy evaluations. 

2 Data and Methods 115 

 

 

2.1 Sampling mMethods to identify optimal wind speed series length for accurate distribution 

2.1.1 Random sampling 

To determinefind the optimal length of wind speed series for accurately representing wind speed distribution parameters, we 120 

adoptedused the random sampling method proposed by from (Barthelmie and Pryor, (2003). In our study, this approach 

involves comparing the distribution parameters derived from.  the full 16-year hourly wind speed series (referred to as the 

study datasets) with those obtained from randomly sampled subsets of varying lengths. Specifically, we constructed sample 

We created datasets ranging from 720 hours (30 days) to 52,560 hours (6 years), with increments ofin 240 -hours (10 -days) 

increments, comparing them to a full 16-year series. For each sample size,This was repeated 1,000 synthetic datasets were 125 

generated by randomly selecting hourly observations with replacement from the full series using NumPy’s ‘random’ package. 

times per sample size to capture variability. 
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For each generated dataset, we calculate  These datasets were used to fit Weibull distributions, calculating seven parameters:  

four commonsix statistical descriptors (mean, standard deviation, skewness, kurtosis)distribution parameters, two Weibull 130 

parameters (shape and scale), and the Weibull wind power density. To evaluate the representativeness of these sampled subsets, 

we computed the We compared these to the full series to assess differences and determine the minimum sample size needed 

for accurate parameter estimation within acceptable error margins.To find the effective sample size, we used percent error 

between each parameter estimated from the sample and the corresponding parameter from to measure differences between 

sample sizes and the full 16-year series. Specifically, we focused on the upper and lower bounds of the 90% confidence interval 135 

for each parameter across 1000 realizations at each sample size. The percent errors (Y) in these bounds were then modelled as 

a function of sample size (n) using non-linear . Since we increased sample size in 240-hour increments, we needed a precise 

threshold. Using least squares fitting, resulting in equations that describe how sampling uncertainty decreases with increasing 

sample length (𝑌 =  ± 𝑒𝑥𝑝[𝑎 ln(𝑛) + 𝑏] ). These fitted curves enable estimation of the minimum dataset length needed to 

achieve predefined error margins., we fitted an exponential function to the percent errors, creating equations that relate percent 140 

error (within a 90% confidence interval) to sample size. These equations help determine the sample size needed to achieve any 

specified error margin.  

 

 

We selected started with a minimum sample size of 720 hours as the starting point based on its frequent use in previous, a 145 

common duration in wind studies (e.g., Jung and Schindler, 2019; Ouarda and Charron, 2018), while the upper limit . The 

maximum of 52,560 hours (was chosen to see if a six -years) was based on prior findings (Barthelmie and Pryor, 2004) showing 

sample affects distribution stability, usually analysed over one to two years. Six years was selected based on preliminary 

findings that percent errors generally margins stabilize below ±10% before this duration (Barthelmie and Pryor, 2004). To 

find the effective sample size, we used percent error to measure differences between sample sizes and the full series. 150 

Since we increased sample size in 240-hour increments, we needed a precise threshold. Using least squares, we fitted 

an exponential function to the percent errors, creating equations that relate percent error (within a 90% confidence 

interval) to sample size. These equations help determine the sample size needed to achieve any specified error margin. 

2.1.2 Diurnal- and seasonality-retained sampling 

We implemented two structured sampling methods to retain key temporal patterns in the wind speed data: diurnal-retained 155 

sampling and seasonality-retained sampling. In the diurnal-retained approach, each synthetic dataset consists of observations 

evenly distributed across four 6-hour time intervals (00:00–05:00, 06:00–11:00, 12:00–17:00, and 18:00–23:00), to preserve 

daily variability. For example, when the sample size is 720, we select 180 observations from each time interval. In the 

seasonality-retained sampling, each dataset includes an equal number of observations from all 12 months, thereby maintaining 

seasonal structure. For a sample size of 720, this results in 60 observations per month. For both methods, sampling was 160 

performed with replacement, meaning the same observation could be selected in multiple realizations. 



6 

 

2.1.3 Continuous sampling 

The continuous sampling method is designed to simulate real-world scenarios in which wind speed data are used in their 

natural temporal sequence. Unlike the random and stratified (diurnal- or seasonality-retained) sampling approaches, this 

method preserves the chronological order of observations by extracting time-contiguous subsets directly from the full series. 165 

Prior to sampling, linear interpolation was applied to fill any missing values. In this study, we investigated sample sizes ranging 

from 720 hours (approximately one month) to 103,680 hours (12 years), increasing in one-month (720-hour) increments. As 

this method requires each extracted subset to be continuous, the source dataset must be longer than or equal to the target sample 

size. For example, given a 46-year hourly wind speed dataset, we can extract all possible one-year-long continuous sequences 

(i.e., using a moving window of one year), resulting in 395,089 potential samples of 8,640 hourly observations each. Due to 170 

computational constraints, we randomly selected 1,000 sequences for each sample size, in line with the approach used for the 

other sampling methods. The same parameter estimation procedure was then applied to these sequences to assess variability 

and estimate confidence intervals. 

2.2 Probability density distributions 

In this study, we exclusively employed the two-parameter Weibull probability density function to fit wind speed data. The 175 

function is expressed as Eq. (1): 

𝑝(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)

𝑘−1

𝑒−(
𝑣

𝑐
)

𝑘

 ,           (1) 

where v represents the wind speed, k is the shape parameter, and c is the scale parameter. The Weibull distribution is 

characterized by two key parameters: the dimensionless shape parameter, which determines the curve’s shape, and the scale 

parameter, which adjusts the distribution along the wind speed axis. The distributions vary with different values of k and c, 180 

making it a popular choice for approximating observed wind speed frequencies (Wais, 2017; Ouarda and Charron, 2018; Carta 

et al., 2009).  

 

To estimate the Weibull parameters, we used the 'weibull_min.fit' function from Python’s ‘scipy.stats', employing the 

maximum likelihood estimation (MLE) method. MLE is preferred for its superior performances in parameter selection 185 

(Mohammadi et al., 2016).  This 'weibull_min.fit' function is particularly useful for iterative experiments requiring repeated 

Weibull distribution fitting, such as those with thousands of iterations.  

 

We focused on the first four moments of the distributions: mean, standard deviation, skewness, kurtosis, and the Weibull shape 

and scale parameters, chosen for their importance in wind resource assessment. The standard deviation indicates wind speed 190 

variability, while skewness and kurtosis provide insights into asymmetry and extreme values in the distribution. We calculated 

the mean and standard deviation using Python’s ‘numpy’ package, and the other parameters with ‘scipy.stats’.   
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2.3 Wind resource assessment method 

We used the Weibull wind power density to represent wind resources at a specific location. The Weibull wind power density 

is calculated using the estimated Weibull k and c parameters, and is given by the Eq. (2): 195 

𝐸 =
1

2
𝜌𝑐3Γ (1 +

3

𝑘
) ,           (2) 

where E represents the wind power density (W m-2), ρ is air density (with 1.225 kg m-3, the standard air density 

provided by IEC, used for calculation), and Γ is the gamma function. 

 

We chose the Weibull wind power density in our study for two main reasons. First, wind power density measures the amount 200 

of kinetic energy in airflow passing through a unit area, which can be converted into wind energy. It is a critical metric for 

evaluating wind resources and has been widely adopted in previous studies (e.g., Wang et al., 2022; Mohammadi et al., 2016). 

Second, the Weibull wind power density can be easily derived from the scale and shape parameters of the Weibull distribution, 

simplifying the calculation process. 

 205 

Given that our objective is to determine which dataset—specifically, which time series length—most accurately represents 

long-term wind conditions, the use of Weibull wind power density enables us to compare how the shape and scale parameters 

vary with datasets of different lengths. This approach helps us more effectively identify the time series that best captures long-

term wind resource variability. 

2.4 Data sources 210 

2.4.1 In-situ observations from weather stations 

In this study, we first utilized weather station observations from the Norwegian Meteorological Institute (MET Norway). This 

data, accessed via their API (https://frost.met.no/observations/v0.jsonld?; last accessed 8 February 2025), offers hourly wind 

speed resolution over long periods, suitable for analysing interannual variability, as wind assessments typically need at least 

hourly resolution (Jung and Schindler, 2019). 215 

 

We aimed to compare wind distribution parameters from short-term data with long-term series that include interannual 

variability. We prioritized weather stations with the longest hourly data series, retaining years with at least 8,600 hourly 

observations (97.9% of the possible 8,760 or 8,784 hours annually). 

 220 

We identified five stations with over 16 years of hourly data: SN50500 (18 years), SN44080 (16 years), SN42160 (20 years), 

SN38140 (24 years), and SN35860 (17 years). Details are in Table 1, and their locations in southern Norway are shown in Fig. 

1. We standardized the data to 16 years per station, omitting years with fewer observations for consistency. 
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Using the same years across all stations was not feasible due to data availability differences, so the years analysed varied. 225 

Table S1 details the selected years and percentage of hourly observations. The year with the fewest observations had 8,636 

648 hours (98.3245% coverage), and the average yearly count was 8,744 hours (99.54% coverage). 

 

Additionally, to complement the main analysis conducted on above five Norwegian stations, we used two additional stations 

located in Copenhagen Airport (Denmark) and Leuchars (Scotland, UK) from another dataset, HadISD, version 230 

v3.4.2.202501p (https://www.metoffice.gov.uk/hadobs/hadisd/; last accessed 14 June 2025; Dunn et al. 2016). Both sites 

provide 46 years (1979-2024) of hourly wind speed observations with an average data coverage of 99.2% annually (minimum 

yearly data coverage is 95.7% due to untimely updated data for 2024). The data coverage of each year is shown in Fig. S1. 

