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Abstract. Accurate wind resource assessment depends on wind speed data that capture local wind conditions, which are crucial
for energy--yield estimates and site selection. While the International Electrotechnical Commission (IEC) recommends at least
one year of data collection, this duration may be insufficient to fully aceountforcapture interannual variability. Although
studies often maximize data length, limited guidance exists on the minimum dusatien-sample size required to reliably estimate
wind statistics and energy potential. To address this gap, we propose a method to quantify the errors in wind speed distribution
parameters introduced by using time series of varying lengths, compared to long-term reference data. This enables us to
determine the minimum number of hourly observations needed to achieve a given accuracy. We apply this method to-beth in-
situ weather-station observations and ERAS reanalysis data at 10 m and 100 m heights. Our results show that basic parameters

(ssueh-as-mean, standard deviation, and Weibull parameters);—<an stabilize with a sample size equivalent to ~1 month_-of

hourly data (not a contiguous period) drawn across multiple years, while higher-order moments «

require substantially lengerlarger records—samples (skewness:= ~1.6 years equivalent; kurtosis:and 88.6 years_equivalent;
respeetively). Although ERAS stabilizes faster, it exhibits systematic biases compared to in-situ measurements. Moreover,
random cross-year sampling_ (eombiningavailable hourlydata)-ean-yields comparable distribution parameters to diurnally or
seasonally controlled sampling, while continuous sampling demands far longer records for the same accuracy. These findings
provide a practical framework for optimizing data collection in wind resource assessments, balancing accuracy, temporal

coverage, and resource constraints.

1 Introduction

Wind energy production critically depends on strengths and persistence of winds in the lower earth’s atmosphere. Precise and
cost-effective assessment of wind speed is crucial for evaluating wind energy potential and designing wind farms and power
generators, because accurate assessments ensure that the selected site has adequate wind conditions, making the investment

economically viable and optimizing energy production efficiency (Wang et al., 2022).
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Quantifying wind speed characteristics, a crucial component of wind speed assessment, typically relies on analysing wind
speed distribution from collected data. Ideally, long-term meteorological measurements at the proposed wind turbine locations
are preferred, as they account for a broader range of wind variability. Wind speed measurements spanning four years are
typically considered suitable for short-term analysis, while datasets extending beyond this period fall into the category of long-
term analysis. A ten-year dataset is generally recommended for the most accurate wind resource assessment, if available
(Murthy and Rahi, 2017). However, collecting such long-term measurements is often impractical due to the time financial

constraints involved, particularly in the early planning stages of wind farm development (Wais, 2016).

As a more practical alternative, wind energy potential is often assessed using wind speed data spanning a single year or a few
years (Ouarda et al., 2015). A review of 46 studies revealed that 31 of them (67.4%) used wind speed time series of six years
or less. However, such datasets lack year-to-year (interannual) variability, which can significantly affect wind speed and,
consequently, wind power output (Jung and Schindler, 2018). For example, decadal changes in wind speed can result in a
17 £+ 2% variation in potential wind energy (Zeng et al., 2019). Since wind farms typically operate for 20 to 30 years (Pryor et
al., 2020), relying on such short-term datasets without accounting for interannual variability can introduce significant biases
in wind energy assessments. Additionally, short-term datasets may lack seasonal or diurnal characteristics due to sampling
frequency or other factors that lead to data gaps. For instance, the Sentinel-1 Ocean wind product, aligning well with in-situ
observations and reanalysis products (Khachatrian et al., 2024), revisits the same location only once every one or two days,

making it unable to capture the diurnal characteristics of wind speed.

This discussion highlights a critical research gap: the optimal duration of wind observation time series required to adequately
account for wind variability in resource assessments remains poorly quantified. Specifically, is one year of data, as
recommended by IEC (International Electrotechnical Commission, 2019), sufficient to provide accurate assessments of wind
distributions given the interannual variability of wind? Furthermore, considering the challenges in obtaining long-term
observations, if we must reply on short-term datasets that may lack interannual, seasonal, or diurnal variability, how do errors

vary with the length of data time series?

This research gap has been highlighted in previous studies. For instance, Barthelmie and Pryor, (2003) and Pryor et al., (2004)
evaluated the accuracy of satellite sampling in representing offshore wind speed distributions. They quantified the numbers of
satellite observations required to estimate key probability distribution parameters with an uncertainty of £10%. Specifically,
mean and Weibull scale parameter required about 60-70 random selected half-hourly observations, respectively. In contrast,
the variance requires 150 observations, and the Weibull shape parameter and energy density require nearly 2000 observations,
while skewness and kurtosis required 9712 and more than 10000 observations. However, these results are specific to satellite
observations and may not directly apply to in-situ measurements without further analysis. In-situ measurements, such as

meteorological weather stations, are more widely distributed, accessible, and frequently used in wind energy studies (Ouarda
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et al.,, 2015; Wang et al., 2016). To the authors’ knowledge, relatively few studies have examined in-situ observations,

particularly those from weather stations certified by the World Meteorological Organization (WMO).

Our study aims to evaluate the potential biases and uncertainties that may arise when short-term wind speed data from WMO
weather stations are used for wind energy assessments. Previous work by Barthelmie and Pryor (2003) proposed a random
sampling approach to examine how sampling protocols affects the estimation of wind speed distribution parameters. However,
random sampling may overlook the diurnal and seasonal cycles that are intrinsic to in-situ terrestrial wind observations and
critical for reliable wind energy analysis. To address this limitation, we first compare random sampling with sampling strategies
that explicitly retain diurnal and seasonal cycles. This comparison allows us to isolate and quantify the influence of temporal
structures on wind speed statistics. In addition, we evaluate the practical relevance of random sampling by contrasting it with
continuous sampling, that preserves the chronological sequence of wind speed data and more closely reflects real-world wind
resource assessment practices. Continuous datasets, such as those from anemometer towers, are commonly used in the wind
energy industry, typically covering at least one year of measurements to characterize site-specific wind conditions prior to
turbine installation (Yang et al., 2024; Liu et al., 2023). By integrating these multiple sampling strategies, our study provides
a comprehensive assessment of how sampling choices affect the robustness of wind energy evaluations based on limited-

duration datasets.

We further investigate how results derived from reanalysis products differ from those obtained using WMO weather station
data under various sampling strategies. Reanalysis products have emerged as a primary alternative for wind resource
assessment, especially given the spatial and temporal limitations of traditional in-situ observations (Gil et al., 2021; Gualtieri,
2021). These datasets provide spatially continuous and temporally consistent wind speed data by assimilating observational
data from multiple sources, including satellite instruments, surface synoptic observations, ships, and drifting buoys, into
numerical weather prediction models (Hersbach et al., 2022). ERAS5 stands out as the most widely used and up-to-date
reanalysis product. We used ERAS in our study because its strong agreement with observed wind data at turbine-relevant
heights, especially across Europe and North America (Ramon et al., 2019). ERAS provides wind speed data at both 10 m and
100 m, enabling direct analysis at typical hub heights and thus avoiding the need for extrapolation methods, such as wind

profile log or power-law methods, to estimate wind speeds at hub height (e.g., Soares et al., 2020; Jung and Schindler, 2019).

The main objectives of our study are as follows:

1. To evaluate how the wind speed statistics (e.g., distribution parameters) derived from short-term WMO station data
different those obtained from longer-term records.

2. To determine the optimal time series length required for accurate estimation of wind speed distribution parameters,

with quantified uncertainty margins.
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3. To explore whether ERAS reanalysis products, at both 10-meter and 100-meter heights, yield consistent results
with ground-based observations.
Through these objectives, we aim to enhance the understanding of the limitations and capabilities of short-term meteorological

data in wind speed assessment, contributing to more reliable wind energy evaluations.

2 Data and Methods
2.1 Sampling methods
2.1.1 Random sampling

To determine the optimal length of wind speed series for accurately representing wind speed distribution parameters, we
adopted the random sampling method proposed by Barthelmie and Pryor (2003). In our study, this approach involves
comparing the distribution parameters derived from the full 16-year hourly wind speed series (referred to as the study datasets)
with those obtained from randomly sampled subsets of varying lengths. Specifically, we constructed sample datasets ranging
from 720 hours (30 days) to 52 560 hours (6 years), with increments of 240 hours (10 days) increments. For each sample size,
1 000 synthetic datasets were generated by randomly selecting hourly observations with replacement from the full series using

NumPy’s ‘random’ package.

