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Abstract. Accurate wind resource assessment depends on wind speed data that capture local wind conditions, crucial for 

energy estimates and site selection. The International Electrotechnical Commission (IEC) recommends at least one year of 

data collection, yet this duration may not fully account for interannual variability. While studies often maximize data length, 

guidance on the minimum duration required for reliable wind speed and power estimates remains limited. To address this gap, 10 

we propose a method to quantify the errors introduced by using wind speed series of different lengths for wind speed 

distributions fitting, relative to long-term data. This allows us to determine the minimum number of hourly observations needed 

to for a given accuracy level. We apply our method to in-situ weather station observations and ERA5 reanalysis data at 10-

meter and 100-meter heights. Our results show that key parameters, including mean, standard deviation, and Weibull 

parameters, stabilize with relatively short records (~1 month of hourly data), whereas skewness requires at least 1.6 years, and 15 

kurtosis requires 88.6 years to stabilize. ERA5 data stabilize with fewer observations but differ from in-situ measurements, 

requiring careful use. Moreover, combining available hourly data for distribution fitting produces parameters comparable to 

those obtained when controlling for diurnal and seasonal effects, suggesting discontinuous data can be viable under certain 

conditions. These findings offer a practical framework for optimizing data collection in wind resource assessments, balancing 

accuracy and cost-effectiveness. 20 

1 Introduction 

Wind energy production critically depends on strengths and persistence of winds in the lower earth’s atmosphere. Precise and 

cost-effective assessment of wind speed is crucial for evaluating wind energy potential and designing wind farms and power 

generators, because accurate assessments ensure that the selected site has adequate wind conditions, making the investment 

economically viable and optimizing energy production efficiency (Wang et al., 2022).  25 

 

Quantifying wind speed characteristics, a crucial component of wind speed assessment, typically relies on analysing wind 

speed distribution from collected data. Ideally, long-term meteorological measurements at the proposed wind turbine locations 

are preferred, as they account for a broader range of wind variability. However, despite the high demand for such data, 
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collecting long-term datasets is often impractical due to the extensive time required and significant associated costs (Wais, 30 

2016). 

 

As a more practical alternative, wind energy potential is often assessed using wind speed data spanning a single year or several 

years (Ouarda et al., 2015). A review of 46 studies revealed that 31 of them (67.4%) used wind speed time series of six years 

or less. However, such datasets lack year-to-year (interannual) variability, which can significantly affect wind speed and, 35 

consequently, wind power output (Jung and Schindler, 2018). For example, decadal changes in wind speed can result in a 

17 ± 2% variation in potential wind energy (Zeng et al., 2019). Since wind farms typically operate for 20 to 30 years (Pryor et 

al., 2020), relying on such short-term datasets without accounting for interannual variability can introduce significant biases 

in wind energy assessments. Additionally, short-term datasets may lack seasonal or diurnal characteristics due to sampling 

frequency or other factors that lead to data gaps. For instance, the Sentinel-1 Ocean wind product, aligning well with in-situ 40 

observations and reanalysis products (Khachatrian et al., 2024), revisits the same location only once every one or two days, 

making it unable to capture the diurnal characteristics of wind speed.  

 

This discussion highlights a critical research gap: the optimal duration of wind observation time series required to adequately 

account for wind variability in resource assessments remains poorly quantified. Specifically, is one year of data, as 45 

recommended by IEC (International Electrotechnical Commission, 2019), sufficient to provide accurate assessments of wind 

distributions given the interannual variability of wind? Furthermore, considering the challenges in obtaining long-term 

observations, if we must reply on short-term datasets that may lack interannual, seasonal, or diurnal variability, how do errors 

vary with the length of data time series?  

 50 

This research gap has been highlighted in previous studies. For instance, Barthelmie and Pryor, (2003) and Pryor et al., (2004) 

evaluated the accuracy of satellite sampling in representing offshore wind speed distributions. They quantified the numbers of 

satellite observations required to estimate key probability distribution parameters with an uncertainty of ±10%. Specifically, 

mean and Weibull scale parameter required about 60-70 random selected half-hourly observations, respectively. In contrast, 

the variance requires 150 observations, and the Weibull shape parameter and energy density require nearly 2000 observations, 55 

while skewness and kurtosis required 9712 and more than 10000 observations. However, these results are specific to satellite 

observations and may not directly apply to in-situ measurements without further analysis. To the authors’ knowledge, relatively 

few studies have examined in-situ observations, particularly those from weather stations certified by the World Meteorological 

Organization (WMO). These stations are more widely distributed, accessible, and frequently used in wind energy studies 

(Ouarda et al., 2015; Wang et al., 2016).  60 

 

Our study aims to evaluate the potential biases and uncertainties that arise when short-term data from WMO stations are used 

for wind energy assessments. Barthelmie and Pryor (2003) used the random sampling method to create wind speed datasets 
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under varying sampling density. However, this approach may overlook significant diurnal-cycle and seasonal effects 

commonly observed in terrestrial wind speeds from in-situ weather stations. As a result, it may introduce biases in wind energy 65 

assessments. Therefore, we also investigate whether random sampling can replace sampling that retains these temporal effects, 

and under what specific conditions this substitution would still yield reliable results.  

