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Abstract. This study presents an estimation of the annual energy production (AEP) associated with active wake mixing (AWM)

control strategies in a wind farm. To achieved this, we first conduct a series of high-fidelity large eddy simulations (LES)

of a wind farm for various turbine layouts and control parameters. These simulations extend previous findings from two-

turbine studies to a larger array of wind turbines, demonstrating the effectiveness of AWM in enhancing power generation,

particularly in geometrically aligned wind farms situated in stable atmospheric boundary layers. The results indicate that5

while the conventional pulse method leads to the best performance for second-row turbines, the helix method leads to greater

improvements in power generation for third-row turbines. Second, a framework for estimating the AEP associated with AWM

strategies is developed within the FLOw Redirection and Induction in Steady-state (FLORIS) toolkit, using a new empirical

Gaussian wake model. The FLORIS parameters are calibrated to the LES data and an optimization routine is established for

determining the optimal use of AWM in a wind farm for maximizing AEP. AEP estimates are provided using Weibull data10

from the New York Bight for multiple turbine layouts and blade pitching amplitudes. Third, the AEP gains from wake mixing

are compared to those from wake steering using the yaw optimization routines in FLORIS. The power performance is similar

for both control methods, generally leading to power gains of 1% to 3% for the wind conditions where active wake mixing

or steering is used, which translates to AEP gains that are mostly less than 1% for the wind farm and control parameters

considered in this study.15

Copyright statement. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest

in and to the written work and is responsible for its contents.

1 Introduction

In large wind farms, the wake of a wind turbine presents complications for nearby turbines, depending on the atmospheric

conditions, turbine characteristics, and turbine siting. A primary goal of wind farm flow control strategies is therefore to reduce20

the negative impacts of the wake momentum deficit by leveraging the turbine as a flow actuator though intelligent scheduling
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of either blade pitch, rotor speed, or nacelle yaw (Meyers et al., 2022). These strategies intentionally adjust the settings of

upstream turbines away from their optimal setpoints for the collective benefit of the entire wind farm. A promising approach

is to actuate the inherent fluid-dynamic instabilities in the wake flow that accelerate mixing and energy recovery from the

surrounding ambient flow. Most work to-date has focused on instabilities surrounding the tip vortex (i.e., mutual inductance25

instability) (Sørensen, 2011; Sarmast et al., 2014; Lignarolo et al., 2015), hub vortex (Iungo et al., 2013), or bluff-body shear

flow (Medici and Alfredsson, 2006; Okulov et al., 2014). Whereas actuation of tip or hub vortices has a primary effect on the

near-wake region of the wind turbine (Marten et al., 2020; Brown et al., 2022), excitation of Strouhal-based, bluff-body shear

flow instabilities is promising because the structures are large scale and may permit more control authority. In this paper, the

primary focus is on active wake mixing (AWM) techniques that aim to excite these large-scale Strouhal-based structures in the30

wake through periodic oscillations in the blade pitch.

AWM has mostly been studied in the context of one or two turbines, with research primarily focusing on practical benefits

in terms of power increases over baseline controls, as well as the fluid dynamics underlying these gains. The performance of

AWM in these studies is promising, consistently demonstrating increases in power ranging from several percent to even tens

of percent, depending on the forcing strategy, turbine layout, and atmospheric conditions (Frederik et al., 2020c, b; Yılmaz35

and Meyers, 2018; Taschner et al., 2023; Frederik et al., 2020a; van Vondelen et al., 2025). Additionally, the fluid dynamical

studies of AWM have been useful for optimizing control parameters through a better understanding of wake physics and the

influence of atmospheric boundary layer (ABL) conditions on different forcing strategies (Korb et al., 2023; Cheung et al.,

2024b; Brown et al., 2025; Yalla et al., 2025); these studies have also contributed to the development of several reduced-order

wake models (Gutknecht et al., 2023; Li and Yang, 2024; Cheung et al., 2024a). Some research has also examined AWM in40

wind farms, generally corroborating the benefits observed in two-turbine studies and even suggesting advantages for mid-farm

actuation or farm-level control strategies (Munters and Meyers, 2018; Gutknecht et al., 2024).

While the results of these previous studies are insightful, there is still a critical need for additional high-fidelity data to

accurately assess and understand the performance of AWM in a wind farm. Moreover, the practical implementation of AWM

in the field will primarily depend on reliable estimates of the annual energy production (AEP) associated with wake mixing45

across a wide range of wind farm layouts and atmospheric conditions. The problem of wind farm optimization is challenging,

often requiring millions of model evaluations to find solutions (Thomas et al., 2023). Therefore, low-fidelity, steady-state,

engineering models are often desired, such as the FLOw Redirection and Induction in Steady-state (FLORIS) tool (NREL,

2025). FLORIS is a widely-used wind farm simulation software designed for wind farm layout and control optimization.

It includes several steady-state engineering wake models for predicting the time-averaged three-dimensional flow field and50

turbine power of a wind farm, taking into account turbine control settings and atmospheric parameters that characterize the

incoming wind. The proper implementation of AWM in a wind farm will therefore require integrating wake mixing control

strategies with a tool like FLORIS, along with an optimization framework for guiding the use of AWM in a wind farm. Lastly,

a direct comparison between wake mixing and wake steering control strategies is missing in the literature, leaving wind farm

designers without a means to assess which control strategy is preferred for a given site.55
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This study aims to address these needs. First, the performance of several AWM strategies in a wind farm is evaluated

using large eddy simulation (LES) of turbines represented by an actuator line model (ALM). The LES encompass a range of

control parameters and turbine layouts, providing a high-fidelity comparison of forcing strategies for a wind farm situated in a

stable ABL. Second, a framework for estimating the AEP associated with wake mixing technologies is developed in FLORIS

using a new empirical Gaussian wake model. Building on the work of Frederik et al. (2024), a model for AWM is added to60

FLORIS, and the LES data is used to calibrate the FLORIS model parameters. A validation between the high and low fidelity

data is provided, and then an optimization procedure is developed to select the AWM control parameters that maximize AEP

for a given wind farm configuration. The FLORIS model is demonstrated using Weibull data gathered in the NY Bight, and

estimates of AEP for a range of blade pitch amplitudes are provided. Finally, a comparison to wake steering is made for a range

of different maximum yaw offset angles using the calibrated empirical Gaussian model and the existing yaw-optimization tools65

in FLORIS.

The remainder of this paper is organized as follows: The simulation setup for the LES is discussed in Sec. 2.1-2.3 including

the LES solver, the measured inflow data and ABL precursor generation, the wind farm and grid layout, and the turbine model

and controller specifications. The LES results are then detailed in Sec. 2.5. In Sec. 3, the FLORIS model is presented as well

as the relevant parameters, the calibration process, and the AWM optimization routine. Finally, the AEP results for both wake70

mixing and wake steering are discussed in Sec. 4, and conclusions are provided in Sec. 5.