For each generated dataset, we calculate seven parameters: four common statistical descriptors (mean, standard deviation,
skewness, kurtosis), two Weibull parameters (shape and scale), and the Weibull wind power density. To evaluate the
representativeness of these sampled subsets, we computed the percent error between each parameter estimated from the sample
and the corresponding parameter from the full 16-year series. Specifically, we focused on the upper and lower bounds of the
90% confidence interval for each parameter across 1000 realizations at each sample size. The percent errors () in these bounds
were then modelled as a function of sample size (7) using non-linear least squares fitting, resulting in equations that describe
how sampling uncertainty decreases with increasing sample length, expressed as Eq. (1):

Y = texplaln(n) + b]. (1)

These fitted curves enable estimation of the minimum dataset length needed to achieve predefined error margins.

We selected 720 hours as the starting point based on its frequent use in previous wind studies (e.g., Jung and Schindler, 2019;
Ouarda and Charron, 2018), while the upper limit of 52 ;560 hours (six years) was based on prior findings (Barthelmie and

Pryor, 2004) showing that percent errors generally stabilize before this duration.



125

130

135

140

145

150

2.1.2 Diurnal- and seasonality-retained sampling

We implemented two structured sampling methods to retain key temporal patterns in the wind speed data: diurnal-retained
sampling and seasonality-retained sampling. In the diurnal-retained approach, each synthetic dataset consists of observations
evenly distributed across four 6-hour time intervals (00:00-05:00, 06:00—11:00, 12:00—17:00, and 18:00-23:00), to preserve
daily variability. For example, when the sample size is 720, we select 180 observations from each time interval. In the
seasonality-retained sampling, each dataset includes an equal number of observations from all 12 months, thereby maintaining
seasonal structure. For a sample size of 720, this results in 60 observations per month. For both methods, sampling was

performed with replacement, meaning the same observation could be selected in multiple realizations.

2.1.3 Continuous sampling

The continuous sampling method is designed to simulate real-world scenarios in which wind speed data are used in their
natural temporal sequence. Unlike the random and stratified (diurnal- or seasonality-retained) sampling approaches, this
method preserves the chronological order of observations by extracting time-contiguous subsets directly from the full series.
Prior to sampling, linear interpolation was applied to fill any missing values. In this study, we investigated sample sizes ranging
from 720 hours (approximately one month) to 103 680 hours (12 years), increasing in one-month (720-hour) increments. As
this method requires each extracted subset to be continuous, the source dataset must be longer than or equal to the target sample
size. For example, given a 46-year hourly wind speed dataset, we can extract all possible one-year-long continuous sequences
(i.e., using a moving window of one year), resulting in 395 089 potential samples of 8 640 hourly observations each. Due to
computational constraints, we randomly selected 1 000 sequences for each sample size, in line with the approach used for the
other sampling methods. The same parameter estimation procedure was then applied to these sequences to assess variability

and estimate confidence intervals.

2.2 Probability density distributions

In this study, we exclusively employed the two-parameter Weibull probability density function to fit wind speed data. The
function is expressed as Eq. (42):

b = () e @ (2

c c

where v represents the wind speed, & is the shape parameter, and ¢ is the scale parameter. The Weibull distribution is
characterized by two key parameters: the dimensionless shape parameter, which determines the curve’s shape, and the scale
parameter, which adjusts the distribution along the wind speed axis. The distributions vary with different values of & and c,
making it a popular choice for approximating observed wind speed frequencies (Wais, 2017; Ouarda and Charron, 2018; Carta

et al., 2009).
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To estimate the Weibull parameters, we used the ‘weibull min.fit" function from Python’s ‘scipy.stats', employing the
maximum likelihood estimation (MLE) method. MLE is preferred for its superior performances in parameter selection
(Mohammadi et al., 2016). This ‘weibull min.fit’ function is particularly useful for iterative experiments requiring repeated

Weibull distribution fitting, such as those with thousands of iterations.

We focused on the first four moments of the distributions: mean, standard deviation, skewness, kurtosis, and the Weibull shape
and scale parameters, chosen for their importance in wind resource assessment. The standard deviation indicates wind speed
variability, while skewness and kurtosis provide insights into asymmetry and extreme values in the distribution. We calculated

the mean and standard deviation using Python’s ‘NumPy’ package, and the other parameters with ‘scipy.stats’.

2.3 Wind resource assessment method

We used the Weibull wind power density to represent wind resources at a specific location. The Weibull wind power density

is calculated using the estimated Weibull k£ and ¢ parameters, and is given by the Eq. (23):
-1 .3 3
E=2pcr(1+3), (23)

where E represents the wind power density (W m2), p is air density (with 1.225 kg m?, the standard air density
provided by IEC, used for calculation), and I is the gamma function.

We chose the Weibull wind power density in our study for two main reasons. First, wind power density measures the amount
of kinetic energy in airflow passing through a unit area, which can be converted into wind energy. It is a critical metric for
evaluating wind resources and has been widely adopted in previous studies (e.g., Wang et al., 2022; Mohammadi et al., 2016).
Second, the Weibull wind power density can be easily derived from the scale and shape parameters of the Weibull distribution,

simplifying the calculation process.

Given that our objective is to determine which dataset, —specifically, which time series length, —most accurately represents
long-term wind conditions, the use of Weibull wind power density enables us to compare how the shape and scale parameters
vary with datasets of different lengths. This approach helps us more effectively identify the time series that best captures long-

term wind resource variability.
2.4 Data sources

2.4.1 In-situ observations from weather stations

In this study, we first utilized weather station observations from the Norwegian Meteorological Institute (MET Norway). This

data, accessed via their API (https://frost.met.no/observations/v0.jsonld?; last accessed 108 NovemberEebruary 2025), offers
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hourly wind speed resolution over long periods, suitable for analysing interannual variability, as wind assessments typically

need at least hourly resolution (Jung and Schindler, 2019).

We aimed to compare wind distribution parameters from short-term data with long-term series that include interannual
variability. We prioritized weather stations with the longest hourly data series, retaining years with at least 8 600 hourly

observations (97.9% of the possible 8 760 or 8 784 hours annually).

We identified five stations with over 16 years of hourly data: SN50500 (18 years), SN44080 (16 years), SN42160 (20 years),
SN38140 (24 years), and SN35860 (17 years). Details are in Table 1, and their locations in southern Norway are shown in Fig.

1. We standardized the data to 16 years per station, omitting years with fewer observations for consistency.

Using the same years across all stations was not feasible due to data availability differences, so the years analysed varied.
Table S1 details the selected years and percentage of hourly observations. The year with the fewest observations had 8 648

hours (98.45% coverage), and the average yearly count was 8 744 hours (99.54% coverage).

Additionally, to complement the main analysis conducted on above five Norwegian stations, we used two additional stations
located in Copenhagen Airport (Denmark) and Leuchars (Scotland, UK) from another dataset, HadISD, version
v3.4.2.202501p (https://www.metoffice.gov.uk/hadobs/hadisd/; last accessed +4-10 Novemberdune 2025; Dunn et al. 2016).

Both sites provide 46 years (1979-2024) of hourly wind speed observations with an average data coverage of 99.2% annually
(minimum yearly data coverage is 95.7% due to untimely updated data for 2024). The data coverage of each year is shown in

Fig. S1.

Table 1: Details of weather stations used in this study.

Station Location Data WMO Latitude Latitude of Longitude Longitude of ab(I){veeI%i] ;an Elevation of
D source  number ERAS grid & ERAS grid N ERAS grid

SN50500  Flesland 1311 602892°N  60.25°  5.2265°E 5.25° 48 m 03m
SN44080 Ob;‘;srtad 1412 58.6592°N  58.75°  5.5553°E 5.50° 24'm 56m
SN42160  Lista Fyr NMET 1427 58.1090°N  58.00°  6.5675°E 6.50° 14m 127.1 m
SN38140  Landvik OTWay 1464  583400°N  58.25° 8.5225°F 8.50° 6m 554m
SN35860 L-‘g‘ygr“’r 1467  58.6362°N  58.75°  9.1478°E 9.25° 4m 439m
061800- Kastrup / 55.618°N / 12.656°E / 52m /

99999
031710- HadISD

99999 Leuchars / 56.373° N / -2.868°E / 11.6 m /

Note: As the last two stations (Kastrup and Leuchars) were added specifically for the sensitivity analysis discussed in Section 4.1, they were
excluded from the comparison with ERAS.
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Figure 1: Distribution of the weather stations used in this study.