 

Table 1: Details of weather stations used in this study. 235 

Station ID Location 
Data 

source 

WMO 

number 
Latitude 

Latitude of 

ERA5 grid 
Longitude 

Longitude of 

ERA5 grid 

Height 

above 

mean sea 

level 

Elevation of 

ERA5 grid 

SN50500 Flesland 

MET 

Norway 

1311 60.2892º N 60.25º 5.2265º E 5.25º 48 m 0.3 m 

SN44080 
Obrestad 

Fyr 
1412 58.6592º N 58.75º 5.5553º E 5.50º 24 m 5.6 m 

SN42160 Lista Fyr 1427 58.1090º N 58.00º 6.5675º E 6.50º 14 m 127.1 m 

SN38140 Landvik 1464 58.3400º N 58.25º 8.5225º E 8.50º 6 m 55.4 m 

SN35860 
Lyngør 

Fyr 
1467 58.6362º N 58.75º 9.1478º E 9.25º 4 m 43.9 m 

061800-

99999 
Kastrup 

HadISD 

/ 55.618º N / 12.656º E / 5.2 m / 

031710-

99999 
Leuchars / 56.373º N / -2.868º E / 11.6 m / 

Note: As the last two stations (Kastrup and Leuchars) were added specifically for the sensitivity analysis discussed in Section 4.1, they were 

excluded from the comparison with ERA5. 

https://www.metoffice.gov.uk/hadobs/hadisd/
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Figure 1: Location Distribution of the five weather stations used in this study. 240 

 

2.4.2 ERA5 reanalysis 

For the ERA5 reanalysis products, we downloaded the “10m u-component of wind,” “10m v-component of wind,” “100m u-

component of wind,” and “100m v-component of wind” variables from the Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download; last accessed 8 February 2025). We 245 
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calculated the wind speed at 10 m and 100 m by taking the square root of the sum of the squares of the u-component and v-

component of wind. We used the ERA5 grid point closest to the location of each station, as indicated in Table 1. 

 

3 Results 

The results section is organized into four parts. First, we assess the feasibility of using random sampling to investigate the 250 

uncertainty associated with different sample sizes for acquiring wind distribution parameters. Second, we examine the impact 

of sample size on the estimation of these parameters. Third, we identify the effective sample size necessary to capture overall 

wind characteristics, including interannual variability. Finally, we apply our methodology to ERA5 datasets at 10-meter and 

100-meter heights to determine if they replicate the results observed in in-situ measurements. 

 255 

3.1 Can random sampling replace diurnal cycle-retained or seasonality-retained sampling?    

The The five Norwegian stations exhibitshow distinctsignificant diurnal and seasonal variations (Fig. S1-S2). To assess 

whether Werandom sampling can serve as a substitute for compared random sampling with diurnal cycle-retained or  and 

seasonality-retained sampling to evaluate its suitability, we compared. the 90% confidence intervals (CIs) of distribution 

parameters derived from each methodsderiveding, rather than on single-point parameter estimates. This comparison can also 260 

help understand how sampling strategy affects uncertainty. Diurnal cycle-retained sampling involved equal observations from 

four time intervals (0-5, 6-11, 12-17, 18-23) to capture daily variations. Seasonality-retained sampling ensured equal 

distribution across all 12 months. We compared these datasets to those from random sampling of the entire dataset. 
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 265 

Figure 2: Distribution parameters and Weibull power densityEstimates of mean wind speed, Weibull scale parameter, and power 

density from three sampling strategies, based on in-situ observations from five Norwegian stations. The 90% confidence intervals (CIs) 

are shown for each sampling method:  across random (orange)ly selected, diurnal-cycle-retained (purple dashed), and seasonality-retained 

(blue dotted) sampling experiments for in-situ observations. Each Bblack dots represents athe parameter estimates calculated from each 

individual random sampling experimentsa single sampling realization of random sampling; corresponding realizations for the other two 270 

methods are not shown. Each experiment utilized hourly observations, with sSample sizes rangeing from 𝑛=720 (30 days) to 𝑛=52,560 (30 

days to 6 years), increasing incrementally byin 240- hours (10- days) increments, with. For each sample size,  1,000 iterations realizations 

were conductedper size. Red asterisks indicate the reference values derived from the entire full 16-year hourly dataset, as detailed in (see 

Table 12). Shaded areas The dark blue and light blue shaded areas represent the ±2% (dark blue) and ±5% (light blue) uncertainty deviation 

ranges from full-series values, respectively, for the values of the entire dataset. The 90% confidence intervals (CIs) are shown for each 275 

sampling method: randomly selected (orange lines), diurnal-cycle-retained (light green dashed lines), and seasonality-retained (dark grey 

dotted lines).  

 

 

To visually compare the uncertainty ranges between the sampling methods, Figure 2 shows that theFig. 2 and Fig. S4 presents 280 

the 90% confidence intervals (CIs) derived from each approachfor random sampling overlap with those for diurnal and 

seasonality-retained methods across six distribution parameters and power density at all stations, indicating no significant 
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differences. It is evident that the intervals from random sampling largely overlap with those from diurnal and seasonality-

retained sampling. To quantify these differences, we calculated Thethe CI differences (Fig. S5) and the average root mean 

square error (RMSE) of these differences (Table S2). is 0.2866 for random vs. diurnal sampling and 0.3904 for random vs. 285 

seasonality sampling. Power density has the largest RMSE, while the shape parameter has the smallest (Table S2). Differences 

in 90% CIs are small,Most parameter differences fluctuateing around zero, with magnitudes generally within ±0.2; power 

density is the only parameter showing larger fluctuations, within ±3. These differences tend to decrease as, with larger 

deviations at low datasample density increases, stabilizing as density increases(Fig. S5). Parameter differences are within ±0.2, 

while power density differences range from ±3. Power density hasalso exhibits the largest RMSE, likely due to its broader 290 

value range (from tens to hundreds), while the shape parameter hasshow the smallest RMSE (Table S2). 

 

We also further analysed examined whether similar results hold for ERA5 100-meter wind speed data at 100 meters, which 

better reflect turbine- to assess random sampling at altitudes relevant altitudes and  to wind turbines, help addressing the lack 

scarcity of high-elevationaltitude observational datameasurements. Similar CI overlaps were observed  in the 100-meter data 295 

(Fig. 3, S6). Average The mean RMSEs valuesof the differences of parameters from the ERA5 100-meter (0.4896 for diurnal-

retained and 1.1010 seasonal-retained) wereare comparable to those from in-situ observations : 0.2865 (diurnal-retained) and 

0.3903 (seasonality-retained). (Fig. S4) but slightlyThe higher values were primarily driven by due to larger power density 

differences: 0.4895 for diurnal and 1.1010 for seasonality sampling (Table S3S2). A similar pattern in the 90% confidence 

interval differences among the three sampling strategies is observed in the ERA5 100 m dataset and the in-situ observations 300 

(Fig. S7). Based on these findings, we conclude that These findings confirm random sampling isas a viable method for 

analysing estimating wind distribution parameters,speeds at both at surface and elevated turbine hub heightslevels. Therefore, 

Thus, wewe adopted used random sampling in further subsequent analyses to determine the optimal sample size for capturing 

long-termoverall wind characteristics. 
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Figure 3: Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies, based on ERA5 

100-meter data. Distribution parameters and Weibull power density across randomly selected, diurnal-cycle-retained, and 

seasonality-retained sampling experiments for ERA5 100-meter data. Each experiment utilized hourly observations, with sample sizes 

ranging from 𝑛=720 (30 days) to 𝑛=52,560 (6 years), increasing incrementally by 240 hours (10 days). For each sample size, 1,000 iterations 310 

were conductedSampling methods and visualization are consistent with Figure 2. Red asterisks indicate values from the full 16-year ERA5 

100 m dataset. Shaded areas represent ±2% (dark blue) and ±5% (light blue) deviation ranges from full-series values.. The 90% confidence 

intervals (CIs) are shown for each sampling method: randomly selected (orange lines), diurnal-cycle-retained (light green dashed lines), and 

seasonality-retained (dark grey dotted lines). Black dots represent the parameters calculated from each individual random sampling 

experiments. Red asterisks indicate the values derived from the entire 16-year hourly dataset, as detailed in Table 1. The dark blue and light 315 

blue shaded areas represent the ±2% and ±5% uncertainty range, respectively, for the values of the entire dataset. 

3.2 Effects of sample size on estimating wind distribution parameters 

We investigatedstudied how sample size affects the accuracy of wind distribution parameters. Figure 2 shows how six 

distribution parameters and power density change with increasing sample size, with full dataset values in Table 2. Despite 

differences in wind conditions (Table 2; Fig. S8), different locations and wind speeds, theall five Norwegian stations showed 320 

exhibited consistent patternresults. 
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Table 2:  Distribution parameters and Weibull power density of five Norwegian stations, derived from the entire datasets. Note: for 

ERA5 products, the station ID indicates the corresponding grid point location. 

Data products  Station ID  
Mean 

(m s-1) 

Std. dev. 

(m s-1) 
Skewness Kurtosis 

Shape 

k 

Scale 

c (m s-1) 
Power density (W m-2) 

In-situ weather 

stations 

SN50500 3.53 2.66 1.12 1.81 1.51 4.07 81.08 

 SN44080 6.85 3.94 0.76 0.45 1.83 7.74 417.34 

SN42160 6.57 3.68 0.65 0.34 1.88 7.43 358.49 

SN38140 2.28 1.61 0.92 1.28 1.42 2.51 21.61 

SN35860 4.80 2.88 0.79 0.47 1.74 5.41 152.15 

 SN50500 4.82 2.45 0.30 -0.68 2.07 5.44 126.73 

ERA5 (10 meter) 

 SN44080 7.58 3.74 0.35 -0.36 2.13 8.55 478.87 

SN42160 8.04 3.74 0.32 -0.28 2.28 9.07 539.59 

SN38140 4.74 2.27 0.45 -0.15 2.20 5.35 113.61 

SN35860 4.50 2.19 0.48 -0.06 2.16 5.08 98.77 

 SN50500 6.02 2.71 0.22 -0.48 2.36 6.78 219.44 

ERA5 (100 meter) 

 SN44080 9.42 4.83 0.40 -0.29 2.03 10.61 959.38 

SN42160 9.79 4.72 0.35 -0.18 2.18 11.04 1009.61 

SN38140 7.31 3.31 0.31 -0.07 2.33 8.24 396.08 

SN35860 6.60 3.21 0.37 -0.13 2.15 7.44 311.57 

 325 

 

We found that, Aas hourly observationssample size increased, the absolute range for all parameters decreased, though 

robustness variedthe 90% confidence intervals (CIs) for all parameters narrowed, though the rate of convergence varied. The 

mean, standard deviation, and Weibull k and c parameters were most robuststabilized quickly, with 90% confidence intervals 

within ±5% error margins even atfrom the start with 720 hourly observations (Fig. 2, S4). In contrast, power density had a 330 

larger rangeshowed greater variability, and skewness and kurtosis were far less robust, remaining beyond . Even with six years 

of data (n = 52,560), some skewness and kurtosis values exceeded the ±5% even after six years of hourly datamargin due to 

their sensitivity to data distribution tails and extremes values, requiring larger sample sizes.  

