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Abstract. Accurate wind resource assessment depends on wind speed data that capture local wind conditions, which are crucial

for energy yield estimates and site selection. While tFhe International Electrotechnical Commission (IEC) recommends at least

one year of data collection, yetthis duration may be insufficient tonet fully account for interannual variability. While-Although

studies often maximize data length, limited guidance exists on the minimum duration required tofer reliablye estimate wine

wind statistics and energy potentialspeed-and-pewer-estimatesremainstmited. To address this gap, we propose a method to
quantify the errors in wind speed distribution parameters introduced by using wind-speedtime series of different-varying lengths

for-wind-speed-distributionsfitting, relative-tecompared to long-term reference data. This allews-enables us to determine the

minimum number of hourly observations needed to achieve fer-a given accuracy-level. We apply eusthis method to both in-

situ weather station observations and ERAS reanalysis data at 10 -meter and 100 -meter heights. Our results show that basickey
parameters, inelading-such as mean, standard deviation, and Weibull parameters, can stabilize with relativelyshortrecords

£~1 month of hourly data}, whereas-while higher-order moments such as skewness and kurtosis require_substantiallys longer
records atleast-(> 1.6 years; and kurtosisrequires-88.6 years, respectively)-te-stabilize. Although ERAS-data stabilizes with
fewer-observationsfaster, it exhibits systematic biases compared tobut-differfrom in-situ measurements.;requiringearefuluse:

Moreover, random sampling (combining available hourly data) can yield comparablefer distribution parameters tofitting

_diurnally orand seasonally effeetscontrolled sampling,

while continuous sampling demands far longer records for the same accuracy. saggesting-discontinnous-data—can-be-viable
under—eertain-conditions—These findings provideeffer a practical framework for optimizing data collection in wind resource

assessments, balancing accuracy, temporal coverage, and eest-effeetivenessresource constraints.

1 Introduction

Wind energy production critically depends on strengths and persistence of winds in the lower earth’s atmosphere. Precise and
cost-effective assessment of wind speed is crucial for evaluating wind energy potential and designing wind farms and power
generators, because accurate assessments ensure that the selected site has adequate wind conditions, making the investment

economically viable and optimizing energy production efficiency (Wang et al., 2022).
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Quantifying wind speed characteristics, a crucial component of wind speed assessment, typically relies on analysing wind
speed distribution from collected data. Ideally, long-term meteorological measurements at the proposed wind turbine locations

are preferred, as they account for a broader range of wind variability. Wind speed measurements spanning four years are

typically considered suitable for short-term analysis, while datasets extending beyond this period fall into the category of long-

term analysis. A ten-year dataset is generally recommended for the most accurate wind resource assessment, if available
(Murthy and Rahi, 2017). However, despite-the-hich-demandforsuch-datacollecting such long-term measurementsdatasets
is often impractical due to the-extensive time required-and-significantassoeiated-eostfinancial constraints involved, particularly
in the early planning stages of before-the-wind farm_developments-being-eontructed (Wais, 2016).

As a more practical alternative, wind energy potential is often assessed using wind speed data spanning a single year or several
a few years (Ouarda et al., 2015). A review of 46 studies revealed that 31 of them (67.4%) used wind speed time series of six
years or less. However, such datasets lack year-to-year (interannual) variability, which can significantly affect wind speed and,
consequently, wind power output (Jung and Schindler, 2018). For example, decadal changes in wind speed can result in a
17 + 2% variation in potential wind energy (Zeng et al., 2019). Since wind farms typically operate for 20 to 30 years (Pryor et
al., 2020), relying on such short-term datasets without accounting for interannual variability can introduce significant biases
in wind energy assessments. Additionally, short-term datasets may lack seasonal or diurnal characteristics due to sampling
frequency or other factors that lead to data gaps. For instance, the Sentinel-1 Ocean wind product, aligning well with in-situ
observations and reanalysis products (Khachatrian et al., 2024), revisits the same location only once every one or two days,

making it unable to capture the diurnal characteristics of wind speed.

This discussion highlights a critical research gap: the optimal duration of wind observation time series required to adequately
account for wind variability in resource assessments remains poorly quantified. Specifically, is one year of data, as
recommended by IEC (International Electrotechnical Commission, 2019), sufficient to provide accurate assessments of wind
distributions given the interannual variability of wind? Furthermore, considering the challenges in obtaining long-term
observations, if we must reply on short-term datasets that may lack interannual, seasonal, or diurnal variability, how do errors

vary with the length of data time series?

This research gap has been highlighted in previous studies. For instance, Barthelmie and Pryor, (2003) and Pryor et al., (2004)
evaluated the accuracy of satellite sampling in representing offshore wind speed distributions. They quantified the numbers of
satellite observations required to estimate key probability distribution parameters with an uncertainty of £10%. Specifically,
mean and Weibull scale parameter required about 60-70 random selected half-hourly observations, respectively. In contrast,
the variance requires 150 observations, and the Weibull shape parameter and energy density require nearly 2000 observations,

while skewness and kurtosis required 9712 and more than 10000 observations. However, these results are specific to satellite
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observations and may not directly apply to in-situ measurements without further analysis._In-situ measurements, such as

meteorological weather stations, are more widely distributed, accessible, and frequently used in wind energy studies (Ouarda

et al., 2015; Wang et al., 2016). To the authors’ knowledge, relatively few studies have examined in-situ observations,
particularly those from weather stations certified by the World Meteorological Organization (WMO). Fhese-stations-are-mere

Our study aims to evaluate the potential biases and uncertainties that may arise when short-term wind speed data from WMO
weather stations are used for wind energy assessments. Previous work by Barthelmie and Pryor (2003) proposedused athe

random sampling approach to examine how sampling protocols affects the estimation of wind speed distribution

parameter . However, this-appreaeh-random sampling
may overlook the signifieant-diurnal-eyele and seasonal ¢ ycleeﬁfeets that are intrinsic to eommenty-ebserved-in-terrestrial-wind

speedsfrom-in-situ weather-terrestrial wind observations and critical for rellablestaﬂeﬂs—As—Hesu}FH—me&eéue%bfases
in wind energy assessmentsanalysis.

limitation, we first compare random sampling with sampling strategies that explicitly retain diurnal and seasonal cycles. This

comparison allows us to isolate and quantify the influence of temporal structures on wind speed statistics. In addition, we

evaluate the practical relevance of random sampling by contrasting it with continuous sampling, that preserves the

chronological sequence of wind speed data and more closely reflects real-world wind resource assessment practices.

Continuous datasets, such as those from anemometer towers, are commonly used in the wind energy industry, typically

covering at least one year of measurements to characterize site-specific wind conditions prior to turbine installation (Yang et

al., 2024: Liu et al., 2023). By integrating these multiple sampling strategies, our study provides a comprehensive assessment

of how sampling choices affect the robustness of wind energy evaluations based on limited-duration datasets.

We are-alse-interestedinfurther investigateing whether-how results derived from reanalysis products differ from those obtained
using WMO weather station data under various sampling strategieseanreplicate-theresultsfrom-meteorological-observations.
Reanalysis products beeere-have emerged as a primary alternative for wind resource assessment, especially given the spatial
and temporal limitations of traditional meteerelogical-datin-situ observationsa (Gil et al., 2021; Gualtieri, 2021). Reanalysis
proeduetsThese datasets provide spatially continuous and temporally-effer consistent;-eemprehensive-coverage-of wind speed
data beeause-they-are-generated-byby assimilating integrating numerical-weather predietion-models-with-observational data

from warteus-multiple sources, including satellite instruments, surface synoptic observations, ships, and drifting buoys, into
numerical weather prediction models (Hersbach et al., 2022). By-foeusing-en- ERAS; stands out as the most-eurrent-and widely
used and up-to-datetilized reanalysis product,—we-ecan-evaluate-itspotential-to-replace-in-situ-observations—in-thestatistieal

distributionfitting proeessfor-wind-speed-analysis. We used ERAS_in our study isechosen—net-enbyforbecause its strong
agreement with ebservatienal-observed wind data ates turbine-relevant heights, especially acrosspartieutarly—in Europe and
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North America;-in-terms-of mean-values-and-interannual-variability (Ramon et al., 2019).; but-alse-beeause#ERAS provides

wind speed data at both 10 -meter and 100 -meterheights, which-is-erueialforwind-turbine-anabysis—This-allewsfercnabling
direct analysis at typ1ca1 wind-tarbine-hub heights; and thus avmdmgel—mqma%mg the need for extrapolation methods, such as

red-wind profile log or power-law

extrapelations-methods, to estimate wind speeds at hub height (e.g., Soares et al., 2020; Jung and Schindler, 2019).

The main objectives of our study are as follows:

1. To evaluate how the wind speed statistics (e.g., distribution parameters) derived from short-term WMO station data

different those obtained from longer-term recordsin
2. To dBetermine the optimal length-ofwind-datatime series_length required for fitting-accurate estimation of wind
speed distribution_parameters, with quantified uncertainty -fitting-by-identifying the-errer margins-across-different timeseries
lengths.
3. To eExplore whether ERAS reanalysis products, at both 10-meter and 100-meter heights, yield consistent results
with ground-based }ike-these-frem-observations.

Through these objectives, we aim to enhance the understanding of the limitations and capabilities of short-term meteorological

data in wind speed assessment, contributing to more reliable wind energy evaluations.