2.4.2 ERAS reanalysis

For the ERAS reanalysis products, we downloaded the “10m u-component of wind,” “10m v-component of wind,” “100m u-
component of wind,” and “100m v-component of wind” variables from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-single-levels?tab=download; last accessed &——10
NovemberEebruary 2025). We calculated the wind speed at 10 m and 100 m by taking the square root of the sum of the squares
of the u-component and v-component of wind. We used the ERAS grid point closest to the location of each station, as indicated

in Table 1.

3 Results
3.1 Can random sampling replace diurnal cycle-retained or seasonality-retained sampling?

The five Norwegian stations exhibit distinct diurnal and seasonal variations (Fig. S+S2-S2S3). To assess whether random
sampling can serve as a substitute for diurnal cycle-retained or seasonality-retained sampling, we compared the 90%
confidence intervals (Cls) of distribution parameters derived from each method, rather than on single-point parameter estimates.

This comparison can also help understand how sampling strategy affects uncertainty.

8
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Figure 2: Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies, based on in-
situ observations from five Norwegian stations. The 90% confidence intervals (Cls) are shown for each sampling method: random (orange),
diurnal-cycle-retained (purple dashed), and seasonality-retained (blue dotted). Each black dot represents a parameter estimate from a single
sampling realization of random sampling; corresponding realizations for the other two methods are not shown. Sample sizes range from 720
to 52 560-(30-days-te—-6—years), increasing in 240-hour (+0-das-increments, with 1 000 realizations per size. Red asterisks indicate the
reference values from the full 16-year hourly dataset (see Table 2). Shaded areas represent +2% (dark blue) and £5% (light blue) deviation

ranges from full-series values.

To visually compare the uncertainty ranges between the sampling methods, Fig. 2 and Fig. S4 presents the 90% confidence
intervals (CIs) derived from each approach. It is evident that the intervals from random sampling largely overlap with those
from diurnal and seasonality-retained sampling. To quantify these differences, we calculated the CI differences (Fig. S5) and
the root mean square error (RMSE) of these differences (Table S2). Most parameter differences fluctuate around zero, with

magnitudes generally within +0.2; power density is the only parameter showing larger fluctuations, within +3. These
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differences tend to decrease as sample density increases (Fig. S5). Power density also exhibits the largest RMSE, likely due to

its broader value range (from tens to hundreds), while the shape parameter shewshows the smallest RMSE (Table S2).

We further examined whether similar results hold for ERAS 100 m wind speed data-at+00-meters, which better reflect turbine-

relevant altitudes and help address the scarcity of high-elevation measurements. Similar CI overlaps were observed (Fig. 3,

S6). The mean RMSEs of the differences of parameters from the ERAS 100-meter (0.4896 for diurnal-retained and 1.1010

seasonal-retained) were comparable to those from in-situ-: 0.2865 (diurnal-retained) and 0.3903 (seasonality-retained). The

higher values were primarily driven by power density differences (Table S2). A similar pattern in the 90% confidence interval

differences among the three sampling strategies is observed in the ERAS 100 m dataset and the in-situ observations (Fig. S7).

Based on these findings, we conclude that random sampling is a viable method for estimating wind distribution parameters,

both at surface and turbine hub heights. Therefore, we adopted random sampling in subsequent analyses to determine the

optimal sample size for capturing long-term wind characteristics.
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255 Figure 3: Estimates of mean wind speed, Weibull scale parameter, and power density from three sampling strategies, based on ERAS

100-meter data. Sampling methods and visualization are consistent with Figure 2. Red asterisks indicate values from the full 16-year ERAS

100 m dataset. Shaded areas represent 2% (dark blue) and £5% (light blue) deviation ranges from full-series values.
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3.2 Effects of sample size on estimating wind distribution parameters

We investigated how sample size affects the accuracy of wind distribution parameters. Despite differences in wind conditions
(Table 2; Fig. S8), all five Norwegian stations exhibited consistent patterns. We found that, as sample size increased, the 90%
confidence intervals (CIs) for all parameters narrowed, though the rate of convergence varied. The mean, standard deviation,
and Weibull £ and ¢ parameters stabilized quickly, within £5% error margins even at 720 hourly observations (Fig. 2, S4). In
contrast, power density showed greater variability, and skewness and kurtosis were far less robust, remaining beyond +5%

even after six years of hourly data due to their sensitivity to distribution tails and extremes.

Table 2: Distribution parameters and Weibull power density of five Norwegian stations, derived from the entire datasets. Note: for
ERAS products, the station ID indicates the corresponding grid point location.

Data products Station ID (I:I/Ile:?) S(tgl g?;/ " Skewness Kurtosis Sthe c ?;lalsf_:,) Power density (W m2)

SN50500 3.53 2.66 1.12 1.81 1.51 4.07 81.08

In-situ weather SN44080 6.85 3.94 0.76 0.45 1.83 774 417.34
o SN42160 6.57 3.68 0.65 0.34 1.88  7.43 358.49
SN38140 2.8 1.61 0.92 1.28 142 251 21.61

SN35860 4.80 2.88 0.79 0.47 174 541 152.15

SN50500 4.82 2.45 0.30 068 207 544 126.73

SN44080 7.58 3.74 0.35 036  2.13 8.55 478.87

SN42160 8.04 3.74 0.32 028 228 907 539.59

ERAS (10 meter) SN38140 4.74 2.27 0.45 015 220 535 113.61
SN35860 4.50 2.19 0.48 006 216 508 98.77

SN50500 6.02 271 0.22 048 236 678 219.44

SN44080 9.42 4.83 0.40 029 203 1061 959.38

SN42160 9.79 4.72 0.35 018 218  11.04 1009.61

ERAS (100 meter) SN38140 731 331 0.31 007 233 8.24 396.08
SN35860 6.60 321 0.37 013 2.15 7.44 311.57

To assess systematic bias, we examined the median values across 1 000 resampling iterations (Fig. S9). Skewness and
especially kurtosis showed notable underestimation at low sample sizes. At 720 observations, median skewness was over 2%
lower, and kurtosis more than 25% lower than the full-series baseline. The kurtosis bias remained above 10% until sample size
exceeded 2 160 hours, and SN50500 required 22 080 observations (~2.5 yrs_equivalent) to reduce error to within 10%. In

contrast, other parameters varied by less than 1% across all sample sizes.

3.3 Determine an effective sample size for capturing overall wind characteristics

To determine the optimal sample size for capturing wind characteristics, we analysed the relationship between percent errors
and sample sizes (Fig. 4-5). Percent error measures discrepancies between parameters from the full dataset and smaller subsets.
Based on the 90% Cls derived from 1 000 realizations of random sampling of in-situ observations (orange lines in Fig. 2 &
Fig. S4), we computed percent errors of CI bounds and fitted pewerJtawthe equations to describe their dependence on sample

size. These fitted equations are summarized in Table 3 and allow extrapolation of error margins for any given sample size.

11
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As expected, percent error decreases with increasing sample size, though the rate and extent vary across parameters. For most
stations, 720 hourly observations are sufficient to constrain the percent errors within +7% for the mean, standard deviation,
and Weibull parameters (Fig. 4). In contrast, higher-order statistical moments such as skewness and kurtosis, as well as power
density, show much larger errors under the same sampling conditions, with deviations ranging from £10% up to £150%,
depending on the station. These parameters show greater variability across stations, with error differences of 4.6% for power
density, 18.1% for skewness, and 154.2% for kurtosis, compared to less than 1.5% for others. Errors decrease quickly below
400 observations and more slowly above (Fig. 5). About 200 observations can achieve £10% error for the mean, standard
deviation, and Weibull parameters (Fig. 5). To facilitate practical use, we calculated the minimum sample sizes required to
achieve £10%, +5%, +2%, and +1% error margins for each parameter at each station (Table 4). For example, £5% accuracy
requires 459 hourly observations for the mean, 470 for the Weibull scale (~20 days_equivalent), 796 for standard deviation
(=34 days _equivalent), and 4 031 for power density. Achieving +2% and +1% error requires 6-fold and 24-fold of observations
than +5%_case, respectively. Skewness and kurtosis are especially data-intensive due to their sensitivity to distribution tails.
For instance, SN38140 needs 177 390 observations (~20 years_equivalent) for £10% error, while SN50500 needs 1 541 437
observations (~176 years_equivalent).

We also observe regional differences in sample requirements. Stations with higher wind speed variability, but lower skewness
and kurtosis tend to require fewer samples. For example, SN50500 and SN38140, with the highest skewness and kurtosis,
require more observations. Power density has the largest regional difference (max to /min ratio = 2.1), while the Weibull shape
shows the least (1.2). Skewness and kurtosis are sensitive to wind characteristics, with required samples increasing 3.96-6.10

and 8.69-13.16, respectively, when error margins decrease from £10% to +1%.
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Table 3. Fitted equations describing the relationship between the percent error (¥) and sample size (n), based on random sampling results

from five in-situ weather stations. Each equation corresponds to a power-law fit of the 90% confidence interval (CI) bounds, positive (P) and

negative (N), for each parameter, across sample sizes from 720 to 52 560 hours.