2 Large Eddy Simulation

2.1 LES solver

The simulations in this work were performed with the U.S. Department of Energy (DOE) ExaWind solver AMR-Wind (Sprague

et al., 2020; Sharma et al., 2024), a massively parallel, block-structured adaptive-mesh, incompressible flow solver for wind tur-75

bine and wind farm simulations. The AMR-Wind solver uses a second-order finite-volume method with second-order temporal

integration, based on the approximate projection method of Almgren et al. (1998) and Sverdrup et al. (2018). For the solution of

ABLs and wind-farm physics, AMR-Wind includes the following body force terms: turbine actuator forcing, Boussinesq buoy-

ancy, Coriolis forcing, and a body force to maintain the precursor-derived inflow condition when applying the inflow/outflow

boundary conditions. Calculations were performed on the Summit and Frontier cluster at the Oak Ridge Leadership Computing80

Facility (OLCF), requiring 86,000-90,000 GPU-hours on 1800-2000 GPU’s per simulation. Total mesh sizes varied between

1.6× 109 to 1.85× 109 grid cells.

2.2 Inflow conditions

The inflow conditions for this study were based on 1.6 years of floating lidar measurements from the NY Bight (Mason, 2022).

The roses for wind speed and turbulence intensity are provided in Fig. 1, along with histograms of wind speed, turbulence85

intensity, and wind direction at hub height. As described in Brown et al. (2025), wind conditions from this dataset were distilled
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into the 9 different conditions shown in Table 1. Precursors were then generated to represent the stable ABL conditions from

the Med. WS/Low TI case, which occurs with relative frequency and corresponds to Region 2 behavior of the IEA 15 MW

turbine where the nominal blade pitch remains constant. Specifically, a negative ground temperature rate and a non-zero surface

roughness were introduced in the precursor simulations to closely match mean hub-height and rotor-averaged statistics of the90

Med. WS/Low TI case. The simulated precursor results in a hub-height wind speed of 9.0 m/s, TI of 3.1%, a rotor averaged

shear of 0.16, and a rotor-averaged veer of 8.94°. The simulated values for the hub-height wind speed, TI, and rotor-averaged

shear agree well with the targets from the measurements, although the larger veer magnitude measured at the NY Bight proved

difficult to recreate in LES (Brown et al., 2025). Nonetheless, the veer magnitude achieved in the simulations (8.94° over the

rotor disk) is still significant enough to study the impacts of veer on the performance of the AWM strategies (Frederik et al.,95

2025a).

Due to the computational expense of the LES, only one wind condition is simulated, and the parameter sweep is instead

focused on varying control and wind farm layout parameters. In terms of calibrating the FLORIS model in Sec 3, we are there-

fore implicitly assuming that the relative power gains from AWM are not strongly sensitive to the wind condition below certain

wind speeds and TI levels (to be described in Sec. 3.3) and thus can be tuned to just one wind condition for computational100

expediency. The selection of this wind condition was made as follows. Using the data in Table 1 for the frequency of occurrence

of different wind conditions in the Weibull distribution and Table 2 for the estimated power gains of a two-turbine array, we

can perform a coarse calculation of the effective power gain across wind conditions for the special case of the wind direction

fully aligned with the turbine columns. This value, ∆P , is calculated using the weighted average

∆P =
∑n

i=1 ∆Pwind,inbins,i∑n
i=1nbins,i

, (1)105

where ∆Pwind,i are the percentages from cells of Table 2, nbins,i are the bin numbers from the corresponding cells of Table 1,

and the summations are over the conditions with non-zero entries in Table 2. The calculated value of ∆P , 6.44%, is most

similar to ∆P from the Med. WS/Low TI conditions (i.e., 7.34%), providing justification for using this wind condition for

tuning of the AWM-specific wake behavior and power gains in FLORIS.

2.3 Simulation Domain and Wind Farm Layout110

The LES domain and wind farm layouts are shown in Fig. 2. The wind farms consist of nine IEA 15 MW turbines arranged

in a 3× 3 array situated inside a domain of size 10× 10× 10 km. This wind farm layout is motivated by the recent work of

Kasper (2025), who showed that a 3× 3 array of wind turbines may be sufficient for representing larger wind farm effects

including the dominant momentum recovery mechanisms. A background mesh with a resolution of 5 m is used throughout

the domain, which is refined to 2.5 m resolution in the vicinity of the wind farm. There is a slight variation in the size of the115

refinement zone dependent on the orientation of the wind farm. In all of the LES cases, the inflow wind direction is fixed at

225°, and three orientation angles of the wind farm are considered: 225°, 180°, and 206.5° (see Fig. 2). The orientation angles

of 225° and 180° feature direct geometric alignment of the turbine rows or turbine diagonals with the wind direction. These

layouts are the primary focus of the LES study as they lead to waked environments for downstream turbines, which is where
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Figure 1. (Top) Histograms of wind speed, turbulence intensity, and wind direction at Site E06 in the NY Bight. (Bottom) Roses for wind

speed and turbulence intensity, as well as turbulence intensity as a function of wind speed.

Table 1. Table recreated from Brown et al. (2025) describing the frequency of occurrence for different wind conditions from the measured

data in the NY Bight. The percentage values refer to the percent of data within each wind-speed range for a given TI level, and the values in

parenthesis are the corresponding number of 10-minute bins. The combined sum over a row does not add to 100% because of the filtering of

some cases with poor power-law fits. The condition in bold is the one considered in the LES in this article.

Low TI (≤5%) Med. TI (5-10%) High TI (≥10%) Combined TI

Low WS (6-7 m s−1) 24.3% (1856 bins) 35.1% (2676 bins) 18.5% (1414 bins) 77.9% (5946 bins)

Med. WS (8.5-9.5 m s−1) 30.5% (2325 bins) 43.3% (3298 bins) 13.0% (989 bins) 86.8% (6612 bins)

High WS (11-12 m s−1) 30.3% (1910 bins) 53.5% (3371 bins) 9.7% (614 bins) 93.5% (5895 bins)

wake control is particularly beneficial. In contrast, the 206.5° case is included as a reference case where no downstream wake120

impingement occurs and the use of wake control is detrimental. This case is primarily included for calibration of the FLORIS

model presented in Sec. 3. We refer to the turbine spacing of each wind farm as the shortest distance between two turbines in

the farm. For the 3×3 turbine arrays orientated at 225°, the turbine spacing therefore refers to the distance between successive

turbine rows and columns. Turbine spacings of 5D and 6D are considered in the LES, which correspond to tightly spaced
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Table 2. Table derived from data in Frederik et al. (2025b) describing the power gains for two-turbine arrays in fully aligned wind conditions

using the same computational setup as this article. Cells with non-zero data indicate the wind conditions where AWM will be taken to be

enabled in our AEP estimation.