2 Data and Methods

2.1 Sampling mMethods-te-identify optimal-wind-speed-series length-for-aceurate distribution

2.1.1 Random sampling

To determinefind the optimal length of wind speed series for accurately representing wind speed distribution_parameters, we

adoptedused the random sampling method proposed by frem (Barthelmie and Pryor; (2003). In our study. this approach

involves comparing the distribution parameters derived from— the full 16-year hourly wind speed series (referred to as the

study datasets) with those obtained from randomly sampled subsets of varying lengths. Specifically, we constructed sample

We-ereated-datasets ranging from 720 hours (30 days) to 52,560 hours (6 years), with increments ofin 240 -hours (10 -days)
increments;-comparing-them-to-afull +6-year-series. For each sample size, Fhis-wasrepeated 1,000_synthetic datasets were

generated by randomly selecting hourly observations with replacement from the full series using NumPy’s ‘random’ package.

: loci bilite
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For each generated dataset, we calculate -These-datasets-were-used-to-fit Weibull-distributions;-ealeulating-seven parameters:
four commonsix statistical descriptors (mean, standard deviation, skewness, kurtosis)distribution—parameters, two Weibull

parameters (shape and scale), and the Weibull wind power density. To evaluate the representativeness of these sampled subsets,

we computed the W

between each parameter estimated from the sample and the corresponding parameter from te-measure-differencesbetween

i the full 16-year series. Specifically, we focused on the upper and lower bounds of the 90% confidence interval

for each parameter across 1000 realizations at each sample size. The percent errors (Y) in these bounds were then modelled as
a function of sample size (n) using non-linear —Sinee-we-inereased-samplesize-in240-hourinerements;-we-needed-apreeise
thresheld-Using least squares fitting, resulting in equations that describe how sampling uncertainty decreases with increasing

sample length (Y = + exp[aln(n) + b]). These fitted curves enable estimation of the minimum dataset length needed to

aChieVe Qredeﬁned Crror margiHS. W-E caan-CXpPoRchHta I HRCHORTORC PCrEeRtCrHrorSCreatng-equatdonShat reratC pereeh

We sclected started-with-a-mintmum-sample-size-of-720 hours_as the starting point based on its frequent use in previous;-a
common-duration #-wind studies (e.g.. Jung and Schindler, 2019; Ouarda and Charron, 2018). while the upper limit —Fhe

maximu-of 52,560 hours (was-chosen-to-seeifa-six -years) was based on prior findings (Barthelmie and Pryor, 2004) showing

2.1.2 Diurnal- and seasonality-retained sampling

We implemented two structured sampling methods to retain key temporal patterns in the wind speed data: diurnal-retained

sampling and seasonality-retained sampling. In the diurnal-retained approach, each synthetic dataset consists of observations

evenly distributed across four 6-hour time intervals (00:00-05:00, 06:00-11:00, 12:00-17:00, and 18:00-23:00), to preserve

daily variability. For example, when the sample size is 720, we select 180 observations from each time interval. In the

seasonality-retained sampling, each dataset includes an equal number of observations from all 12 months, thereby maintaining

seasonal structure. For a sample size of 720, this results in 60 observations per month. For both methods, sampling was

performed with replacement, meaning the same observation could be selected in multiple realizations.
5
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2.1.3 Continuous sampling

The continuous sampling method is designed to simulate real-world scenarios in which wind speed data are used in their

natural temporal sequence. Unlike the random and stratified (diurnal- or seasonality-retained) sampling approaches, this

method preserves the chronological order of observations by extracting time-contiguous subsets directly from the full series.

Prior to sampling, linear interpolation was applied to fill any missing values. In this study, we investigated sample sizes ranging

from 720 hours (approximately one month) to 103,680 hours (12 years). increasing in one-month (720-hour) increments. As

this method requires each extracted subset to be continuous, the source dataset must be longer than or equal to the target sample

size. For example, given a 46-year hourly wind speed dataset, we can extract all possible one-year-long continuous sequences

(i.e., using a moving window of one year), resulting in 395,089 potential samples of 8,640 hourly observations each. Due to

computational constraints, we randomly selected 1,000 sequences for each sample size, in line with the approach used for the

other sampling methods. The same parameter estimation procedure was then applied to these sequences to assess variability

and estimate confidence intervals.

2.2 Probability density distributions

In this study, we exclusively employed the two-parameter Weibull probability density function to fit wind speed data. The
function is expressed as Eq. (1):

po) = () e M)

c c

where v represents the wind speed, & is the shape parameter, and ¢ is the scale parameter. The Weibull distribution is
characterized by two key parameters: the dimensionless shape parameter, which determines the curve’s shape, and the scale
parameter, which adjusts the distribution along the wind speed axis. The distributions vary with different values of & and c,
making it a popular choice for approximating observed wind speed frequencies (Wais, 2017; Ouarda and Charron, 2018; Carta

et al., 2009).

To estimate the Weibull parameters, we used the 'weibull min.fit' function from Python’s ‘scipy.stats', employing the
maximum likelihood estimation (MLE) method. MLE is preferred for its superior performances in parameter selection
(Mohammadi et al., 2016). This 'weibull_min.fit' function is particularly useful for iterative experiments requiring repeated

Weibull distribution fitting, such as those with thousands of iterations.

We focused on the first four moments of the distributions: mean, standard deviation, skewness, kurtosis, and the Weibull shape
and scale parameters, chosen for their importance in wind resource assessment. The standard deviation indicates wind speed
variability, while skewness and kurtosis provide insights into asymmetry and extreme values in the distribution. We calculated

the mean and standard deviation using Python’s ‘numpy’ package, and the other parameters with ‘scipy.stats’.
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2.3 Wind resource assessment method

We used the Weibull wind power density to represent wind resources at a specific location. The Weibull wind power density

is calculated using the estimated Weibull k and ¢ parameters, and is given by the Eq. (2):
_1 3 3
E=2pc F(”E)’ @)

where E represents the wind power density (W m™), p is air density (with 1.225 kg m>, the standard air density
provided by IEC, used for calculation), and I" is the gamma function.

We chose the Weibull wind power density in our study for two main reasons. First, wind power density measures the amount
of kinetic energy in airflow passing through a unit area, which can be converted into wind energy. It is a critical metric for
evaluating wind resources and has been widely adopted in previous studies (e.g., Wang et al., 2022; Mohammadi et al., 2016).
Second, the Weibull wind power density can be easily derived from the scale and shape parameters of the Weibull distribution,

simplifying the calculation process.

Given that our objective is to determine which dataset—specifically, which time series length—most accurately represents
long-term wind conditions, the use of Weibull wind power density enables us to compare how the shape and scale parameters
vary with datasets of different lengths. This approach helps us more effectively identify the time series that best captures long-

term wind resource variability.

2.4 Data sources
2.4.1 In-situ observations from weather stations

In this study, we first utilized weather station observations from the Norwegian Meteorological Institute (MET Norway). This
data, accessed via their API (https://frost.met.no/observations/v0.jsonld?; last accessed 8 February 2025), offers hourly wind
speed resolution over long periods, suitable for analysing interannual variability, as wind assessments typically need at least

hourly resolution (Jung and Schindler, 2019).

We aimed to compare wind distribution parameters from short-term data with long-term series that include interannual
variability. We prioritized weather stations with the longest hourly data series, retaining years with at least 8,600 hourly

observations (97.9% of the possible 8,760 or 8,784 hours annually).

We identified five stations with over 16 years of hourly data: SN50500 (18 years), SN44080 (16 years), SN42160 (20 years),
SN38140 (24 years), and SN35860 (17 years). Details are in Table 1, and their locations in southern Norway are shown in Fig.

1. We standardized the data to 16 years per station, omitting years with fewer observations for consistency.
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Using the same years across all stations was not feasible due to data availability differences, so the years analysed varied.

Table S1 details the selected years and_percentage of hourly observations. The year with the fewest observations had 8,636

648 hours (98.3245% coverage), and the average yearly count was 8,744 hours (99.54% coverage).

Additionally, to complement the main analysis conducted on above five Norwegian stations, we used two additional stations

located in Copenhagen Airport (Denmark) and Leuchars (Scotland, UK) from another dataset, HadISD, version

v3.4.2.202501p (https://www.metoffice.gov.uk/hadobs/hadisd/; last accessed 14 June 2025: Dunn et al. 2016). Both sites

provide 46 years (1979-2024) of hourly wind speed observations with an average data coverage of 99.2% annually (minimum

yearly data coverage is 95.7% due to untimely updated data for 2024). The data coverage of each year is shown in Fig. S1.

Table 1: Details of weather stations used in this study.

Height
. . Data WMO . Latitude of . Longitude of above Elevation of
Station 1D Location source number Latitude ERAS grid Longitude ERAS grid mean sea ERAS grid
level
SN50500  Flesland 1311 60.2892°N  60.25°  5.2265°E 5.25° 48 m 03m
SN44080 Oblf,eysrtad 1412 58.6592°N  58.75°  5.5553°F 5.50° 24m 56m
SN42160  Lista Fyr NMET 1427  58.1090°N  58.00°  6.5675°E 6.50° 14m 127.1 m
SN38140  Landvik orway 1464  583400°N  58.25° 8.5225°E 8.50° 6m 55.4m
SN35860 L‘{:nygr”r 1467  58.6362°N  5875°  9.1478°E 9.25° 4m 439m
061800- Kastrup / 55.618° N / 12.656° E / 52m /
99999
031710 HadISD
99999 Leuchars / 56.373°N / -2.868°E / 11.6 m /

Note: As the last two stations (Kastrup and Leuchars) were added specifically for the sensitivity analysis discussed in Section 4.1, they were
excluded from the comparison with ERAS.
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2.4.2 ERAS reanalysis

For the ERAS reanalysis products, we downloaded the “10m u-component of wind,” “10m v-component of wind,” “100m u-
component of wind,” and “100m v-component of wind” variables from the Copernicus Climate Data Store

245  (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download; last accessed 8 February 2025). We
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calculated the wind speed at 10 m and 100 m by taking the square root of the sum of the squares of the u-component and v-

component of wind. We used the ERAS grid point closest to the location of each station, as indicated in Table 1.