 

Previous studies noted systematic bias in distributions with low data density (e.g., 21 observations) (Barthelmie and Pryor, 335 

2003).To assess systematic bias, wWe examinedcalculated the median values of across 1,000 resampling iterationsgroups for 

each parameter (Fig. S5S9). and found sSkewness and kurtosis, especially kurtosis, showed significant biases undernotable 

underestimation at low sample sizesdata density, aligning with past findings. At 720 observations, median skewness was over 

2% lower, and kurtosis more thanover 25% lower than the full-series baseline dataset values. The Kkurtosis bias improved to 

withinremained above 10% with until sample size exceededover 2,160 observationshours,. and SN50500 required had the 340 

largest kurtosis underestimation, needing at least 22,080 observations (~2.5 yrs) to reduce error to within 10%. In contrast, O 

other parameters varied by less than, including power density, showed minimal variation, staying within 1% of full dataset 

valuesacross all sample sizes. 
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3.3 Determine an effective sample size for capturing overall wind characteristics 

To determine the optimal sample size for capturing wind characteristics, we evaluated analysed the relationship between 345 

percent errors across different sampleand sample sizes (Fig. 4-5). Percent error measures discrepancies between parameters 

from the full dataset and smaller subsets, helping identify the minimum observations needed for target accuracy. Based on the 

90% CIs derived from 1,000 realizations of random sampling of in-situ observations (orange lines in Fig. 2 & Fig. S4), we 

computed percent errors of CI bounds and fitted power-law equations to describe their dependence on sample size. These fitted 

equations for percent errors are summarized in Table S23 and allow extrapolation of error margins for any given sample size. 350 

 

As expected, observations increase, percent error decreases with increasing sample size, but though the rate and extent vary 

across different parameters need varying sample sizes to meet specific error thresholds. For most stations, 720 hourly 

observations are sufficient to constrain the keep percent errors within ±7% for the mean, standard deviation, and Weibull 

parameters within ±7% (Fig. 4). HoweverIn contrast, higher-order statistical moments power density, such as skewness, and 355 

kurtosis, as well as power density, show much larger errors with under the same observationssampling conditions, with errors 

of at leastdeviations ranging from ±10% up to ±150%, depending on the station. Variability is greater for theseThese 

parameters show greater variability across stations, with error differences of 4.6% for power density, 18.1% for skewness, and 

154.2% for kurtosis, compared to less than 1.5% for others. Errors decrease quickly below 400 observations and more slowly 

above (Fig. 5). About 200 observations can achieve ±10% error for the mean, standard deviation, and Weibull parameters (Fig. 360 

5). 

 

Figure 5 shows percent error changes with fewer observations. Errors decrease quickly below 400 observations and more 

slowly above. About 200 observations can achieve ±10% error for the mean, standard deviation, and Weibull parameters. To 

facilitate practical use, we calculated the minimum sample sizes required to achieve  Table 3 details sample sizes needed for 365 

error margins of ±10%, ±5%, ±2%, and ±1% error margins for each parameter at each station (Table 4). For example, ±5% 

erroraccuracy requires 459 observations for, the mean, and 470 for the Weibull scale  need 459 and 470 observations (20 days), 

796 for respectively. Sstandard deviation requires 796 observations (34 days), and 4,031 for  the Weibull shape needs 681 

observations (28 days). Ppower density. needs 4,031 observations (168 days). Achieving ±2% and ±1% error requires six 

times6-fold and 24-fold ofmore observations than ±5%, respectively and ±1% needs 24 times more. Skewness and kurtosis 370 

are especially data-intensive  need significantly more data due to their sensitivity to distribution tails. For instance, SN38140 

needs 177,390 observations (20 years) for ±10% error, while SN50500 needs 1,541,437 observations (176 years). These 

differences reflect distinct wind speed distributions at each station. Sample density requirements increase significantly with 

precision. 

 375 

We also observe regional differences in sample requirements. Stations with higher wind speed variabilityvariability, but lower 

skewness and kurtosis need tend to require fewer observationssamples for the same error margins. For example, SN50500 and 
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SN38140, with the highest skewness and kurtosis, require more observations. All parameters except skewness and kurtosis 

show moderate regional differences. Power density has the largest regional difference (max/min ratio of = 2.1), while the 

Weibull shape shows the least parameter has the smallest (ratio of 1.2). Skewness and kurtosis shows significantare sensitive 380 

to regional differenceswind characteristics, with required samples increasing from 3.96 to- 6.1 times, and kurtosis from 8.69- 

to 13.16, respectively times, as when error margins decrease from ±10% to ±1%. This highlights skewness and kurtosis's 

sensitivity to regional variability and data distribution tails. 

 

  385 
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Table 3. Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results 

from five in-situ weather stations. Each equation corresponds to a power-law fit of the 90% confidence interval (CI) bounds, positive (P) and 

negative (N), for each parameter, across sample sizes from 720 to 52,560 hours. 

Parameters SN50500 SN44080 SN42160 SN38140 SN35860 

Mean (P) Y=exp[-0.507ln(n)+4.888] Y=exp[-0.503ln(n)+4.579] Y=exp[-0.497ln(n)+4.497] Y=exp[-0.496ln(n)+4.724] Y=exp[-0.494ln(n)+4.536] 

Mean (N) Y=-exp[-0.511ln(n)+4.929] Y=-exp[-0.494ln(n)+4.491] Y=-exp[-0.498ln(n)+4.504] Y=-exp[-0.500ln(n)+4.758] Y=-exp[-0.501ln(n)+4.601] 

Std. dev (P) Y=exp[-0.497ln(n)+5.045] Y=exp[-0.503ln(n)+4.579] Y=exp[-0.486ln(n)+4.692] Y=exp[-0.497ln(n)+4.971] Y=exp[-0.489ln(n)+4.748] 

Std. dev (N) Y=-exp[-0.509ln(n)+5.169] Y=-exp[-0.494ln(n)+4.491] Y=-exp[-0.500ln(n)+4.838] Y=-exp[-0.503ln(n)+5.033] Y=-exp[-0.504ln(n)+4.904] 

Skewness (P) Y=exp[-0.452ln(n)+6.610] Y=exp[-0.495ln(n)+6.434] Y=exp[-0.483ln(n)+6.523] Y=exp[-0.482ln(n)+6.579] Y=exp[-0.488ln(n)+6.254] 

Skewness (N) Y=-exp[-0.471ln(n)+6.807] Y=-exp[-0.502ln(n)+6.522] Y=-exp[-0.496ln(n)+6.665] Y=-exp[-0.506ln(n)+6.825] Y=-exp[-0.509ln(n)+6.475] 

Kurtosis (P) Y=exp[-0.436ln(n)+8.521] Y=exp[-0.493ln(n)+8.449] Y=exp[-0.474ln(n)+8.746] Y=exp[-0.469ln(n)+7.971] Y=exp[-0.488ln(n)+8.273] 

Kurtosis (N) Y=-exp[-0.451ln(n)+8.673] Y=-exp[-0.500ln(n)+8.540] Y=-exp[-0.485ln(n)+8.869] Y=-exp[-0.496ln(n)+8.254] Y=-exp[-0.507ln(n)+8.472] 

Weibull k (P) Y=exp[-0.508ln(n)+4.902] Y=exp[-0.503ln(n)+4.845] Y=exp[-0.503ln(n)+4.907] Y=exp[-0.509ln(n)+4.994] Y=exp[-0.51ln(n)+4.919] 

Weibull k (N) Y=-exp[-0.491ln(n)+4.721] Y=-exp[-0.493ln(n)+4.731] Y=-exp[-0.484ln(n)+4.696] Y=-exp[-0.501ln(n)+4.906] Y=-exp[-0.493ln(n)+4.735] 

Weibull c (P) Y=exp[-0.507ln(n)+4.864] Y=exp[-0.503ln(n)+4.580] Y=exp[-0.496ln(n)+4.494] Y=exp[-0.497ln(n)+4.782] Y=exp[-0.494ln(n)+4.55] 

Weibull c (N) Y=-exp[-0.512ln(n)+4.906] Y=-exp[-0.495ln(n)+4.505] Y=-exp[-0.498ln(n)+4.506] Y=-exp[-0.501ln(n)+4.824] Y=-exp[-0.501ln(n)+4.619] 

Power density (P) Y=exp[-0.508ln(n)+6.011] Y=exp[-0.505ln(n)+5.689] Y=exp[-0.495ln(n)+5.547] Y=exp[-0.500ln(n)+5.854] Y=exp[-0.493ln(n)+5.614] 

Power density (N) Y=-exp[-0.509ln(n)+6.014] Y=-exp[-0.492ln(n)+5.560] Y=-exp[-0.497ln(n)+5.566] Y=-exp[-0.497ln(n)+5.813] Y=-exp[-0.5ln(n)+5.674] 

390 
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Figure 4: The relationship between the percent error (Y) and sample size (n) 90% confidence intervals for the percent error in the 

mean, standard deviation, skewness, kurtosis, Weibull k and c parameters, and energy density, based on hourly observations ranging 

from 𝑛 = 720 (30 days) to 𝑛 = 140,160 (16 years) across five stations. The equations of fits here are shown in Table 3. Grey circles indicate 395 

the values used to fit the 90% confidence intervals for the percent error shown. The equations of fits here are shown in Table S4. 
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Figure 5: Same as Fig. 4, but the hourly observations ranging from 𝑛= 24 (1 day) to 𝑛= 720 (30 days) across five stations. These 

intervals are calculated using the same fits as shown in Fig. 4. 

 400 

 
Table 4.  Required number of randomly selected in-situ observations (unit: hours) to obtain an estimate within ±10%, ±5%, ±2%, 

and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. The 

fits to get the required data density are shown in Table S2. 

