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Abstract. Wind-turbine operation is commonly described using Supervisory Control and Data Acquisition (SCADA) systems.

the vast majority of fleet-wide records available for analysis consist of 10-minute averages. These coarse aggregates obscure

short transients and dynamic interactions, access is often restricted by proprietary control systems, and the data frequently

contain gaps.

Wind-turbine operation is commonly described using SCADA systems. While high-frequency SCADA data (e.g. 1 s res-5

olution) exist, the vast majority of fleet-wide records available for analysis consist of 10-minutes aggergates. These coarse

aggregates make them insensitive to short transients. Additionally, access is often restricted by proprietary control systems,

and the records frequently contain gaps. To address these limitations, a SCADA-free approach is developed in which opera-

tional states are inferred directly from high-frequency nacelle acceleration, a sensor that is increasingly being installed across

wind farms, e.g. to monitor loads. The proposed method is based on a denoising autoencoder, to which a Domain-Adversarial10

Neural Network (DANN) mechanism and a Deep Embedded Clustering (DEC) self-supervision are added. Compact eight-

dimensional representations of one-minute vibration spectra between 0 and 3 Hz are learned. Turbine-specific signatures are

suppressed through a domain-adversarial regularization, leading to turbine-invariant embeddings that capture a generalized

representation of turbine dynamics. A self-supervised DEC objective structures the latent space into discrete and physically

meaningful operational regimes. DEC facilitates the post-hoc analysis of the learned embedding Training is performed on data15

from a 22 out of 44 turbines offshore wind farm sampled at 31.25 Hz, while SCADA signals are used only for validation. Strong

correspondence is observed between the learned embeddings and pitch, rotor speed, power, and wind speed, with normalized

mutual information above 0.8. Turbine invariance is verified through mutual-information analysis between embeddings and

turbine identity. This analysis also reveals clusters within the wind farm and indicates whether the learned representation can

be consistently applied across different turbines. As an auxiliary validation, regression models were trained on the learned em-20

beddings to predict 10-minute damage-equivalent moments (DEM). The regressors were fitted using data from only five strain-

instrumented turbines and then applied fleet-wide. Accurate fatigue predictions were obtained across all turbinesR2 = 0.96,

surpassing SCADA-based baselines. This demonstrates that the learned embeddings generalize beyond operational description

and contain sufficient load-related information to support fleet-wide fatigue estimation, enabling high-resolution monitoring

without dependence on SCADA.25
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1 Introduction

Recent years have seen offshore wind growing into a cornerstone of Europe’s renewable energy expansion, with turbines

steadily increasing in size and farms being installed at greater distances from shore (Soares-Ramos et al., 2020). This de-30

velopment has intensified the demand for reliable monitoring of the assets, which are subject to a harsh environmental and

operational loads (Weijtens et al., 2016). Ensuring the long-term safety and efficiency of these assets requires not only tracking

structural integrity but also attaining a clear understanding of their dynamic behaviour under realistic operating conditions.

Wind turbines are inherently time-varying systems whose responses depend on a wide range of factors, including wind speed,

blade pitch angle, wind direction, and the interaction of rotating components such as rotor blades and the tower (Zhao et al.,35

2020). These influences give rise to a broad spectrum of operating dynamics, meaning that structural responses cannot be

meaningfully interpreted without knowledge of the underlying operational state (Ozturkoglu et al., 2024). This becomes even

more pertinent for modern wind farms where, due to design improvements (Byrne et al., 2019), structural reserves have been

diminished and fatigue has become an operational concern. With fatigue – and therefore, how long turbines may be operated –

being inextricably linked with the turbine’s operational state, accurate state description has become fundamental for operators.40

More broadly, when monitoring such assets, knowledge of their operational context is indispensable. It provides the ba-

sis not only for Structural Health Monitoring (SHM), but also performance analysis, fault detection, condition monitoring,

and fatigue-life assessment, all of which underpin safer and more cost-effective wind energy production. The importance of

operational state information is reflected in international standards. At the design stage, IEC 61400-1 (IEC, 2019) defines a

catalog of Design Load Cases (DLCs) that turbines must withstand under prescribed operating and environmental scenarios.45

For monitoring, IEC 61400-25-6 (2016) (IEC, 2016) introduces the concept of “operational state bins”: a grouping mecha-

nism intended to ensure that signals are only compared under similar conditions. In practice, however, the proposed binning

in IEC (2016) is reduced to power alone, a simplification that is far too coarse for SHM where structural dynamics are more

nuanced. For example, a rotor lock and an idling turbine may produce comparable power outputs yet represent fundamentally

different dynamic states. In the specific case of DEM estimation and farm-wide extrapolation, a wide range of approaches has50

been prescribed, from physics-guided neural networks (de N Santos et al., 2024) to probabilistic models (Hlaing et al., 2024;

Avendano-Valencia et al., 2020; Singh et al., 2024). However, all studies presuppose the use of SCADA (along with accelera-

tion, for some) to prediction fatigue loads. The SCADA-dependency is so pronounced that in (de N Santos et al., 2021), where

a comparative study of model performance based on different SCADA (10-min, 1s) and accelerometer (low- and high-quality)

instrumentation scenarios, an acceleration-only approach is not even equated. In (de N Santos et al., 2023), a farm-wide DEM55

estimation study on real data, the largest errors were traced to SCADA’s insufficient resolution. Short transients were not cap-

tured, and the assumption of constant yaw angle over 10 minutes often failed. Recent studies have therefore stressed the need

to annotate operating conditions to make condition monitoring results interpretable (Daems et al., 2023). The reliability of such
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annotation is further linked to the ability to evaluate operational conditions consistently, which has been recognized as central

to the stable operation of wind farms and power grids (Chu et al., 2019).60

Traditionally, operational state annotation relies on SCADA systems, where multiple variables (power, rotor speed, pitch

angle, wind speed) are thresholded into categories such as operating, idling, or stopped. Alternatively, data-driven approaches

have attempted to automate this process: Chu et al. (2019) used principal component analysis (PCA) to reveal dominant op-

erational modes, while Bette et al. (2023) applied bisecting k-means clustering to SCADA correlation matrices. Yet both

thresholding and clustering remain limited by SCADA itself: access is often restricted, signals may be inconsistent across65

manufacturers, and 10-minute averaging obscures transients such as load spikes or start–stop events (Korkos et al., 2022).