3 Results

3.1 Can random sampling replace diurnal cycle-retained or seasonality-retained sampling?

The The-five Norwegian stations exhibitshew distinctsignifieant diurnal and seasonal variations (Fig. S1-S2). To assess
whether Werandom sampling can serve as a substitute for eemparedrandomsampling—with-diurnal_cycle-retained or -ané
seasonality-retained sampling—te-evaluate—its—suitability, we compared-_the 90% confidence intervals (Cls) of distribution

parameters derived from each methodsderiveding, rather than on single-point parameter estimates. This comparison can also

help understand how sampling strategy affects uncertainty.

10
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Figure 2: Distributionparameters-and-Weibull pewer-densityEstimates of mean wind speed, Weibull scale parameter, and power

density from three sampling strategies, based on in-situ observations from five Norwegian stations. The 90% confidence intervals (CIs)
are shown for each sampling method: -aeress-random_(orange)lyseleeted, diurnal-cycle-retained (purple dashed), and seasonality-retained
(blue dotted)-samphngexperimentsforin-sitobservations. Each Bblack dots represents athe parameter_estimates ealeulated-from each
individual randomsampling-experimentsa single sampling realization of random sampling; corresponding realizations for the other two
methods are not shown. Each-experimentutilized-hourly-observationswith-sSample sizes rangeing from #=720 30-days)}to »=52,560 (30
days to 6 years), increasing inerementathybyin 240--hours (10--days)_increments, with-—Fereach-samplesize 1,000 #erations-realizations

were-conduetedper size. Red asterisks indicate the reference values derived-from the entire-full 16-year hourly dataset;-as-detaled-in (see
Table 12). Shaded areas The-dark-blue-andlight blue shaded-areas-represent-the £2% (dark blue) and £5% (light blue) ureertainty-deviation
ranges from full-series values—Fespeeﬁ*ely—feF@%&%s—ef—th&elW&d—a%aset %%%eenﬁéene%ﬂ%ewals—@@—a%%hemq—fepeaeh

To visually compare the uncertainty ranges between the sampling methods, Figure 2-shows-thattheFig. 2 and Fig. S4 presents

the 90% confidence intervals (Cls) derived from each approachferrandem—sampling-everlap—with-thesefor-diurnal-and
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differenees. It is evident that the intervals from random sampling largely overlap with those from diurnal and seasonality-
retained sampling. To quantify these differences, we calculated Fhethe CI differences (Fig. S5) and the averageroot mean

square error (RMSE) of these differences (Table S2). i

on mnling Pawzar dangs haoc tha laraa DN\
a 54 - S &S &

#-90%Cls—are-smalbMost parameter differences fluctuateing around zero, with magnitudes generally within +0.2; power

density is the only parameter showing larger fluctuations, within £3. These differences tend to decrease as; with-larger
deviations-atlow-datasample density increases; stabilizingas-density-inereases(Fig. S5). Parameter differencesare-within=0-2;
while-power-density-differencesrange-from+3--Power density hasalso exhibits the largest RMSE, likely due to its broader
value range (from tens to hundreds), while the shape parameter hasshow the smallest RMSE (Table S2).

We alse-further analysed-examined whether similar results hold for ERAS +06-meter-wind speed data_at 100 meters, which
better reflect turbine--te-assess—randomsamplingataltitadesrelevant altitudes and -to-wind-turbines;-help addressing the taek
scarcity of high-elevationaltitude observational-datameasurements. Similar CI overlaps were observed -in-the100-meter-data
(Fig. 3, S6). Average-The mean RMSEs valuesof the differences of parameters from the ERAS 100-meter (0.4896 for diurnal-
retained and 1.1010 seasonal-retained) wereare comparable to_those from in-situ ebservations-: 0.2865 (diurnal-retained) and
0.3903 (seasonality-retained). (Fig—S4)y-but-shightlyThe higher values were primarily driven by due-totargerpower density
differences:-0-4895for-diurnal-and +-1010-forseasonalitysamphing (Table S3S2). A similar pattern in the 90% confidence
interval differences among the three sampling strategies is observed in the ERAS 100 m dataset and the in-situ observations
(Fig. S7). Based on these findings, we conclude that Fhese—findings—confirm-random sampling isas a viable method for
analysing-estimating wind distribution parameters.speeds atboth at surface and elevated-turbine hub heightslevels. Therefore

Fhus;wewe adopted-used random sampling in furthersubsequent analyses to determine the optimal sample size for capturing
long-termeveralt wind characteristics.
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Figure 3: Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies, based on ERAS

100-meter data.

were-conduetedSampling methods and visualization are consistent with Figure 2. Red asterisks indicate values from the full 16-year ERAS
100 m dataset. Shaded areas represent 2% (dark blue) and £5% (light blue) deviation ranges from full-series values.—Fhe-90%-confidence

3.2 Effects of sample size on estimating wind distribution parameters

We investigatedstudied how sample size affects the accuracy of wind distribution parameters. Figure2-shows—how—six
Bt i se-wib-nercasingsample-size—with-full-datasetvalues—n-Table 2-Despite

differences in wind conditions (Table 2; Fig. S8), differentlocations-and-wind-speeds;-theall five Norwegian stations shewed
exhibited consistent patternresults.
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Table 2: Distribution parameters and Weibull power density of five Norwegian stations, derived from the entire datasets. Note: for
ERAS5 products, the station ID indicates the corresponding grid point location.

Data products Station ID (h:le;?) S(tgl S?;/ " Skewness Kurtosis Sthe c ?;lalsi) Power density (W m)

SN50500 3.53 2.66 1.12 1.81 1.51 4.07 81.08

Inesitu weather SN44080 6.85 3.94 0.76 0.45 1.83 7.74 41734
o SN42160 6.57 3.68 0.65 0.34 1.88 7.43 358.49
SN38140 2.28 1.61 0.92 1.28 142 251 21.61

SN35860 4.80 2.88 0.79 0.47 1.74 541 152.15

SN50500 4.82 2.45 0.30 068 207 5.44 126.73

SN44080 7.58 3.74 0.35 036  2.13 8.55 478.87

SN42160 8.04 3.74 0.32 028 228 9.07 539.59

ERAS (10 meter) SN38140 4.74 227 0.45 015 220 5.35 113.61
SN35860 4.50 2.19 0.48 006 216 508 98.77

SN50500 6.02 271 0.22 048 236 6.8 219.44

SN44080 9.42 4.83 0.40 029 203 1061 959.38

SN42160 9.79 4.72 0.35 018 218  11.04 1009.61

ERAS (100 meter) SN38140 731 331 0.31 007 233 8.24 396.08
SN35860 6.60 321 0.37 013 2.5 7.44 311.57

We found that, Aas heurlyebservationssample size increased, the—abseolute—ranseforall-parameters—deereased,—though

robustness-vartedthe 90% confidence intervals (Cls) for all parameters narrowed. though the rate of convergence varied. The
mean, standard deviation, and Weibull k and ¢ parameters were-mestrobuststabilized quickly, with-90%cenfidence-intervals
within £5% error margins even atfrem-the-startwith 720 hourly observations (Fig. 2, S4). In contrast, power density had-a
largerrangeshowed greater variability, and skewness and kurtosis were far less robust, remaining beyond —Even-withsix-years
of data(n—=>52,560);some-skewness-and-kurtosis-values-exceeded-the +5% even after six years of hourly datamargin due to
their sensitivity to data-distribution tails and extremes-values; requiring larger samplesizes.

2003).To assess systematic bias, wWe examinedealeulated the median_values ef-across 1,000 resampling iterationsgreups-for

each-parameter(Fig. S559). andfound-sSkewness and kurtosis—especially kurtosis; showed significant-biasesundernotable
underestimation at low sample sizesdata-densityaligning-with-past-findings. At 720 observations, median skewness was over
2% lower, and kurtosis more thanever 25% lower than the full-series baseline-dataset-akses. The Kkurtosis bias impreved-te
withinremained above 10% with-until sample size exceededever 2,160 ebservationshours.: and SN50500 required had-the
hfge&t—kuﬁests—uﬁdefesﬁma&eﬂ—ﬂeedmg—at—}e&st—ZZ 080 observations_(~2.5 yrs) to reduce error to_within 10%. In contrast, ©

other parameters_varied by less than;—

valuesacross all sample sizes.
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3.3 Determine an effective sample size for capturing overall wind characteristics

To determine the optimal sample size for capturing wind characteristics, we evaluated-analysed the relationship between

percent errors aeross-eifferent-sampleand sample sizes (Fig. 4-5). Percent error measures discrepancies between parameters
from the full dataset and smaller subsets;-helpingidentify-the minimum-observationsneeded for target-aceuracy. Based on the

90% ClIs derived from 1,000 realizations of random sampling of in-situ observations (orange lines in Fig. 2 & Fig. S4), we

computed percent errors of CI bounds and fitted power-law equations to describe their dependence on sample size. These fitted

equations ferpereenterrors-are summarized in Table S23 and allow extrapolation of error margins for any given sample size.