Low TI (≤5%) Med. TI (5-10%) High TI (≥10%)

Low WS (6-7 m s−1) 8.27% 5.43% (estimated) 0% (estimated)

Med. WS (8.5-9.5 m s−1) 7.34% 5.43% 0% (estimated)

High WS (11-12 m s−1) 8.49% 5.43% (estimated) 0% (estimated)
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Figure 2. Horizontal planes from the LES domains. The 5 m background mesh and 2.5 m refinement region are indicated by the gray and

blue rectangular regions, respectively. The panels show the 3× 3 wind farm oriented at 225°, 180°, and 206.5°. For each layout, the nine

turbines are labeled T1− 9, and the turbines which are using AWM are circled in red. Specifically, T1,T2,T3 are actuated for the wind

farm oriented at 225°, and T2,T3,T6 are actuated for the wind farms oriented at 180° and 206.5°.

wind farms that are well-suited for wake control, particularly in stable ABLs where wakes can persist tens of turbine diameters125

downstream. For each wind farm orientation angle, AWM is applied to three front-line turbines, as described in Fig. 2.

2.4 Turbine and Controller Specifications

The wind turbine model used in this study is the open-source IEA 15 MW (Gaertner et al., 2020). This turbine has a rotor

diameter of D = 240 m, hub-height of 150 m, and rated power of 15 MW. The power and thrust curves, and additional

design parameters, are included in Fig. 3. The turbine aerodynamic forces are computed using the OpenFAST software suite130

(National Renewable Energy Laboratory, 2024b), which has been validated at the megawatt scale for standalone simulations

(Brown et al., 2024) and with coupling to LES (Hsieh et al., 2024), and which is coupled to AMR-Wind using an actuator line
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Figure 3. Specifications of the IEA 15 MW reference turbine model (Gaertner et al., 2020), including the generator power and rotor thrust

curves (left) and the design parameters (right). The dashed line corresponds to the hub height wind speed for the Med. WS/Low TI precursor

ABL simulation used in the LES.

model (ALM) (Sorensen and Shen, 2002). The ALM is defined with an isotropic Gaussian projection function with spreading

parameter ε/∆x= 0.8, which was determined based on agreement with the OpenFAST power curve (uncoupled to an LES

solver) in uniform wind conditions as described in Yalla (2024).135

To implement the different control strategies on the IEA 15 MW turbine, NREL’s reference open-source controller (ROSCO

v2.8.0; National Renewable Energy Laboratory (2024a)) is used. AWM functionality was added to ROSCO v2.8.0 including

both a normal-mode and Coleman-transform method. In this article, we choose to describe the normal-mode representation of

AWM rather than the Coleman-transform representation, although both methods produce equivalent results as demonstrated in

Cheung et al. (2024b). Following the derivation in Cheung et al. (2024b), the time series of pitch amplitude for a blade, θb(t)140

is

θb(t) = θ0 +Acos
(
ωet−nψb(t)

)
. (2)

where θ0 is the nominal blade-pitch command,A is the pitch amplitude of each mode to be forced, n is an azimuthal wavenum-

ber, ψb is the time series of blade azimuthal angle, and ωe is an angular frequency, which can be specified through a Strouhal

number, St= ωeD/2πU∞, where U∞ is the hub-height wind speed. While this implementation of AWM alters the blade-pitch145

control, it does not alter the baseline generator-torque control, which tracks optimum tip-speed ratio.

The azimuthal wavenumber, n, is typically used to distinguish between different AWM strategies. This paper primarily

focuses on the case when n= 0, often referred to as the “pulse” method, in which an axisymmetric thrust variation is imparted

on the wake through collective sinusoidal pitching of the three turbine blades. A single LES with n=−1 is also performed

corresponding to the counter-clockwise “helix" method, which relies on individual pitch control to create a non-uniform thrust150

force around the rotor disk (Frederik et al., 2020b). The decision to focus on the pulse method is motivated by the work of

Frederik et al. (2025a), who found that for a two-turbine array situated in a stable ABL with large veer, the pulse method

outperforms other AWM strategies in terms of wake recovery rates, which Brown et al. (2025) primarily attributed to increased

turbulent entrainment of mean streamwise velocity near the rotor’s top-tip position.
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Table 3. Summary of LES cases.

AWC Parameters Farm Layout Performance

Forcing

Strategy

Pitch

Amplitude (A)

Strouhal

Number (St)

Azimuthal

Wavenumber (n)

Wind Farm

Orientation

Turbine

Spacing

Farm

Power (MW)

Gain

(%)

Baseline 0° N/A N/A 225° 6D 48.759 N/A

Baseline 0° N/A N/A 225° 5D 44.959 N/A

Baseline 0° N/A N/A 180° 5D 58.967 N/A

Baseline 0° N/A N/A 206.5° 5D 76.692 N/A

Pulse 4° 0.3 0 225° 6D 51.866 6.372

Pulse 4° 0.3 0 225° 5D 48.192 7.191

Pulse 4° 0.3 0 180° 5D 61.007 3.460

∗ Pulse 4° 0.3 0 206.5° 5D 75.425 -1.652

Pulse 2° 0.3 0 225° 6D 49.562 1.646

CCW. Helix 2° 0.3 -1 225° 6D 49.599 1.722

Pulse 4° 0.15 0 225° 6D 50.051 2.649

∗ This is a reference case where no downstream wake impingement occurs.

Similarly, a Strouhal number of St= 0.3 is primarily considered in this study, as previous studies across different AWM155

cases have shown strong control authority with this value (Frederik et al., 2020c; Munters and Meyers, 2018; Cheung et al.,

2024b; Frederik et al., 2025a; Brown et al., 2025; Yalla et al., 2025). However, recent work by Li et al. (2024) suggests that

forcing the wake at sub-harmonic frequencies may be advantageous in deep-array environments, because the flow structures

are imparted on the wake over longer timescales. Therefore, a single LES of the pulse method forced at St= 0.15 is also

performed to evaluate the effectiveness of sub-harmonic forcing strategies.160

Lastly, the pitching amplitude, A, controls the strength of each forced azimuthal mode. The two values of A used in the LES

are A= 2° and 4°.

A full list of all the LES cases including the AWM control parameters and the wind farm layouts is provided in Table 3.

2.5 LES Results

The wind farm LES were allowed a transient run-out time of more than 13 minutes based on the time required for the wake165

of the frontline turbines to develop past the third row of turbines. Flow statistics were then accumulated at 2 Hz over 600 s,

and averaged over a time interval of 6 complete Strouhal periods at St= 0.3, corresponding to 88.5 s each. The statistics were

computed over this integer number of Strouhal periods primarily to account for the large fluctuations in power introduced by

the pulse actuation per Strouhal period (Frederik et al., 2020b).
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Figure 4. Performance of each turbine in the wind farms, relative to their respective baseline case. Each turbine is labeled T1-9 corresponding

to the labels in Fig. 2. The actuated turbines are circled in red and the wind direction relative to the wind farm is indicated by the arrow.