In addition, SCADA annotation depends on multiple signals, so the absence of a single variable can invalidate state classi-

fication—a common issue noted by Hameed et al. (2009). In contrast, acceleration-based approaches require only a single

measurement modality and offers higher temporal resolution and fewer failure points . Such signals complement, rather than

replace, SCADA by enabling finer detection of operational transients.70

The increasing deployment of accelerometers through IoT technologies now makes it possible to collect high-frequency vi-

bration data across entire farms. These measurements embed signatures of both environmental forcing and structural dynamics,

providing a powerful alternative to infer operational states directly from vibrations. When SCADA is unavailable or unreli-

able, vibration-derived annotations can fill the gap, offering insight into downtime, start–stop behaviour, and fatigue-relevant

transients. Leveraging these high-frequency signals for operational inference is a promising direction.75

Having established the need for SCADA-independent operational inference, the central challenge is to extract operational

states directly from high-frequency vibration data without labeled examples. This requires identifying the essential structure

within rich, high-dimensional measurements while maintaining their physical interpretability. Representation learning pro-

vides a natural framework for this task. Autoencoders (AEs) (Hinton and Salakhutdinov, 2006) and other deep representation-

learning methods (LeCun et al., 2015; Bengio et al., 2013) learn compact latent spaces that capture dominant patterns of80

variation while suppressing noise and incidental detail. When applied to physical sensor data, such embeddings often acquire

semantic meaning that reflects the underlying system dynamics rather than the raw signal characteristics (Ranzato et al., 2012;

Vincent et al., 2010; de Nolasco Santos et al., 2025; Bel-Hadj et al., 2022, 2025; Bel-Hadj and Weijtjens, 2022). Modern

AEs extend this principle by incorporating design objectives that encourage disentanglement, hierarchical organization, and

clusterability (Tschannen et al., 2018). These inductive properties, often referred to as meta-priors (Bengio et al., 2013), are85

particularly valuable in vibration-based monitoring where a limited number of physical processes such as loading, resonance,

and rotor interaction govern the measured response. At the core of these extensions lies the intrinsic meta-prior of the autoen-

coder itself, which assumes that data can be efficiently represented through a lower-dimensional encoding that preserves the

information required for reconstruction. In other words, the AE implicitly promotes representations that compress the signal

while retaining its functional structure. Building on these principles, the present work introduces two additional priors tailored90

to wind-turbine monitoring: a domain-adversarial regularization that enforces turbine-invariant embeddings, and a clustering

objective that structures the latent space into compact and interpretable operational regimes. These ideas have recently been

applied within SHM. For example, convolutional autoencoders have been used to distinguish train directions and axle counts
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from bridge measurements in an unsupervised setting (Bel-Hadj et al., 2022). Denoising variants improve robustness by recon-

structing clean inputs from corrupted observations, which encourages embeddings that generalize across operating conditions95

(Vincent, 2011). Although contrastive self-supervised methods have also shown promise (Liu et al., 2021; Rahimi Taghanaki

et al., 2023), autoencoders remain a simple, and effective for unsupervised operational-state inference in large-scale structural

monitoring.

While autoencoder frameworks provide a means to derive compact and informative embeddings, such representations often

retain individual turbine biases when transferred across different assets. In wind farms, for example, turbines exhibit subtle yet100

systematic variations in resonance, foundation stiffness, or sensor placement, which can be encoded in the latent space. This

challenge is central to the emerging field of Population-Based Structural Health Monitoring (PBSHM) (Bull et al., 2020), where

the objective is to transfer knowledge across a fleet of nominally identical structures while accounting for their inherent vari-

ability. In this context, the encoder–decoder can be interpreted as learning a population form (a unified functional representation

that captures the essential operational dynamics shared across turbines while tolerating structured variability between them).105

Such a form provides a common reference against which future measurements can be assessed, enabling consistent operational

inference across the fleet. One prominent solution to having a unified functional representation: is domain-adversarial learning,

which explicitly enforces invariance to domain differences. The domain-adversarial neural network (DANN) (Ajakan et al.,

2014) extends the adversarial training paradigm of Generative Adversarial Networks (GANs) to representation learning by

coupling the main task with a domain classifier connected through a gradient reversal layer. This forces the encoder to produce110

embeddings that are expressive for the main task while remaining indistinguishable across domains (i.e., different turbines).

Building on this principle, recent studies have demonstrated the versatility of DANN in vibration-based monitoring: Mao et al.

(2020) achieved improved transfer performance in bearing fault diagnosis under variable working conditions with a structured

DANN, Li et al. (2025) proposed a partial conditional adversarial network to transfer damage knowledge from numerical mod-

els to full-scale structures, and Li et al. (2023) applied DANN to bridge monitoring by aligning finite element simulations with115

field data. Similarly, Martakis et al. (2023) fused domain adaptation with feature engineering to classify unseen damage states

in shake-table tests of real buildings. Collectively, these applications underscore the potential of adversarial domain adaptation

for mitigating domain shifts in SHM tasks. However, its application to operational state inference in wind turbines—where

turbine-specific biases are particularly pronounced—remains unexplored. Beyond adversarial approaches such as DANN, PB-

SHM has also explored alternative alignment strategies such as balanced distribution adaptation (BDA) (Gardner et al., 2022),120

although these methods are typically applied to the transfer of diagnostic knowledge, whereas our focus is solely on learning

domain-invariant embeddings without transferring damage labels.

Complementing the DANN regularization, we incorporate Deep Embedded Clustering (DEC) (Xie et al., 2016), a self-

supervised framework that jointly learns feature representations and cluster assignments, thereby structuring the latent space

into compact and interpretable regions and facilitating post-hoc analysis of the learned embedding. DEC has proven effective in125

other domains—for instance, convolutional autoencoders coupled with DEC have been used to separate vibroseismic, highway-

traffic, and airport-noise sources (Snover, 2020). To the best of the author knowledge, DEC and its derivatives have not yet

been applied to SHM and wind-turbine monitoring.
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Together, DANN and DEC act as complementary inductive priors on the latent space: DANN enforces turbine-invariant

representations, while DEC promotes clusterability and interpretability aligned with physical operating regimes.130

Motivated by these developments, we ask: Can wind turbine operational state be inferred directly from high-frequency

acceleration, without relying on SCADA during training? We investigate this question on a 44-turbine offshore wind farm,

using acceleration sampled at 31.25 Hz. Our approach learns compact eight-dimensional latent embeddings from one-minute

spectrograms via a domain-adversarial autoencoder that enforces turbine invariance while preserving operational structure and

DEC to facilitate the interpretabliity of the latent dimension and force its clusterability.135

Contributions. This work advances wind-turbine monitoring by: (i) introducing an acceleration-only operational-state infer-

ence framework that learns compact latent representations directly from vibration spectrograms; (ii) achieving cross-turbine

generalization through domain-adversarial training, enabling fleet-wide deployment without per-turbine retraining; (iii) in-

tegrating Deep Embedded Clustering (DEC) within the autoencoder to jointly learn turbine-invariant and discretized latent

spaces, yielding interpretable representations aligned with distinct operational regimes; and (iv) demonstrating practical utility140

through damage-equivalent moment estimation, illustrating how the learned embeddings support structural-health monitoring

and fatigue assessment.