Parameters

SN50500

SN44080

SN42160

SN38140

SN35860

Mean (P)
Mean (N)
Std. dev (P)
Std. dev (N)
Skewness (P)
Skewness (N)
Kaurtosis (P)
Kurtosis (N)
Weibull & (P)
Weibull £ (N)
Weibull ¢ (P)
Weibull ¢ (N)
Power density (P)
Power density (N)

Y=exp[-0.507In(n)+4.888]

Y=-exp[-0.511In(n)+4.929]
Y=exp[-0.497In(n)+5.045]

Y=-exp[-0.509In(n)+5.169]
Y=exp[-0.452In(n)+6.610]

Y=-exp[-0.471In(n)+6.807]
Y=exp[-0.436In(n)+8.521]

Y=-exp[-0.451In(n)+8.673]
Y=exp[-0.5081n(n)+4.902]
Y=-exp[-0.491In(n)+4.721]
Y=exp[-0.507In(n)+4.864]
Y=-exp[-0.512In(n)+4.906]
Y=exp[-0.508In(n)+6.011]
Y=-exp[-0.509In(n)+6.014]

Y=exp[-0.503In(n)+4.579]
Y=-exp[-0.494In(n)+4.491]
Y=exp[-0.503In(n)+4.579]
Y=-exp[-0.494In(n)+4.491]
Y=exp[-0.495In(n)+6.434]
Y=-exp[-0.502In(n)+6.522]
Y=exp[-0.4931In(n)+8.449]
Y=-exp[-0.500In(n)+8.540]
Y=exp[-0.5031n(n)+4.845]
Y=-exp[-0.493In(n)+4.731]
Y=exp[-0.5031n(n)+4.580]
Y=-exp[-0.495In(n)+4.505]
Y=exp[-0.505In(n)+5.689]
Y=-exp[-0.492In(n)+5.560]

Y=exp[-0.497In(n)+4.497]

Y=-exp[-0.498In(n)+4.504]
Y=exp[-0.486In(n)+4.692]

Y=-exp[-0.500In(n)+4.838]
Y=exp[-0.483In(n)+6.523]

Y=-exp[-0.4961n(n)+6.665]
Y=exp[-0.474In(n)+8.746]
Y=-exp[-0.485In(n)+8.869]
Y=exp[-0.5031n(n)+4.907]
Y=-exp[-0.484In(n)+4.696]
Y=exp[-0.496In(n)+4.494]
Y=-exp[-0.498In(n)+4.506]
Y=exp[-0.495In(n)+5.547]
Y=-exp[-0.497In(n)+5.566]

Y=exp[-0.496In(n)+4.724]
Y=-exp[-0.500In(n)+4.758]
Y=exp[-0.497In(n)+4.971]
Y=-exp[-0.503In(n)+5.033]
Y=exp[-0.482In(n)+6.579]
Y=-exp[-0.506In(n)+6.825]
Y=exp[-0.469In(n)+7.971]
Y=-exp[-0.496In(n)+8.254]
Y=exp[-0.5091n(n)+4.994]
=-exp[-0.501In(n)+4.906]
Y=exp[-0.497In(n)+4.782]
=-exp[-0.501In(n)+4.824]
Y=exp[-0.500In(n)+5.854]
Y=-exp[-0.497In(n)+5.813]

Y=exp[-0.4941n(n)+4.536]
Y=-exp[-0.5011In(n)+4.601]
Y=exp[-0.4891n(n)+4.748]
Y=-exp[-0.504In(n)+4.904]
Y=exp[-0.488In(n)+6.254]
Y=-exp[-0.509In(n)+6.475]
Y=exp[-0.488In(n)+8.273]
Y=-exp[-0.507In(n)+8.472]
Y=exp[-0.511n(n)+4.919]
Y=-exp[-0.493In(n)+4.735]
Y=exp[-0.494In(n)+4.55]
Y=-exp[-0.501In(n)+4.619]
Y=exp[-0.493In(n)+5.614]
Y=-exp[-0.5In(n)+5.674]
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Figure 4: The relationship between the percent error (Y) and sample size (1) (number of based-en-hourly observations)-ranging
fromn—720-30-days)-te-n—140;160-(16-years) across five stations. Curves are fitted for n = 720 ~ 140 160. with n =720 is equivalent

in size to 30 days of hourly data and 140 160 equivalent to 16 years. The equations of fits here are shown in Table 3. Grey circles indicate

the values used to fit the 90% confidence intervals for the percent error shown.
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Figure 5: Same as Fig. 4, but the hourly observations ranging from n = 24 (1-day)-te-n=~ 720-(30-days) across five stations. These

intervals are calculated using the same fits as shown in Fig. 4.

320 Table 4. Required number of randomly selected in-situ observations (unit: hours) to obtain an estimate within £10%, +5%, +2%,
and £1% of the parameters from the entire observed time series (157 465 data points), calculated at the 90% confidence level. The

fits to get the required data density are shown in Table S2.

Errqr Location = Mean Std.dev. Skewness  Kurtosis Shape  Scale Power density
margins k
SN50500 170 279 14297 1541437 166 162 1489
SN44080 92 162 4505 262169 157 93 813
£10% SN42160 83 160 6658 801270 177 84 709
SN38140 135 228 7673 177390 198 153 1211
SN35860 98 175 3611 204844 169 101 853
average 116 201 7349 597422 174 119 1015
SN50500 659 1087 63795 7545102 649 629 5836
SN44080 365 655 17944 1058755 623 368 3202
5% SN42160 335 640 26968 3458621 700 338 2859
SN38140 541 905 30229 777573 774 610 4840
SN35860 393 691 14084 847284 657 404 3417
average 459 796 30604 2737467 681 470 4031
SN50500 3956 6576 484327 61581562 3936 3770 35501
SN44080 2256 4165 111517 6790761 3853 2276 19931
129, SN42160 2113 4008 174520 23905124 4321 2131 18057
SN38140 3379 5593 200542 5484926 4689 3793 30218
SN35860 2445 4262 88940 5535245 3956 2513 21623
average 2830 4921 211970 20659524 4151 2897 25066

+1% SN50500 15531 25766 2244402 301432368 15383 14785 139117
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SN44080 8944 16876 444166 27700221 15295 9032 81625

SN42160 8503 16046 733004 103184595 17126 8585 72806
SN38140 13574 22191 844568 24042683 18315 15117 120783
SN35860 9757 16870 368113 22895088 15391 10011 88205

average 11262 19550 926851 95850991 16302 11506 100507

3.4 Does ERAS reanalysis (10 m and 100 m) show similar results with in-situ observations?

To assess the consistency of reanalysis data with in-situ measurements, we compared ERAS5 (10 m and 100 m) in-situ
observations. At four out of five stations, ERAS overestimated mean wind speeds in both the full time series (Table 2) and
sampling experiments (Fig. 6 & Fig. S10), likely due to an overrepresentation of low-to-moderate wind speeds (Fig. S8). This
bias also led to overestimation of the Weibull scale parameter at stations with higher wind speeds and underestimation at those
with lower speeds. Additionally, the Weibull shape parameter was consistently higher in ERAS, often exceeding 2, indicating
a potential bias in overestimating high wind events. These biases collectively contributed to systematic overestimation in

Weibull power density (Table 2 & Fig. 6 & Fig. S10).

Both in-situ and ERAS distributions were positively skewed (Fig. S8), but in-situ data had higher skewness (Table 2). ERAS
consistently showed lower skewness (Fig. S10). For kurtosis, in-situ observations show positive values (Table 2), indicating
more peaked distributions, whereas ERAS exhibited negative values, reflecting flatter, less variable distribution. The largest
divergence was observed at SN50500 and SN38140 (Fig. S10), where in-situ kurtosis varied substantially, while ERAS values

remained comparatively uniform (Fig. S10).

These differences influenced sample size requirements. For mean, standard deviation, Weibull scale, and power density, ERAS
(10.m) generally required fewer data points to achieve the same error margins thresholds (Table S3). However, for tail-sensitive
parameters like shape, skewness, and kurtosis, ERAS require larger sample size. Additionally, ERAS5 results showed lower
inter-station variability, as indicated by overlapping percent-error curves (Fig. S11-S12). The equations used to estimate

percent errors under different sample sizes for ERAS 10 m are summarized in Table S4.