 

We are also interested in investigating whether reanalysis products can replicate the results from meteorological observations. 

Reanalysis products become a primary alternative for wind resource assessment, especially given the spatial and temporal 70 

limitations of traditional meteorological data (Gil et al., 2021; Gualtieri, 2021). Reanalysis products offer consistent, 

comprehensive coverage of wind speed data because they are generated by integrating numerical weather prediction models 

with observational data from various sources, including satellite instruments, surface synoptic observations, ships, and drifting 

buoys (Hersbach et al., 2022). By focusing on ERA5, the most current and widely utilized reanalysis product, we can evaluate 

its potential to replace in-situ observations in the statistical distribution fitting process for wind speed analysis. ERA5 is chosen 75 

not only for its strong agreement with observational data on turbine heights, particularly in Europe and North America, in 

terms of mean values and interannual variability (Ramon et al., 2019), but also because it provides wind speed data at both 10-

meter and 100-meter heights, which is crucial for wind turbine analysis. This allows for direct analysis at typical wind turbine 

hub heights, eliminating the need for extrapolation methods that are often required with other datasets. In contrast, other studies 

have commonly employed wind profile log or power-law extrapolations to estimate wind speeds at hub height (e.g., Soares et 80 

al., 2020; Jung and Schindler, 2019). 

 

The main objectives of our study are as follows:  

1. Investigate whether short-term wind speed data from WMO weather stations realistically represent the wind speed 

statistics.  85 

2. Determine the optimal length of wind data series required for fitting accurate distribution fitting by identifying the 

error margins across different time series lengths.  

3. Explore whether ERA5 reanalysis products, at both 10-meter and 100-meter heights, yield results like those from 

observations.  

Through these objectives, we aim to enhance the understanding of the limitations and capabilities of short-term meteorological 90 

data in wind speed assessment, contributing to more reliable wind energy evaluations. 

2 Data and Methods 
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2.1 Methods to identify optimal wind speed series length for accurate distribution 95 

To find the optimal length of wind speed series for accurately representing wind speed distribution, we used the method from 

(Barthelmie and Pryor, 2003). We created datasets ranging from 720 hours (30 days) to 52,560 hours (6 years) in 240-hour 

(10-day) increments, comparing them to a full 16-year series. This was repeated 1,000 times per sample size to capture 

variability. These datasets were used to fit Weibull distributions, calculating seven parameters: six distribution parameters and 

Weibull wind power density. We compared these to the full series to assess differences and determine the minimum sample 100 

size needed for accurate parameter estimation within acceptable error margins. 

 

We started with a minimum sample size of 720 hours, a common duration in wind studies (Jung and Schindler, 2019; Ouarda 

and Charron, 2018). The maximum of 52,560 hours was chosen to see if a six-year sample affects distribution stability, usually 

analysed over one to two years. Six years was selected based on preliminary findings that error margins stabilize below ±10% 105 

before this duration (Barthelmie and Pryor, 2004). 

 

To find the effective sample size, we used percent error to measure differences between sample sizes and the full series. Since 

we increased sample size in 240-hour increments, we needed a precise threshold. Using least squares, we fitted an exponential 

function to the percent errors, creating equations that relate percent error (within a 90% confidence interval) to sample size. 110 

These equations help determine the sample size needed to achieve any specified error margin. 

2.2 Probability density distributions 

In this study, we exclusively employed the two-parameter Weibull probability density function to fit wind speed data. The 

function is expressed as Eq. (1): 

𝑝(𝑣) = (
𝑘

𝑐
) (

𝑣

𝑐
)
𝑘−1

𝑒−
(
𝑣

𝑐
)
𝑘

 ,           (1) 115 

where v represents the wind speed, k is the shape parameter, and c is the scale parameter. The Weibull distribution is 

characterized by two key parameters: the dimensionless shape parameter, which determines the curve’s shape, and the scale 

parameter, which adjusts the distribution along the wind speed axis. The distributions vary with different values of k and c, 

making it a popular choice for approximating observed wind speed frequencies (Wais, 2017; Ouarda and Charron, 2018; Carta 

et al., 2009).  120 

 

To estimate the Weibull parameters, we used the 'weibull_min.fit' function from Python’s ‘scipy.stats', employing the 

maximum likelihood estimation (MLE) method. MLE is preferred for its superior performances in parameter selection 

(Mohammadi et al., 2016).  This 'weibull_min.fit' function is particularly useful for iterative experiments requiring repeated 

Weibull distribution fitting, such as those with thousands of iterations.  125 
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We focused on the first four moments of the distributions: mean, standard deviation, skewness, kurtosis, and the Weibull shape 

and scale parameters, chosen for their importance in wind resource assessment. The standard deviation indicates wind speed 

variability, while skewness and kurtosis provide insights into asymmetry and extreme values in the distribution. We calculated 

the mean and standard deviation using Python’s ‘numpy’ package, and the other parameters with ‘scipy.stats’.   130 

2.3 Wind resource assessment method 

We used the Weibull wind power density to represent wind resources at a specific location. The Weibull wind power density 

is calculated using the estimated Weibull k and c parameters, and is given by the Eq. (2): 

𝐸 =
1

2
𝜌𝑐3Γ (1 +

3

𝑘
) ,           (2) 

where E represents the wind power density (W m-2), ρ is air density (with 1.225 kg m-3, the standard air density 135 

provided by IEC, used for calculation), and Γ is the gamma function. 