2 Materials and Methods

This section is organized as follows. First, the offshore wind-farm dataset and its instrumentation are described to establish

the sensing basis of the study. Next, the preprocessing applied to the raw acceleration data is outlined. The representation-145

learning framework is then introduced: vibration spectra are encoded through a denoising autoencoder whose latent space is

jointly structured and discretized through Deep Embedded Clustering (DEC), while turbine-specific effects are suppressed

via domain-adversarial regularization. This integrated architecture produces turbine-invariant, clusterable embeddings that

correspond to distinct operational regimes. An auxiliary procedure for estimating 10-minute Damage-Equivalent Moments

(DEM) from sequences of embeddings is also presented. Finally, the evaluation protocol is detailed, employing information-150

theoretic metrics to assess turbine invariance and operational informativeness.

2.1 Site Instrumentation and Operational Variability

The study is based on operational data collected from an offshore wind farm comprising 44 monopile-supported turbines that

are broadly similar in structural dynamics. As noted by Bull et al. (2020), such a fleet can be treated as a homogeneous popu-

lation, though minor variability in resonance frequencies arises from differences in seabed depth, fabrication, and installation155

tolerances. The layout and sensing configuration are shown in Fig. 1. All turbines are equipped with nacelle-mounted dedicated

accelerometers that provide the high-frequency vibration data used in this study. Each nacelle unit contains C = 3 channels

(fore–aft, side–side and vertical directions) sampled at 31.25Hz. SCADA signals, by contrast, are recorded by the turbine

control system at a low frequency of 1
600Hz (10-minute averages) and are used solely for evaluation and interpretation. Strain

gauges installed near the tower–transition piece interface on five “fleet-leader” turbines are used to provide fatigue reference160
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Figure 1. Schematic of the offshore wind farm and sensing layout: nacelle accelerometers (blue) provide high-frequency vibration data used

for learning operational embeddings, and SCADA signals (green) provide supervisory and control measurements used only for evaluation

and interpretation. Tower/monopile strain gauges (orange) are installed on a small subset of turbines - so-called fleet-leaders.

data but are costly; consequently, only a limited subset is instrumented, as is common in offshore monitoring (Weijtens et al.,

2016). Farm-wide fatigue is typically extrapolated from these leaders using SCADA-based models (de N Santos et al., 2021).

In this study, the strain-gauge measurements will be utilized only in Section 3.3 as the source of ground truth for 10-minute

Damage Equivalent Moments (DEM).

2.1.1 Operational Variability165

Wind turbine operation is traditionally classified from SCADA data using rule-based thresholds applied to variables such as

rotor speed, blade pitch, power output, wind speed, and occasionally yaw. Typical operational states include:

– Parked/rotor lock: rotor stopped [locked], no power production.

– Ramp-down/Ramp-up: controlled deceleration/acceleration of the rotor speed.

– Idling/spinning: low rotor speed with negligible power.170

– Sub-rated generation: below-rated operation with increasing power and rotor speed.

– Near/rated generation: high power production close to rated conditions.

– Curtailed/derated: power limited by control actions or high-wind derating.
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– High-wind storm control: reduced power with large pitch angles to limit loads.

– Emergency stop/trip: abrupt shutdown due to protection triggers.175

Such SCADA-based classification requires expert-defined thresholds; for example, distinguishing parked from idling often

involves checking both rotor speed and wind speed against predefined limits. Such schemes assume stationarity, i.e., that

conditions remain constant over the 10-minute window. While often reasonable, this assumption hides short-term dynamics

such as rotor stops, restarts. Figure 2 illustrates this point. The spectrogram of nacelle acceleration, obtained with 60 s windows,

30 s overlap, reveals clear differences between idling and stops, as well as short-lived transitions that would not be visible in180

SCADA records. Restricting the spectrum to the 0–3 Hz band focuses on the dominant rotor dynamics. These patterns indicate

that the 10-minute stationarity assumption does not always hold.

Figure 2. Log-amplitude spectrogram (0–3 Hz) of turbine acceleration with state sequence inferred from vibrations.

The acceleration-based approach developed here addresses these shortcomings. By operating directly on high-frequency

vibration signals, it enables inference of operational states and transient events at sub–10-minute resolution, without the need

for threshold specification. This enables finer temporal resolution of state estimation and allow event counting, complementing185

rather than replacing SCADA. In this study, SCADA signals are used solely for interpretation and validation of the acceleration-

derived representations, not for training or direct state inference.

2.2 Representation Learning Model

The objective of this work, is to derive compact, expressive and turbine-invariant descriptors of the acceleration signals that

capture operational variability across the fleet. Such descriptors are generally referred to as representations, and when expressed190

as numerical vectors produced by a neural network, they are refereed to as embeddings. An embedding can be understood as

a vectorized representation of a signal–a compressed summary of an input window that preserves the essential dynamical

information while discarding redundancies. Conceptually, embeddings play a similar role to manually engineered statistical

features (e.g., minimum, maximum, variance), but are learned automatically by the network in a data-driven manner.
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In the resulting embedding space, signals recorded under similar operational and environmental conditions are expected195

to map close together, while signals reflecting different dynamics should be located further apart. The structure of this space

should yield well-separated clusters, whereas subtler variations (e.g., between adjacent load levels) should appear closer. To

ensure that the embeddings remain physically meaningful, they are expected to exhibit strong mutual information with key

supervisory variables such as rotor speed, wind speed, and blade pitch angle, the latter being particularly important as it

directly defines the turbine’s control state.200

The dataset is composed of accelerometer measurements recorded in multiple directions (e.g., fore–aft, side–side, vertical).

These signals can be ingested by the model in several ways: (i) a separate model may be trained for each direction, (ii) a shared

architecture may be used while fitting independent model instances per direction, or (iii) a multi-channel architecture may be

adopted in which all directions are processed jointly.

In this work, the third strategy is adopted, with each direction treated as an input channel, analogous to the color channels in205

image processing. The detailed multi-channel architecture is provided in Section 2.5. For clarity, the preprocessing pipeline is

first described in the uni-variate (single-channel) case, and its extension to the three-channel setting is trivial.