The total time-averaged power generated by each wind farm is included in Table 3, along with the percent gain in power for170

each AWM strategy over the respective baseline case. There is a net gain in power for all AWM cases (except the reference case

noted above) which ranges from a 1.65% to a 7.19% increase over the baseline depending on control parameters and turbine

layout. As expected, for the same wind farm layout, the gain in power increases with pitch amplitude (1.65% at A= 2° vs.

6.37% at A= 4°) and inversely with turbine spacing (6.37% for 6D spacing vs. 7.19% for 5D spacing). AWM is also more

beneficial in fully-waked configurations (7.19% increase for the wind farm aligned with the wind direction at 225° vs. a 3.46%175

increase for the wind farm oriented on the diagonal at 180°). Interestingly, the helix case slightly outperforms the pulse method

at the same pitching amplitude (1.72% vs. 1.65%), despite the strong performance of the pulse method over the helix method

in the two-turbine array studies (Frederik et al., 2025a; Brown et al., 2025). In contrast, forcing at the subharmonic Strouhal

number of St= 0.15 exhibits worse performance than the conventional Strouhal number St= 0.3 (2.65% vs. 6.37%).

The performance of each individual turbine in the wind farms is included in Fig. 4. The universal trend is that the actuated180

frontline turbines suffer power losses relative to the baseline, while the second and often third rows see an increase in power.

Variability in the performance of each turbine row and column arises from fluctuations in the ABL over the 10-minute pe-

riod, as well as potential farm-level blockage between exterior and interior rows. To better understand the average farm-level

performance, the row-averaged power for the 6D-spaced farms aligned with the wind direction is also shown in Fig. 5. On
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Figure 5. Row-averaged rotor-averaged velocity and power. Both the absolute and baseline-normalized values are shown. Included are results

from the 6D-spaced wind farms oriented with the wind direction at 225°.

average, the second row turbines see increases in power that range from 5% to 30%, with the pulse method forced at St= 0.3185

outperforming both the helix method and the subharmonic forcing in the second row. However, the helix method maintains

an increase in the third row of turbines, whereas the pulse method at the same pitch amplitude fails to exceed baseline values.

Similarly, the subharmonic Strouhal forcing outperforms the conventional case in the third row turbines.

The baseline-normalized rotor-averaged velocities, also shown in Fig. 5, align with the trends observed in power, and also

suggest possible performance trends beyond the third row. In the wake of the third row of turbines, all pulse methods sustain190

an increase in rotor-averaged velocity compared to the baseline, whereas the helix case falls below the baseline levels. Notably,

forcing at the conventional Strouhal number of St= 0.3 also leads to larger rotor-averaged velocities than the subharmonic

forcing behind the third row.
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Figure 6. Baseline-subtracted contours of −u(u′w′) at z = 270 m, quantifying the turbulent entrainment of mean velocity into the wind

farm.

Brown et al. (2025) linked the performance of AWM strategies primarily to the turbulent entrainment of mean velocity

above the wind farm. This is the primary mechanism that re-energizes conventional wind farm between turbine rows, and this195

mechanism is enhanced by wake mixing. Entrainment of mean velocity into the farm is quantified here through the turbulent

transport term−uu′w′, where u and u′ are the mean and fluctuating streamwise velocity, respectively, and w′ is the fluctuating

vertical velocity. The baseline-subtracted turbulent entrainment fields are shown in Fig. 6 on a horizontal plane at the rotor top-

tip position at z = 270 m. The pulse method forced at St= 0.3 primarily enhances turbulent entrainment in the immediate wake

of the actuated turbines, with larger entrainment observed for larger pitch amplitudes. However, the helix method increases200

entrainment in the wake of both the first and second row turbines, explaining the power increases observed in third row of

turbines. Similarly, the subharmonic forcing case does not increase entrainment as much as the conventional pulse in the wake

of the actuated turbines, but it does lead to more turbine entrainment in the wake of the second row turbines. These trends align

with the wake deficits shown at the hub-height plane in Fig. 7.

Lastly, a three-dimensional visualization of the flow is included in Fig. 8. Isocontours of the Q-criterion (Q= 0.05) are205

shown for an entire wind farm and for the wake profiles behind an actuated turbine. There is not much interaction between

the turbine columns evident in the isosurfaces, which agrees with the hub-height wake contours shown in Fig. 7. The effects

of the different forcing strategies on the wake structure are also somewhat visible in the isosurfaces. All pulse cases exhibit

more wake breakup at this isosurface level compared to the baseline case, with the A= 4° case having a more visibly coherent
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Figure 7. Streamwise velocity contours on the hub-height plane at z = 150 m.

Figure 8. Flow visualization showing isosurfaces of the Q-criterion at Q= 0.05, colored by streamwise velocity. (Left) Isosurfaces of the

6D-spaced wind farm, oriented with the wind direction at 225°, with pulse actuation at A= 4° and St= 0.3. (Right) Wake profiles behind

the actuated turbines for the baseline case and three different implementations of the pulse method.
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structure passing through the wake than the A= 2° case. Similarly, the forced coherent structure for the subharmonic case210

is more elongated in the wake than that in the conventional St= 0.3 case, since the structure at St= 0.15 is generated over

longer timescales.

3 FLORIS Modeling

In this section, the empirical Gaussian model is described as well as the parameter calibration and AWM optimization process.

The focus is on the pulse method forced at St= 0.3, since this encompasses the majority of the LES training data.215

3.1 Reduced-order flow model

The empirical Gaussian model in FLORIS is used to represent the steady-state wind farm wakes. This model is designed for

tuning to an available data source as demonstrated using, for instance, LES as in Doekemeijer et al. (2020) and Hsieh et al.

(2025). The normalized wake velocity deficit, u/U∞, at each streamwise location, x, and around lateral and vertical wake

centers, δy , and δz , is expressed as220

u/U∞(x) = 1−C exp
(
− (y− δy(x))2

2σy(x)2
− (z− δz(x))2

2σz(x)2

)
, (3)

σy,z(x) =

x∫

0

n∑

i=0

ki1[bi,bi+1](x
′)dx′+Mj(x)dx′+σy0,z0 , (4)

Mj(x) = ωv

√√√√√√




Nturb∑

i=1
i̸=j

(
Ωijai

((xj −xi)/Di)2

)2

+

(
Ap

j

d

)2

+ (γI)2


, (5)

where j ranges from 1 to the total number of turbines, Nturb. There are several relevant parameters in Eqs. 3-5 for this study,

which are described herein. The model for the velocity deficit in Eq. 3 depends on a scaling factor, C, and wake widths σy and225

σz , which are given by Eq. 4. The wake widths are specified by a constant initial wake width, σy0,z0 , and a set of parameters, ki,

that control the wake expansion rate between break-point locations bi and bi+1. The user-manual recommends default values

for the initial wake widths, σy,z0 , and scaling factor, C, that should be satisfactory for most applications, and anticipates that

no more than 3 expansion rates (along with 2 break points) should be needed to describe the wake expansion (n= 2 in Eq. 4).