 

We chose the Weibull wind power density in our study for two main reasons. First, wind power density measures the amount 

of kinetic energy in airflow passing through a unit area, which can be converted into wind energy. It is a critical metric for 

evaluating wind resources and has been widely adopted in previous studies (e.g., Wang et al., 2022; Mohammadi et al., 2016). 140 

Second, the Weibull wind power density can be easily derived from the scale and shape parameters of the Weibull distribution, 

simplifying the calculation process. 

 

Given that our objective is to determine which dataset—specifically, which time series length—most accurately represents 

long-term wind conditions, the use of Weibull wind power density enables us to compare how the shape and scale parameters 145 

vary with datasets of different lengths. This approach helps us more effectively identify the time series that best captures long-

term wind resource variability. 

2.4 Data sources 

2.4.1 In-situ observations from weather stations 

In this study, we utilized weather station observations from the Norwegian Meteorological Institute (MET Norway). This data, 150 

accessed via their API (https://frost.met.no/observations/v0.jsonld?; last accessed 8 February 2025), offers hourly wind speed 

resolution over long periods, suitable for analysing interannual variability, as wind assessments typically need at least hourly 

resolution (Jung and Schindler, 2019). 
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We aimed to compare wind distribution parameters from short-term data with long-term series that include interannual 155 

variability. We prioritized weather stations with the longest hourly data series, retaining years with at least 8,600 hourly 

observations (97.9% of the possible 8,760 or 8,784 hours annually). 

 

We identified five stations with over 16 years of hourly data: SN50500 (18 years), SN44080 (16 years), SN42160 (20 years), 

SN38140 (24 years), and SN35860 (17 years). Details are in Table 1, and their locations in southern Norway are shown in Fig. 160 

1. We standardized the data to 16 years per station, omitting years with fewer observations for consistency. 

 

Using the same years across all stations was not feasible due to data availability differences, so the years analysed varied. 

Table S1 details the selected years and hourly observations. The year with the fewest observations had 8,636 hours (98.32% 

coverage), and the average yearly count was 8,744 hours (99.54% coverage). 165 

 

Table 1: Details of stations used in this study. 

Station 

ID 

WMO 

number 
Latitude 

Latitude of ERA5 grid 

point 
Longitude 

Longitude of ERA5 grid 

point 

Height above mean sea 

level 

SN50500 1311 60.2892º N 60.25º 5.2265º E 5.25º 48 m 

 SN44080 1412 58.6592º N 58.75º 5.5553º E 5.50º 24 m 

SN42160 1427 58.109º N 58.00º 6.5675º E 6.50º 14 m 

SN38140 1464 58.34º N 58.25º 8.5225º E 8.50º 6 m 

SN35860 1467 58.6362º N 58.75º 9.1478º E 9.25º 4 m 

 

 
Figure 1: Location of the five weather stations used in this study. 170 
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2.4.2 ERA5 reanalysis 

For the ERA5 reanalysis products, we downloaded the “10m u-component of wind,” “10m v-component of wind,” “100m u-

component of wind,” and “100m v-component of wind” variables from the Copernicus Climate Data Store 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download; last accessed 8 February 2025). We 175 

calculated the wind speed at 10 m and 100 m by taking the square root of the sum of the squares of the u-component and v-

component of wind. We used the ERA5 grid point closest to the location of each station, as indicated in Table 1. 

 

3 Results 

The results section is organized into four parts. First, we assess the feasibility of using random sampling to investigate the 180 

uncertainty associated with different sample sizes for acquiring wind distribution parameters. Second, we examine the impact 

of sample size on the estimation of these parameters. Third, we identify the effective sample size necessary to capture overall 

wind characteristics, including interannual variability. Finally, we apply our methodology to ERA5 datasets at 10-meter and 

100-meter heights to determine if they replicate the results observed in in-situ measurements. 

 185 

3.1 Can random sampling replace diurnal cycle-retained or seasonality-retained sampling?    

The five stations show significant diurnal and seasonal variations (Fig. S1-S2). We compared random sampling with diurnal 

and seasonality-retained sampling to evaluate its suitability. Diurnal cycle-retained sampling involved equal observations from 

four time intervals (0-5, 6-11, 12-17, 18-23) to capture daily variations. Seasonality-retained sampling ensured equal 

distribution across all 12 months. We compared these datasets to those from random sampling of the entire dataset. 190 
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Figure 2: Distribution parameters and Weibull power density across randomly selected, diurnal-cycle-retained, and seasonality-

retained sampling experiments for in-situ observations. Black dots represent the parameters calculated from each individual random 

sampling experiments. Each experiment utilized hourly observations, with sample sizes ranging from 𝑛=720 (30 days) to 𝑛=52,560 (6 years), 

increasing incrementally by 240 hours (10 days). For each sample size, 1,000 iterations were conducted. Red asterisks indicate the values 195 

derived from the entire 16-year hourly dataset, as detailed in Table 1. The dark blue and light blue shaded areas represent the ±2% and ±5% 

uncertainty range, respectively, for the values of the entire dataset. The 90% confidence intervals (CIs) are shown for each sampling method: 

randomly selected (orange lines), diurnal-cycle-retained (light green dashed lines), and seasonality-retained (dark grey dotted lines).  