Error 

margins 
Location Mean Std. dev. Skewness Kurtosis 

Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 170 279 14297 1541437 166 162 1489 

SN44080 92 162 4505 262169 157 93 813 

SN42160 83 160 6658 801270 177 84 709 

SN38140 135 228 7673 177390 198 153 1211 

SN35860 98 175 3611 204844 169 101 853 

average 116 201 7349 597422 174 119 1015 

±5% 

SN50500 659  1087  63795 7545102 649 629 5836 

SN44080 365  655  17944 1058755 623 368 3202 

SN42160 335  640  26968 3458621 700 338 2859 

SN38140 541  905  30229 777573 774 610 4840 

SN35860 393  691 14084 847284 657 404 3417 

average 459 796 30604 2737467 681 470 4031 

±2% 

SN50500 3956 6576 484327 61581562 3936 3770 35501 

SN44080 2256 4165 111517 6790761 3853 2276 19931 

SN42160 2113 4008 174520 23905124 4321 2131 18057 

SN38140 3379 5593 200542 5484926 4689 3793 30218 

SN35860 2445 4262 88940 5535245 3956 2513 21623 

average 2830 4921 211970 20659524 4151 2897 25066 

±1% SN50500 15531 25766 2244402 301432368 15383 14785 139117 
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SN44080 8944 16876 444166 27700221 15295 9032 81625 

SN42160 8503 16046 733004 103184595 17126 8585 72806 

SN38140 13574 22191 844568 24042683 18315 15117 120783 

SN35860 9757 16870 368113 22895088 15391 10011 88205 

average 11262 19550 926851 95850991 16302 11506 100507 

 405 

3.4 Does ERA5 reanalysis (10 m and 100 m) show similar results with in-situ observations? 

To assess the consistency of reanalysis data with in-situ measurements, Wwe comparedanalysed the ERA5 dataset to assess 

its deviations from(10 m and 100 m) in-situ observations. FAt four out of five stations, showed that ERA5 overestimated the 

mean wind speeds infor both the full time series (Table 2) and sampling experiments (Fig. 6 & Fig. S10), likely due to a 

higheran overrepresentation of low-to-moderate wind speeds frequency of lower wind speeds at these locations (Fig. S6S8). 410 

Similarly, ERA5This bias also led to overestimationed of the Weibull scale parameter atfor stations with higher wind speeds 

and underestimation at those with lower speedsed it for others. This could be due to the higher frequency of lower wind speed 

values observed at the same locations (Fig. S6). Additionally, Tthe Weibull shape parameter was consistently higher in ERA5, 

often exceeding 2, indicating a potential bias in overestimating high wind events. These biases collectively contributed 

toaffected systematic overestimation inthe Weibull power density calculations, causing systematic discrepancies (Table 2 & 415 

Fig. 6 & Fig. S10).  

 

Both in-situ and ERA5 distributions were positively skewed (Fig. S8), but in-situ data had higher skewness (Table 2). ERA5 

samples consistently showed lower skewness (Fig. 6S10). For kurtosis, ERA5 had negative values across all stations, while 

in-situ observations show positive values had positive kurtosis (Table 2), indicating more peaked distributions, whereas ERA5 420 

exhibited negative values, reflecting flatter, less variable distribution around the mean. In-situ kurtosis varied widely, 

especially atThe largest divergence was observed at SN50500 and SN38140 (Fig. S106a4 & 6d4), where in-situ kurtosis varied 

substantially, whileas ERA5 values remained comparatively uniform had flatter distributions with less variability (Fig. 6a4-

e4S10). 

 425 

Due toThese differences influenced sample size requirements. in skewness and kurtosis, For mean, standard deviation, Weibull 

scale, and power density, ERA5 (10m) generally requireds fewer data points for to achieve the same error margins thresholds 

in parameters like mean, standard deviation, Weibull scale, and power density (Table 4S3). However, for tail-sensitive 

parameters like shape, skewness, and kurtosis, ERA5 needs require larger more samples size. Additionally, ERA5 results 

showed lower inter-station variability, as indicatedDifferences among locations are smaller in ERA5, shown by greater by 430 

overlapping in percent- error curveslines (Fig. S7S11-S8S12). The equations used to estimate percent errors under different 

sample sizes for ERA5 10 m are summarized in Table S4. 
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We also examined further analysed the ERA5 100 -meter dataset, which aligns more closely with to see if it requires similar 

data densities as the 10-meter data, given its relevance to turbine hub heights. As shown in fFigures S9S13-S10 S14, show that 435 

for most parameters had similar data density requirements to those at ERA5 , the 100-meter dataset needs similar observations 

as the 10 -meter dataset, though data densityit can vary by station. For instance, SN42160 had the highest error in the 10-meter 

dataset, while SN35860 showed nearly double the error under the same density. Table S5 summarizes the required sample 

sizesshows that for mean, standard deviation, scale, and power density, showing broadly similar patterns across both 

heightsboth datasets have similar requirements, but the 100-meter dataset consistently requiredneeds more data for the shape 440 

parameter. The equations used to estimate the required sample sizes for ERA5 100 m are summarized in Table S6. 
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Figure 6: Estimates of mean wind speed, Weibull scale parameter, and power density based on random sampling of ERA5 10-meter 445 

reanalysis data (black dots) across five Norwegian stationsDistribution parameters and Weibull power density from experiments 

using ERA5-10m data (black dots) based on randomly selected samples. The sampling strategy is consistent with Figure 2. Each 

experiment was conducted with hourly observations ranging from 𝑛=720 (30 days) to 𝑛=52,560 (6 years, incrementing by 240 (10 days), 

with 1,000 iterations for each sample size. The 90% confidence intervals (CIs) for the randomly selectedare shown as orange lines (ERA5)-

10m (orange lines)  and grey linesand (in-situ observations (grey lines) are presentedobservations). Red asterisks indicate denote reference 450 

values the values for the entirderived from the fulle 16-year hourly ERA5-10m dataset; grey asterisks represent the corresponding values 

from in-situ observations. The dark blue and light bBlue shadinged areas represents ±2% (dark) and ±5% (light) uncertainty margins around 

the ERA5-10m dataset reference values, respectively, while the dark grey shadingand light grey shaded areas represent indicates the same 

margins around the corresponding uncertainty for in-situ observationsreference values. 

  455 

 

 

Table 4:  Required number of randomly selected ERA5 10-meter reanalysis (unit: hours) to obtain an estimate within ±10%, ±5%, 

±2%, and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. 

The fits to obtain the required data density are shown in Table S5. 460 

Error margins Location Mean Std. dev. Skewness Kurtosis 
Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 73 96 8172 5016 180 73 471 

SN44080 66 117 8313 44143 185 67 472 

SN42160 57 126 11723 95190 194 56 427 

SN38140 60 134 8735 711310 195 59 460 

SN35860 64 139 6207 3540359 185 64 508 

average 64 123 9262 944804 188 64 468 

±5% 

SN50500 290 378 32016 19838 695 288 1856 

SN44080 264 461 32714 178285 730 266 1877 

SN42160 229 495 46455 392676 761 227 1711 

SN38140 238 528 34605 2908557 751 232 1825 

SN35860 254 547 24898 14867900 716 254 2041 

average 255 482 34138 3673452 731 254 1862 

±2% 

SN50500 1780 2314 200956 124202 4155 1777 11362 

SN44080 1642 2826 208777 1128607 4469 1649 11743 

SN42160 1443 3016 298655 2556252 4626 1424 10706 

SN38140 1461 3244 221711 18715159 4468 1430 11298 

SN35860 1587 3343 165203 99101050 4294 1587 12890 

average 1583 2949 219061 24325054 4403 1574 11600 

±1% 

SN50500 7030 9113 809645 498171 16071 7032 44916 

SN44080 6548 11134 848415 4558267 17597 6563 47679 

SN42160 5802 11843 1220400 10544961 18114 5721 43071 

SN38140 5777 12805 903642 76526556 17220 5660 45063 

SN35860 6368 13141 691404 416179369 16643 6348 51972 

average 6305 11608 894702 101661465 17129 6265 46541 
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Table 5:  Required number of randomly selected ERA5 100-meter reanalysis (unit: hours) to obtain an estimate within ±10%, ±5%, 

±2%, and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. 465 

The fits to obtain the required data density are shown in Table S6. 

Error margins Location Mean Std. dev. Skewness Kurtosis 
Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 56 110 16201 8729 198 54 374 

SN44080 73 123 7056 81022 189 74 521 

SN42160 61 133 11263 328841 205 62 468 

SN38140 58 137 15661 2453346 222 57 435 

SN35860 64 137 11069 795574 211 64 480 

average 63 128 12230 701703 205 63 456 

 ±5% 

SN50500 223 434 65875 38941 767 215 1501 

SN44080 289 483 27566 329399 745 294 2067 

SN42160 247 523 44785 1367095 803 247 1867 

SN38140 239 528 39510 2240186 816 234 1808 

SN35860 255 535 44939 3346344 815 255 1916 

average 251 501 44535 1464393 790 249 1832 

±2% 

SN50500 1391 2651 427303 248311 4604 1347 9434 

SN44080 1786 2950 176226 2103464 4560 1819 12841 

SN42160 1551 3187 290902 8991336 4889 1552 11635 

SN38140 1481 3272 247668 14218455 4903 1457 11209 

SN35860 1587 3244 296038 22351593 4884 1590 12125 

average 1560 3061 287628 9582632 4768 1553 11449 

±1% 

SN50500 5556 10417 1757931 1008422 17854 5394 37889 

SN44080 7091 11598 717060 8551751 17952 7217 51955 

SN42160 6236 12509 1198029 37379775 19172 6231 47065 

SN38140 5891 12995 998600 57540275 19027 5801 44825 

SN35860 6341 12685 1232216 94015313 18917 6340 48981 

average 6223 12041 1180767 39699108 18585 6197 46143 

 

4 Discussions and Implications 

4.1 Sensitivity to sampling strategy and climatic non-stationarity 

In wind energy assessments, continuous sampling is more commonly used than random sampling because it preserves temporal 470 

structure and seasonal variability in wind speed time series, and most importantly, only long-term data are not available.  