These guidelines are followed here. More details on the general implementation of the empirical Gaussian model in FLORIS230

can be found in the code documentation (NREL, 2025).

For each turbine, the wake widths also include a mixing term, M , which represents three factors associated with wake

mixing that contribute to wake expansion (see Eq. 5). The first term in M quantifies increased wake mixing due to overlapping

wakes from multiple turbines. The matrix Ωij quantifies the area of overlap of the wake of turbine i onto turbine j, and ai is

the axial induction factor of the ith turbine. The second term in M represents increased wake mixing due to AWM. Following235

Frederik et al. (2024), a power-law relationship is assumed, dependent on the blade-pitch amplitude, A. The exponent, p, and

denominator, d, require tuning for different AWM strategies. In this work, the FLORIS model is calibrated for a fixed Strouhal
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Figure 9. Assessment of the mean power and thrust of active turbines as a function of the AWM pitch amplitude, A. LES data is shown

for five different values of A ranging from 0° to 4°. Additionally, a curve-fit of the data is shown of the form 1.0+ bAa with values of

b=−7.54e-4 and a= 2.43 for baseline-normalized power, and b= 8.8e-3 and a= 1.84 for baseline-normalized thrust.

number of 0.3; however, in general, the wake expansion rate should also depend on Strouhal number. Lastly, the effects of

atmospheric turbulence intensity on wake mixing are represented by the third term in M , in which the turbulence intensity

level, I , is scaled by an adjustable parameter γ. These three terms are combined in a 2-norm to form M , and the strength of M240

is controlled by the parameter ωv .

In addition to modeling wakes, the FLORIS model must also capture changes in the power and thrust of the turbines using

AWM. To do so, a functional relationship between the AWM pitching amplitude and the power, PAWM, and thrust coefficient,

CTAWM , of the actuated turbines must be determined. Five LES were performed of a single actuated IEA 15 MW turbine using

the pulse method with evenly spaced pitching amplitudes ranging from A= 0° to A= 4°. The baseline-normalized generated245

power and thrust coefficient as a function of pitch amplitude are shown in Fig. 9. Also shown in Fig. 9 is a curve-fit of this

data, which suggests that an appropriate model for the change in power and thrust of actuated turbines is of the form:

PAWM/Pbaseline = 1.0 + bPA
aP (6)

CTAWM/CTbaseline = 1.0 + bCT
AaCT . (7)

These forms were implemented in the FLORIS model, with inputs for the four adjustable parameters, bP , ap, bCT
, and aCT

.250

Lastly, due to discrepancies between the FLORIS database for power coefficient and LES, the power output of all turbines,

whether using AWM or baseline controls, requires a small scaling factor (Doekemeijer et al., 2020). This is accomplished by

scaling the wind speed in FLORIS by a wind speed factor, Wfact.

A list of all the parameters in the FLORIS model is provided in Table 4.
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3.2 Parameter tuning255

Table 4. Fixed and calibrated FLORIS parameters used during the tuning process for this study.

Parameter Description Value Calibration step Calibration range Initial Guess

ρ Air Density 1.2456 0 Fixed N/A

ϕ Wind veer 8.94 0 Fixed N/A

α Wind shear 0.16 0 Fixed N/A

U Wind Speed 9.0 0 Fixed N/A

ψ Wind Direction 225 0 Fixed N/A

b0 (1st) breakpoint 0.0 0 Fixed N/A

k0 (1st) expansion rate 3.64e-3 1 (0.0,5.0) 0.003

k1 (2nd) expansion rate 2.58e-2 1 (0.0,5.0) 0.02

k2 (3rd) expansion rate 6.85e-1 1 (0.0,5.0) 1.0

b1 (2nd) breakpoint 4.11 1 (0.0,20.0) 4.0

b2 (3rd) breakpoint 11.67 1 (1.0,20.0) 11.0

γ Atmospheric TI gain 0.1 1 (0.0,0.1) 0.05

ωv Mixing gain velocity 3.31 1 (0,10.0) 3.3

Wfact Wind speed factor 0.97 1 (0,2.0) 1.0

p AWM exponent 1.43 2 (0.1,∞) 1.2

d AWM denominator 2029.86 2 (100,∞) 400

bP AWM turbine power constant -8.14e-4 2 (-1e-3,-1e-5) -7.54e-4

aP AWM turbine power exponent 2.39 2 (1.0,10.0) 2.42

bCT AWM turbine thrust constant 1.88e-3 2 (1e-4,0.01) 8.84e-3

aCT AWM turbine thrust exponent 2.032 2 (1.0,10.0) 1.84

The FLORIS model parameters are calibrated to LES data using a two step process. First, the parameters not specific to

AWM are tuned to the LES of the baseline wind farm cases. These parameters include the set of wake expansion rates (ki),

breakpoint locations (bi), atmospheric TI gain (λ), wake mixing factor (ωv), and the wind speed factor (Wfact). Unlike the

approach of Doekemeijer et al. (2020) that employs an objective function based on the difference in wake velocities between

FLORIS and LES, we take an approach more inline with field calibrations where matching the power of turbines is the objective260

(Van Beek et al., 2021; van Binsbergen et al., 2024). Specifically, the baseline wake parameters are calibrated by minimizing

the objective function,

Jstep1 =
Nfarms∑

j=0

Nturb∑

i=0

(
PFLORIS

i,j −PLES
i,j

)2
, (8)
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where Pi,j is the time-averaged generated power of the ith turbine in the jth wind farm case. In the second calibration step,

the baseline wake parameters are held constant, and the AWM related parameters are calibrated to the actuated wind farm LES265

data. These parameters include the AWM exponent and denominator (p and d), and the four parameters that model the power

and thrust of the actuated turbines (aP , bP , aCT
, bCT

). The calibration of the AWM parameters is based on the change in power

relative to the baseline case, rather than the absolute power values, i.e., the objective function is defined as follows

Jstep2 =
Nfarms∑

j=0

Nturbines∑

i=0

[(
PFLORIS,AWM

i,j −PFLORIS,Baseline
i,j

)
−
(
PLES,AWM

i,j −PLES,Baseline
i,j

)]2
. (9)

Table 4 includes the initial guess and range that was used to determine the parameters in each step of the calibration process.270

To facilitate each step of the calibration process, the optimization routines from scipy were used to minimize the cost functions

for each set of calibration parameters. All of the LES cases presented in Sec. 2 were used for tuning the FLORIS parameters.

This includes the four baseline LES cases, which were used in the first step of the calibration, and the five AWM LES cases,

which were used in the second step of the calibration. The FLORIS parameters for air density, wind veer, wind shear, wind

speed, and wind direction, were held constant in the FLORIS model to match the values from the LES precursor simulation275

(see Table 4).