 

 200 

Figure 2 shows that the 90% confidence intervals (CIs) for random sampling overlap with those for diurnal and seasonality-

retained methods across six distribution parameters and power density at all stations, indicating no significant differences. The 

average root mean square error (RMSE) is 0.2866 for random vs. diurnal sampling and 0.3904 for random vs. seasonality 

sampling. Power density has the largest RMSE, while the shape parameter has the smallest (Table S2). Differences in 90% 

CIs are small, fluctuating around zero, with larger deviations at low data density, stabilizing as density increases. Parameter 205 

differences are within ±0.2, while power density differences range from ±3.  

 

We also analysed ERA5 100-meter wind speed data to assess random sampling at altitudes relevant to wind turbines, 

addressing the lack of high-altitude observational data. Similar CI overlaps were observed in the 100-meter data (Fig. 3). 

Average RMSE values are comparable to in-situ observations (Fig. S4) but slightly higher due to larger power density 210 

differences: 0.4895 for diurnal and 1.1010 for seasonality sampling (Table S3). These findings confirm random sampling as a 

viable method for analysing wind speeds at both surface and elevated levels. Thus, we used random sampling in further 

analyses to determine the optimal sample size for capturing overall wind characteristics. 
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Figure 3: Distribution parameters and Weibull power density across randomly selected, diurnal-cycle-retained, and seasonality-215 

retained sampling experiments for ERA5 100-meter data. Each experiment utilized hourly observations, with sample sizes ranging from 

𝑛=720 (30 days) to 𝑛=52,560 (6 years), increasing incrementally by 240 hours (10 days). For each sample size, 1,000 iterations were 

conducted. The 90% confidence intervals (CIs) are shown for each sampling method: randomly selected (orange lines), diurnal-cycle-

retained (light green dashed lines), and seasonality-retained (dark grey dotted lines). Black dots represent the parameters calculated from 

each individual random sampling experiments. Red asterisks indicate the values derived from the entire 16-year hourly dataset, as detailed 220 

in Table 1. The dark blue and light blue shaded areas represent the ±2% and ±5% uncertainty range, respectively, for the values of the entire 

dataset. 

3.2 Effects of sample size on estimating wind distribution parameters 

We studied how sample size affects the accuracy of wind distribution parameters. Figure 2 shows how six distribution 

parameters and power density change with increasing sample size, with full dataset values in Table 2. Despite different 225 

locations and wind speeds, the five stations showed consistent results. 

 

Table 2:  Distribution parameters and Weibull power density of five stations derived from the entire datasets. 

Data products  Station ID  
Mean 

(m s-1) 

Std. dev. 

(m s-1) 
Skewness Kurtosis 

Shape 

k 

Scale 

c (m s-1) 
Power density (W m-2) 

In-situ weather 

stations 

SN50500 3.53 2.66 1.12 1.81 1.51 4.07 81.08 

 SN44080 6.85 3.94 0.76 0.45 1.83 7.74 417.34 

SN42160 6.57 3.68 0.65 0.34 1.88 7.43 358.49 

SN38140 2.28 1.61 0.92 1.28 1.42 2.51 21.61 

SN35860 4.80 2.88 0.79 0.47 1.74 5.41 152.15 

 SN50500 4.82 2.45 0.30 -0.68 2.07 5.44 126.73 

ERA5 (10 meter) 

 SN44080 7.58 3.74 0.35 -0.36 2.13 8.55 478.87 

SN42160 8.04 3.74 0.32 -0.28 2.28 9.07 539.59 

SN38140 4.74 2.27 0.45 -0.15 2.20 5.35 113.61 

SN35860 4.50 2.19 0.48 -0.06 2.16 5.08 98.77 

 SN50500 6.02 2.71 0.22 -0.48 2.36 6.78 219.44 

ERA5 (100 meter) 

 SN44080 9.42 4.83 0.40 -0.29 2.03 10.61 959.38 

SN42160 9.79 4.72 0.35 -0.18 2.18 11.04 1009.61 

SN38140 7.31 3.31 0.31 -0.07 2.33 8.24 396.08 

SN35860 6.60 3.21 0.37 -0.13 2.15 7.44 311.57 

 

 230 

As hourly observations increased, the absolute range for all parameters decreased, though robustness varied. The mean, 

standard deviation, and Weibull k and c parameters were most robust, with 90% confidence intervals within ±5% from the 

start with 720 observations (Fig. 2). In contrast, power density had a larger range, and skewness and kurtosis were less robust. 

Even with six years of data (n = 52,560), some skewness and kurtosis values exceeded the ±5% margin due to their sensitivity 

to data distribution tails and extreme values, requiring larger sample sizes.  235 

 

Previous studies noted systematic bias in distributions with low data density (e.g., 21 observations) (Barthelmie and Pryor, 

2003). We calculated the median of 1,000 resampling groups for each parameter (Fig. S5) and found skewness and kurtosis, 
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especially kurtosis, showed significant biases under low data density, aligning with past findings. At 720 observations, median 

skewness was over 2% lower, and kurtosis over 25% lower than full dataset values. Kurtosis bias improved to within 10% 240 

with over 2,160 observations. SN50500 had the largest kurtosis underestimation, needing at least 22,080 observations to reduce 

error to 10%. Other parameters, including power density, showed minimal variation, staying within 1% of full dataset values. 