We further analysed the ERAS5 100 m dataset, which aligns more closely with hub heights. As shown in figures S13-S14, most
parameters had similar data density requirements to those at ERA5 10 m dataset, though it can vary by station. For instance,
SN42160 had the highest error in the 10-meter dataset, while SN35860 showed nearly double the error under the same density.
Table S5 summarizes the required sample sizes, showing broadly similar patterns across both heights, but the 100-meter dataset
consistently required more data for the shape parameter. The equations used to estimate the required sample sizes for ERAS

100 m are summarized in Table S6.
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Figure 6: Estimates of mean wind speed, Weibull scale parameter, and power density based on random sampling of ERAS 10-meter
reanalysis data (black dots) across five Norwegian stations. The sampling strategy is consistent with Figure 2. The 90% confidence
intervals (Cls) are shown as orange lines (ERAS) and grey lines (in-situ observations). Red asterisks denote reference values derived from
the full 16-year ERAS-10m dataset; grey asterisks represent the corresponding values from in-situ observations. Blue shading represents
+2% (dark) and £5% (light) uncertainty margins around ERAS-10m reference values, while grey shading indicates the same margins around

in-situ reference values.

4 Discussions and Implications
4.1 Sensitivity to sampling strategy and climatic non-stationarity

In wind energy assessments, continuous sampling is more commonly used than random sampling because it preserves temporal
structure and seasonal variability in wind speed time series, and most importantly, only long-term data are not available.
However, continuous sampling may also introduce systematic bias, particularly over short durations, due to temporal
autocorrelation and underlying climatic non-stationarity. To investigate the extent of this effect and assess the generalizability
of random sampling, we conducted a sensitivity analysis using 46 years (1979-2024) of hourly wind speed data from two

coastal meteorological stations: Copenhagen Airport (061800-99999, Denmark) and Leuchars (031710-99999, Scotland).
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These sites were chosen for their long-term records and meteorological similarity to the five Norwegian locations analysed
earlier. Copenhagen station exhibits a long-term decreasing wind speed trend (Fig. S1), consistent with broader global

observations (Zeng et al., 2019).

Our results show that continuous sampling generally requires significantly longer periods to achieve the same level of
uncertainty in estimated distribution parameters compared to random sampling (Fig. 7). This discrepancy arises because
random sampling draws from multiple years, thereby capturing a wider range of interannual variability and reducing exposure
to temporal clustering. Consequently, the 90% confidence intervals (CIs) under random sampling are symmetric for all
parameters, while under continuous sampling, only the Cls for mean wind speed, Weibull scale parameter, and power density
are symmetric. Shape-sensitive parameters, including standard deviation, skewness, kurtosis, and especially the Weibull shape
parameter, exhibit pronounced asymmetries under continuous sampling, particularly at short durations (<2 years). This

suggests that the presence of systematic climatic anomalies in continuous subsets may bias shape estimation.

These findings support earlier recommendations by Murthy et al. (2017), who advocate using at least four to ten years of data
for reliable wind energy assessments. Our results suggest that when using continuous sampling, at least five years of data may
be required to achieve +10% relative uncertainty in power density estimates, although this threshold is site-specific (e.g.,
Copenhagen station requires more than 10 years). We further recommend that random sampling be considered as a

complementary tool to identify potential biases in short-term continuous assessments.
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Figure 7: Ddistribution parameters and Weibull power density derived from random sampling (orange lines) and continuous

sampling (black lines), based on in-situ measurements from weather stations. The x-axis shows the number of hourly observations: a

secondary top axis indicates the equivalent number of years (1 year = 8760 h). Asterisks indicate values computed from the full 46-year

dataset.

—Details of the experimental setup and sampling

procedures are provided in the Methods section.

The uncertainty bounds acquired by the random sampling were claimed by Barthelmie and Pryor (2003 )in-thisstadyprevided
exhibitrobustness- to be robust and-are applicable to all remetely-sensedremote-sensing wind speed timedata series(Barthelmie
and-Pryor,2003). Specifically, they reached this conclusion by finding a similar required sample size with an uncertainty of

+10% from five different locations, including Denmark, eastern North Pacific, the Gulf of Mexicoa, the Gulf of Alaska, and
the western Atlantic (Barthelmie and Pryor, 2003; Pryor et al., 2004). However, upon replicating their methods using in-situ
wind speed measurements from WMO stations, we are reluctant to draw the same conclusion. Although when using the same
error margin (£10%) as Barthelmie and Pryor, (2003), we obtain similar results. As the error margins narrow (from +10% to
+1%), the discrepancy among stations becomes significant. Therefore, we suggest that the uncertainty bounds presented in
Table 3 exhibit robustness and are applicable only under higher error margins, such as those exceeding +£10%. Additionally,

lower-order moments and two Weibull parameters showed higher robustness.

Furthermore, although we provided the uncertainty bounds for datasets with fewer than 720 samples, it is important to note
that we calculated these values based on an exponential function fitted to the results derived from 720 to 52 560 points. As a
result, the curve may be biased due to the potential asymmetry in the distribution of the parameters (Barthelmie and Pryor,

2003).

Our results indicated that ERAS tends to overestimate the mean and Weibull scale parameters. Discrepancies between ERAS
and observational data are unsurprising, as previous studies have noted differences in magnitude and trends (Zhou et al., 2021,
Torralba et al., 2017). These discrepancies can be partly attributed to ERAS5 not assimilating in-situ land observations and the
inherent limitations of the ERAS reanalysis (Hersbach et al., 2020), such as its inability to accurately reproduce mesoscale
dissipation rates (Bolgiani et al., 2022). Additionally, modern data assimilation systems still struggle to adequately correct the
inevitable errors in model-generated guess fields at these smaller scales (Wang and Sardeshmukh, 2021). Consequently, ERAS
may underestimate variability and fail to capture local extremes observed in in-situ data, leading to discrepancies in parameters
like skewness and kurtosis. For instance, at stations SN50500 and SN38140, in-situ data show significantly more wind
observations close to zero compared to ERAS datasets, resulting in distinct wind characteristics such as differing skewness

and kurtosis.
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4.2 Evaluation of global wind atlas estimates against observations

Since the publication of the first European Wind Atlas in 1989 (Dérenkdmper et al., 2020), the wind atlas methodology has
been widely adopted for regional wind resource assessments, including in countries such as Finland (Tammelin et al., 2013)
and Greece (Kotroni et al., 2014). The Global Wind Atlas (GWA), developed by the Technical University of Denmark, applies
the well-established numerical wind atlas method to downscale coarse-resolution reanalysis data to microscale levels. This is
achieved using linearized flow models and topographic corrections based on the WAsP model. GWA provides publicly
accessible estimates of mean wind speed and power density, which have been used in applications such as bias correction of

reanalysis data for wind power simulations (Gruber et al., 2022).

Given the energy-focused perspective of this study, it is relevant to compare our results with GWA estimates. We extracted
GWA values at the nearest grid points for selected stations and compared them with observational estimates based on the full
time series. Table S7 presents this comparison, focusing on two key metrics in wind energy assessments: mean wind speed
and power density. The results show that GWA consistently overestimates both wind speed and power density relative to our

station-based observations.

One likely explanation for this discrepancy lies in the different ways topographic effects are incorporated. As described by
Davis et al. (2023), the GWA estimates the predicted wind climate (PWC) by applying high-resolution topographic
perturbations to the generalized wind climate which is based on coarse reanalysis fields. The PWC is represented by a set of
Weibull distributions and directional frequencies for each of 12 directional sectors, and these are used to calculate derived

variables such as mean wind speed and power density.

4.3 Implications

Both onshore and offshore sites exhibit seasonal variations, with onshore and near-coast locations often experiencing
significant diurnal cycles (Barthelmie and Pryor, 2003; Barthelmie et al., 1996; Ashkenazy and Yizhaq, 2023). Our findings
indicate that random sampling can effectively analyse wind distribution parameters, even when dealing with discontinuous
data that lacks explicit diurnal or seasonal cycle information. This is particularly important given the challenges associated
with accurately collecting data that reflects these cycles; factors such as anemometer malfunctions, site relocations, and other
disruptions can create gaps in the wind speed data series, leading to non-continuous records (Liu et al., 2024). For instance,
the Sentinel-1 Level 2 OCN ocean wind field product (1 km resolution), while performing well in offshore areas, has a revisit

frequency of one to two days that may not sufficiently capture rapid temporal variations (Khachatrian et al., 2024).