A validation of the calibrated FLORIS model against the time-averaged LES training data is presented in Table 5. The

relative error in total farm power ranges from magnitudes of 0.2% to 1.1% across the five AWM cases, corresponding to

differences of 1 MW or less for the entire farm. Similarly, for all AWM cases, there is a good agreement in the total percent

gain in power over the corresponding baseline cases between the FLORIS model and the LES data, with most cases agreeing280

to within half a percent.

Although the calibration above is performed with respect to farm power, a comparison of the calibrated FLORIS model

with the time-averaged wake from an LES case is presented in Fig. 10 to provide insight on the residual errors in the FLORIS

model. The most noticeable difference in the wakes on the hub-height plane is the omission of veer in the FLORIS model. Veer

skews the LES wakes downstream, while the FLORIS wakes remain aligned with the incoming wind direction by design. This285

difference grows downstream, which is reflected in the difference of row-averaged power between the LES and FLORIS (also

shown in Fig. 10). Similarly, profiles of the streamwise velocity in the wake of the turbines are compared in Fig. 11 for the

LES and FLORIS model. Several modeling choices are evident in the FLORIS wake profiles, including the reduction of inflow

wind speeds to account for induction effects, the symmetry of the wake profiles, uniformity of the wakes between turbine rows,

and the reduced wake deficits to account for the absence of veer, which skews the wake profiles away from the downstream290

turbines in the LES, but only reduces the wake deficit in the FLORIS model and does not does alter the shape or skewness of

the wakes.

3.3 AWM optimization process

To provide the maximal estimate of AEP, the optimal use of AWM is determined for each turbine within a given wind farm

layout for every combination of wind speed, turbulence intensity, and wind direction in the Weibull data. A new python-based295

optimization routine was developed to evaluate all possible combinations of enabling or disabling AWM for each turbine,
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Table 5. Validation of the FLORIS model versus the LES training data

Case Parameters
FLORIS Farm

Power (MW)

LES Farm

Power (MW)

FLORIS Gain

(%)

LES Gain

(%)

Pulse, A= 4°, St= 0.3

Spacing = 5D, Angle = 225°
48.434 48.192 7.309 7.191

Pulse, A= 4°, St= 0.3

Spacing = 6D, Angle = 225°
51.538 51.866 5.314 6.372

Pulse, A= 4°, St= 0.3

Spacing = 5D, Angle = 180°
61.361 61.007 3.626 3.460

Pulse, A= 2°, St= 0.3

Spacing = 6D, Angle = 225°
50.125 49.562 2.428 1.646

∗ Pulse, A= 4°, St= 0.3

Spacing = 5D, Angle = 206.5°
75.206 75.425 -1.138 -1.652

∗ The use of AWM is not recommended for this wind farm layout. It is included for model training purposes.

storing the setting that results in the highest total farm power for each wind condition. While a more computational efficient

approach might use a geometric parameterization for wake-spreading to determine the likely waking or unwaking condition of

downstream turbines (see Fig. A1 of Commission (2017)), the brute-force approach adopted herein is to simulate all possible

combinations of active turbines, ensuring the best choice is determined. A single AEP estimate involves ∼ 90,000 FLORIS300

evaluations, which took roughly 25 s to compute on a single core (using an Intel® Xeon® Platinum 8480+ processor). This

time can be reduced by binning the Weibull data, although this is not done here to preserve the exact values of wind speed,

wind direction, and turbulence intensity from the Weibull. Optimizing the use of AWM for a single wind farm layout using this

approach took roughly 2 hours on a single node (112 cores) on the same machine.

In light of limited training data, several choices/assumptions are applied regarding AWM and the measured wind conditions305

to perform the optimization. The decision for two of the main assumptions, the ranges of WS and TI over which it is appropriate

to apply the power gains from AWM, is aided by Table 2, where the non-zero entries indicate the wind conditions where the

effect of AWM has been evaluated (or estimated) and found significant to justify use as follows. In agreement with intuition, the

table suggests relatively constant percent power gains over the baseline with WS and diminishing gains with TI. Specifically,

the effectiveness of AWM is expected to decrease at higher TI for a given streamwise spacing as increased ambient mixing310

reduces the benefit of externally-imposed mixing. As such, the highest TI category was not simulated and is conservatively

assumed to produce no power benefit from AWM. With regards to WS, AWM is assumed to be useful throughout Region II

and into early Region III according to Table 2. The utility of AWM is certain to diminish as WS increases higher in Region III

due to the lower wake effects in this region, so an upper cutoff point of WS = 15 m/s is arbitrarily selected for this study. Thus,
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Figure 10. (Top) Hub-height plane of streamwise velocity contours (with units m/s) for the time-averaged LES field and the FLORIS model

predictions. The pulse case withA= 4° and St= 0.3 is shown for the 6D-spaced wind farm layout oriented at 225°. (Bottom) The difference

between the LES and FLORIS fields on the hub-height plane, and comparisons of row-averaged power for three LES and FLORIS cases.

the WS and TI ranges adopted for enabled AWM in this study are [cut-in, 15 m/s] and [0,10%], respectively. The optimization315

problem to maximize AEP for a given wind farm is stated formally below in Eqs. 10-13:

Objective:

max
x

JAEP (x) =
∑

w∈W

Nturbines∑

i=0

Pi(xi(w),w) (10)
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Figure 11. Hub-height profiles of the axial velocity in the wake of first, second, and third turbine rows. Shown are the LES and FLORIS

results for the 6D-spaced wind farm oriented at 225° with the pulse method at A= 4° and St= 0.3.

Subject to:320

x = 0 if U > 15 (11)

x = 0 if I > 0.1 (12)
Nturbine∑

i=0

xi ≤NAWM (optional) (13)

where Pi is the power of the ith turbine in the farm and w = [U,I,ψ] is a combination of wind speed, U , turbulence intensity

level, I , and wind direction, ψ, from the set of all such combinations in the Weibull data, W. For each wind condition, w, the325

optimization parameter, x, is an binary vector with a value of 1 if AWM is active for the ith turbine and 0 if not. Therefore, the

total size of the optimization problem is governed by the cardinality of the Weibull set, |W|, multiplied by the total number of

possible uses of AWM throughout the farm for each wind condition, 2Nturbine . This is reduced by the constraints 11 and 12,

which restrict the use of AWM above wind speeds of 15 m/s and TI levels above 10%, respectively. An additional constraint, 13,

can be placed on the optimization problem to limit the number of actuated turbines in the farm by setting NAWM <Nturbine.330

This feature can be used, for example, to restrict mid-farm actuation, ensuring that only three frontline turbines are actuated

at any given time. However, no such restriction is applied here; all turbines are allowed to actuate if it benefits the total farm

power, including downstream turbines, which has recently shown promise in the context of synchronize wake mixing strategies

(van Vondelen et al., 2025). Note that the LES cases do not feature any configurations where AWM is applied to waked turbine,

so this limitation of the training data should be borne in mind when interpreting results.335
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Figure 12. Baseline-normalized total farm power for the wake mixing cases as a function of the AWM pitch amplitude. The wind farm

is oriented at 225° and the turbine spacing is varied from 3D to 8D. In each panel, a different set of wind conditions from the Weibull

distribution is considered, as indicated by the annotation in the top left corner of the panel.