However, continuous sampling may also introduce systematic bias, particularly over short durations, due to temporal 

autocorrelation and underlying climatic non-stationarity. To investigate the extent of this effect and assess the generalizability 

of random sampling, we conducted a sensitivity analysis using 46 years (1979–2024) of hourly wind speed data from two 

coastal meteorological stations: Copenhagen Airport (061800-99999, Denmark) and Leuchars (031710-99999, Scotland). 475 

These sites were chosen for their long-term records and meteorological similarity to the five Norwegian locations analysed 

earlier. Copenhagen station exhibits a long-term decreasing wind speed trend (Fig. S1), consistent with broader global 

observations (Zeng et al., 2019). 
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Our results show that continuous sampling generally requires significantly longer periods to achieve the same level of 480 

uncertainty in estimated distribution parameters compared to random sampling (Fig. 7). This discrepancy arises because 

random sampling draws from multiple years, thereby capturing a wider range of interannual variability and reducing exposure 

to temporal clustering. Consequently, the 90% confidence intervals (CIs) under random sampling are symmetric for all 

parameters, while under continuous sampling, only the CIs for mean wind speed, Weibull scale parameter, and power density 

are symmetric. Shape-sensitive parameters, including standard deviation, skewness, kurtosis, and especially the Weibull shape 485 

parameter, exhibit pronounced asymmetries under continuous sampling, particularly at short durations (<2 years). This 

suggests that the presence of systematic climatic anomalies in continuous subsets may bias shape estimation. 

 

These findings support earlier recommendations by Murthy et al. (2017), who advocate using at least four to ten years of data 

for reliable wind energy assessments. Our results suggest that when using continuous sampling, at least five years of data may 490 

be required to achieve ±10% relative uncertainty in power density estimates, although this threshold is site-specific (e.g., 

Copenhagen station requires more than 10 years). We further recommend that random sampling be considered as a 

complementary tool to identify potential biases in short-term continuous assessments. 
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Figure 7: distribution parameters and Weibull power density derived from random sampling (orange lines) and continuous sampling 

(black lines), based on in-situ measurements from weather stations. Asterisks indicate values computed from the full 46-year dataset. 

Values for sample lengths between 14 and 46 years are omitted for visual clarity. Details of the experimental setup and sampling procedures 

are provided in the Methods section.  

 500 

It is claimed that theThe uncertainty bounds acquired by the methods random sampling in this study provided exhibit 

robustness and are applicable to all remotely sensed wind speed data series (Barthelmie and Pryor, 2003). Specifically, they 

reached this conclusion by finding a similar required sample size with an uncertainty of ±10% from five different locations, 

including Denmark, eastern North Pacific, the Gulf of Mexica, the Gulf of Alaska, and the western Atlantic (Barthelmie and 

Pryor, 2003; Pryor et al., 2004). However, upon replicating their methods using in-situ wind speed measurements from WMO 505 

stations, we are reluctant to draw the same conclusion. Although when using the same error margin (±10%) as Barthelmie and 

Pryor, (2003), we obtain similar results. As the error margins narrow (from ±10% to ±1%), the discrepancy among stations 

becomes significant. Therefore, we suggest that the uncertainty bounds presented in Table 3 exhibit robustness and are 

applicable only under higher error margins, such as those exceeding ±10%. Additionally, lower moments and two Weibull 

parameters showed higher robustness. 510 

 

Furthermore, although we provided the uncertainty bounds for datasets with fewer than 720 samples, it is important to note 

that we calculated these values based on an exponential function fitted to the results derived from 720 to 52,560 points. As a 

result, the curve may be biased due to the potential asymmetry in the distribution of the parameters (Barthelmie and Pryor, 

2003). 515 

 

Our results indicated that ERA5 tends to overestimate the mean and Weibull scale parameters. Discrepancies between ERA5 

and observational data are unsurprising, as previous studies have noted differences in magnitude and trends (Zhou et al., 2021; 

Torralba et al., 2017). These discrepancies can be partly attributed to ERA5 not assimilating in-situ land observations and the 

inherent limitations of the ERA5 reanalysis (Hersbach et al., 2020), such as its inability to accurately reproduce mesoscale 520 

dissipation rates (Bolgiani et al., 2022). Additionally, modern data assimilation systems still struggle to adequately correct the 

inevitable errors in model-generated guess fields at these smaller scales (Wang and Sardeshmukh, 2021). Consequently, ERA5 

may underestimate variability and fail to capture local extremes observed in in-situ data, leading to discrepancies in parameters 

like skewness and kurtosis. For instance, at stations SN50500 and SN38140, in-situ data show significantly more wind 

observations close to zero compared to ERA5 datasets, resulting in distinct wind characteristics such as differing skewness 525 

and kurtosis. 
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4.2 Evaluation of global wind atlas estimates against observations 

Since the publication of the first European Wind Atlas in 1989 (Dörenkämper et al., 2020), the wind atlas methodology has 

been widely adopted for regional wind resource assessments, including in countries such as Finland (Tammelin et al., 2013) 

and Greece (Kotroni et al., 2014). The Global Wind Atlas (GWA), developed by the Technical University of Denmark, applies 530 

the well-established numerical wind atlas method to downscale coarse-resolution reanalysis data to microscale levels. This is 

achieved using linearized flow models and topographic corrections based on the WAsP model. GWA provides publicly 

accessible estimates of mean wind speed and power density, which have been used in applications such as bias correction of 

reanalysis data for wind power simulations (Gruber et al., 2022). 

 535 

Given the energy-focused perspective of this study, it is relevant to compare our results with GWA estimates. We extracted 

GWA values at the nearest grid points for selected stations and compared them with observational estimates based on the full 

time series. Table S7 presents this comparison, focusing on two key metrics in wind energy assessments: mean wind speed 

and power density. The results show that GWA consistently overestimates both wind speed and power density relative to our 

station-based observations. 540 

 

One likely explanation for this discrepancy lies in the different ways topographic effects are incorporated. As described by 

Davis et al. (2023), the GWA estimates the predicted wind climate (PWC) by applying high-resolution topographic 

perturbations to the generalized wind climate which is based on coarse reanalysis fields. The PWC is represented by a set of 

Weibull distributions and directional frequencies for each of 12 directional sectors, and these are used to calculate derived 545 

variables such as mean wind speed and power density.  

 

4.31 Implications 

Both onshore and offshore sites exhibit seasonal variations, with onshore and near-coast locations often experiencing 

significant diurnal cycles (Barthelmie and Pryor, 2003; Barthelmie et al., 1996; Ashkenazy and Yizhaq, 2023). Our findings 550 

indicate that random sampling can effectively analyse wind distribution parameters, even when dealing with discontinuous 

data that lacks explicit diurnal or seasonal cycle information. This is particularly important given the challenges associated 

with accurately collecting data that reflects these cycles; factors such as anemometer malfunctions, site relocations, and other 

disruptions can create gaps in the wind speed data series, leading to non-continuous records (Liu et al., 2024). For instance, 

the Sentinel-1 Level 2 OCN ocean wind field product (1 km resolution), while performing well in offshore areas, has a revisit 555 

frequency of one to two days that may not sufficiently capture rapid temporal variations (Khachatrian et al., 2024). 
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It was noted that this finding is drawn from analyses utilizing a 90% confidence interval. This confidence level indicates that 

while minor discrepancies may exist in the data, they are considered negligible under specific statistical assumptions. Therefore, 

we argue conclude that random sampling provides a practical and statistically robust alternative, particularly in scenarios where 560 

it is not feasible to retain the characteristics of diurnal cycles or seasonality. 

4.2 4 Limitations of this study 

Our study reveals several uncertainties that need to be acknowledged. The geographic scope of our data is limited; all the 

weather stations used in our study are in Norway. This is because the required wind speed data need to have long-term series 

but with hourly resolution at the same time, and such a long-term time series is rarely available publicly. We encourage 565 

researchers from other regions with access to high-quality wind speed data to replicate our study and compare the results, to 

verify the generalizability of our findings. 

While our study focuses on long-term wind data from five coastal onshore stations in Norway, it may not fully represent 

offshore wind conditions. Although these stations are all located at low elevations and near the coastline, their degree of 

exposure to open-sea winds varies due to local topography, coastal geometry, and sheltering effects (Fig. S15). For example, 570 

SN35860 and SN44080 are directly exposed to the open sea, while SN38140 is partially sheltered by inland terrain and 

surrounding vegetation. Our results may not accurately reflect the real situations for offshore sites, because our study is based 

on on-land weather stations, though they are located along the coast. Further, oOffshore wind can differ significantly from 

those onshore. For example, In we showedour study,  that ERA5 data shows antends to overestimateion of the frequency of 

high wind events at coastal sites., By contrast, while a recent study indicates that ERA5 may underestimates strong wind speed 575 

offshore (Gandoin and Garza, 2024), suggesting that discrepancies may stem from differences in surface roughness, 

atmospheric stability, and model representation of marine boundary layers. Therefore, further studiesThis highlights the need 

for targeted offshore  studies, for example using focused specifically on offshore windsbuoy-based wind measurements 

(Morgan et al., 2011) are needed. Furthermore, our analysis does not include complex inland terrains such as mountainous 

regions or deep valleys, where wind speed distributions can be bimodal (Jaramillo and Borja, 2004) or strongly affected by 580 

topographic channelling. These environments are likely to show different sensitivities to sampling strategies, especially about 

shape-related distribution metrics. We therefore recommend that future research apply this framework to both offshore 

locations and inland complex terrain to better capture the full range of wind resource variability and distributional stability. 

 

Moreover, we compared the surface elevation of the ERA5 grid cells with the actual heights of the five Norwegian weather 585 

stations (Table 1). While all stations are situated near sea level (ranging from 4 m to 48 m above mean sea level), ERA5 grid 

elevations differ substantially, with four out of five stations showing discrepancies exceeding 40 m, and one exceeding 110 m. 

Specifically, ERA5 overestimates elevation at three stations and underestimates it at two. Interestingly, despite the mix of 

elevation biases, ERA5 wind speeds are overestimated at four stations and underestimated at only one. A station where ERA5 

overestimated elevation is also the one where wind speed is underestimated. This suggests that elevation mismatch alone 590 
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cannot fully explain the direction or magnitude of wind speed biases. Other factors, such as surface roughness and land use 

type, may also contribute to the discrepancies. 