2.2.1 Preprocessing of acceleration data

Acceleration records are segmented into 1-minute windows with a 30-second hop size, corresponding to a 50% overlap. This

duration is sufficient to capture the dominant low-frequency turbine dynamics while remaining short enough to assume ap-210

proximate stationarity of the signal. Formally, let the raw acceleration signal be

a = [a1,a2, . . . ,aT ], (1)

from which overlapping windows of length L and hop size H are extracted. The i-th window is denoted by

a(i) = [ati
, . . . ,ati+L−1], ti = 1 + (i− 1)H. (2)

To prepare the time-series data for neural network input, each window of acceleration measurements is transformed into215

the frequency domain to capture dominant operational dynamics. A Hann window w is applied to reduce spectral leakage,

followed by a Fast Fourier Transform (FFT) (Cooley and Tukey, 1965). The log-amplitude spectrum is then computed and

truncated to the 0–3 Hz band, which covers the range of interest for tower and rotor dynamics. Only the magnitude is retained,

as phase information is typically less informative in this context. The transformation is defined in Equation 3:

Φ(a(i)) = log
(∣∣∣FFT(w⊙a(i))

∣∣∣ + ε
)

[0,3Hz]
, (3)220

where a(i) denotes the i-th signal window, w is the Hann window, and ε is a small constant ensuring numerical stability

of the logarithm. With a sampling rate of fs = 31.25 Hz and window length N = 2048, this procedure yields approximately

F ≈ 200 frequency bins per channel.
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Before being fed into the neural network, the spectra Φ(a(i)) are scaled using min–max normalization. To avoid distortion

by outliers, scaling is based on the 0.1th and 99.9th percentiles of the training distribution, computed element-wise across225

frequency bins. Denoting these percentiles by q0.1, q99.9, the normalized input is

x = Φ̃(a(i)) =
Φ(a(i))− q0.1

q99.9− q0.1
, (4)

which maps the bulk of the data approximately into the [0,1] interval while preserving contrast in the presence of occasional

extreme values.

2.2.2 Autoencoder Learning and Domain-Adversarial Training230

We assume that each high-dimensional spectrum x ∈ RM (hundreds of frequency coefficients) is governed by a much smaller

set of latent factors z ∈ RL with L≪ F . While vibration spectra may appear complex, their variability is largely explained by

a handful of physical drivers such as turbine load, control settings, and environmental conditions. For instance, increasing load

raises the overall vibration energy, while rotor speed introduces harmonics at multiples of the blade-passing frequency (3p, 6p,

etc.). Our objective is therefore to learn a mapping,235

fenc : x 7→ z ,

such that z captures the salient operational patterns in a compact form.

2.2.3 Autoencoder formulation.

Autoencoders provide a natural framework for this task. A standard autoencoder consists of an encoder, fenc, that compresses

an input spectrum into a latent embedding z, and a decoder, fdec, that attempts to reconstruct the original signal:240

z = fenc(x; θenc) , x̂ = fdec(z; θdec). (5)

Here, x denotes the input spectrum x, x̂ is the reconstruction, and θenc, θdec are the trainable parameters (weights and biases) of

the encoder and decoder, respectively. The latent vector z ∈ Rd (with d≪M when x ∈ RM ) provides the compact embedding

used in downstream analysis. The reconstruction is trained by minimizing the mean squared error (MSE) between the input

and the output,245

LAE =
1
N

N∑

i=1

∥xi− x̂i∥22. (6)

2.2.4 Denoising criterion.

To improve robustness, we adopt the denoising autoencoder (Vincent, 2011), in which inputs are corrupted by additive Gaus-

sian noise,

x̃ = x+ ϵ, ϵ∼N (0,σ2I). (7)250
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Here, the corruption ϵ represents synthetic perturbations, and its scale σ controls their strength. Choosing σ on the order of

natural measurement noise encourages the model to focus on the meaningful structure of the spectra while ignoring irrelevant

fluctuations. The encoder receives x̃, while the decoder is trained to recover the clean x.

This inductive bias can be interpreted as a restoring mechanism: when noise perturbs the spectrum away from regions

of physically plausible turbine data, the model learns to pull it back. In the small-noise limit, the reconstruction function255

approximates the score function∇x logp(x) (Vincent, 2011), which always points in the direction where the likelihood of real

data increases most steeply. Estimating this score is important because it provides the model with a way to distinguish between

meaningful operational patterns and incidental deviations. In practice, the network learns to suppress sensor noise or spurious

fluctuations while retaining the stable vibration signatures that reflect turbine dynamics.

2.2.5 Domain-adversarial regularization.260

While the denoising criterion ensures robustness, embeddings can still encode turbine-specific signatures (e.g. resonance fre-

quencies or sensor placement). Such features would hinder generalization to unseen turbines and complicate the interpretation

of the embedding. To address this, we employ a domain-adversarial mechanism (Ganin and Lempitsky, 2015), where the do-

main corresponds to turbine identity. This can be interpreted as a turbine-adversarial mechanism, whose objective is to remove

turbine-specific information from the embeddings.265

In practice, a domain classifier fdom is attached to the encoder through a Gradient Reversal Layer (GRL). For each embed-

ding zi, the classifier—implemented as a small neural network ending with a softmax layer—predicts the turbine of origin:

d̂i = fdom(GRL(zi); θdom), (8)

where d̂i is the predicted turbine label, θdom are the classifier parameters, and GRL(zi) = zi in the forward pass but reverses270

the gradient during backpropagation, ∂ GRL(zi)
∂zi

=−γI .

The domain loss is defined as the cross-entropy between predicted and true turbine labels:

Ldom =− 1
N

N∑

i=1

K∑

k=1

1[di = k] logpθdom(di = k | zi), (9)

where pθdom(di = k | zi) is the predicted probability that embedding zi originates from turbine k, di is the true turbine identity,

and N is the minibatch size. During optimization, the classifier parameters are updated to minimize this loss, while the encoder275

receives the reversed gradient and thus learns to maximize it—encouraging domain invariance. This adversarial interaction

ensures that the latent embeddings remain informative of operational dynamics while discarding turbine-specific biases.

2.2.6 Deep Embedded Clustering (DEC)

While the denoising and adversarial objectives produce embeddings that are robust and turbine-invariant, the latent space

remains continuous, making it difficult to interpret in terms of discrete operational modes. To reveal such regimes, we adopt280
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the Deep Embedded Clustering (DEC) formulation (Xie et al., 2016), which jointly refines the encoder and a set of cluster

centroids so that embeddings belonging to similar operating conditions are pulled closer together while those representing

distinct dynamics are pushed apart.

The underlying idea is that the model should first form compact clusters—bringing together latent points that correspond

to consistent vibration patterns—and then separate these clusters sufficiently to produce interpretable operational regimes.285

To achieve this balance, DEC avoids hard assignments (which can lead to unstable optimization) and instead relies on soft

associations that gradually sharpen over time.