3.3 Determine an effective sample size for capturing overall wind characteristics 

To determine the optimal sample size for capturing wind characteristics, we evaluated percent errors across different sample 

sizes (Fig. 4-5). Percent error measures discrepancies between parameters from the full dataset and smaller subsets, helping 245 

identify the minimum observations needed for target accuracy. The equations for percent errors are in Table S2. 

 

As observations increase, percent error decreases, but different parameters need varying sample sizes to meet specific error 

thresholds. For most stations, 720 hourly observations keep percent errors for the mean, standard deviation, and Weibull 

parameters within ±7% (Fig. 4). However, power density, skewness, and kurtosis show larger errors with the same observations, 250 

with errors of at least ±10% to ±150% depending on the station. Variability is greater for these parameters across stations, with 

error differences of 4.6% for power density, 18.1% for skewness, and 154.2% for kurtosis, compared to less than 1.5% for 

others. 

 

Figure 5 shows percent error changes with fewer observations. Errors decrease quickly below 400 observations and more 255 

slowly above. About 200 observations can achieve ±10% error for the mean, standard deviation, and Weibull parameters.  

 

Table 3 details sample sizes needed for error margins of ±10%, ±5%, ±2%, and ±1% for each parameter at each station. For 

±5% error, the mean and Weibull scale need 459 and 470 observations (20 days), respectively. Standard deviation requires 

796 observations (34 days), and the Weibull shape needs 681 observations (28 days). Power density needs 4,031 observations 260 

(168 days). Achieving ±2% error requires six times more observations than ±5%, and ±1% needs 24 times more. 

Skewness and kurtosis need significantly more data due to sensitivity to distribution tails. For instance, SN38140 needs 

177,390 observations (20 years) for ±10% error, while SN50500 needs 1,541,437 observations (176 years). These differences 

reflect distinct wind speed distributions at each station. Sample density requirements increase significantly with precision. 
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 265 

Figure 4: 90% confidence intervals for the percent error in the mean, standard deviation, skewness, kurtosis, Weibull k and c 

parameters, and energy density, based on hourly observations ranging from 𝑛 = 720 (30 days) to 𝑛 = 140,160 (16 years) across five 

stations. Grey circles indicate the values used to fit the 90% confidence intervals for the percent error shown. The equations of fits here are 

shown in Table S4. 

 270 
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Figure 5: Same as Fig. 4, but the hourly observations ranging from 𝑛= 24 (1 day) to 𝑛= 720 (30 days) across five stations. These 

intervals are calculated using the same fits as shown in Fig. 4. 

 

Stations with higher wind speed variability but lower skewness and kurtosis need fewer observations for the same error margins. 

For example, SN50500 and SN38140, with the highest skewness and kurtosis, require more observations.  275 

All parameters except skewness and kurtosis show moderate regional differences. Power density has the largest regional 

difference (ratio of 2.1), while the shape parameter has the smallest (ratio of 1.2). Skewness shows significant regional 

differences, increasing from 3.96 to 6.1 times, and kurtosis from 8.69 to 13.16 times, as error margins decrease from ±10% to 

±1%. This highlights skewness and kurtosis's sensitivity to regional variability and data distribution tails. 

 280 

 
Table 3.  Required number of randomly selected in-situ observations (unit: hours) to obtain an estimate within ±10%, ±5%, ±2%, 

and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. The 

fits to get the required data density are shown in Table S2. 

Error 

margins 
Location Mean Std. dev. Skewness Kurtosis 

Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 170 279 14297 1541437 166 162 1489 

SN44080 92 162 4505 262169 157 93 813 

SN42160 83 160 6658 801270 177 84 709 

SN38140 135 228 7673 177390 198 153 1211 

SN35860 98 175 3611 204844 169 101 853 

average 116 201 7349 597422 174 119 1015 

±5% 

SN50500 659  1087  63795 7545102 649 629 5836 

SN44080 365  655  17944 1058755 623 368 3202 

SN42160 335  640  26968 3458621 700 338 2859 

SN38140 541  905  30229 777573 774 610 4840 

SN35860 393  691 14084 847284 657 404 3417 

average 459 796 30604 2737467 681 470 4031 

±2% 

SN50500 3956 6576 484327 61581562 3936 3770 35501 

SN44080 2256 4165 111517 6790761 3853 2276 19931 

SN42160 2113 4008 174520 23905124 4321 2131 18057 

SN38140 3379 5593 200542 5484926 4689 3793 30218 

SN35860 2445 4262 88940 5535245 3956 2513 21623 

average 2830 4921 211970 20659524 4151 2897 25066 

±1% 

SN50500 15531 25766 2244402 301432368 15383 14785 139117 

SN44080 8944 16876 444166 27700221 15295 9032 81625 

SN42160 8503 16046 733004 103184595 17126 8585 72806 

SN38140 13574 22191 844568 24042683 18315 15117 120783 

SN35860 9757 16870 368113 22895088 15391 10011 88205 

average 11262 19550 926851 95850991 16302 11506 100507 

 285 

3.4 Does ERA5 reanalysis (10 m and 100 m) show similar results with in-situ observations? 

We analysed the ERA5 dataset to assess its deviations from in-situ observations. Four out of five stations showed that ERA5 