 

Another limitation is the time resolution of the wind speed data we used. We utilized hourly data instead of higher temporal 

resolution data, such as 10-minute intervals, for wind distribution assessments. Despite this, Yang et al., (2024) demonstrated 595 

that hourly wind speed data provide sufficiently accurate estimations of wind power density, with errors smaller than ±2% 

when compared to 10-minute resolution data. This suggests that hourly data are suitable for such analyses. Additionally, 

Effenberger et al., (2024) showed that three- or six-hourly instantaneous wind speed data can effectively preserve the 

distribution characteristics of 10-minute wind speeds. Therefore, it is reasonable that hourly wind speed can adequately 

represent the characteristics of 10minute wind speeds. 600 

 

It is worth noting that the hourly data provided by MET Norway represent the average wind speed over the last ten minutes of 

each hour rather than the entire hour. Despite this, previous research found that Weibull distribution parameters remain 

consistent across different averaging periods (e.g., 1 minute and 30 minutes) (Barthelmie and Pryor, 2003). Based on these 

findings, we believe that our use of last 10-minute averages is unlikely to significantly impact the accuracy of the Weibull 605 

distribution parameters compared to full-hour averages. 

 

Additionally, our study focuses on near-surface wind speeds (10 m), raising questions about whether our conclusions hold at 

turbine-height winds. Prior studies indicate a height dependency for Weibull distribution parameters, with higher altitudes 

typically showing higher means (and scale parameter), variances, skewness, and kurtosis, while the shape parameter remains 610 

height-independent (Barthelmie and Pryor, 2003; Dixon and Swift, 1984). Due to the absence of observational data at heights 

other than 10 meters, we utilized the ERA5 dataset to compare distribution parameters at 10-m and 100-m heights. For the five 

locations studied, only the mean (and Weibull scale parameter), and variance show height dependency, with other parameters 

(skewness, kurtosis, Weibull shape parameter) showing independence from height. 

5 Conclusions 615 

Our study quantifies the errors in estimating wind speed distribution parametersfitting using time series of varying lengths, 

accounting for interannual variability. We find that skewness and kurtosis, particularly kurtosis, are systematically 

underestimated with limited when data length is limited, especially and this underestimation is more pronounced in datasets 

with higher skewness and kurtosis levels, necessitating significantly longer observation periods for accurate estimates. For 

example,While the mean and standard deviation stabilize within weeks of data, while skewness requires over 1.6 years and 620 

kurtosis over 88.8 years for a ±5% error margin. Our findings highlight the criticalThese results emphasize that the required 

length of wind observations is strongly dependent on influence of distributionthe shape characteristics of the underlying 



35 

 

distributionon data requirements, with regional variations becoming more pronounced as precision accuracy demands increase, 

particularly for higher-order statistical properties like skewness and kurtosis. 

 625 

These findingsis haves important implications for wind resource assessment, particularly in regions with characterized by 

highly variable wind regimes. InFor such areas, extended data collection periods or advanced alternative techniques strategies 

such aslike data fusion or machine learning may be necessary essential to accurately capture higher-order statistical properties, 

which directly affects energy yield estimates and turbine design standards.  

 630 

We also compare different sampling strategies. Our resultsAdditionally, our analysis suggests show that random sampling 

yield more statistically efficient estimates than continuous sampling, which preserves temporal correlation and diurnal pattern 

but introduces greater variability in estimated parameters. For instance, achieving ±10% uncertainty in power density may 

require at least five years of continuous data, whereas only about two months of randomly sampled hourly data may suffice. 

This suggests that flexible sampling approaches may be feasible in data-limited environments, provided the sampling design 635 

avoids strong temporal clustering.can provide comparable accuracy to strict diurnal or seasonal sampling, offering a flexible 

alternative for data collection in resource-constrained settings. 

 

Finally, oOur evaluationanalysis of ERA5 reanalysis data reveals that while although such datasetsthey require fewer data 

points for the same error margin, they introduceexhibit systematic biases, such as underestimating skewness and 640 

overestimating Weibull shape parameterss, compared to in-situ measurements. This underscores the need for caution when 

using reanalysis data in wind resource assessments, particularly in regions with complex wind regimes. 

 

Future studies should explore focus on methods to mitigate the systematic underestimation of skewness and kurtosismitigating 

biases in higher-order moment estimation, such as through data fusion or bias-correction models. FurthermoreMoreover, 645 

extending this analysis to different terrain types, and hub the applicability of these findings to different geographic regions and 

turbine  heights should be investigated to enhancecan further improve the reliability and generalizability of wind resource 

energy assessment practicess. 

Code availability 

The code used in this paper can be obtained from the author upon request. 650 
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Figure S1 S1 Mean wind speed at each time point across five stations, based on 16 years of hourly observations at each 

stationAnnual mean wind speed and data coverage for each year from 1979 to 2024. 
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Figure S1 S2 Mean wind speed at each time point across five stations, based on 16 years of hourly observations at 

each station. 
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Figure S2 S3 Mean wind speed anomalies (calculated as the mean monthly wind speed minus the annual mean wind 

speed) for each of the 12 months across five stations, based on 16 years of hourly observations at each station. 
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Figure S4 Estimates of standard deviation, skewness, kurtosis and Weibull shape parameter from three sampling 

strategies, based on in-situ observations from five Norwegian stations. The 90% confidence intervals (CIs) are shown for 

each sampling method: random (orange), diurnal-cycle-retained (purple dashed), and seasonality-retained (blue dotted). Each 

black dot represents a parameter estimate from a single sampling realization of random sampling. Sample sizes range from 

720 to 52,560 (30 days to 6 years), increasing in 240-hour (10-day) increments, with 1,000 realizations per size. Red 

asterisks indicate the reference values from the full 16-year hourly dataset (see Table 2). Shaded areas represent ±2% (dark 

blue) and ±5% (light blue) deviation ranges from full-series values. 
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Figure S53 Differences in the 90% confidence intervals derived from in-situ observations between random sampling 

and diurnal-cycle-retained sampling (represented by black lines), and between random sampling and seasonality-

retained sampling (represented by orange lines). 
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Figure S6 Estimates of standard deviation, skewness, kurtosis and Weibull shape parameter from three sampling 

strategies, based on ERA5 100-meter data. Sampling methods and visualization are consistent with Figure S2. Red 

asterisks indicate values from the full 16-year ERA5 100 m dataset. Shaded areas represent ±2% (dark blue) and ±5% (light 

blue) deviation ranges from full-series values.  
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Figure S74 Differences in the 90% confidence intervals derived from ERA5 100 m dataset. Visualization is consistent 

with Figure S5. Same as Figure S3, but for ERA5 100-meter dataset. 
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Figure S5 Relative percentage error of the median for each resampling group compared to the total time series value from in-

situ weather observations.  
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Figure S86 Wind speed distribution at five stations from both in-situ weather measurements and ERA5 reanalysis 

data (10m and 100m). Note: for ERA5 products, the station ID indicates the corresponding grid point location. 
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Figure S9 Relative percentage error of the median for each resampling group compared to the total time series value 

from in-situ weather observations. 
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Figure S10 Estimates of standard deviation, skewness, kurtosis and Weibull shape parameter based on random 

sampling of ERA5 10-meter reanalysis data (black dots) across five Norwegian stations. The sampling strategy is 

consistent with Figure S2. The 90% confidence intervals (CIs) are shown as orange lines (ERA5) and grey lines (in-situ 

observations). Red asterisks denote reference values derived from the full 16-year ERA5-10m dataset; grey asterisks represent 

the corresponding values from in-situ observations. Blue shading represents ±2% (dark) and ±5% (light) uncertainty margins 

around ERA5-10m reference values, while grey shading indicates the same margins around in-situ reference values. 
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Figure S117 The relationship between the percent error (Y) and sample size (n) based on ERA5 10-meter dataset 

ranging from 𝑛 = 720 (30 days) to 𝑛 = 140,160 (16 years) across five stations. The equations of fits here are shown in Table 

3. Grey circles indicate the values used to fit the 90% confidence intervals for the percent error shown.90% confidence intervals 

for the percent error in the mean, standard deviation, skewness, kurtosis, Weibull k and c parameters, and energy density, 

based on  

ERA5 10-meter dataset ranging from 𝑛 = 720 (30 days) to 𝑛 = 140,160 (16 years) across five stations. The fits to get the 

required data density are shown in Table S5. 

 

 
Figure S128 90% confidence intervals for the percent error in the mean, standard deviation, skewness, kurtosis, 

Weibull k and c parameters, and energy density, based on ERA5 10-meter dataset ranging from 𝑛 = 24 (1 day) to 𝑛 = 

720 (30 days) across five stations. The fits to get the required data density are shown in Table S5. 
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Figure S139 Same as Figure S7S11, but for ERA5 100-meter dataset. The fits to get the required data density are shown 

in Table S6. 

 

 
Figure S140 Same as Figure S8S12, but for ERA5 100-meter dataset. The fits to get the required data density are shown 

in Table S6. 
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Figure S15 Locations of the five Norwegian stations analyzed in this study, shown with satellite imagery to illustrate their 

spatial context and surrounding terrain of each station. 
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Table S1. SThe selected years (Yr.) and the ercentage of observation times (Obs. Tim.) for each five Norwegian 

stationstations used in this study. 

SN38140 SN35860 SN42160 SN44080 SN50500 

Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. 