For each embedding zi ∈ Rd, its similarity to each cluster centroid µj is measured using a Student-t kernel:

qij =

(
1 + ∥zi−µj∥2/α

)−(α+1)/2

∑
j′ (1 + ∥zi−µj′∥2/α)−(α+1)/2

, (10)

where qij denotes the soft assignment probability of sample i to cluster j. Following Xie et al. (2016), α is set to 1 so that kernel290

has a heavy tail, ensuring that not only nearby point are attracted to the cluster center, which stabilizes cluster formation. The

heavy-tailed kernel ensures that nearby points contribute strongly while distant ones exert diminishing influence, promoting

smooth cluster boundaries.

To make clusters progressively more distinct, DEC defines a sharpened target distribution:

pij =
q2ij/

∑
i qij∑

j′(q2ij′/
∑

i qij′)
, (11)295

which amplifies confident assignments (large qij) and down-weights uncertain ones. Intuitively, qij expresses how much a point

currently belongs to a cluster, while pij represents where it should belong as training refines the latent structure. For instance,

consider a sample located between two neighboring regimes: if its current soft assignments are qi1 = 0.6 and qi2 = 0.4, the

target distribution will become pi1 ≈ 0.69 and pi2 ≈ 0.31 after sharpening. This numerical shift increases the weight of the

more confident cluster, gently pulling the sample toward centroid 1. As training proceeds, each embedding migrates toward its300

most representative cluster.

The clustering loss minimizes the Kullback–Leibler divergence between the two distributions:

LDEC =
∑

i

∑

j

pij log
pij

qij
, (12)

thereby encouraging embeddings to move closer to their respective centroids. Each centroid acts as a gravitational attractor in

the latent space, continuously pulling nearby embeddings toward a compact configuration and enhancing separation between305

clusters.

In practice, DEC training proceeds in two stages. First, the encoder is pretrained to solely reconstruct the input to obtain

a stable and physically meaningful representation. Then, resulting embeddings are clustered using k-means to initialize the

centroids µj . In the second stage, the DEC objective is introduced and jointly optimized along with initial reconstruction task,

gradually organizing the latent space into discrete, interpretable regions that correspond to turbine operating regimes.310
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2.2.7 Combined objective and training schedule.

The encoder–decoder system is optimized under a composite loss that integrates reconstruction fidelity, turbine invariance, and

cluster compactness:

Ltotal = Lrec +λLdom +βLDEC, (13)

where Lrec is the mean-squared reconstruction error between clean inputs and reconstructions (Eq. 6), Ldom the domain-315

adversarial cross-entropy loss (Eq. 9), and LDEC the clustering regularization term (Eq. 12). The coefficients λ and β are

epoch-dependent weights that are gradually increased according to a staged schedule: (i) pretrain the denoising autoencoder

for twarm = 100 epochs using only Lrec, (ii) progressively activate the adversarial regularizer to suppress turbine-specific

signatures, and (iii) introduce the DEC term after centroid initialization to discretize the latent space into compact regimes.

This sequencing avoids competition between objectives and prevents premature collapse of the latent manifold.320

2.3 Operational regime identification from embeddings

After training, each embedding is associated with a set of soft assignment probabilities qij reflecting its similarity to the learned

centroids µj (Eq. 10). The most probable centroid is interpreted as the current operational regime.

As a result of the combined objective, the latent space remains compact, turbine-invariant, and discretized into regimes that

are directly interpretable in terms of turbine operation (e.g. idling, sub-rated, rated, or curtailed states).325

2.4 Temporal aggregation and Damage-Equivalent Moment (DEM) inference

Although the encoder and clustering components operate on short, quasi-stationary spectral segments, fatigue-related quan-

tities such as the 10-minute Damage-Equivalent Moment (DEM) depend on how operating conditions evolve over time. To

capture these temporal dependencies, the sequence of latent embeddings produced by the encoder {zt} produced by the en-

coder is processed by a recurrent model that integrates information across successive windows. In practice, a two-layer Long330

Short-Term Memory (LSTM) network aggregates the embeddings within each 10-minute interval and outputs a compact hid-

den representation summarizing the latent trajectory of the turbine’s dynamic state. A linear regression head then maps this

representation to the corresponding DEM value, trained under a mean-squared-error objective using reference strain-gauge

measurements from the fleet-leader turbines. During this stage, the encoder parameters are frozen so that the recurrent model

learns to interpret the latent dynamics rather than to modify their structure.335

This design introduces a clear hierarchy: the autoencoder acts as a spatial compressor that distills high-dimensional vibration

spectra into a compact, turbine-invariant representation; the recurrent module integrates these representations temporally; and

the regression head translates the aggregated latent dynamics into a physically meaningful fatigue indicator. Conceptually, this

mirrors the structure of world models proposed by Ha and Schmidhuber (Ha and Schmidhuber, 2018), in which a variational

autoencoder encodes raw observations, a recurrent model captures temporal evolution in latent space, and a lightweight head340

operates upon that representation. In a similar spirit, the present framework constructs a latent “world view” of turbine dynam-
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ics: one that encapsulates both the instantaneous and evolving behavior of the structure-thereby enabling fatigue estimation

directly from vibration-derived embeddings without recourse to SCADA data.

2.5 Implementation details: multi-branch MLP over spectra

Acceleration data are stored in one-hour files, each containing three directional components, hereafter referred to as channels.345

Corresponding SCADA and fatigue-related data are maintained in a database with a temporal resolution of ten minutes. For

model training, the acceleration signals are segmented and transformed into spectrograms. Each 1 min spectrogram window

is represented as a tensor x ∈ RB×C×F×T , with batch size B, channels C=3 (fore–aft, side–side, vertical), frequency bins

F ≈200 covering 0–3 Hz, and T time frames within the minute. The network comprises per–channel encoders, a latent fusion

block, and per–channel decoders, with an LSTM head used only for DEM estimation.350

Per–channel encoders. For each channel c ∈ {1, . . . ,C}, the slice x(c) ∈ RB×F×T is reshaped to (BT,F ) and passed

through a small MLP ϕc : RF →Rdc (three 128–unit layers with normalization and ReLU). Meaning that each timestamp is

treated as an independant sample We set dc=16. The resulting per–frame latents {z(c)
t }T

t=1 are concatenated:

zcat
t =

[
z
(1)
t ; . . . ;z(C)

t

]
∈ RCdc .

Fusion to shared embedding. A compact fusion MLP ψ : RCdc→R128→Rd (linear–norm–ReLU–linear) maps zcat
t to a355

shared latent zt ∈ Rd. Stacking over time yields Z ∈ RB×T×d with d=8 used throughout.