As expected, ebservations-inerease-percent error decreases with increasing sample size, but-though the rate and extent vary
across different-parameters—need—varyingsample—sizes—to—meet-speeifie—errorthreshelds. For most stations, 720 hourly

observations are sufficient to constrain the keep-percent errors_within +7% for the mean, standard deviation, and Weibull

parameters-within+7% (Fig. 4). Heweverln contrast, higher-order statistical moments pewer-density;-such as skewness; and

kurtosis, as well as power density, show much larger errors with-under the same ebservationssampling conditions, with erress

of-at-leastdeviations ranging from +10%_up to +150%, depending on the station. VariabHity—is—greater—for—theseThese

parameters show greater variability across stations, with error differences of 4.6% for power density, 18.1% for skewness, and

154.2% for kurtosis, compared to less than 1.5% for others. Errors decrease quickly below 400 observations and more slowly

above (Fig. 5). About 200 observations can achieve +10% error for the mean, standard deviation, and Weibull parameters (Fig.

5).

bout 200-observations-can-achieve+10% error for the mean.standard deviation—and Weibull parameters- To
facilitate practical use, we calculated the minimum sample sizes required to achieve -Fable 3-detatls-sample-sizesneededfor
error-margins-of £10%, +5%, £2%, and £1% ecrror margins for each parameter at each station (Table 4). For example, +5%
erreraccuracy requires 459 observations for; the mean,and 470 for the Weibull scale -need-459-and-470-observations-(20 days),

796 for respeetively—Sstandard deviation reguires796-observations—(34 days), and 4.031 for -the-Weibull-shape needs68+

observations{(28-days). Ppower density. needs—4;031-observations(168-days)—Achieving £2%_and £1% error requires six
timnes6-fold and 24-fold ofmere observations than +5%, respectively-and=t%needs24-times—mere. Skewness and kurtosis

are especially data-intensive -need-significanthy-mere-data-due to their sensitivity to distribution tails. For instance, SN38140
needs 177,390 observations (20 years) for +10% error, while SN50500 needs 1,541,437 observations (176 years). These

We also observe regional differences in sample requirements. Stations with higher wind speed variabilityvariability, but lower
skewness and kurtosis reed-tend to require fewer ebservationssamples-forthe same-error-margins. For example, SN50500 and

17



SN38140, with the highest skewness and kurtosis, require more observations. AH-parameters-exeept-skewness-and-lurtosis
show-mederateregional-differences—Power density has the largest regional difference (max/min ratio ef= 2.1), while the
380 Weibull shape shows the least parameter-has-the-smalest-(ratio-of1.2). Skewness and kurtosis shews-significantare sensitive
to regional-differeneeswind characteristics, with required samples increasing from-3.96-te--6.1-times; and kurtosisfrom-8.69-
to-13.16, respectively-times, as-when error margins decrease from £10% to +1%.-Fhis-hishlichtsskewness-and-laurtosis's

onal variabili | data disteibution tails.
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Table 3. Fitted equations describing the relationship between the percent error (¥) and sample size (n), based on random sampling results

from five in-situ weather stations. Each equation corresponds to a power-law fit of the 90% confidence interval (CI) bounds, positive (P) and

negative (N), for each parameter, across sample sizes from 720 to 52,560 hours.

Parameters

SN50500

SN44080

SN42160

SN38140

SN35860

Mean (P)

Mean (N)
Std. dev (P)

Y=exp[-0.507In(n)+4.888]

Y=exp[-0.503In(n)+4.579]

Y=exp[-0.497In(n)+4.497]

Y=exp[-0.496In(n)+4.724]

Y=exp[-0.494In(n)+4.536]

Y=-exp[-0.511In(n)+4.929]

Y=-exp[-0.494In(n)+4.491]

Y=-exp[-0.498In(n)+4.504]

Y=-exp[-0.500In(n)+4.758]

Y=-exp[-0.501In(n)+4.601]

Y=exp[-0.497In(n)+5.045]

Y=exp[-0.503In(n)+4.579]

Y=exp[-0.486In(n)+4.692]

Y=exp[-0.497In(n)+4.971]

Y=exp[-0.4891n(n)+4.748]

Std. dev (N)

Y=-exp[-0.509In(n)+5.169]

Y=-exp[-0.494In(n)+4.491]

Y=-exp[-0.500In(n)+4.838]

Y=-exp[-0.503In(n)+5.033]

Y=-exp[-0.504In(n)+4.904]

Skewness (P)
Skewness (N)

Y=exp[-0.452In(n)+6.610]

Y=exp[-0.495In(n)+6.434]

Y=exp[-0.483In(n)+6.523]

Y=exp[-0.482In(n)+6.579]

Y=exp[-0.488In(n)+6.254]

Y=-exp[-0.471In(n)+6.807]

Y=-exp[-0.502In(n)+6.522]

Y=-exp[-0.496In(n)+6.665]

=-exp[-0.506In(n)+6.825]

Y=-exp[-0.509In(n)+6.475]

Kurtosis (P)

Y=exp[-0.436In(n)+8.521]

Y=exp[-0.493In(n)+8.449]

Y=exp[-0.474In(n)+8.746]

Y=exp[-0.469In(n)+7.971]

Y=exp[-0.488In(n)+8.273]

Kurtosis (N)

Y=-exp[-0.451In(n)+8.673]

Y=-exp[-0.500In(n)+8.540]

Y=-exp[-0.485In(n)+8.869]

Y=-exp[-0.496In(n)+8.254]

Y=-exp[-0.507In(n)+8.472]

Weibull k (P)

Y=exp[-0.5081n(n)+4.902]

Y=exp[-0.503In(n)+4.845]

Y=exp[-0.5031In(n)+4.907]

Y=exp[-0.509In(n)+4.994]

Y=exp[-0.51In(n)+4.919]

Weibull k (N)

Y=-exp[-0.491In(n)+4.721]

Y=-exp[-0.493In(n)+4.731]

Y=-exp[-0.484In(n)+4.696]

=-exp[-0.5011n(n)+4.906]

Y=-exp[-0.493In(n)+4.735]

Weibull ¢ (P)

Y=exp[-0.507In(n)+4.864]

Y=exp[-0.503In(n)+4.580]

Y=exp[-0.496In(n)+4.494]

Y=exp[-0.497In(n)+4.782]

Y=exp[-0.494In(n)+4.55]

Weibull ¢ (N)

Y=-exp[-0.512In(n)+4.906]

Y=-exp[-0.495In(n)+4.505]

Y=-exp[-0.498In(n)+4.506]

Y=-exp[-0.501In(n)+4.824]

Y=-exp[-0.501In(n)+4.619]

Power density (P)

Y=exp[-0.508In(n)+6.011]

Y=exp[-0.505In(n)+5.689]

Y=exp[-0.495In(n)+5.547]

Y=exp[-0.500In(n)+5.854]

Y=exp[-0.493In(n)+5.614]

Power density (N)

Y=-exp[-0.509In(n)+6.014]

Y=-exp[-0.492In(n)+5.560]

Y=-exp[-0.497In(n)+5.566]

Y=-exp[-0.497In(n)+5.813]

Y=-exp[-0.5In(n)+5.674]
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Figure 4: The relationship between the percent error (Y) and sample size (n) 90%-confidence-intervalsfor-the percent-error-in-the

based on hourly observations ranging

from n =720 (30 days) to n= 140,160 (16 years) across five stations. The equations of fits here are shown in Table 3. Grey circles indicate

the values used to fit the 90% confidence intervals for the percent error shown. The-equations-of fitshere-are-shewn-in-Table-S4-
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Figure 5: Same as Fig. 4, but the hourly observations ranging from n= 24 (1 day) to n= 720 (30 days) across five stations. These
intervals are calculated using the same fits as shown in Fig. 4.

400

Table 4. Required number of randomly selected in-situ observations (unit: hours) to obtain an estimate within +10%, +5%, £2%,
and £1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. The

fits to get the required data density are shown in Table S2.

Errqr Location = Mean Std.dev. Skewness  Kurtosis Shape  Scale Power density
margins k
SN50500 170 279 14297 1541437 166 162 1489
SN44080 92 162 4505 262169 157 93 813
£10% SN42160 83 160 6658 801270 177 84 709
SN38140 135 228 7673 177390 198 153 1211
SN35860 98 175 3611 204844 169 101 853
average 116 201 7349 597422 174 119 1015
SN50500 659 1087 63795 7545102 649 629 5836
SN44080 365 655 17944 1058755 623 368 3202
5% SN42160 335 640 26968 3458621 700 338 2859
SN38140 541 905 30229 777573 774 610 4840
SN35860 393 691 14084 847284 657 404 3417
average 459 796 30604 2737467 681 470 4031
SN50500 3956 6576 484327 61581562 3936 3770 35501
SN44080 2256 4165 111517 6790761 3853 2276 19931
129, SN42160 2113 4008 174520 23905124 4321 2131 18057
SN38140 3379 5593 200542 5484926 4689 3793 30218
SN35860 2445 4262 88940 5535245 3956 2513 21623
average 2830 4921 211970 20659524 4151 2897 25066

+1% SN50500 15531 25766 2244402 301432368 15383 14785 139117
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405

410

415

420

425

430

SN44080 8944 16876 444166 27700221 15295 9032 81625

SN42160 8503 16046 733004 103184595 17126 8585 72806
SN38140 13574 22191 844568 24042683 18315 15117 120783
SN35860 9757 16870 368113 22895088 15391 10011 88205

average 11262 19550 926851 95850991 16302 11506 100507

3.4 Does ERAS reanalysis (10 m and 100 m) show similar results with in-situ observations?

To assess the consistency of reanalysis data with in-situ measurements, Wwe comparedanalysed-the ERAS dataset-to-assess
its-deviationsfrom(10 m and 100 m) in-situ observations. EAt four out of five stations, shewed-that ERAS overestimated-the

mean wind speeds infer both the full time series (Table 2) and sampling experiments (Fig. 6_ & Fig. S10), likely due to a
higheran overrepresentation of low-to-moderate wind speeds frequeney-oflower-wind-speeds-at-these locations—(Fig. S6S8).
Simtarky;ERASThis bias also led to overestimationed of the Weibull scale parameter atfer stations with higher wind speeds
and underestimation at those with lower speedsed-i-for-ethers. i

values-observed-atthe samelocations{Fig—S6). Additionally, Fthe Weibull shape parameter was consistently higher in ERAS,

often exceeding 2, indicating a potential bias in overestimating high wind events. These biases collectively contributed

toaffeeted systematic overestimation inthe Weibull power density ealenlations;-eausingsystematic-diserepaneties(Table 2 &
Fig. 6 & Fig. S10).