4 AEP Results

4.1 Wake Mixing AEP Results

The primary utility of the FLORIS model in this work is to provide an estimate of AEP, which is a key economic indicator for

wind farm flow control technologies. AEP gain is estimated for a 3× 3 wind farm, similar to those in Sec. 2, but for a wider

range of turbine layouts and AWM parameters. AEP is computed using the Weibull data gathered at Site E06 in the NY Bight.340

Histograms of wind directions, TI, and wind speed, as well as wind roses, at this site were shown previously in Fig. 1. In this

section, AEP is examined as a function of two wind farm layout parameters including the wind farm orientation angle and the

turbine spacing, as well as the AWM pitch amplitude.

In Fig. 12, the wind farm orientation angle is fixed at 225° and the FLORIS predictions of baseline-normalized farm power

are shown for turbine spacings ranging from 3D to 8D and AWM pitch amplitudes ranging from A= 1° to 6°. The results are345

shown for five different sets of wind conditions from the Weibull data including:

1. Wind Speed = 9.0 m/s, Wind Direction = 225°, TI = 3.1%
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Figure 13. The usage of wake mixing (left) and wake steering (right) across all wind conditions in the Weibull distribution. For both control

strategies, the wind farm is oriented at 225° and the turbine spacing is varied from 3D to 8D. The percentages indicate the amount of wind

conditions where the optimization routine actuated/yawed at least one turbine in the wind farm in order to maximize farm power.

2. Wind Speed ≤ 15.0 m/s, Wind Direction 225°± 0.5°, TI ≤ 10%

3. Wind Speed (all), Wind Direction 225°± 0.5°, TI (all)

4. All wind speeds, wind directions, and TI where at least one turbine is using AWM to maximize farm power.350

5. All wind speeds, wind directions, and TI in the Weibull.

These five sets of wind conditions are analyzed to illustrate the progression of power gains as the wind conditions vary from

the type of ideal scenarios typically studied in wind farm flow control LES, to the comprehensive range of wind conditions

that a turbine would typically encounter during annual operations. The first, second, third, and fifth sets of wind conditions are

arranged from the least to the most comprehensive in terms of the total number of wind conditions considered from the Weibull355

data, with the power gains for each discussed below. The fourth set of wind conditions aims to contextualize these power gains

by examining the frequency of AWM usage across all wind conditions in the Weibull distribution, which will be addressed in

the following paragraph.

The first set of wind conditions correspond to an extrapolation of the LES data, and gains in power ranging from 1% to 12%

are observed. These values are typical of those reported in AWM studies in low TI environments when the wind direction is360

directly aligned with the turbines (Frederik et al., 2020c, b; Yılmaz and Meyers, 2018; Taschner et al., 2023; Frederik et al.,

2020a, 2025a; Yalla et al., 2025). In the second set of wind conditions, partial waking is allowed, while the wind speeds and TI

levels are restricted to values where AWM is applicable. Gains in power over the baseline reduce to around 1% to 5%, which

are further reduced to 0.5% to 2.5% when all wind speeds and TI levels are considered for these partially-waked cases in the

third set of wind conditions. In the fifth set of wind conditions shown in Fig. 12, the entire Weibull data is considered, providing365
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Figure 14. Absolute and baseline-normalized AEP as a function of the wind farm orientation angle at three different turbine spacings and

two pitch amplitudes for the wake mixing cases.

an equivalent measure of AEP gains over baseline operations. In this case, the gains in AEP range from 0.1% to 0.4%, which

increase with increases in the AWM pitch amplitude and decreases in turbine spacings.

The fourth set of wind conditions shown in Fig. 12 only considers wind speeds, TI levels, and wind directions for which

at least one turbine was actuated by the optimization routine to maximize the total wind farm power. The percent of wind

conditions where AWM is used to maximize power is shown in Fig. 13. For smaller turbine spacings (3D-5D), AWM is used370

for 20% to 35% of the total number of wind conditions, with usage decreasing with pitch amplitude. For larger turbine spacings

(6D-8D), AWM is used between roughly 10% and 15% of the time. For the wind conditions where AWM is used, the total farm

power is increased by 1% to 3% over baseline operations (Fig. 12). Interestingly, these gains in power do not strictly decrease

with turbine spacing, and the largest gains when using AWM are observed for a turbine spacing of 6D. In this sense, AWM

is used more selectively for larger turbine spacings (≥ 6D) than for smaller spacings (≤ 5D), leading to larger total gains in375

power when AWM is used.

The results discussed so far consider a wind farm orientation angle of 225°, aligning with the predominant southwesterly

and northwesterly directions in the wind rose. This corresponds to a turbine layout that is a worst-case scenario in terms of

the waking of downstream turbines, and therefore a best-case scenario for wake mitigation control strategies. Although such

layouts do exist (Shid-Moosavi et al., 2024), it is also important to consider the changes in AEP as a function of wind farm380

orientation angle. Fig. 14 shows the total AEP and baseline-normalized AEP as the angle of the wind farm is rotated 90° at

1° increments. Three different turbine spacings are considered ranging from 4D to 6D, with two different pitch amplitudes,

A= 2° and 4°, in addition to the baseline case. Total AEP increases with the turbine spacing and pitch amplitude, reaching a

value of > 690 GWh for the 6D spaced farm with A= 4°. As expected, the largest benefit from AWM occurs for a wind farm

angle of 225° for all turbine spacings and pitch amplitudes. As the wind farm is rotated away from the 225° orientation, the385

gains in AEP reduce by roughly 0.05%.
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Figure 15. Baseline-normalized total farm power for the wake steering cases as a function of the maximum yaw offset angle. The wind

farm is oriented at 225° and the turbine spacing is varied from 3D to 8D. In each panel, a different set of wind conditions from the Weibull

distribution is considered, as indicated by the annotation in the top left corner of the panel.

4.2 Wake Steering Results

Up to this point, the discussion has primarily centered on wake mixing and its implications for turbine performance and AEP.