Per–channel decoders. Each channel is reconstructed independently from the shared latent via δc : Rd→R128→R128→
RF , producing x̂ ∈ RB×C×F×T after reshaping.

DEM head (inference only). For fatigue estimation, the sequence Z (computed at a 30 s hop) is fed to a two–layer LSTM

(hidden size h=64). The final context vector is mapped by a linear regressor to the 10 min DEM (Section 3.3). The encoder is360

kept fixed; only the LSTM regressor is trained for DEM.

Optimization and schedule. Parameters were optimized using Adam (Kingma and Ba, 2014) (initial learning rate 5×10−3).

The learning rate was adapted by a ReduceLROnPlateau scheduler (factor 0.2, patience 5, minimum 10−5) based on the

validation reconstruction loss. A batch size of 1024, gradient clipping (max–norm 1.0), mixed precision, and early stopping

(patience 50) were employed. The composite objective followed Eq. (13) under a staged schedule: (i) a warm–up using only365

Lrec for twarm=100 epochs; (ii) activation of the domain–adversarial loss Ldom with GRL scale γ=0.4 and a ramp λ(t)

increasing until reaching λmax=1; and (iii) initialization of DEC centroids by k–means followed by the introduction of LDEC

with a ramp β(t) increasing until reaching βmax=10. This sequencing was used to avoid competition between objectives and

to prevent premature collapse of the latent manifold.

Optimization. The model was trained using the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of370

5× 10−3 and a ReduceLROnPlateau scheduler that reduced the rate by a factor of 0.2 after five epochs without improvement

(minimum learning rate 10−5). Batch size was set to 1024, and gradient clipping (max norm 1.0) was applied to ensure training

stability. All models were trained for up to 3000 epochs using mixed-precision computation for efficiency, with early stopping

after 50 epochs of stagnating validation loss. This adaptive optimization setup proved crucial for balancing reconstruction,
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adversarial, and clustering objectives. In practice, achieving stable training depended more on selecting an appropriate batch375

size and learning rate schedule than on tuning the network architecture itself.

2.6 Evaluation methodology

For training, a random subset of 1,000 operating hours was selected per turbine from the year 2023. Each turbine was assigned

an anonymized identifier (ID), and only the odd-numbered turbines were used for model training, corresponding to half of the

fleet. This partitioning was adopted to mitigate overfitting and to ensure generalization across unseen turbines. Model testing380

was conducted using data from the first two weeks of 2024, which served as a hold-out calibration dataset. For the fatigue-

related task, data from June to September 2024 were used to evaluate the model, as this period includes numerous stop events

and diverse operational conditions. Since high-frequency SCADA labels are unavailable, low-frequency SCADA signals (mean

power, rotor speed, pitch, wind speed), assumed constant within each 10-minute interval, are used as a reference for evaluation.

Under this assumption, a lower-bound estimate of how well the embeddings capture operational information is obtained.385

After training, two key aspects are examined: (i) whether the learned embeddings eliminated turbine-specific fingerprints

and achieve invariance across turbines, and (ii) whether the embeddings remain informative about the underlying operational

state.

2.6.1 Turbine invariance.

A key objective is to verify that the embeddings are not dominated by turbine-specific fingerprints. A straightforward option390

is to train a classifier to predict turbine identity from the embeddings, but the outcome of this test depends on the chosen

classifier. To avoid this dependency, we adopt an information-theoretic approach and quantify the mutual information (MI)

between turbine identity T and the embedding Z:

MI(T ;Z) =
∫ ∫

p(t,z) log
p(t,z)
p(t)p(z)

dtdz, (14)

where p(t,z) denotes the joint distribution of T and Z.395

Since T has 44 classes, the global MI quantifies—in bits—the total information contained in the embeddings about turbine

identity, with an upper bound of log2(44)≈ 5.46 bits. This bound corresponds to a uniform distribution over turbines, which

we approximate by randomly sampling 10 000 embeddings per turbine. While this single scalar captures overall dependence,

it does not reveal how individual turbines relate to one another. To examine this structure, we compute pairwise MI. For

each turbine pair (i, j), the dataset is restricted to samples from turbines i and j, the identity variable is recoded as binary400

Tij ∈ {i, j}, and we estimate

MI(Tij ;Z) ≤ 1 bit.

Pairwise MI measures how distinguishable the embeddings of two turbines are: - MI(Tij ;Z)≈ 0 indicates nearly indistinguish-

able embeddings, suggesting similar dynamics; - values approaching 1 bit indicate strong separability, suggesting systematic
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differences. This pairwise MI inform us about the upper bound of the classification. By arranging all values into a symmet-405

ric matrix D ∈ Rn×n with entries [D]ij = MI(Tij ;Z | turbines i, j)(units: bits), a turbine similarity map is obtained. Here,

MI(Tij ;Z | turbines i, j) denotes the mutual information computed using only samples from turbines i and j. This map can be

interpreted in two ways:

1. Fleet-wide dynamic clustering. Without adversarial training (no DANN), the map highlights clusters of turbines with

similar dynamics, visible as blocks of consistently low MI values within subgroups. This is useful for grouping turbines410

that operate under comparable dynamic conditions.

2. Global invariance check. With adversarial training (DANN), turbine-specific fingerprints are suppressed: matrix entries

shift toward lower MI values, indicating reduced separability by turbine identity. Therefore, the same post-hoc analysis

can be applied to all the turbines.

Thus, pairwise MI not only indicates how effectively DANN suppresses turbine-specific signatures, but also uncovers a415

data-driven similarity structure across the fleet, which is valuable for population-based SHM and cross-turbine comparisons.

2.6.2 Operational informativeness.

The second question concerns whether operational information is preserved in the embeddings. Several evaluation strategies

can be considered: (i) correlations with SCADA signals, (ii) training regressors to predict SCADA from embeddings and

reporting RΘ2, or (iii) the use of an information-theoretic measure. For consistency, the latter approach is adopted, and the420

Normalized Mutual Information (NMI) between embeddings and each SCADA variable S is computed:

NMI(S;Z) =
MI(S;Z)√
H(S)H(Z)

, (15)

where H(·) denotes Shannon entropy. Normalization ensures comparability across continuous variables by scaling MI relative

to the entropies of S and Z. As with MI, NMI is estimated using miller-madow entropy estimators as implemented in Büth

et al. (2025).425

In practice, 10,000 embeddings are randomly sampled per turbine from the training set to compute MI and NMI. The

resulting metrics are used to jointly quantify (i) turbine invariance and (ii) operational informativeness, thereby providing a

robust, model-free assessment of the learned representations. Because labeled annotations of transient events are not available,

direct evaluation of event-detection performance is not feasible; instead, goodness is assessed indirectly via alignment with

SCADA variables.430

2.6.3 Qualitative Visualization:

UMAP dimensionality reduction (McInnes et al., 2018) was applied to project 6-dimensional embeddings into 2D space for vi-

sualization. The projections were colored according to SCADA variables and turbine identity so that both operational structure

and cross-turbine consistency could be assessed.
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3 Results and Discussion435

The learned embeddings are evaluated along four dimensions: (i) preservation of operational information with concurrent

suppression of turbine-specific signatures, (ii) generalization to unseen turbines achieved through domain-adversarial training,

(iii) discretization of the latent space into interpretable regimes consistent with classical operational states, and (iv) predicting

fatigue through the learned embedding as a replacement to the classical SCADA-based models.