1996 100.008784 2001 100.008760 1998 99.478714 1995 99.228692 1974 100.008760 

1998 99.478714 2002 99.978757 2000 99.328724 1996 99.588747 1975 99.828744 

2002 100.258782 2003 99.608725 2001 99.938754 1997 99.578722 1976 100.008784 

2003 100.258782 2004 99.778764 2002 100.008760 1998 99.508716 1977 99.778740 

2004 99.868772 2008 99.688756 2004 99.258718 1999 99.928753 1978 99.958756 

2009 99.998759 2009 99.998759 2008 99.988782 2000 99.998783 1979 100.008760 

2010 99.988758 2010 99.438710 2009 100.008760 2001 99.578722 1980 99.978781 

2011 99.958756 2014 99.778740 2010 100.008760 2002 99.958756 1981 100.008760 

2012 99.658753 2015 99.598724 2011 100.008760 2003 99.528718 1982 99.998759 

2014 99.878749 2016 100.008784 2012 99.998783 2004 100.008784 1983 99.738736 

2015 99.858747 2017 99.998759 2013 99.098680 2006 99.608725 1984 99.988782 

2017 99.558721 2018 99.998759 2016 99.768763 2009 99.978757 1985 99.908751 

2018 99.538719 2019 99.998759 2018 99.148685 2010 100.008760 1986 99.898750 

2019 99.388706 2020 99.998783 2020 99.598748 2011 98.588636 1987 99.928753 

2020 98.878685 2021 100.008760 2022 99.898750 2012 98.458648 1988 99.908775 

2021 99.068678 2022 99.448711 2023 99.638728 2013 99.198689 1990 99.778740 

Total 99.72 Total 99.82 Total 99.69 Total 99.54 Total 99.91 
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Table S2. Root mean squared error (RMSE) of 90% confidence interval (CI) bounds betweenvalues derived from in-

situ observations, comparing  random sampling and two temporal-structure-preserving sampling methods: with 

diurnal cycle-retained sampling (denoted as “Diurnal”) and seasonality-retained sampling (denoted as “Seasonal”), 

based on in-situ measurements and ERA5 100-m data from five Norwegian stations. The RMSE is computed for both the 

lower and upper bounds of 90% CI across all the sampling density, for each statistical parameter. 

 SN50500 SN44080 SN42160 SN38140 SN35860 Average 

Parameters Methods In-situ 
ERA5 

100-m 
In-situ 

ERA5 

100-m 
In-situ 

ERA5 

100-m 
In-situ 

ERA5 

100-m 
In-situ 

ERA5 

100-m 
In-situ 

ERA5 

100-m 

Mean 
Diurnal 0.0023 0.0016 0.0026 0.0027 0.0025 0.0029 0.0013 0.0023 0.0018 0.0019 0.0021 0.0023 

Seasonal 0.0023 0.0105 0.0040 0.0057 0.0025 0.0051 0.0016 0.0050 0.0022 0.0050 0.0025 0.0063 

Std. dev 
Diurnal 0.0016 0.0011 0.0019 0.0019 0.0018 0.0018 0.0010 0.0014 0.0013 0.0013 0.0015 0.0015 

Seasonal 0.0021 0.0028 0.0027 0.0022 0.0028 0.0031 0.0014 0.0024 0.0017 0.0022 0.0021 0.0025 

Skewness 
Diurnal 0.0083 0.0012 0.0020 0.0013 0.0024 0.0015 0.0029 0.0014 0.0018 0.0015 0.0035 0.0014 

Seasonal 0.0075 0.0025 0.0022 0.0016 0.0025 0.0017 0.0032 0.0015 0.0022 0.0018 0.0035 0.0018 

Kurtosis 
Diurnal 0.1229 0.0021 0.0106 0.0030 0.0193 0.0040 0.0210 0.0037 0.0084 0.0044 0.0364 0.0034 

Seasonal 0.1138 0.0029 0.0113 0.0038 0.0233 0.0056 0.0230 0.0044 0.0084 0.0052 0.0360 0.0044 

Shape k 
Diurnal 0.0007 0.0012 0.0009 0.0011 0.0010 0.0012 0.0008 0.0013 0.0008 0.0011 0.0008 0.0012 

Seasonal 0.0009 0.0033 0.0008 0.0012 0.0014 0.0011 0.0008 0.0013 0.0008 0.0011 0.0009 0.0016 

Scale c 
Diurnal 0.0025 0.0018 0.0029 0.0031 0.0028 0.0032 0.0016 0.0025 0.0021 0.0022 0.0024 0.0026 

Seasonal 0.0024 0.0116 0.0045 0.0064 0.0029 0.0058 0.0018 0.0056 0.0025 0.0055 0.0028 0.0070 

Power density 
Diurnal 0.1396 0.1552 0.4855 0.7918 0.3858 0.8559 0.0292 0.3100 0.1589 0.2731 0.2398 0.4772 

Seasonal 0.1687 0.8931 0.7466 1.4477 0.5161 1.6094 0.0498 0.7847 0.2311 0.6521 0.3425 1.0774 
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Table S4. Equations relating percent error (Y) within 90% confidence intervals to number of data 

points (n), using data ranging from n = 720 to 52,560. P denotes the positive error bar, and N 

represents the negative error bar. 

Parameters SN50500 SN44080 SN42160 SN38140 

Mean (P) Y=exp[-0.507ln(n)+4.888] Y=exp[-0.503ln(n)+4.579] Y=exp[-0.497ln(n)+4.497] Y=exp[-0.496ln(n)+4.724] 

Mean (N) Y=-exp[-0.511ln(n)+4.929] Y=-exp[-0.494ln(n)+4.491] Y=-exp[-0.498ln(n)+4.504] Y=-exp[-0.500ln(n)+4.758] 

Std. dev (P) Y=exp[-0.497ln(n)+5.045] Y=exp[-0.503ln(n)+4.579] Y=exp[-0.486ln(n)+4.692] Y=exp[-0.497ln(n)+4.971] 

Std. dev (N) Y=-exp[-0.509ln(n)+5.169] Y=-exp[-0.494ln(n)+4.491] Y=-exp[-0.500ln(n)+4.838] Y=-exp[-0.503ln(n)+5.033] 

Skewness (P) Y=exp[-0.452ln(n)+6.610] Y=exp[-0.495ln(n)+6.434] Y=exp[-0.483ln(n)+6.523] Y=exp[-0.482ln(n)+6.579] 

Skewness (N) Y=-exp[-0.471ln(n)+6.807] Y=-exp[-0.502ln(n)+6.522] Y=-exp[-0.496ln(n)+6.665] Y=-exp[-0.506ln(n)+6.825] 

Kurtosis (P) Y=exp[-0.436ln(n)+8.521] Y=exp[-0.493ln(n)+8.449] Y=exp[-0.474ln(n)+8.746] Y=exp[-0.469ln(n)+7.971] 

Kurtosis (N) Y=-exp[-0.451ln(n)+8.673] Y=-exp[-0.500ln(n)+8.540] Y=-exp[-0.485ln(n)+8.869] Y=-exp[-0.496ln(n)+8.254] 

Weibull k (P) Y=exp[-0.508ln(n)+4.902] Y=exp[-0.503ln(n)+4.845] Y=exp[-0.503ln(n)+4.907] Y=exp[-0.509ln(n)+4.994] 

Weibull k (N) Y=-exp[-0.491ln(n)+4.721] Y=-exp[-0.493ln(n)+4.731] Y=-exp[-0.484ln(n)+4.696] Y=-exp[-0.501ln(n)+4.906] 

Weibull c (P) Y=exp[-0.507ln(n)+4.864] Y=exp[-0.503ln(n)+4.580] Y=exp[-0.496ln(n)+4.494] Y=exp[-0.497ln(n)+4.782] 

Weibull c (N) Y=-exp[-0.512ln(n)+4.906] Y=-exp[-0.495ln(n)+4.505] Y=-exp[-0.498ln(n)+4.506] Y=-exp[-0.501ln(n)+4.824] 

Power density (P) Y=exp[-0.508ln(n)+6.011] Y=exp[-0.505ln(n)+5.689] Y=exp[-0.495ln(n)+5.547] Y=exp[-0.500ln(n)+5.854] 

Power density (N) Y=-exp[-0.509ln(n)+6.014] Y=-exp[-0.492ln(n)+5.560] Y=-exp[-0.497ln(n)+5.566] Y=-exp[-0.497ln(n)+5.813] 

Table S3 Required number of randomly selected ERA5 10-meter reanalysis (unit: hours) to obtain 

an estimate within ±10%, ±5%, ±2%, and ±1% of the parameters from the entire observed time 

series (157,465 data points), calculated at the 90% confidence level. The fits to obtain the required 

data density are shown in Table S4. 

Error 

margins 
Location Mean 

Std. 

dev. 
Skewness Kurtosis 

Shape 

k 

Scale 

c 

Power 

density 

±10% 

SN50500 73 96 8172 5016 180 73 471 

SN44080 66 117 8313 44143 185 67 472 

SN42160 57 126 11723 95190 194 56 427 

SN38140 60 134 8735 711310 195 59 460 

SN35860 64 139 6207 3540359 185 64 508 

average 64 123 9262 944804 188 64 468 

±5% 

SN50500 290 378 32016 19838 695 288 1856 

SN44080 264 461 32714 178285 730 266 1877 

SN42160 229 495 46455 392676 761 227 1711 

SN38140 238 528 34605 2908557 751 232 1825 

SN35860 254 547 24898 14867900 716 254 2041 

average 255 482 34138 3673452 731 254 1862 

±2% 

SN50500 1780 2314 200956 124202 4155 1777 11362 

SN44080 1642 2826 208777 1128607 4469 1649 11743 

SN42160 1443 3016 298655 2556252 4626 1424 10706 

SN38140 1461 3244 221711 18715159 4468 1430 11298 

SN35860 1587 3343 165203 99101050 4294 1587 12890 

average 1583 2949 219061 24325054 4403 1574 11600 

±1% 

SN50500 7030 9113 809645 498171 16071 7032 44916 

SN44080 6548 11134 848415 4558267 17597 6563 47679 

SN42160 5802 11843 1220400 10544961 18114 5721 43071 

SN38140 5777 12805 903642 76526556 17220 5660 45063 

SN35860 6368 13141 691404 416179369 16643 6348 51972 

average 6305 11608 894702 101661465 17129 6265 46541 
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Table S5S4. Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERA5 10 m 

reanalysis data. Note: the station ID indicates the corresponding grid point location.Equations for the ERA5 10-meter dataset relate percent error (Y) within 90% confidence 

intervals to the number of data points (n), for values of n between 720 and 52,560. P represents the positive error bar and N represents the negative error bar. 