Both in-situ and ERAS distributions were positively skewed (Fig. S8), but in-situ data had higher skewness (Table 2). ERAS
samples-consistently showed lower skewness (Fig. 6S10). For kurtosis, ERAS-had-negative-values-aeross-allstations;—while
in-situ observations_show positive values-had-pesitive kurtosis (Table 2), indicating more peaked distributions, whereas ERAS
exhibited negative values, reflecting flatter, less variable distribution—areund—the—mean. In-sitatcartosis—varied—wideby
espeeiathy-atThe largest divergence was observed at SN50500 and SN38140 (Fig. S106a4-&-6d4), where in-situ kurtosis varied

substantially, whileas ERAS values remained comparatively uniform had-flatterdistributions-with-less—vartability-(Fig. 6a4-
€4510).

PuetoThese differences influenced sample size requirements. in-skewness-and-kurtosis-For mean, standard deviation, Weibull

scale, and power density, ERAS (10m) generally requireds fewer data points fer-to achieve the same error margins thresholds

ity—(Table 4S3). However, for tail-sensitive

parameters like shape, skewness, and kurtosis, ERAS needs-require larger mef%samples size. Additionally, ERAS results

showed lower inter-station variability, as indicatedDi

by

overlapping-in percent--error curveshnes (Fig. S7S11-S8S12). The equations used to estimate percent errors under different

sample sizes for ERAS5 10 m are summarized in Table S4.
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We alse-examined-further analysed the ERAS5 100 -meter dataset, which aligns more closely with-to-see-ifitrequiressimilar
data-densities-as-the 10-meter-data,given-itsrelevaneeto turbine-hub heights. As shown in fFigures S9S13-S10-S14, shew-that
fermost parameters had similar data density requirements to those at ERAS -the 100-meter dataset needs-similarobservations
as-the-10 -meter dataset, though data-densityit can vary by station. For instance, SN42160 had the highest error in the 10-meter

dataset, while SN35860 showed nearly double the error under the same density. Table S5 summarizes the required sample

ity, showing broadly similar patterns across both

heightsbeth-datasets have-similar requirements, but the 100-meter dataset consistently requiredreeds more data for the shape

parameter. The equations used to estimate the required sample sizes for ERAS 100 m are summarized in Table S6.
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Figure 6: Estimates of mean wind speed, Weibull scale parameter, and power density based on random sampling of ERAS 10-meter

reanalysis data (black dots) across five Norwegian stationsDi

es. The sampling strategy is consistent with Figure 2. Each

with-1;000-iterationsforeach-samplesize-The 90% confidence intervals (Cls) %Fth%raﬂdemly—seleeteéare shown as orange lines (ERAS)-

10m-(erange lines)- and grey linesand (in-situ ebservations{grey-lines)are-presentedobservations). Red asterisks indieate-denote reference
values the-valuesfor-the-entirderived from the fulle 16-year-hourly ERAS5-10m dataset; grey asterisks represent the corresponding values

from in-situ observations. Fhe-dark-blue-and tight bBlue shadinged-areas represents £2% (dark) and £5% (light) uncertainty margins around
the-ERAS-10m datasetreference values, respeetively-while the-dark-grey shadingand-light-grey-shaded-areasrepresent indicates the same
margins around Fho———ecorrespondite———dRecktinl——or———in-situ observationsreference values.
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SN44080 66 17 8313 44143 185 67 472
100 SN42160 57 126 H723 95190 oL £ el
SN38140 60 134 8735 74310 195 59 460
SN35860 64 139 6207 3540359 185 64 508
sesms 64 123 9262 944804 188 64 468
SN50500 290 378 32016 19838 695 288 1856
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SN38140 238 528 34605 2908557 751 232 1825
sesseed 2 549 24898 14867900 6 254 2041
average 255 482 34138 3673452 731 254 1862
SN50500 1780 2314 200956 124202 455 137 1362
SN44080 1642 2826 208777 128607 4469 1649 1743
0, SN42160 1443 3016 208655 2556252 4626 1424 10706
SN38140 1461 3244 2215 H F875 139 4468 1430 H29%8
SN35860 1587 3343 163203 99101030 4294 387 12890
average 1583 2949 219061 24325054 4403 1574 11600
SN50500 7030 9113 809645 498171 16071 7032 44916
SN44080 6548 11134 848415 4558267 17597 6563 et
19 SN42160 5802 11843 1220400 10544961 18114 5721 43071
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SN35860 255 535 44939 3346344 815 255 1916
average 251 501 44535 1464393 799 249 1832
SN50500 1391 2651 427303 248311 4604 1347 9434
SN44080 1786 2950 176226 2103464 4560 1819 12841
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SN35860 1587 3244 296038 22351593 4884 1590 12125
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SN50500 5556 10417 1757931 1008422 17854 5394 37889
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4 Discussions and Implications

4.1 Sensitivity to sampling strategy and climatic non-stationarity

In wind energy assessments, continuous sampling is more commonly used than random sampling because it preserves temporal

structure and seasonal variability in wind speed time series, and most importantly, only long-term data are not available.

However, continuous sampling may also introduce systematic bias, particularly over short durations, due to temporal

autocorrelation and underlying climatic non-stationarity. To investigate the extent of this effect and assess the generalizability

of random sampling, we conducted a sensitivity analysis using 46 years (1979-2024) of hourly wind speed data from two

coastal meteorological stations: Copenhagen Airport (061800-99999, Denmark) and Leuchars (031710-99999, Scotland).

These sites were chosen for their long-term records and meteorological similarity to the five Norwegian locations analysed

earlier. Copenhagen station exhibits a long-term decreasing wind speed trend (Fig. S1), consistent with broader global

observations (Zeng et al., 2019).
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Our results show that continuous sampling generally requires significantly longer periods to achieve the same level of

uncertainty in estimated distribution parameters compared to random sampling (Fig. 7). This discrepancy arises because

random sampling draws from multiple years, thereby capturing a wider range of interannual variability and reducing exposure

to temporal clustering. Consequently, the 90% confidence intervals (CIs) under random sampling are symmetric for all

parameters, while under continuous sampling, only the CIs for mean wind speed, Weibull scale parameter, and power density

are symmetric. Shape-sensitive parameters, including standard deviation, skewness, kurtosis, and especially the Weibull shape

parameter, exhibit pronounced asymmetries under continuous sampling, particularly at short durations (<2 years). This

suggests that the presence of systematic climatic anomalies in continuous subsets may bias shape estimation.

These findings support earlier recommendations by Murthy et al. (2017), who advocate using at least four to ten years of data

for reliable wind energy assessments. Our results suggest that when using continuous sampling, at least five years of data may

be required to achieve £10% relative uncertainty in power density estimates, although this threshold is site-specific (e.g.,

Copenhagen station requires more than 10 years). We further recommend that random sampling be considered as a

complementary tool to identify potential biases in short-term continuous assessments.
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Figure 7: distribution parameters and Weibull power density derived from random sampling (orange lines) and continuous sampling

(black lines), based on in-situ measurements from weather stations. Asterisks indicate values computed from the full 46-year dataset.

Values for sample lengths between 14 and 46 years are omitted for visual clarity. Details of the experimental setup and sampling procedures

are provided in the Methods section.

His—elaimed-that theThe uncertainty bounds acquired by the metheds—random sampling in this study provided exhibit

robustness and are applicable to all remotely sensed wind speed data series (Barthelmie and Pryor, 2003). Specifically, they
reached this conclusion by finding a similar required sample size with an uncertainty of £10% from five different locations,
including Denmark, eastern North Pacific, the Gulf of Mexica, the Gulf of Alaska, and the western Atlantic (Barthelmie and
Pryor, 2003; Pryor et al., 2004). However, upon replicating their methods using in-situ wind speed measurements from WMO
stations, we are reluctant to draw the same conclusion. Although when using the same error margin (£10%) as Barthelmie and
Pryor, (2003), we obtain similar results. As the error margins narrow (from £10% to +1%), the discrepancy among stations
becomes significant. Therefore, we suggest that the uncertainty bounds presented in Table 3 exhibit robustness and are
applicable only under higher error margins, such as those exceeding +£10%. Additionally, lower moments and two Weibull

parameters showed higher robustness.

Furthermore, although we provided the uncertainty bounds for datasets with fewer than 720 samples, it is important to note
that we calculated these values based on an exponential function fitted to the results derived from 720 to 52,560 points. As a
result, the curve may be biased due to the potential asymmetry in the distribution of the parameters (Barthelmie and Pryor,

2003).