It was noted that this finding is drawn from analyses utilizing a 90% confidence interval. This confidence level indicates that

while minor discrepancies may exist in the data, they are considered negligible under specific statistical assumptions. Therefore,
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we conclude that random sampling provides a practical and statistically robust alternative, particularly in scenarios where it is

not feasible to retain the characteristics of diurnal cycles or seasonality.

4.4 Limitations of this study

While our study focuses on long-term wind data from five coastal onshore stations in Norway, it may not fully represent
offshore wind conditions. Although these stations are all located at low elevations and near the coastline, their degree of
exposure to open-sea winds varies due to local topography, coastal geometry, and sheltering effects (Fig. S15). For example,
SN35860 and SN44080 are directly exposed to the open sea, while SN38140 is partially sheltered by inland terrain and
surrounding vegetation. Offshore wind can differ significantly from those onshore. In our study, ERAS data tends to
overestimate the frequency of high wind events at coastal sites. By contrast, recent study indicates that ERAS may
underestimate strong wind speed offshore (Gandoin and Garza, 2024), suggesting that discrepancies may stem from differences
in surface roughness, atmospheric stability, and model representation of marine boundary layers. This highlights the need for
targeted offshore studies, for example using buoy-based wind measurements (Morgan et al., 2011). Furthermore, our analysis
does not include complex inland terrains such as mountainous regions or deep valleys, where wind speed distributions can be
bimodal (Jaramillo and Borja, 2004) or strongly affected by topographic channelling. These environments are likely to show
different sensitivities to sampling strategies, especially about shape-related distribution metrics. We therefore recommend that
future research apply this framework to both offshore locations and inland complex terrain to better capture the full range of

wind resource variability and distributional stability.

Moreover, we compared the surface elevation of the ERAS grid cells with the actual heights of the five Norwegian weather
stations (Table 1). While all stations are situated near sea level (ranging from 4 m to 48 m above mean sea level), ERAS grid
elevations differ substantially, with four out of five stations showing discrepancies exceeding 40 m, and one exceeding 110 m.
Specifically, ERA5 overestimates elevation at three stations and underestimates it at two. Interestingly, despite the mix of
elevation biases, ERAS wind speeds are overestimated at four stations and underestimated at only one. A station where ERAS
overestimated elevation is also the one where wind speed is underestimated. This suggests that elevation mismatch alone

cannot fully explain the direction or magnitude of wind speed biases. Other factors, such as surface roughness and land use

type, may also contribute to the discrepancies.
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Another limitation is the time resolution of the wind speed data we used. We utilized hourly data instead of higher temporal
resolution data, such as 10-minute intervals, for wind distribution assessments. Despite this, Yang et al., (2024) demonstrated
that hourly wind speed data provide sufficiently accurate estimations of wind power density, with errors smaller than +2%
when compared to 10-minute resolution data. This suggests that hourly data are suitable for such analyses. Additionally,
Effenberger et al., (2024) showed that three- or six-hourly instantaneous wind speed data can effectively preserve the
distribution characteristics of 10-minute wind speeds. Therefore, it is reasonable that hourly wind speed can adequately

represent the characteristics of 10-minute wind speeds.

It is worth noting that the hourly data provided by MET Norway represent the average wind speed over the last ten minutes of
each hour rather than the entire hour. Despite this, previous research found that Weibull distribution parameters remain
consistent across different averaging periods (e.g., 1 minute and 30 minutes) (Barthelmie and Pryor, 2003). Based on these
findings, we believe that our use of last 10-minute averages is unlikely to significantly impact the accuracy of the Weibull

distribution parameters compared to full-hour averages.

Additionally, our study focuses on near-surface wind speeds (10 m), raising questions about whether our conclusions hold at
turbine-height winds. Prior studies indicate a height dependency for Weibull distribution parameters, with higher altitudes
typically showing higher means (and scale parameter), variances, skewness, and kurtosis, while the shape parameter remains
height-independent (Barthelmie and Pryor, 2003; Dixon and Swift, 1984). Due to the absence of observational data at heights
other than 10 meters, we utilized the ERAS dataset to compare distribution parameters at 10-m and 100-m heights. For the five
locations studied, only the mean (and Weibull scale parameter), and variance show height dependency, with other parameters

(skewness, kurtosis, Weibull shape parameter) showing independence from height.

5 Conclusions

Our study quantifies the errors in estimating wind speed distribution parameters using time series of varying lengths,
accounting for interannual variability. We find that skewness and kurtosis, particularly kurtosis, are systematically

underestimated when-datatensth-is-Hmitedat small sample sizes, and this underestimation is more pronounced in datasets with

higher skewness and kurtosis levels, necessitating significantly lenger-observationperiodslarger sample sizes for accurate

estimates. While the mean and standard deviation stabilize within weeks-ef-dataa few hundred hourly samples, skewness

requires_at least 14 084 hours and evert-6-years-and-kurtosis at least 777 573 hours ever-88-8-years-forto meet a +5% error

13

margin (1.6 years and 88.6 years-equivalent, respectively). Here, “years-equivalent” denotes the number of hourly observations

equal to the hours in that duration and does not imply a contiguous period (observations are randomly drawn across years).

These results emphasize that the required length—ofwind-ebservationssample size is strongly dependent on the shape
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charaeteristies-of the underlying distribution, with regional variatiens-differences becoming more pronounced as accuracy

demands increase, particularly for higher-order statistical preperties-moments like skewness and kurtosis.

These findings have important implications for wind resource assessment, particularly in regions characterized by highly
variable wind regimes. In such areas, extended data collection periods or alternative strategies such as data fusion or machine
learning may be essential to accurately capture higher-order statistical properties, which directly affects energy yield estimates

and turbine design standards.

We also compare different sampling strategies. Our results show that random_cross-year sampling yields more statistically
efficient estimates than continuous sampling, which preserves temporal correlation and diurnal pattern but introduces greater
variability in estimated parameters. For instance, achieving £10% uncertainty in power density may require at least five years

of continuous data, whereas enly-abeut-an equivalent sample of two months of randomly sampled hourly data drawn across

multiple years may suffice. This suggests that flexible sampling approaches may be feasible in data-limited environments,

provided the sampling design avoids strong temporal clustering. An additional application of this result is to long-term high-

resolution climate simulations: rather than processing the full, continuous multi-decadal time series, a relatively small,

randomly sampled set of hourly outputs spanning multiple years can recover the key wind-distribution characteristics. The

required sample size can be determined from our sample-size-uncertainty relationships to meet a prescribed accuracy bound

while model biases and non-stationarity should be addressed separately.

Finally, our evaluation of ERAS reanalysis data reveals that although such datasets require fewer data points for the same error
margin, they introduce systematic biases, such as underestimating skewness and overestimating Weibull shape parameters,
compared to in-situ measurements. This underscores the need for caution when using reanalysis data in wind resource

assessments, particularly in regions with complex wind regimes.

Future studies should focus on mitigating biases in higher-order moment estimation. Moreover, extending this analysis to

different terrain types, and hub heights can further improve the reliability and generalizability of wind energy assessments.

Code availability

The code used in this paper can be obtained from the author upon request.
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Figure S7 Differences in the 90% confidence intervals derived from ERA5 100 m dataset. Visualization is consistent
with Figure S5.
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Figure S8 Wind speed distribution at five stations from both in-situ weather measurements and ERAS reanalysis data
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Figure S9 Relative percentage error of the median for each resampling group compared to the total time series value
from in-situ weather observations.
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Figure S10 Estimates of standard deviation, skewness, kurtosis and Weibull shape parameter based on random
sampling of ERAS 10-meter reanalysis data (black dots) across five Norwegian stations. The sampling strategy is
consistent with Figure S2. The 90% confidence intervals (Cls) are shown as orange lines (ERAS) and grey lines (in-situ
observations). Red asterisks denote reference values derived from the full 16-year ERAS5-10m dataset; grey asterisks represent
the corresponding values from in-situ observations. Blue shading represents £2% (dark) and +5% (light) uncertainty margins
around ERAS5-10m reference values, while grey shading indicates the same margins around in-situ reference values.
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Figure S13 Same as Figure S11, but for ERAS 100-meter dataset. The fits to get the required data density are shown in
Table S6.
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Figure S14 Same as Figure S12, but for ERA5 100-meter dataset. The fits to get the required data density are shown in
Table S6.
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Table S1. Selected years (Yr.) and percentage of observation times (Obs. Tim.) for five Norwegian stations used in this
study.

SN38140 SN35860 SN42160 SN44080 SN50500

Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim. Yr. Obs. Tim.