overestimated the mean wind speed for both the full series (Table 2) and sampling experiments (Fig. 6), likely due to a higher 
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frequency of lower wind speeds at these locations (Fig. S6). Similarly, ERA5 overestimated the scale parameter for stations 

with higher wind speeds and underestimated it for others. This could be due to the higher frequency of lower wind speed values 290 

observed at the same locations (Fig. S6). The shape parameter was consistently higher in ERA5, often exceeding 2, indicating 

a potential bias in overestimating high wind events. These biases affected the Weibull power density calculations, causing 

systematic discrepancies (Table 2 & Fig. 6).  

 

Both in-situ and ERA5 distributions were positively skewed, but in-situ data had higher skewness (Table 2). ERA5 samples 295 

consistently showed lower skewness (Fig. 6). For kurtosis, ERA5 had negative values across all stations, while in-situ 

observations had positive kurtosis (Table 2), indicating more peaked distributions around the mean. In-situ kurtosis varied 

widely, especially at SN50500 and SN38140 (Fig. 6a4 & 6d4), whereas ERA5 had flatter distributions with less variability 

(Fig. 6a4-e4). 

 300 

Due to differences in skewness and kurtosis, ERA5 (10m) requires fewer data points for the same error margins in parameters 

like mean, standard deviation, Weibull scale, and power density (Table 4). However, for tail-sensitive parameters like shape, 

skewness, and kurtosis, ERA5 needs more samples. Differences among locations are smaller in ERA5, shown by greater 

overlap in percent error lines (Fig. S7-S8).  

 305 

We also examined the ERA5 100-meter dataset to see if it requires similar data densities as the 10-meter data, given its 

relevance to turbine heights. Figures S9-S10 show that for most parameters, the 100-meter dataset needs similar observations 

as the 10-meter dataset, though data density can vary by station. For instance, SN42160 had the highest error in the 10-meter 

dataset, while SN35860 showed nearly double the error under the same density. Table 5 shows that for mean, standard 

deviation, scale, and power density, both datasets have similar requirements, but the 100-meter dataset consistently needs more 310 

data for the shape parameter. 

https://doi.org/10.5194/wes-2025-25
Preprint. Discussion started: 27 February 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

  

https://doi.org/10.5194/wes-2025-25
Preprint. Discussion started: 27 February 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

Figure 6: Distribution parameters and Weibull power density from experiments using ERA5-10m data (black dots) based on 

randomly selected samples. Each experiment was conducted with hourly observations ranging from 𝑛=720 (30 days) to 𝑛=52,560 (6 years, 

incrementing by 240 (10 days), with 1,000 iterations for each sample size. The 90% confidence intervals (CIs) for the randomly selected 315 

ERA5-10m (orange lines) and in-situ observations (grey lines) are presented. Red asterisks indicate the values for the entire 16-year hourly 

ERA5-10m dataset. The dark blue and light blue shaded areas represent ±2% and ±5% uncertainty margins around the ERA5-10m dataset 

values, respectively, while the dark grey and light grey shaded areas represent the corresponding uncertainty for in-situ observations. 

  

 320 
 

Table 4:  Required number of randomly selected ERA5 10-meter reanalysis (unit: hours) to obtain an estimate within ±10%, ±5%, 

±2%, and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. 

The fits to obtain the required data density are shown in Table S5. 

Error margins Location Mean Std. dev. Skewness Kurtosis 
Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 73 96 8172 5016 180 73 471 

SN44080 66 117 8313 44143 185 67 472 

SN42160 57 126 11723 95190 194 56 427 

SN38140 60 134 8735 711310 195 59 460 

SN35860 64 139 6207 3540359 185 64 508 

average 64 123 9262 944804 188 64 468 

±5% 

SN50500 290 378 32016 19838 695 288 1856 

SN44080 264 461 32714 178285 730 266 1877 

SN42160 229 495 46455 392676 761 227 1711 

SN38140 238 528 34605 2908557 751 232 1825 

SN35860 254 547 24898 14867900 716 254 2041 

average 255 482 34138 3673452 731 254 1862 

±2% 

SN50500 1780 2314 200956 124202 4155 1777 11362 

SN44080 1642 2826 208777 1128607 4469 1649 11743 

SN42160 1443 3016 298655 2556252 4626 1424 10706 

SN38140 1461 3244 221711 18715159 4468 1430 11298 

SN35860 1587 3343 165203 99101050 4294 1587 12890 

average 1583 2949 219061 24325054 4403 1574 11600 

±1% 

SN50500 7030 9113 809645 498171 16071 7032 44916 

SN44080 6548 11134 848415 4558267 17597 6563 47679 

SN42160 5802 11843 1220400 10544961 18114 5721 43071 

SN38140 5777 12805 903642 76526556 17220 5660 45063 

SN35860 6368 13141 691404 416179369 16643 6348 51972 

average 6305 11608 894702 101661465 17129 6265 46541 

 325 
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Table 5:  Required number of randomly selected ERA5 100-meter reanalysis (unit: hours) to obtain an estimate within ±10%, ±5%, 

±2%, and ±1% of the parameters from the entire observed time series (157,465 data points), calculated at the 90% confidence level. 