Our results indicated that ERAS tends to overestimate the mean and Weibull scale parameters. Discrepancies between ERAS
and observational data are unsurprising, as previous studies have noted differences in magnitude and trends (Zhou et al., 2021;
Torralba et al., 2017). These discrepancies can be partly attributed to ERAS not assimilating in-situ land observations and the
inherent limitations of the ERAS reanalysis (Hersbach et al., 2020), such as its inability to accurately reproduce mesoscale
dissipation rates (Bolgiani et al., 2022). Additionally, modern data assimilation systems still struggle to adequately correct the
inevitable errors in model-generated guess fields at these smaller scales (Wang and Sardeshmukh, 2021). Consequently, ERAS
may underestimate variability and fail to capture local extremes observed in in-situ data, leading to discrepancies in parameters
like skewness and kurtosis. For instance, at stations SN50500 and SN38140, in-situ data show significantly more wind
observations close to zero compared to ERAS datasets, resulting in distinct wind characteristics such as differing skewness

and kurtosis.
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4.2 Evaluation of global wind atlas estimates against observations

Since the publication of the first European Wind Atlas in 1989 (Dorenkdmper et al., 2020), the wind atlas methodology has

been widely adopted for regional wind resource assessments, including in countries such as Finland (Tammelin et al., 2013)

and Greece (Kotroni et al., 2014). The Global Wind Atlas (GWA), developed by the Technical University of Denmark, applies

the well-established numerical wind atlas method to downscale coarse-resolution reanalysis data to microscale levels. This is

achieved using linearized flow models and topographic corrections based on the WAsP model. GWA provides publicly

accessible estimates of mean wind speed and power density, which have been used in applications such as bias correction of

reanalysis data for wind power simulations (Gruber et al., 2022).

Given the energy-focused perspective of this study, it is relevant to compare our results with GWA estimates. We extracted

GWA values at the nearest grid points for selected stations and compared them with observational estimates based on the full

time series. Table S7 presents this comparison, focusing on two key metrics in wind energy assessments: mean wind speed

and power density. The results show that GWA consistently overestimates both wind speed and power density relative to our

station-based observations.

One likely explanation for this discrepancy lies in the different ways topographic effects are incorporated. As described by

Davis et al. (2023), the GWA estimates the predicted wind climate (PWC) by applying high-resolution topographic

perturbations to the generalized wind climate which is based on coarse reanalysis fields. The PWC is represented by a set of

Weibull distributions and directional frequencies for each of 12 directional sectors, and these are used to calculate derived

variables such as mean wind speed and power density.

4.31 Implications

Both onshore and offshore sites exhibit seasonal variations, with onshore and near-coast locations often experiencing
significant diurnal cycles (Barthelmie and Pryor, 2003; Barthelmie et al., 1996; Ashkenazy and Yizhaq, 2023). Our findings
indicate that random sampling can effectively analyse wind distribution parameters, even when dealing with discontinuous
data that lacks explicit diurnal or seasonal cycle information. This is particularly important given the challenges associated
with accurately collecting data that reflects these cycles; factors such as anemometer malfunctions, site relocations, and other
disruptions can create gaps in the wind speed data series, leading to non-continuous records (Liu et al., 2024). For instance,
the Sentinel-1 Level 2 OCN ocean wind field product (1 km resolution), while performing well in offshore areas, has a revisit

frequency of one to two days that may not sufficiently capture rapid temporal variations (Khachatrian et al., 2024).
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It was noted that this finding is drawn from analyses utilizing a 90% confidence interval. This confidence level indicates that
while minor discrepancies may exist in the data, they are considered negligible under specific statistical assumptions. Therefore,
we argae-conclude that random sampling provides a practical and statistically robust alternative, particularly in scenarios where

it is not feasible to retain the characteristics of diurnal cycles or seasonality.

4.2-4 Limitations of this study

While our study focuses on long-term wind data from five coastal onshore stations in Norway, it may not fully represent

offshore wind conditions. Although these stations are all located at low elevations and near the coastline, their degree of

exposure to open-sea winds varies due to local topography, coastal geometry, and sheltering effects (Fig. S15). For example,

SN35860 and SN44080 are directly exposed to the open sea, while SN38140 is partially sheltered by inland terrain and

surrounding vegetation.

Offshore wind can differ significantly from

those onshore.-Eor-example; In we-showedour study, -that ERAS data shews-antends to overestimateion-of the frequency of
high wind events at coastal sites.; By contrast, while-arecent study indicates that ERAS5 may underestimates strong wind speed

offshore (Gandoin and Garza, 2024), suggesting that discrepancies may stem from differences in surface roughness

atmospheric stability, and model representation of marine boundary layers. FhereforefurtherstudiesThis highlights the need

for targeted offshore —studies, for example using foeusedspeeifically—en—-offshore—windsbuoy-based wind measurements
(Morgan et al., 201 1)-are-needed._Furthermore, our analysis does not include complex inland terrains such as mountainous

regions or deep valleys, where wind speed distributions can be bimodal (Jaramillo and Borja, 2004) or strongly affected by

topographic channelling. These environments are likely to show different sensitivities to sampling strategies, especially about

shape-related distribution metrics. We therefore recommend that future research apply this framework to both offshore

locations and inland complex terrain to better capture the full range of wind resource variability and distributional stability.

Moreover, we compared the surface elevation of the ERAS grid cells with the actual heights of the five Norwegian weather

stations (Table 1). While all stations are situated near sea level (ranging from 4 m to 48 m above mean sea level), ERAS5 grid

elevations differ substantially, with four out of five stations showing discrepancies exceeding 40 m, and one exceeding 110 m.

Specifically, ERAS overestimates elevation at three stations and underestimates it at two. Interestingly, despite the mix of

elevation biases, ERAS5 wind speeds are overestimated at four stations and underestimated at only one. A station where ERAS

overestimated elevation is also the one where wind speed is underestimated. This suggests that elevation mismatch alone
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cannot fully explain the direction or magnitude of wind speed biases. Other factors, such as surface roughness and land use

type, may also contribute to the discrepancies.

Another limitation is the time resolution of the wind speed data we used. We utilized hourly data instead of higher temporal
resolution data, such as 10-minute intervals, for wind distribution assessments. Despite this, Yang et al., (2024) demonstrated
that hourly wind speed data provide sufficiently accurate estimations of wind power density, with errors smaller than +2%
when compared to 10-minute resolution data. This suggests that hourly data are suitable for such analyses. Additionally,
Effenberger et al., (2024) showed that three- or six-hourly instantancous wind speed data can effectively preserve the
distribution characteristics of 10-minute wind speeds. Therefore, it is reasonable that hourly wind speed can adequately

represent the characteristics of 10minute wind speeds.

It is worth noting that the hourly data provided by MET Norway represent the average wind speed over the last ten minutes of
each hour rather than the entire hour. Despite this, previous research found that Weibull distribution parameters remain
consistent across different averaging periods (e.g., 1 minute and 30 minutes) (Barthelmie and Pryor, 2003). Based on these
findings, we believe that our use of last 10-minute averages is unlikely to significantly impact the accuracy of the Weibull

distribution parameters compared to full-hour averages.

Additionally, our study focuses on near-surface wind speeds (10 m), raising questions about whether our conclusions hold at
turbine-height winds. Prior studies indicate a height dependency for Weibull distribution parameters, with higher altitudes
typically showing higher means (and scale parameter), variances, skewness, and kurtosis, while the shape parameter remains
height-independent (Barthelmie and Pryor, 2003; Dixon and Swift, 1984). Due to the absence of observational data at heights
other than 10 meters, we utilized the ERAS dataset to compare distribution parameters at 10-m and 100-m heights. For the five
locations studied, only the mean (and Weibull scale parameter), and variance show height dependency, with other parameters

(skewness, kurtosis, Weibull shape parameter) showing independence from height.

5 Conclusions

Our study quantifies_the errors in estimating wind speed distribution parametersfitting using time series of varying lengths,
accounting for interannual variability. We find that skewness and kurtosis, particularly kurtosis, are systematically

underestimated with-timited-when data_length is limited, espeetally-and this underestimation is more pronounced in datasets

with higher skewness and kurtosis levels, necessitating significantly longer observation periods for accurate estimates. For
example;While the mean and standard deviation stabilize within weeks_of data, while-skewness requires over 1.6 years and
kurtosis over 88.8 years for a £5% error margin. Ourfindingshichlisht theeritieal These results emphasize that the required
length of wind observations is strongly dependent on influence—of distributionthe shape characteristics of the underlying
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distributionen-datarequirements, with regional variations becoming more pronounced as preeiston-accuracy demands increase,

particularly for higher-order statistical properties like skewness and kurtosis.

These findingsis haves important implications for wind resource assessment, particularly in regions with-characterized by
highly variable wind regimes. InEer such areas, extended data collection periods or adwvaneed-alternative techniques-strategies
such astike data fusion or machine learning may be reeessary-essential to accurately capture higher-order statistical properties,

which directly affects energy yield estimates and turbine design standards.

We also compare different sampling strategies. Our resultsAdditionatly—ouranalysis-—suggests show that random sampling

yield more statistically efficient estimates than continuous sampling, which preserves temporal correlation and diurnal pattern

but introduces greater variability in estimated parameters. For instance, achieving +£10% uncertainty in power density may

require at least five years of continuous data, whereas only about two months of randomly sampled hourly data may suffice.

This suggests that flexible sampling approaches may be feasible in data-limited environments, provided the sampling design

avoids strong temporal clustering.ea

Finally, oBur evaluationanalysis of ERAS reanalysis data reveals that swhile-although such datasetsthey require fewer data

points for the same error margin, they introduceexhibit systematic biases, such as underestimating skewness and
overestimating Weibull shape parameterss, compared to in-situ measurements. This underscores the need for caution when

using reanalysis data in wind resource assessments, particularly in regions with complex wind regimes.