Parameters SN50500 SN44080 SN42160 SN38140 SN35860 

Mean (P) Y=exp[-0.505ln(n)+4.47] Y=exp[-0.496ln(n)+4.356] Y=exp[-0.494ln(n)+4.275] Y=exp[-0.504ln(n)+4.368] Y=exp[-0.498ln(n)+4.365] 

Mean (N) Y=-exp[-0.499ln(n)+4.413] Y=-exp[-0.501ln(n)+4.404] Y=-exp[-0.498ln(n)+4.316] Y=-exp[-0.498ln(n)+4.304] Y=-exp[-0.5ln(n)+4.38] 

Std. dev (P) Y=exp[-0.504ln(n)+4.576] Y=exp[-0.488ln(n)+4.535] Y=exp[-0.489ln(n)+4.568] Y=exp[-0.497ln(n)+4.688] Y=exp[-0.493ln(n)+4.671] 

Std. dev (N) Y=-exp[-0.506ln(n)+4.61] Y=-exp[-0.506ln(n)+4.711] Y=-exp[-0.507ln(n)+4.754] Y=-exp[-0.505ln(n)+4.775] Y=-exp[-0.506ln(n)+4.802] 

Skewness (P) Y=exp[-0.497ln(n)+6.767] Y=exp[-0.494ln(n)+6.749] Y=exp[-0.492ln(n)+6.901] Y=exp[-0.493ln(n)+6.766] Y=exp[-0.484ln(n)+6.511] 

Skewness (N) Y=-exp[-0.508ln(n)+6.875] Y=-exp[-0.508ln(n)+6.891] Y=-exp[-0.505ln(n)+7.038] Y=-exp[-0.505ln(n)+6.887] Y=-exp[-0.5ln(n)+6.67] 

Kurtosis (P) Y=exp[-0.499ln(n)+6.546] Y=exp[-0.497ln(n)+7.613] Y=exp[-0.489ln(n)+7.91] Y=exp[-0.492ln(n)+8.935] Y=exp[-0.483ln(n)+9.587] 

Kurtosis (N) Y=-exp[-0.504ln(n)+6.598] Y=-exp[-0.507ln(n)+7.717] Y=-exp[-0.502ln(n)+8.044] Y=-exp[-0.503ln(n)+9.046] Y=-exp[-0.5ln(n)+9.762] 

Weibull k (P) Y=exp[-0.512ln(n)+4.962] Y=exp[-0.506ln(n)+4.943] Y=exp[-0.508ln(n)+4.979] Y=exp[-0.514ln(n)+5.011] Y=exp[-0.512ln(n)+4.973] 

Weibull k (N) Y=-exp[-0.502ln(n)+4.839] Y=-exp[-0.489ln(n)+4.767] Y=-exp[-0.488ln(n)+4.771] Y=-exp[-0.494ln(n)+4.808] Y=-exp[-0.493ln(n)+4.779] 

Weibull c (P) Y=exp[-0.504ln(n)+4.463] Y=exp[-0.495ln(n)+4.348] Y=exp[-0.494ln(n)+4.261] Y=exp[-0.504ln(n)+4.353] Y=exp[-0.498ln(n)+4.36] 

Weibull c (N) Y=-exp[-0.5ln(n)+4.419] Y=-exp[-0.502ln(n)+4.41] Y=-exp[-0.499ln(n)+4.313] Y=-exp[-0.498ln(n)+4.301] Y=-exp[-0.5ln(n)+4.378] 

Power density (P) Y=exp[-0.506ln(n)+5.416] Y=exp[-0.495ln(n)+5.329] Y=exp[-0.493ln(n)+5.266] Y=exp[-0.503ln(n)+5.384] Y=exp[-0.497ln(n)+5.398] 

Power density (N) Y=-exp[-0.498ln(n)+5.332] Y=-exp[-0.502ln(n)+5.393] Y=-exp[-0.5ln(n)+5.33] Y=-exp[-0.497ln(n)+5.326] Y=-exp[-0.499ln(n)+5.413] 
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Table S5 Required number of randomly selected ERA5 100-meter reanalysis (unit: hours) to 

obtain an estimate within ±10%, ±5%, ±2%, and ±1% of the parameters from the entire observed 

time series (157,465 data points), calculated at the 90% confidence level. The fits to obtain the 

required data density are shown in Table S6. 

Error 

margins 
Location Mean 

Std. 

dev. 
Skewness Kurtosis 

Shape 

k 

Scale 

c 

Power 

density 

±10% 

SN50500 56 110 16201 8729 198 54 374 

SN44080 73 123 7056 81022 189 74 521 

SN42160 61 133 11263 328841 205 62 468 

SN38140 58 137 15661 2453346 222 57 435 

SN35860 64 137 11069 795574 211 64 480 

average 63 128 12230 701703 205 63 456 

 ±5% 

SN50500 223 434 65875 38941 767 215 1501 

SN44080 289 483 27566 329399 745 294 2067 

SN42160 247 523 44785 1367095 803 247 1867 

SN38140 239 528 39510 2240186 816 234 1808 

SN35860 255 535 44939 3346344 815 255 1916 

average 251 501 44535 1464393 790 249 1832 

±2% 

SN50500 1391 2651 427303 248311 4604 1347 9434 

SN44080 1786 2950 176226 2103464 4560 1819 12841 

SN42160 1551 3187 290902 8991336 4889 1552 11635 

SN38140 1481 3272 247668 14218455 4903 1457 11209 

SN35860 1587 3244 296038 22351593 4884 1590 12125 

average 1560 3061 287628 9582632 4768 1553 11449 

±1% 

SN50500 5556 10417 1757931 1008422 17854 5394 37889 

SN44080 7091 11598 717060 8551751 17952 7217 51955 

SN42160 6236 12509 1198029 37379775 19172 6231 47065 

SN38140 5891 12995 998600 57540275 19027 5801 44825 

SN35860 6341 12685 1232216 94015313 18917 6340 48981 

average 6223 12041 1180767 39699108 18585 6197 46143 
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TTable S6 Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERA5 100 m 

reanalysis data. Note: the station ID indicates the corresponding grid point location.Same as Table S2, but for ERA5 100-meter dataset. 

Parameters SN50500 SN44080 SN42160 SN38140 SN35860 

Mean (P) Y=exp[-0.5ln(n)+4.315] Y=exp[-0.497ln(n)+4.402] Y=exp[-0.494ln(n)+4.305] Y=exp[-0.502ln(n)+4.357] Y=exp[-0.498ln(n)+4.361] 

Mean (N) Y=-exp[-0.495ln(n)+4.254] Y=-exp[-0.503ln(n)+4.458] Y=-exp[-0.498ln(n)+4.354] Y=-exp[-0.5ln(n)+4.335] Y=-exp[-0.501ln(n)+4.383] 

Std. dev (P) Y=exp[-0.492ln(n)+4.533] Y=exp[-0.489ln(n)+4.559] Y=exp[-0.489ln(n)+4.593] Y=exp[-0.501ln(n)+4.731] Y=exp[-0.493ln(n)+4.656] 

Std. dev (N) Y=-exp[-0.506ln(n)+4.685] Y=-exp[-0.506ln(n)+4.739] Y=-exp[-0.507ln(n)+4.783] Y=-exp[-0.503ln(n)+4.76] Y=-exp[-0.508ln(n)+4.803] 

Skewness (P) Y=exp[-0.49ln(n)+7.047] Y=exp[-0.494ln(n)+6.659] Y=exp[-0.49ln(n)+6.854] Y=exp[-0.497ln(n)+6.868] Y=exp[-0.486ln(n)+6.817] 

Skewness (N) Y=-exp[-0.504ln(n)+7.187] Y=-exp[-0.509ln(n)+6.815] Y=-exp[-0.505ln(n)+7.015] Y=-exp[-0.505ln(n)+6.958] Y=-exp[-0.501ln(n)+6.972] 

Kurtosis (P) Y=exp[-0.495ln(n)+6.837] Y=exp[-0.494ln(n)+7.888] Y=exp[-0.486ln(n)+8.482] Y=exp[-0.496ln(n)+8.86] Y=exp[-0.483ln(n)+8.858] 

Kurtosis (N) Y=-exp[-0.504ln(n)+6.93] Y=-exp[-0.508ln(n)+8.03] Y=-exp[-0.501ln(n)+8.633] Y=-exp[-0.506ln(n)+8.974] Y=-exp[-0.498ln(n)+9.015] 

Weibull k (P) Y=exp[-0.511ln(n)+5.007] Y=exp[-0.506ln(n)+4.955] Y=exp[-0.507ln(n)+5.002] Y=exp[-0.511ln(n)+5.037] Y=exp[-0.512ln(n)+5.041] 

Weibull k (N) Y=-exp[-0.489ln(n)+4.776] Y=-exp[-0.489ln(n)+4.78] Y=exp[-0.493ln(n)+4.298] Y=-exp[-0.502ln(n)+4.924] Y=-exp[-0.493ln(n)+4.849] 

Weibull c (P) Y=exp[-0.5ln(n)+4.293] Y=exp[-0.496ln(n)+4.404] Y=-exp[-0.499ln(n)+4.358] Y=exp[-0.502ln(n)+4.347] Y=exp[-0.497ln(n)+4.352] 

Weibull c (N) Y=-exp[-0.495ln(n)+4.249] Y=-exp[-0.503ln(n)+4.468] Y=exp[-0.493ln(n)+5.305] Y=-exp[-0.5ln(n)+4.333] Y=-exp[-0.501ln(n)+4.387] 

Power density (P) Y=exp[-0.499ln(n)+5.256] Y=exp[-0.496ln(n)+5.385] Y=-exp[-0.501ln(n)+5.382] Y=exp[-0.502ln(n)+5.376] Y=exp[-0.496ln(n)+5.362] 

Power density (N) Y=-exp[-0.496ln(n)+5.225] Y=-exp[-0.503ln(n)+5.451] Y=exp[-0.494ln(n)+4.305] Y=-exp[-0.496ln(n)+5.312] Y=-exp[-0.501ln(n)+5.396] 
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Table S7. Comparison of observed wind statistics at 10 m height with estimates 

from ERA5 and the Global Wind Atlas (GWA) at selected stations. Units for 

mean wind speed and power density are m s-1 and W m-2, respectively. ERA5 and 

GWA values are extracted from the nearest grid points closest to each station. 

 

Station ID 
Mean wind speed Power density 

Observed  GWA Observed GWA 

SN50500 3.53 5.47 81 261 

SN44080 6.85 7.88 417 651 

SN42160 6.57 7.77 358 534 

SN38140 2.28 4.03 21 105 

SN35860 4.80 6.11 152 254 

061800-99999 5.32 5.30 165 155 

031700-99999 4.87 6.34 171 338 