The fits to obtain the required data density are shown in Table S6. 330 

Error margins Location Mean Std. dev. Skewness Kurtosis 
Shape 

k 

Scale 

c 
Power density 

±10% 

SN50500 56 110 16201 8729 198 54 374 

SN44080 73 123 7056 81022 189 74 521 

SN42160 61 133 11263 328841 205 62 468 

SN38140 58 137 15661 2453346 222 57 435 

SN35860 64 137 11069 795574 211 64 480 

average 63 128 12230 701703 205 63 456 

 ±5% 

SN50500 223 434 65875 38941 767 215 1501 

SN44080 289 483 27566 329399 745 294 2067 

SN42160 247 523 44785 1367095 803 247 1867 

SN38140 239 528 39510 2240186 816 234 1808 

SN35860 255 535 44939 3346344 815 255 1916 

average 251 501 44535 1464393 790 249 1832 

±2% 

SN50500 1391 2651 427303 248311 4604 1347 9434 

SN44080 1786 2950 176226 2103464 4560 1819 12841 

SN42160 1551 3187 290902 8991336 4889 1552 11635 

SN38140 1481 3272 247668 14218455 4903 1457 11209 

SN35860 1587 3244 296038 22351593 4884 1590 12125 

average 1560 3061 287628 9582632 4768 1553 11449 

±1% 

SN50500 5556 10417 1757931 1008422 17854 5394 37889 

SN44080 7091 11598 717060 8551751 17952 7217 51955 

SN42160 6236 12509 1198029 37379775 19172 6231 47065 

SN38140 5891 12995 998600 57540275 19027 5801 44825 

SN35860 6341 12685 1232216 94015313 18917 6340 48981 

average 6223 12041 1180767 39699108 18585 6197 46143 

 

4 Discussions and Implications 

It is claimed that the uncertainty bounds acquired by the methods in this study provided exhibit robustness and are applicable 

to all remotely sensed wind speed data series (Barthelmie and Pryor, 2003). Specifically, they reached this conclusion by 

finding a similar required sample size with an uncertainty of ±10% from five different locations, including Denmark, eastern 335 

North Pacific, the Gulf of Mexica, the Gulf of Alaska, and the western Atlantic (Barthelmie and Pryor, 2003; Pryor et al., 

2004). However, upon replicating their methods using in-situ wind speed measurements from WMO stations, we are reluctant 

to draw the same conclusion. Although when using the same error margin (±10%) as Barthelmie and Pryor, (2003), we obtain 

similar results. As the error margins narrow (from ±10% to ±1%), the discrepancy among stations becomes significant. 

Therefore, we suggest that the uncertainty bounds presented in Table 3 exhibit robustness and are applicable only under higher 340 

error margins, such as those exceeding ±10%. Additionally, lower moments and two Weibull parameters showed higher 

robustness. 
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Furthermore, although we provided the uncertainty bounds for datasets with fewer than 720 samples, it is important to note 

that we calculated these values based on an exponential function fitted to the results derived from 720 to 52,560 points. As a 345 

result, the curve may be biased due to the potential asymmetry in the distribution of the parameters (Barthelmie and Pryor, 

2003). 

 

Our results indicated that ERA5 tends to overestimate the mean and Weibull scale parameters. Discrepancies between ERA5 

and observational data are unsurprising, as previous studies have noted differences in magnitude and trends (Zhou et al., 2021; 350 

Torralba et al., 2017). These discrepancies can be partly attributed to ERA5 not assimilating in-situ land observations and the 

inherent limitations of the ERA5 reanalysis (Hersbach et al., 2020), such as its inability to accurately reproduce mesoscale 

dissipation rates (Bolgiani et al., 2022). Additionally, modern data assimilation systems still struggle to adequately correct the 

inevitable errors in model-generated guess fields at these smaller scales (Wang and Sardeshmukh, 2021). Consequently, ERA5 

may underestimate variability and fail to capture local extremes observed in in-situ data, leading to discrepancies in parameters 355 

like skewness and kurtosis. For instance, at stations SN50500 and SN38140, in-situ data show significantly more wind 

observations close to zero compared to ERA5 datasets, resulting in distinct wind characteristics such as differing skewness 

and kurtosis. 

4.1 Implications 

Both onshore and offshore sites exhibit seasonal variations, with onshore and near-coast locations often experiencing 360 

significant diurnal cycles (Barthelmie and Pryor, 2003; Barthelmie et al., 1996; Ashkenazy and Yizhaq, 2023). Our findings 

indicate that random sampling can effectively analyse wind distribution parameters, even when dealing with discontinuous 

data that lacks explicit diurnal or seasonal cycle information. This is particularly important given the challenges associated 

with accurately collecting data that reflects these cycles; factors such as anemometer malfunctions, site relocations, and other 

disruptions can create gaps in the wind speed data series, leading to non-continuous records (Liu et al., 2024). For instance, 365 

the Sentinel-1 Level 2 OCN ocean wind field product (1 km resolution), while performing well in offshore areas, has a revisit 

frequency of one to two days that may not sufficiently capture rapid temporal variations (Khachatrian et al., 2024). 