In the following, the first two aspects are examined in Sect. 3.1, followed by the analysis of regime discretization in Sect. 3.2440

and the evaluation of fatigue-related information in Sect. 3.3.

3.1 Assessment of Turbine Invariance and Operational Informativeness

This part focuses on the first two dimensions of evaluation. Turbine invariance is quantified by means of pairwise mutual

information (MI) between turbine identity and the latent embeddings, while operational informativeness is evaluated through

normalized mutual information (NMI) between embeddings and key SCADA variables—namely power, rotor speed, pitch445

angle, and wind speed.

3.1.1 Turbine invariance via pairwise MI.

Turbine invariance was assessed by comparing two models: a plain autoencoder without adversarial training (γ = 0) and the

same autoencoder with a domain-adversarial component applied to the latent space (γ = 0.4). The corresponding pairwise MI

matrices, D(0) and D(0.4), are presented in Figs. 3 and 4.450

In the absence of DANN, elevated MI values were observed for many turbine pairs (Fig. 3), indicating that turbine-specific

fingerprints were retained in the embeddings alongside operational content. Subgroups of turbines were seen to be more similar

to each other than to the remainder of the fleet, consistent with residual structural or site variability encoded in the latent space.

With DANN, pairwise MI values were reduced across the matrix D(0.4) (Fig. 4), showing that turbine identity was suppressed

while operational features were preserved. Two turbines (IDs 28 and 39) remained more separable than the rest, which is455

interpreted as genuinely distinct dynamics rather than a training artifact. No checkerboard pattern indicative of leakage from

the odd–even train/test split was observed. A small increase in reconstruction error was induced by the adversarial term, but

downstream use was not compromised.

The GRL scale γ was selected by scanning {0.01, 0.2, 0.4, 0.6} and monitoring the mean of the pairwise MI matrix D. The

mean MI was reduced from 0.65 to 0.36, then to 0.15 and 0.12, with an elbow around γ = 0.4. Larger values did not yield460

meaningful gains and were found to risk latent collapse, so γ = 0.4 was adopted in the final model.

Starting from the precomputed pairwise MI matrix D (Fig. 3), which was interpreted as a symmetric dissimilarity measure

in bits (larger values corresponding to lower similarity), agglomerative hierarchical clustering was performed, resulting in the

identification of five clusters (Appendix A). A detailed explanation of hierarchical clustering can be found in Contreras and

Murtagh (2015).465

16

https://doi.org/10.5194/wes-2025-255
Preprint. Discussion started: 1 December 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 3. Pairwise MI between turbine ID and embeddings before

adversarial training. Higher values indicate stronger turbine-specific

signatures.

Figure 4. Pairwise MI after adversarial training (γ=0.4). Lower

values indicate improved turbine invariance, while structured resid-

uals highlight turbines with similar dynamics.

In Fig. 5, the geographic layout of the wind farm is shown with colors indicating the clusters obtained; numbers correspond

to anonymized turbine identifiers. The map was examined to verify that the clustering was not a by-product of wake geometry

or simple row positioning (front versus back turbines). No systematic alignment or consistent relation with water depth was

observed. The clusters nevertheless appeared structured rather than random, yet could not be explained by straightforward

spatial factors. It is therefore inferred that the grouping most likely reflects a combination of site-specific conditions, control470

strategies, or structural variability not captured in the available metadata.

Two turbines (anonymized IDs 28 and 39) were assigned to single-member clusters and also remained the most separable

after adversarial training, which suggests that their distinct behavior arises from genuine dynamic differences rather than

artifacts of the clustering procedure.

3.1.2 Operational informativeness via NMI.475

A central objective of this study is to determine whether operational information typically derived from SCADA can instead be

recovered directly from high-frequency acceleration. To evaluate this, Normalized Mutual Information (NMI) values between

embeddings and SCADA variables were computed on unseen turbines and are reported in Table 1. NMI was used because

it captures both linear and nonlinear dependencies and provides a normalized measure that is comparable across variables,

making it well suited for assessing how much operational content is retained in the embeddings.480

Across all variables, higher mean NMI values were obtained after adversarial training, with improvements ranging from

+0.016 for power to +0.027 for wind speed. Values in the range of 0.75–0.92 indicate that a substantial fraction of the
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Figure 5. Wind farm layout. Numbers denote anonymized turbine IDs; color indicates clusters of the turbine based on the similarity derived

from the pairwise MI in Figure3.

variability in SCADA signals can be captured by the learned embeddings, despite the fact that SCADA data were not used

during training. This demonstrates that high-frequency acceleration contains operationally relevant information that can be

effectively extracted through the proposed representation-learning framework.485

As an external validation, random forest regressor (nest=100) were trained to predict SCADA variables from embeddings

using a 50% test split. The models achieved mean R2 scores of 0.923 for power, 0.882 for pitch, 0.937 for wind speed, and

0.925 for rotor speed across the 44 turbines, confirming that the embeddings encodes operational information. Since SCADA

signals were assumed constant within each 10-minute interval, these values should be regarded as conservative lower bounds

of the attainable correspondence; in other words, the model likely performs better than these metrics suggest.490

Table 1. Mean normalized mutual information (NMI) between embeddings and SCADA variables, computed on unseen turbines before and

after adversarial training.∆% denotes relative change.

SCADA variable No DANN DANN ∆%

mean_power 0.798 0.814 +2.0%

mean_pitch 0.753 0.771 +2.4%

mean_windspeed 0.919 0.946 +2.9%

mean_rpm 0.748 0.765 +2.3%

3.2 Operational state inference from embeddings

The objective in this section is to determine whether the learned latent space can be used to identify distinct operational states

of the turbine. As shown previously, the embeddings capture SCADA-like information with high accuracy; here, the focus is

on whether these representations can be organized into discrete and interpretable regimes.
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When no clustering constraint is applied (DEC), the latent space naturally separates into three main groups: two small495

clusters corresponding to standstill and parked conditions (differing mainly in pitch angle) and one large cluster encompassing

all operating conditions. By introducing Deep Embedded Clustering (DEC), the latent structure is refined into five clusters (a

user defined number), which further distinguish between different levels of power production within the operational regime.