1996 100.00 2001 100.00 1998 99.47 1995 99.22 1974 100.00
1998 99.47 2002 99.97 2000 99.32 1996 99.58 1975 99.82
2002 100.25 2003 99.60 2001 99.93 1997 99.57 1976 100.00
2003 100.25 2004 99.77 2002 100.00 1998 99.50 1977 99.77
2004 99.86 2008 99.68 2004 99.25 1999 99.92 1978 99.95
2009 99.99 2009 99.99 2008 99.98 2000 99.99 1979 100.00
2010 99.98 2010 99.43 2009 100.00 2001 99.57 1980 99.97
2011 99.95 2014 99.77 2010 100.00 2002 99.95 1981 100.00
2012 99.65 2015 99.59 2011 100.00 2003 99.52 1982 99.99
2014 99.87 2016 100.00 2012 99.99 2004 100.00 1983 99.73
2015 99.85 2017 99.99 2013 99.09 2006 99.60 1984 99.98
2017 99.55 2018 99.99 2016 99.76 2009 99.97 1985 99.90
2018 99.53 2019 99.99 2018 99.14 2010 100.00 1986 99.89
2019 99.38 2020 99.99 2020 99.59 2011 98.58 1987 99.92
2020 98.87 2021 100.00 2022 99.89 2012 98.45 1988 99.90
2021 99.06 2022 99.44 2023 99.63 2013 99.19 1990 99.77
Total 99.72 Total 99.82 Total 99.69 Total 99.54 Total 99.91
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Table S2. Root mean squared error (RMSE) of 90% confidence interval (CI) bounds between random sampling and
two temporal-structure-preserving sampling methods: diurnal cycle-retained sampling (denoted as “Diurnal”) and
seasonality-retained sampling (denoted as “Seasonal”), based on in-situ measurements and ERAS 100-m data from five
Norwegian stations. The RMSE is computed for both the lower and upper bounds of 90% CI across all the sampling density,
for each statistical parameter.

SN50500 SN44080 SN42160 SN38140 SN35860 Average
Parameters Methods In-situ iﬁf ri In-situ ﬁif ri In-situ iﬁf ri In-situ iﬁf ri In-situ iﬁf Ifl In-situ iﬁf Ifl
Mean Diurnal 0.0023 0.0016 0.0026 0.0027 0.0025 0.0029 0.0013 0.0023 0.0018 0.0019 0.0021 0.0023
Seasonal 0.0023 0.0105 0.0040 0.0057 0.0025 0.0051 0.0016 0.0050 0.0022 0.0050 0.0025 0.0063
Std. dev Diurnal 0.0016 0.0011 0.0019 0.0019 0.0018 0.0018 0.0010 0.0014 0.0013 0.0013 0.0015 0.0015
Seasonal 0.0021 0.0028 0.0027 0.0022 0.0028 0.0031 0.0014 0.0024 0.0017 0.0022 0.0021 0.0025
Skewness Diurnal 0.0083 0.0012 0.0020 0.0013 0.0024 0.0015 0.0029 0.0014 0.0018 0.0015 0.0035 0.0014
Seasonal 0.0075 0.0025 0.0022 0.0016 0.0025 0.0017 0.0032 0.0015 0.0022 0.0018 0.0035 0.0018
Kurtosis Diurnal 0.1229 0.0021 0.0106 0.0030 0.0193 0.0040 0.0210 0.0037 0.0084 0.0044 0.0364 0.0034
Seasonal 0.1138 0.0029 0.0113 0.0038 0.0233 0.0056 0.0230 0.0044 0.0084 0.0052 0.0360 0.0044
Shape k Diurnal 0.0007 0.0012 0.0009 0.0011 0.0010 0.0012 0.0008 0.0013 0.0008 0.0011 0.0008 0.0012
Seasonal 0.0009 0.0033 0.0008 0.0012 0.0014 0.0011 0.0008 0.0013 0.0008 0.0011 0.0009 0.0016
Scale Diurnal 0.0025 0.0018 0.0029 0.0031 0.0028 0.0032 0.0016 0.0025 0.0021 0.0022 0.0024 0.0026
Seasonal 0.0024 0.0116 0.0045 0.0064 0.0029 0.0058 0.0018 0.0056 0.0025 0.0055 0.0028 0.0070
Power density Diurnal 0.1396 0.1552 0.4855 0.7918 0.3858 0.8559 0.0292 0.3100 0.1589 0.2731 0.2398 0.4772
Seasonal 0.1687 0.8931 0.7466 1.4477 0.5161 1.6094 0.0498 0.7847 0.2311 0.6521 0.3425 1.0774
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Table S3 Required number of randomly selected ERAS 10-meter reanalysis (unit: hours) to obtain an estimate within

+10%, £5%, +2%, and 1% of the parameters from the entire observed time series (157 ;465 data points), calculated

at the 90% confidence level. The fits to obtain the required data density are shown in Table S4.

Error margins Location Mean Std.dev. Skewness  Kurtosis Sh]ip ¢ Scale Power density
SN50500 73 96 8172 5016 180 73 471
SN44080 66 117 8313 44143 185 67 472
+10% SN42160 57 126 11723 95190 194 56 427
SN38140 60 134 8735 711310 195 59 460
SN35860 64 139 6207 3540359 185 64 508
average 64 123 9262 944804 188 64 468
SN50500 290 378 32016 19838 695 288 1856
SN44080 264 461 32714 178285 730 266 1877
159 SN42160 229 495 46455 392676 761 227 1711
SN38140 238 528 34605 2908557 751 232 1825
SN35860 254 547 24898 14867900 716 254 2041
average 255 482 34138 3673452 731 254 1862
SN50500 1780 2314 200956 124202 4155 1777 11362
SN44080 1642 2826 208777 1128607 4469 1649 11743
129, SN42160 1443 3016 298655 2556252 4626 1424 10706
SN38140 1461 3244 221711 18715159 4468 1430 11298
SN35860 1587 3343 165203 99101050 4294 1587 12890
average 1583 2949 219061 24325054 4403 1574 11600
SN50500 7030 9113 809645 498171 16071 7032 44916
SN44080 6548 11134 848415 4558267 17597 6563 47679
1% SN42160 5802 11843 1220400 10544961 18114 5721 43071
SN38140 5777 12805 903642 76526556 17220 5660 45063
SN35860 6368 13141 691404 416179369 16643 6348 51972
average 6305 11608 894702 101661465 17129 6265 46541
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Table S4. Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERAS 10 m
reanalysis data. Note: the station ID indicates the corresponding grid point location.

Parameters

SN50500

SN44080

SN42160

SN38140

SN35860

Mean (P)
Mean (N)
Std. dev (P)
Std. dev (N)
Skewness (P)
Skewness (N)
Kurtosis (P)
Kurtosis (N)
Weibull k (P)
Weibull k (N)
Weibull ¢ (P)
Weibull ¢ (N)
Power density (P)
Power density (N)

Y=exp[-0.505In(n)+4.47]

Y=-exp[-0.499In(n)+4.413]

Y=exp[-0.504In(n)+4.576]
Y=-exp[-0.506In(n)+4.61]
Y=exp[-0.497In(n)+6.767]
Y=-exp[-0.508In(n)+6.875]
Y=exp[-0.499In(n)+6.546]
Y=-exp[-0.504In(n)+6.598]
Y=exp[-0.512In(n)+4.962]
Y=-exp[-0.502In(n)+4.839]
Y=exp[-0.504In(n)+4.463]
Y=-exp[-0.5In(n)+4.419]
Y=exp[-0.506In(n)+5.416]
=-exp[-0.498In(n)+5.332]

Y=exp[-0.496In(n)+4.356]
Y=-exp[-0.501In(n)+4.404]
Y=exp[-0.488In(n)+4.535]
Y=-exp[-0.506In(n)+4.711]
Y=exp[-0.494In(n)+6.749]
Y=-exp[-0.508In(n)+6.891]
Y=exp[-0.497In(n)+7.613]
Y=-exp[-0.507In(n)+7.717]
Y=exp[-0.506In(n)+4.943]
Y=-exp[-0.489In(n)+4.767]
Y=exp[-0.495In(n)+4.348]

Y=-exp[-0.502In(n)+4.41]

Y=exp[-0.495In(n)+5.329]

=-exp[-0.502In(n)+5.393]