 

It was noted that this finding is drawn from analyses utilizing a 90% confidence interval. This confidence level indicates that 

while minor discrepancies may exist in the data, they are considered negligible under specific statistical assumptions. Therefore, 370 

we argue that random sampling provides a practical and statistically robust alternative, particularly in scenarios where it is not 

feasible to retain the characteristics of diurnal cycles or seasonality. 

4.2 Limitations of this study 

Our study reveals several uncertainties that need to be acknowledged. The geographic scope of our data is limited; all the 

weather stations used in our study are in Norway. This is because the required wind speed data need to have long-term series 375 
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but with hourly resolution at the same time, and such a long-term time series is rarely available publicly. We encourage 

researchers from other regions with access to high-quality wind speed data to replicate our study and compare the results, to 

verify the generalizability of our findings. 

 

Our results may not accurately reflect the real situations for offshore sites, because our study is based on on-land weather 380 

stations, though they are located along the coast. Further, offshore wind can differ significantly from onshore. For example, 

we showed that ERA5 data shows an overestimation of the frequency of high wind events, while a recent study indicates that 

ERA5 underestimates strong wind speed offshore (Gandoin and Garza, 2024). Therefore, further studies focused specifically 

on offshore winds are needed. 

 385 

Another limitation is the time resolution of the wind speed data we used. We utilized hourly data instead of higher temporal 

resolution data, such as 10-minute intervals, for wind distribution assessments. Despite this, Yang et al., (2024) demonstrated 

that hourly wind speed data provide sufficiently accurate estimations of wind power density, with errors smaller than ±2% 

when compared to 10-minute resolution data. This suggests that hourly data are suitable for such analyses. Additionally, 

Effenberger et al., (2024) showed that three- or six-hourly instantaneous wind speed data can effectively preserve the 390 

distribution characteristics of 10-minute wind speeds. Therefore, it is reasonable that hourly wind speed can adequately 

represent the characteristics of 10minute wind speeds. 

 

It is worth noting that the hourly data provided by MET Norway represent the average wind speed over the last ten minutes of 

each hour rather than the entire hour. Despite this, previous research found that Weibull distribution parameters remain 395 

consistent across different averaging periods (e.g., 1 minute and 30 minutes) (Barthelmie and Pryor, 2003). Based on these 

findings, we believe that our use of last 10-minute averages is unlikely to significantly impact the accuracy of the Weibull 

distribution parameters compared to full-hour averages. 

 

Additionally, our study focuses on near-surface wind speeds (10 m), raising questions about whether our conclusions hold at 400 

turbine-height winds. Prior studies indicate a height dependency for Weibull distribution parameters, with higher altitudes 

typically showing higher means (and scale parameter), variances, skewness, and kurtosis, while the shape parameter remains 

height-independent (Barthelmie and Pryor, 2003; Dixon and Swift, 1984). Due to the absence of observational data at heights 

other than 10 meters, we utilized the ERA5 dataset to compare distribution parameters at 10-m and 100-m heights. For the five 

locations studied, only the mean (and Weibull scale parameter), and variance show height dependency, with other parameters 405 

(skewness, kurtosis, Weibull shape parameter) showing independence from height. 
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5 Conclusions 

Our study quantifies errors in wind speed distribution fitting using series of varying lengths, accounting for interannual 

variability. We find that skewness and kurtosis, particularly kurtosis, are systematically underestimated with limited data, 

especially in datasets with higher skewness and kurtosis levels, necessitating significantly longer observation periods for 410 

accurate estimates. For example, mean and standard deviation stabilize within weeks, while skewness requires over 1.6 years 

and kurtosis over 88.8 years for a ±5% error margin. Our findings highlight the critical influence of distribution shape on data 

requirements, with regional variations becoming more pronounced as precision demands increase, particularly for higher-order 

statistical properties like skewness and kurtosis. 

 415 

This has important implications for wind resource assessment, particularly in regions with highly variable wind regimes. For 

such areas, extended data collection periods or advanced techniques like data fusion or machine learning may be necessary to 

accurately capture higher-order statistical properties. Additionally, our analysis suggests that random sampling can provide 

comparable accuracy to strict diurnal or seasonal sampling, offering a flexible alternative for data collection in resource-

constrained settings. 420 

 

Our analysis of ERA5 reanalysis data reveals that while they require fewer data points for the same error margin, they exhibit 

systematic biases, such as underestimating skewness and overestimating shape parameters, compared to in-situ measurements. 

This underscores the need for caution when using reanalysis data in wind resource assessments, particularly in regions with 

complex wind regimes. 425 

 

Future studies should explore methods to mitigate the systematic underestimation of skewness and kurtosis, such as through 

data fusion or bias-correction models. Furthermore, the applicability of these findings to different geographic regions and 

turbine heights should be investigated to enhance the generalizability of wind resource assessment practices. 

Code availability 430 
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