Future studies should explere-focus on :

biases in higher-order moment estimation;—such-as—through-data—{fusion—orbias-correction—meodels. FurthermereMoreover,

extending this analysis to different terrain types, and hub the-appheabiity-ofthese-findingsto-different geographie regions-and
turbine-_heights sheuld-be-investigated-to-enhaneecan further improve the reliability and generalizability of wind reseuree

energy assessment-praetieess.
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Figure S86 Wind speed distribution at five stations from both in-situ weather measurements and ERAS reanalysis
data (10m and 100m). Note: for ERAS products, the station ID indicates the corresponding grid point location.
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Figure S10 Estimates of standard deviation, skewness, kurtosis and Weibull shape parameter based on random

sampling of ERAS 10-meter reanalysis data (black dots) across five Norwegian stations. The sampling strategy is

consistent with Figure S2. The 90% confidence intervals (Cls) are shown as orange lines (ERAS5) and grey lines (in-situ

observations). Red asterisks denote reference values derived from the full 16-year ERA5-10m dataset; grey asterisks represent

the corresponding values from in-situ observations. Blue shading represents +2% (dark) and £5% (light) uncertainty margins

around ERA5-10m reference values, while grey shading indicates the same margins around in-situ reference values.
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Figure S128 90% confidence intervals for the percent error in the mean, standard deviation, skewness, kurtosis,
Weibull k and ¢ parameters, and energy density, based on ERAS 10-meter dataset ranging from n =24 (1 day) ton =
720 (30 days) across five stations. The fits to get the required data density are shown in Table S5.
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Figure S139 Same as Figure S7S11, but for ERAS5 100-meter dataset. The fits to get the required data density are shown
in Table S6.
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Figure S140 Same as Figure S8S12, but for ERA5 100-meter dataset. The fits to get the required data density are shown
in Table S6.
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Figure S15 Locations of the five Norwegian stations analyzed in this study, shown with satellite imagery to illustrate their

spatial context and surrounding terrain of each station.
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Table S1. STFhe-selected years (Yr.) and the-ercentage of observation times (Obs. Tim.) for eaeh-five Norwegian
statienstations used in this study.

SN38140 SN35860 SN42160 SN44080 SN50500

Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim.

1996  100.008784 2001  100.008760 1998  99.478744 1995  99.228692 1974  100.008766
1998  99.478744 2002  99.978757 2000  99.328724 1996  99.588747 1975  99.828744
2002 100258782 2003  99.608725 2001  99.938754 1997  99.578722 1976  100.008784
2003 100258782 2004  99.778764 2002  100.008760 1998  99.5087t6 1977  99.778746
2004  99.868772 2008  99.688756 2004  99.258748 1999  99.928753 1978  99.958756
2009  99.998759 2009  99.998759 2008  99.988782 2000  99.998783 1979  100.0087660
2010  99.988758 2010  99.438740 2009  100.008760 2001  99.578722 1980  99.97878+
2011  99.958756 2014  99.778746 2010 100.008766 2002  99.958756 1981  100.008766
2012 99.658753 2015  99.598724 2011 100.008766 2003  99.528748 1982  99.998759
2014  99.878749 2016  100.008784 2012  99.998783 2004  100.008784 1983  99.738736
2015  99.858747 2017  99.998759 2013  99.098680 2006  99.608725 1984  99.988782
2017 99.55872F 2018  99.998759 2016  99.768763 2009  99.978757 1985  99.90875+
2018  99.538719 2019  99.998759 2018  99.148685 2010  100.008760 1986  99.898750
2019  99.388706 2020  99.998783 2020  99.598748 2011  98.588636 1987  99.928753
2020  98.878685 2021  100.008766 2022  99.898750 2012  98.458648 1988  99.908775
2021  99.068678 2022  99.4487H 2023  99.638728 2013  99.198689 1990  99.778746
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Table S2. Root mean squared error (RMSE) of 90% confidence interval (CI) bounds betweenvalues-derived-from-in-

situ—observations.—comparing— random sampling and two temporal-structure-preserving sampling methods:

with

diurnal cycle-retained sampling (denoted as “Diurnal”) and seasonality-retained sampling (denoted as “Seasonal”),

based on in-situ measurements and ERAS5 100-m data from five Norwegian stations. The RMSE is computed for both the

lower and upper bounds of 90% CI across all the sampling density, for each statistical parameter.

SN50500 SN44080 SN42160 SN38140 SN35860 Average
Parameters Methods In-situ ];:01)% In-situ ?01)% In-situ % In-situ % In-situ ]1501)% In-situ %
Diurnal 0.0023 0.0016 0.0026 0.0027 0.0025 0.0029 0.0013 0.0023 0.0018 0.0019 0.0021 0.0023
Mean Seasonal 0.0023 0.0105 0.0040 0.0057 0.0025 0.0051 0.0016 0.0050 0.0022 0.0050 0.0025 0.0063
Diurnal 0.0016 0.0011 0.0019 0.0019 0.0018 0.0018 0.0010 0.0014 0.0013 0.0013 0.0015 0.0015
Std. dey Seasonal 0.0021 0.0028 0.0027 0.0022 0.0028 0.0031 0.0014 0.0024 0.0017 0.0022 0.0021 0.0025
Diurnal 0.0083 0.0012 0.0020 0.0013 0.0024 0.0015 0.0029 0.0014 0.0018 0.0015 0.0035 0.0014
Skewness Seasonal 0.0075 0.0025 0.0022 0.0016 0.0025 0.0017 0.0032 0.0015 0.0022 0.0018 0.0035 0.0018
Kurtosis Diurnal 0.1229 0.0021 0.0106 0.0030 0.0193 0.0040 0.0210 0.0037 0.0084 0.0044 0.0364 0.0034
~ Seasonal0.1138 0.0029 0.0113 0.0038 0.0233 0.0056 0.0230 0.0044 0.0084 0.0052 0.0360 0.0044
Diurnal 0.0007 0.0012 0.0009 0.0011 0.0010 0.0012 0.0008 0.0013 0.0008 0.0011 0.0008 0.0012
Shape k Seasonal 0.0009 0.0033 0.0008 0.0012 0.0014 0.0011 0.0008 0.0013 0.0008 0.0011 0.0009 0.0016
Scale ¢ Diurnal 0.0025 0.0018 0.0029 0.0031 0.0028 0.0032 0.0016 0.0025 0.0021 0.0022 0.0024 0.0026
" Seasonal0.0024 0.0116 0.0045 0.0064 0.0029 0.0058 0.0018 0.0056 0.0025 0.0055 0.0028 0.0070
. Diurnal 0.1396 0.1552 0.4855 0.7918 0.3858 0.8559 0.0292 0.3100 0.1589 0.2731 0.2398 0.4772
M&easonalo.mw 0.8931 0.7466 1.4477 0.5161 1.6094 0.0498 0.7847 0.2311 0.6521 0.3425 1.0774
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Table S3 Required number of randomlv selected ERAS 10-meter reanalysis (unit: hours) to obtain
an_estimate within £10%. £5%, £2%. and +1% of the parameters from the entire observed time
series (157,465 data points), calculated at the 90% confidence level. The fits to obtain the required
data density are shown in Table S4.

_Errqr Location Mean Std.. Skewness  Kurtosis Shape ~ Scale Powe r
margins - dev. k c density
SN50500 73 96 8172 5016 180 73 471
SN44080 66 117 8313 44143 185 67 472
£10% SN42160 57 126 11723 95190 194 56 427
I SN38140 60 134 8735 711310 195 59 460
SN35860 64 139 6207 3540359 185 64 508
average 64 123 9262 944804 188 64 468
SN50500 290 378 32016 19838 695 288 1856
SN44080 264 461 32714 178285 730 266 1877
+59, SN42160 229 495 46455 392676 761 227 1711
- SN38140 238 528 34605 2908557 751 232 1825
SN35860 254 547 24898 14867900 716 254 2041
average 255 482 34138 3673452 731 254 1862

SN50500 1780 2314 200956 124202 4155 1777 11362
SN44080 1642 2826 208777 1128607 4469 1649 11743
SN42160 1443 3016 298655 2556252 4626 1424 10706

o0
£2% SN38140 1461 3244 221711 18715159 4468 1430 11298
SN35860 1587 3343 165203 99101050 4294 1587 12890
average 1583 2949 219061 24325054 4403 1574 11600
SN50500 7030 9113 809645 498171 16071 7032 44916
SN44080 6548 11134 848415 4558267 17597 6563 47679
+1% SN42160 5802 11843 1220400 10544961 18114 5721 43071

SN38140 5777 12805 903642 76526556 17220 5660 45063
SN35860 6368 13141 691404 416179369 16643 6348 51972
average 6305 11608 894702 101661465 17129 6265 46541
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Table S584. Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERAS5 10 m

reanalvs1s data. Note: the Qtatlon ID indicates the corrcepondmg gnd pomt location. Eq&a&emie%&h&%%@-m&%é%eﬁeﬁ%&p&e@%e&e%wﬁhm@@%&eﬂﬁdm

Parameters

SN50500

SN44080

SN421 60

SN38140

SN35860

Mean (P)
Mean (N)
Std. dev (P)
Std. dev (N)
Skewness (P)
Skewness (N)
Kurtosis (P)
Kurtosis (N)
Weibull k (P)
Weibull k (N)
Weibull ¢ (P)
Weibull ¢ (N)
Power density (P)
Power density (N)

Y=exp[-0.505In(n)+4.47]

Y=-exp[-0.4991n(n)+4.413]

Y=exp[-0.504In(n)+4.576]
Y=-exp[-0.506In(n)+4.61]
Y=exp[-0.497In(n)+6.767]
Y=-exp[-0.508In(n)+6.875]
Y=exp[-0.499In(n)+6.546]
Y=-exp[-0.504In(n)+6.598]
Y=exp[-0.512In(n)+4.962]
Y=-exp[-0.502In(n)+4.839]
Y=exp[-0.504In(n)+4.463]
Y=-exp[-0.5In(n)+4.419]
Y=exp[-0.506In(n)+5.416]
Y=-exp[-0.498In(n)+5.332]