However, by using the empirical Gaussian model that was calibrated for the baseline wake in Sec. 3.2, we can leverage the built-

in tools in FLORIS for wake steering to compare power gains between wake mixing and wake steering strategies. Specifically,390

the Serial-Refine method for quickly finding the optimal yaw angles in FLORIS is used to maximize farm power (Fleming

et al., 2022). This method is taken to be the wake steering equivalent of the wake mixing optimizer developed in Sec. 3.3. As

an analog to varying the blade pitch amplitude for wake mixing, the maximum absolute yaw angle, ϕmax abs, is varied from

ϕmax abs = 0° to 25° at 5° increments. For each value of ϕmax abs, the optimal yaw-offsets for each turbine are determined

between ±ϕmax abs for all wind conditions in the Weibull distribution using the Serial-Refine method with a resolution of395

1°. It is important to note that, unlike the AWM results where a fixed pitch amplitude is applied to actuated turbines, the

Serial-Refine method selects the optimal value for each turbine between ±ϕmax abs. For example, if ϕmax abs = 25°, turbines

may still only be yawed 5° if optimal. Therefore, unlike wake mixing where actuation involved deciding between a fixed pitch

amplitude or baseline controls, the usage of wake steering not decrease as ϕmax abs increases (see Fig. 13). Further, yaw offsets
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Figure 16. An example steady-state flow field from FLORIS simulations of a baseline case (left), an A= 4° wake mixing case (center), and

a ϕmax abs = 15° wake steering case (right). The wind farm is orientated at 225° and the turbines are spaced 6D apart. The wind condition

corresponds to that of the LES considered in Sec. 2, with a wind speed of 9 m/s, a wind direction of 225°, and a TI of 3.1%.

are permitted on downstream turbines during the Serial-Refine optimization, which is consistent with the AWM optimizer that400

allowed for mid-farm actuation. Similarly, wake steering is permitted only for wind speeds below 15 m/s and TI levels below

10%, aligning with the AWM optimization process and corresponding to conditions where previous studies have identified the

greatest benefits of wake steering (Simley et al., 2020). The power of a turbine under yaw misalignment is represented using a

cosine term with an exponent as determined by the "cosine-loss" operational model in FLORIS (NREL, 2025).

In Fig. 15, the optimized wake steering results for farm power gain are shown as a function of the maximum absolute yaw405

angle, ϕmax;abs, and for turbine spacings range from 3D to 8D. The results are shown for the same five sets of wind conditions

that were considered in Fig. 12. For the first wind condition that was considered in the LES study, wake steering leads to power

increases that range from 1% to 7% as the maximum yaw angle increases from 5° to 25° and the turbine spacing decreases

from 8D to 3D. A comparison of streamwise velocity on the hub-height plane between a baseline case, a wake mixing case,

and a wake steering case in this wind condition is shown in Fig. 16. For the partially-waked wind conditions where the wind410

direction is restricted to 225°±0.5°, wake steering increases power generation from 0.25% up to 5% for wind speeds less than

15 m/s and TI levels less than 10%, and up to 2.5% when all wind speeds and TI levels are considered. Finally, for the fifth

set of wind conditions that includes the entire Weibull distribution, wake steering results in AEP gains ranging from 0.1% and

1.2% over baseline operations, with AEP gains over 1% only occurring for the smallest turbine spacing and largest values of

ϕmax abs. Note that these large values of ϕmax abs may be achievable in practice; for example, Damiani et al. (2018) examined415

loads implications of yaw offset angles up to 25° for a 5MW turbine.

As with wake mixing, these gains in farm power can be contextualized by how often wake steering is used across the

Weibull distribution, as was shown in Fig. 13. Wake steering is used to maximize farm power for between 13% and 32% of

wind conditions as the turbine spacing increases from 3D to 8D. For the wind conditions where wake steering is used on at

least one turbine, the total farm power is increased by roughly 1% to 3% over baseline operations (see Fig. 15), which is similar420

to the power gains observed when AWM is used.
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5 Conclusions

This study addressed three critical needs for evaluating AWM strategies in a wind farm. First, a series of high fidelity LES

were performed of a 3×3 wind farm that included multiple turbine layouts and control parameters. The LES extended the two-

turbine results from Frederik et al. (2025a) and Brown et al. (2025) to the case of a larger array of wind turbines. Overall, the425

results demonstrated the effectiveness of AWM in enhancing power generation, particularly for tightly spaced, geometrically

aligned wind farms in stable ABLs. While the conventional pulse method performed the best at enhancing the power generation

of second row turbines, the helix method led to a greater improvement for third row turbines, primarily driven by a sustained

increase in turbulent entrainment of mean-kinetic energy in the wake of the second-row turbines. A similar trend was observed

when forcing the pulse method at a subharmonic frequency of St= 0.15 versus St= 0.3, although the total farm power for430

the subharmonic case did not exceed the conventional value. Having been found to demonstrate appropriately good power

performance for the 3 x 3 array, the high-fidelity results and specifically those of the pulse cases were leveraged to provide

relevant training data for the reduced-order model.

Second, a framework for estimating AEP was developed within the FLORIS toolkit. Building on Frederik et al. (2024), a

model for AWM was added to the wake mixing term in the empirical Gaussian model, and a model for the power and thrust435

of actuated turbines was developed based on LES data. A calibration routine was developed for tuning the FLORIS model

parameters to LES data, and an optimization routine was built for determining the optimal use of AWM through the farm for

maximizing AEP. AEP estimates were determined using Weibull data gathered from the NY Bight, providing an insight into

the potential benefits of AWM in real-world scenarios. Farm power gains as a function of pitch amplitude ranging from A= 1°

to 6° were provided for turbine spacings 3D to 8D, generally indicated gains of 1% to 3% when AWM was being used (around440

10% to 30% of the time), which translated to AEP gains of 0.1% to 0.4%.

Third, the farm power gains for wake mixing were compared to wake steering using the yaw-optimization routines in

FLORIS and the LES-calibrated baseline empirical Gaussian model. Farm power gains were shown as a function of the max-

imum absolute yaw offset angle, ranging from ϕmax abs = 5° to 25°, and turbine spacing ranging from 3D to 8D. Baseline-

normalized power gains of 1% to 3% were also observed when wake steering was being used, which translated to AEP gains445

of 0.2% to 0.8% for most of the turbine spacings and maximum absolute yaw angles considered. Although the baseline-

normalized farm power gains are largely similar between wake mixing and wake steering, the results do generally support

the findings of Taschner et al. (2024), who showed that wake steering is preferred to wake mixing except in fully-waked

configurations.

The AEP gains for both wake mixing and wake steering indicate that some caution is advised when extrapolating from the450

type of ideal scenarios typically examined in wind farm flow control studies to the comprehensive range of wind conditions a

turbine might encounter during annual operations. When interpreting these results, it is important to remember that FLORIS

is a low-fidelity steady-state engineering model, and there are many sources of uncertainty in both the model formulation and

the tuning of parameters based on a limited set of training data. Future work aimed at quantifying this uncertainty relative

the predicted percentages of AEP gain would greatly enhance the utility of FLORIS for evaluating turbine control strategies.455
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Further, the results presented here should be used to inform a wider sweep of higher-fidelity simulations to build confidence

in the results, including additional LES cases or more sophisticated reduced order models that capture the unsteady wake

dynamics induced by AWM (Cheung et al., 2024a; Muscari et al., 2022; Gutknecht et al., 2023). Lastly, turbine loads should

be examined alongside power gains to provide a more comprehensive economic picture of wake mixing control strategies

(Frederik and van Wingerden, 2022).460
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