Y=exp[-0.494In(n)+4.275]
Y=-exp[-0.498In(n)+4.316]
Y=exp[-0.489In(n)+4.568]
Y=-exp[-0.507In(n)+4.754]
Y=exp[-0.492In(n)+6.901]
Y=-exp[-0.505In(n)+7.038]
Y=exp[-0.489In(n)+7.91]
Y=-exp[-0.502In(n)+8.044]
Y=exp[-0.508In(n)+4.979]
Y=-exp[-0.488In(n)+4.771]
Y=exp[-0.494In(n)+4.261]
Y=-exp[-0.4991In(n)+4.313]
Y=exp[-0.493In(n)+5.266]
Y=-exp[-0.5In(n)+5.33]

Y=exp[-0.504In(n)+4.368]
Y=-exp[-0.498In(n)+4.304]
Y=exp[-0.497In(n)+4.688]
Y=-exp[-0.505In(n)+4.775]
Y=exp[-0.493In(n)+6.766]
Y=-exp[-0.505In(n)+6.887]
Y=exp[-0.492In(n)+8.935]
Y=-exp[-0.5031n(n)+9.046]
Y=exp[-0.514In(n)+5.011]
Y=-exp[-0.494In(n)+4.808]
Y=exp[-0.504In(n)+4.353]
Y=-exp[-0.498In(n)+4.301]
Y=exp[-0.503In(n)+5.384]

=-exp[-0.497In(n)+5.326]

Y=exp[-0.498In(n)+4.365]
Y=-exp[-0.5In(n)+4.38]
Y=exp[-0.493In(n)+4.671]
Y=-exp[-0.506In(n)+4.802]
Y=exp[-0.484In(n)+6.511]
Y=-exp[-0.5In(n)+6.67]
Y=exp[-0.483In(n)+9.587]
Y=-exp[-0.5In(n)+9.762]
Y=exp[-0.512In(n)+4.973]
Y=-exp[-0.4931In(n)+4.779]
Y=exp[-0.498In(n)+4.36]
Y=-exp[-0.5In(n)+4.378]
Y=exp[-0.497In(n)+5.398]
Y=-exp[-0.499In(n)+5.413]
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Table S5 Required number of randomly selected ERAS 100-meter reanalysis (unit: hours) to obtain an estimate within
+10%, 5%, £2%, and £1% of the parameters from the entire observed time series (157 ;465 data points), calculated
at the 90% confidence level. The fits to obtain the required data density are shown in Table S6.

Shape Scale

Error margins Location Mean Std.dev. Skewness Kurtosis Power density

k
SN50500 56 110 16201 8729 198 54 374
SN44080 73 123 7056 81022 189 74 521
+10% SN42160 61 133 11263 328841 205 62 468
SN38140 58 137 15661 2453346 222 57 435
SN35860 64 137 11069 795574 211 64 480
average 63 128 12230 701703 205 63 456
SN50500 223 434 65875 38941 767 215 1501
SN44080 289 483 27566 329399 745 294 2067
+50 SN42160 247 523 44785 1367095 803 247 1867
SN38140 239 528 39510 2240186 816 234 1808
SN35860 255 535 44939 3346344 815 255 1916
average 251 501 44535 1464393 790 249 1832
SN50500 1391 2651 427303 248311 4604 1347 9434
SN44080 1786 2950 176226 2103464 4560 1819 12841
90, SN42160 1551 3187 290902 8991336 4889 1552 11635
SN38140 1481 3272 247668 14218455 4903 1457 11209
SN35860 1587 3244 296038 22351593 4884 1590 12125
average 1560 3061 287628 9582632 4768 1553 11449
SN50500 5556 10417 1757931 1008422 17854 5394 37889
SN44080 7091 11598 717060 8551751 17952 7217 51955
1% SN42160 6236 12509 1198029 37379775 19172 6231 47065
SN38140 5891 12995 998600 57540275 19027 5801 44825
SN35860 6341 12685 1232216 94015313 18917 6340 48981
average 6223 12041 1180767 39699108 18585 6197 46143
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Table S6 Fitted equations describing the relationship between the percent error (Y) and sample size (n), based on random sampling results from ERAS 100 m
reanalysis data. Note: the station ID indicates the corresponding grid point location.

Parameters

SN50500

SN44080

SN42160

SN38140

SN35860

Mean (P)
Mean (N)
Std. dev (P)
Std. dev (N)
Skewness (P)
Skewness (N)
Kurtosis (P)
Kurtosis (N)
Weibull k (P)
Weibull k (N)
Weibull ¢ (P)
Weibull ¢ (N)
Power density (P)
Power density (N)

Y=exp[-0.5In(n)+4.315]
Y=-exp[-0.495In(n)+4.254]
Y=exp[-0.492In(n)+4.533]
Y=-exp[-0.506In(n)+4.685]

Y=exp[-0.49In(n)+7.047]
Y=-exp[-0.504In(n)+7.187]
Y=exp[-0.495In(n)+6.837]
Y=-exp[-0.504In(n)+6.93]
Y=exp[-0.511In(n)+5.007]
Y=-exp[-0.489In(n)+4.776]

Y=exp[-0.5In(n)+4.293]
Y=-exp[-0.495In(n)+4.249]
Y=exp[-0.499In(n)+5.256]
Y=-exp[-0.496In(n)+5.225]

Y=exp[-0.497In(n)+4.402]
Y=-exp[-0.503In(n)+4.458]
Y=exp[-0.489In(n)+4.559]
Y=-exp[-0.506In(n)+4.739]
Y=exp[-0.494In(n)+6.659]
Y=-exp[-0.509In(n)+6.815]
Y=exp[-0.494In(n)+7.888]
Y=-exp[-0.508In(n)+8.03]
Y=exp[-0.506In(n)+4.955]
Y=-exp[-0.4891n(n)+4.78]
Y=exp[-0.496In(n)+4.404]
Y=-exp[-0.503In(n)+4.468]
Y=exp[-0.496In(n)+5.385]
Y=-exp[-0.503In(n)+5.451]

Y=exp[-0.494In(n)+4.305]
Y=-exp[-0.498In(n)+4.354]
Y=exp[-0.489In(n)+4.593]
Y=-exp[-0.507In(n)+4.783]
Y=exp[-0.49In(n)+6.854]
Y=-exp[-0.505In(n)+7.015]
Y=exp[-0.486In(n)+8.482]
Y=-exp[-0.5011n(n)+8.633]
Y=exp[-0.507In(n)+5.002]
Y=exp[-0.4931In(n)+4.298]
Y=-exp[-0.4991n(n)+4.358]
Y=exp[-0.493In(n)+5.305]
Y=-exp[-0.5011n(n)+5.382]
Y=exp[-0.494In(n)+4.305]

Y=exp[-0.502In(n)+4.357]
Y=-exp[-0.5In(n)+4.335]
Y=exp[-0.501In(n)+4.731]
Y=-exp[-0.503In(n)+4.76]
Y=exp[-0.497In(n)+6.868]
Y=-exp[-0.505In(n)+6.958]
Y=exp[-0.496In(n)+8.86]
Y=-exp[-0.5061n(n)+8.974]
Y=exp[-0.5111In(n)+5.037]
Y=-exp[-0.502In(n)+4.924]
Y=exp[-0.502In(n)+4.347]
Y=-exp[-0.5In(n)+4.333]
Y=exp[-0.502In(n)+5.376]
Y=-exp[-0.496In(n)+5.312]

Y=exp[-0.498In(n)+4.361]
Y=-exp[-0.5011In(n)+4.383]
Y=exp[-0.493In(n)+4.656]
Y=-exp[-0.508In(n)+4.803]
Y=exp[-0.486In(n)+6.817]
Y=-exp[-0.5011n(n)+6.972]
Y=exp[-0.483In(n)+8.858]
Y=-exp[-0.498In(n)+9.015]
Y=exp[-0.512In(n)+5.041]
Y=-exp[-0.4931n(n)+4.849]
Y=exp[-0.497In(n)+4.352]
Y=-exp[-0.5011n(n)+4.387]
Y=exp[-0.496In(n)+5.362]
Y=-exp[-0.5011n(n)+5.396]
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Table S7. Comparison of observed wind statistics at 10 m height with estimates from ERAS and the
Global Wind Atlas (GWA) at selected stations. Units for mean wind speed and power density are m s
"'and W m™, respectively. ERAS5 and GWA values are extracted from the nearest grid points closest to
each station.

. Mean wind speed Power density
Station ID Observed GWA Observed GWA
SN50500 3.53 5.47 81 261
SN44080 6.85 7.88 417 651
SN42160 6.57 7.77 358 534
SN38140 2.28 4.03 21 105
SN35860 4.80 6.11 152 254

061800-99999 5.32 5.30 165 155
031700-99999 4.87 6.34 171 338
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