Y=exp[-0.496In(n)+4.356]
Y=-exp[-0.501In(n)+4.404]
Y=exp[-0.488In(n)+4.535]
Y=-exp[-0.506In(n)+4.711]
Y=exp[-0.494In(n)+6.749]
Y=-exp[-0.508In(n)+6.891]
Y=exp[-0.497In(n)+7.613]
Y=-exp[-0.507In(n)+7.717]
Y=exp[-0.506In(n)+4.943]
Y=-exp[-0.489In(n)+4.767]
Y=exp[-0.495In(n)+4.348]
Y=-exp[-0.502In(n)+4.41]
Y=exp[-0.495In(n)+5.329]
Y=-exp[-0.502In(n)+5.393]

Y=exp[-0.494In(n)+4.275]
Y=-exp[-0.498In(n)+4.316]
Y=exp[-0.489In(n)+4.568]
Y=-exp[-0.507In(n)+4.754]
Y=exp[-0.492In(n)+6.901]
Y=-exp[-0.505In(n)+7.038]
Y=exp[-0.489In(n)+7.91]
Y=-exp[-0.502In(n)+8.044]
Y=exp[-0.508In(n)+4.979]
Y=-exp[-0.488In(n)+4.771]
Y=exp[-0.494In(n)+4.261]
Y=-exp[-0.4991In(n)+4.313]
Y=exp[-0.493In(n)+5.266]
Y=-exp[-0.5In(n)+5.33]

Y=exp[-0.504In(n)+4.368]
Y=-exp[-0.498In(n)+4.304]
Y=exp[-0.497In(n)+4.688]
Y=-exp[-0.505In(n)+4.775]
Y=exp[-0.4931In(n)+6.766]
Y=-exp[-0.505In(n)+6.887]
Y=exp[-0.492In(n)+8.935]
Y=-exp[-0.503In(n)+9.046]
Y=exp[-0.514In(n)+5.011]
Y=-exp[-0.4941n(n)+4.808]
Y=exp[-0.504In(n)+4.353]
Y=-exp[-0.498In(n)+4.301]
Y=exp[-0.503In(n)+5.384]
Y=-exp[-0.497In(n)+5.326]

Y=exp[-0.498In(n)+4.365]
Y=-exp[-0.5In(n)+4.38]
Y=exp[-0.493In(n)+4.671]
Y=-exp[-0.5061n(n)+4.802]
Y=exp[-0.484In(n)+6.511]
Y=-exp[-0.5In(n)+6.67]
Y=exp[-0.483In(n)+9.587]
Y=-exp[-0.5In(n)+9.762]
Y=exp[-0.512In(n)+4.973]
Y=-exp[-0.4931In(n)+4.779]
Y=exp[-0.498In(n)+4.36]
Y=-exp[-0.5In(n)+4.378]
Y=exp[-0.497In(n)+5.398]
Y=-exp[-0.499In(n)+5.413]
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Table S5 Required number of randomly selected ERAS5 100-meter reanalysis (unit: hours) to
obtain an estimate within £10%, +£5%, £2%, and +1% of the parameters from the entire observed
time series (157,465 data points), calculated at the 90% confidence level. The fits to obtain the
required data density are shown in Table S6.

_Errqr Location Mean Sid. Skewness  Kurtosis Shape Scale PowF: N
margins - dev. k c density
SN50500 56 110 16201 8729 198 54 374
SN44080 73 123 7056 81022 189 74 521
+10% SN42160 61 133 11263 328841 205 62 468
- SN38140 58 137 15661 2453346 222 57 435
SN35860 64 137 11069 795574 211 64 480
average 63 128 12230 701703 205 63 456
SN50500 223 434 65875 38941 767 215 1501
SN44080 289 483 27566 329399 745 294 2067
150, SN42160 247 523 44785 1367095 803 247 1867
a— SN38140 239 528 39510 2240186 816 234 1808
SN35860 255 535 44939 3346344 815 255 1916
average 251 501 44535 1464393 790 249 1832
SN50500 1391 2651 427303 248311 4604 1347 9434
SN44080 1786 2950 176226 2103464 4560 1819 12841
199, SN42160 1551 3187 290902 8991336 4889 1552 11635
B SN38140 1481 3272 247668 14218455 4903 1457 11209
SN35860 1587 3244 296038 22351593 4884 1590 12125
average 1560 3061 287628 9582632 4768 1553 11449
SN50500 5556 10417 1757931 1008422 17854 5394 37889
SN44080 7091 11598 717060 8551751 17952 7217 51955
1% SN42160 6236 12509 1198029 37379775 19172 6231 47065

SN38140 5891 12995 998600 57540275 19027 5801 44825
SN35860 6341 12685 1232216 94015313 18917 6340 48981
average 6223 12041 1180767 39699108 18585 6197 46143
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TTable S6 Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERAS5 100 m

reanalysis data. Note: the station ID indicates the corresponding grid point location. Same-as-Table S2, but for ERAS 100-meter-dataset.

Parameters

SN50500

SN44080

SN42160

SN38140

SN35860

Mean (P)
Mean (N)
Std. dev (P)
Std. dev (N)
Skewness (P)
Skewness (N)
Kurtosis (P)
Kurtosis (N)
Weibull k (P)
Weibull k (N)
Weibull ¢ (P)
Weibull ¢ (N)
Power density (P)
Power density (N)

Y=exp[-0.5In(n)+4.315]
Y=-exp[-0.495In(n)+4.254]
Y=exp[-0.492In(n)+4.533]
Y=-exp[-0.506In(n)+4.685]

Y=exp[-0.49In(n)+7.047]
Y=-exp[-0.504In(n)+7.187]
Y=exp[-0.495In(n)+6.837]
Y=-exp[-0.504In(n)+6.93]
Y=exp[-0.511In(n)+5.007]
Y=-exp[-0.489In(n)+4.776]

Y=exp[-0.5In(n)+4.293]
Y=-exp[-0.495In(n)+4.249]
Y=exp[-0.499In(n)+5.256]
Y=-exp[-0.496In(n)+5.225]

Y=exp[-0.497In(n)+4.402]
Y=-exp[-0.503In(n)+4.458]
Y=exp[-0.489In(n)+4.559]
Y=-exp[-0.506In(n)+4.739]
Y=exp[-0.494In(n)+6.659]
Y=-exp[-0.509In(n)+6.815]
Y=exp[-0.494In(n)+7.888]
Y=-exp[-0.508In(n)+8.03]
Y=exp[-0.506In(n)+4.955]
Y=-exp[-0.4891n(n)+4.78]
Y=exp[-0.496In(n)+4.404]
Y=-exp[-0.503In(n)+4.468]
Y=exp[-0.496In(n)+5.385]
Y=-exp[-0.503In(n)+5.451]

Y=exp[-0.494In(n)+4.305]
Y=-exp[-0.498In(n)+4.354]
Y=exp[-0.489In(n)+4.593]
Y=-exp[-0.507In(n)+4.783]
Y=exp[-0.49In(n)+6.854]
Y=-exp[-0.505In(n)+7.015]
Y=exp[-0.486In(n)+8.482]
Y=-exp[-0.5011n(n)+8.633]
Y=exp[-0.507In(n)+5.002]
Y=exp[-0.4931In(n)+4.298]
Y=-exp[-0.4991n(n)+4.358]
Y=exp[-0.493In(n)+5.305]
Y=-exp[-0.5011n(n)+5.382]
Y=exp[-0.494In(n)+4.305]

Y=exp[-0.502In(n)+4.357]
Y=-exp[-0.5In(n)+4.335]
Y=exp[-0.501In(n)+4.731]
Y=-exp[-0.503In(n)+4.76]
Y=exp[-0.497In(n)+6.868]
Y=-exp[-0.505In(n)+6.958]
Y=exp[-0.496In(n)+8.86]
Y=-exp[-0.5061n(n)+8.974]
Y=exp[-0.5111In(n)+5.037]
Y=-exp[-0.502In(n)+4.924]
Y=exp[-0.502In(n)+4.347]
Y=-exp[-0.5In(n)+4.333]
Y=exp[-0.502In(n)+5.376]
Y=-exp[-0.496In(n)+5.312]

Y=exp[-0.498In(n)+4.361]
Y=-exp[-0.5011n(n)+4.383]
Y=exp[-0.493In(n)+4.656]
Y=-exp[-0.5081n(n)+4.803]
Y=exp[-0.486In(n)+6.817]
Y=-exp[-0.5011n(n)+6.972]
Y=exp[-0.483In(n)+8.858]
Y=-exp[-0.4981n(n)+9.015]
Y=exp[-0.512In(n)+5.041]
Y=-exp[-0.4931n(n)+4.849]
Y=exp[-0.497In(n)+4.352]
Y=-exp[-0.5011n(n)+4.387]
Y=exp[-0.496In(n)+5.362]
Y=-exp[-0.5011n(n)+5.396]
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Table S7. Comparison of observed wind statistics at 10 m height with estimates
from ERAS and the Global Wind Atlas (GWA) at selected stations. Units for
mean wind speed and power density are m s™! and W m™, respectively. ERAS and
GWA values are extracted from the nearest grid points closest to each station.

Station ID Mean wind speed Power density
- Observed GWA Observed GWA
SN50500 3.53 5.47 81 261
SN44080 6.85 7.88 417 651
SN42160 6.57 7.77 358 534
SN38140 2.28 4.03 21 105
SN35860 4.80 6.11 152 254
061800-99999 5.32 5.30 165 155

031700-99999 4
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