This five-cluster configuration aligns with the division of turbine behavior commonly used in SCADA-based classification.

Additionally, through DEC no need to perform a post-hoc clustering as the cluster center are defined inside the model and500

identified during the training.

Figure 6 shows the resulting latent-space partition for the first five turbines during the initial two weeks of 2024, which serve

as the calibration dataset (Section 2.6). The identified clusters align clearly with rotor speed thresholds, as shown in Fig. 7.

Figure 6. UMAP projection of the latent space coloured by discov-

ered clusters. The partitioning yields coherent operational regimes.

Figure 7. UMAP projection coloured by normalised mean RPM. The

smooth gradient indicates that rotor speed is preserved in the embed-

ding.

Overall, the discovered clusters correspond to well-known operating behaviours: parked/idling, standstill, sub-rated, and

rated generation. Collapsing the latent geometry into discrete states provides an interpretable layer on top of the embeddings,505

enabling event monitoring tasks such as start/stop counting at sub–10-minute resolution. In scenarios without SCADA, clus-

ters can be interpreted by visually inspecting representative samples; once identified, they can be relabelled with meaningful

operational states.

To further validate the clustering, the regimes are projected onto SCADA references. In the power curve (Fig. 8), the regimes

separate into five operating zones. Clusters 3 and 4 overlap at low power, but their distinction becomes clear on the pitch versus510

wind-speed plot (Fig. 9), where cluster 4 corresponds to high pitch (curtailed or stopped) and cluster 3 to lower pitch (idling).

A small overlap is also observed between the rated and ramp-up regions, reflecting there similarity in term of RPM and there
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spectra is similar. These comparisons should be regarded as a lower-bound validation, since SCADA signals are available only

as 10-minute averages, whereas embeddings are computed at a 30-second hop length. The assumption of constant SCADA

over 10 minutes introduces unavoidable mismatches.515

Figure 8. Normalised power versus wind speed, coloured by latent-

space clusters. Regimes align with canonical power-curve regions.

Figure 9. Normalised pitch versus wind speed, coloured by clus-

ters. High-pitch curtailed/stopped regimes separate from low-pitch

operating regimes.

Finally, the method enables monitoring of high-frequency operational events. By applying the model continuously, it is

possible to identify and count start/stop transitions within each hour, capturing short events that are lost in coarse 10-minute

SCADA averages. Figure 10 illustrates such a case: six stop–start events are detected, with transitions from low-rate produc-

tion to standstill. These rapid fluctuations have direct implications for fatigue life, underlining the value of high-resolution,

acceleration-based regime inference.520

3.3 Damage estimation from embeddings

Operational insight is fundamental for many aspects of wind turbine management, particularly for assessing fatigue damage.

Traditionally, Damage Equivalent Moment (DEM) estimation has relied on SCADA-based models, which are constrained by

their coarse 10-minute sampling and by the limited availability of strain-instrumented reference turbines. In this section, the

method of (de N Santos et al., 2024) is employed to estimate DEM but replacing the use of SCADA with directly using525

acceleration-derived embeddings to assess whether the learned representations preserve load-relevant information.

Since the acceleration data are stored in 1-hour files while DEM values are available in 10-minute intervals, each accel-

eration file is divided into six non-overlapping 10-minute segments. Each segment is then associated with the corresponding

DEM value computed over the same time window. The encoder was kept fixed, and only the LSTM-based regression head
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Figure 10. Example of high-frequency event detection from embeddings. Four stop–start transitions are resolved within one hour, highlight-

ing dynamic loading conditions that would be obscured in 10-minute SCADA.

was trained, following a train-on-4 / test-on-1 strategy across the five strain-instrumented fleet leaders. To contextualize per-530

formance, a legacy SCADA-based baseline was compared against the proposed acceleration-only approach. However, this

comparison remains asymmetrical, as the baseline model was trained on substantially more data and used all five Fleet Leaders

(FLs) for training.

Across all turbines, the proposed acceleration-based approach achieved predictive power exceeding that of the baseline

model. The baseline combines SCADA variables with handcrafted features derived from acceleration data and is referred to535

here simply as the SCADA baseline. Differences in R2 remain within a narrow range of 0.01–0.02, which is meaningful given

that values near 1 represent the upper performance limit, thus getting closer to 1 is more and more challenging. In terms of

mean squared error (MSE), the proposed model performs better overall, despite relying on fewer sensors and substantially less

training data. These results indicate that the learned embeddings preserve sufficient load-related information to enable fleet-

wide fatigue estimation without dependence on SCADA or manually engineered features. The baseline approach corresponds540

to the method described in de N Santos et al. (2024). The presented results are based on 4 months of data collected during the

summer of 2024. The summer often contains more variability in term of operational condition
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Moreover, since we enforced the embedding to be similar for all turbine and through the pairwise mutual information table

we showed Figure 4 we can feel more comfortable deploying the model to the whole windfarm and estimating fatigue except

for turbine ID 28 and 39.

Table 2. DEM prediction on all strain-instrumented turbines: comparison between the SCADA-based legacy baseline and the proposed

acceleration-only embedding approach. Each turbine was unseen during training (train-on-4 / test-on-1). R2 higher is better, MSE lower is

better

Turbine Model R2 (↑) MSE(1010,↓)

FL1 SCADA baseline 0.95 2.1

Proposed approach 0.97 1.5

FL2 SCADA baseline 0.95 1.6

Proposed approach 0.97 1.4

FL3 SCADA baseline 0.94 2.9

Proposed approach 0.95 2.8

FL4 SCADA baseline 0.96 2.5

Proposed approach 0.96 2.4

FL5 SCADA baseline 0.95 1.7

Proposed approach 0.96 1.5

545

4 Conclusions

This study has demonstrated that high-frequency nacelle acceleration can serve as a reliable foundation for inferring wind

turbine operational state when SCADA is unavailable, incomplete, or too coarse. By learning compact, turbine-invariant em-

beddings of short-time spectrograms, the proposed framework captured operational dynamics at sub–10-minute resolution and

aligned closely with supervisory variables, despite never being trained on SCADA. Domain-adversarial training effectively550

reduced turbine-specific bias, enabling consistent cross-turbine structure and supporting deployment across a mainly homoge-

neous fleet without per-turbine training.

Discrete operational regimes derived from the embeddings provided an interpretable bridge to classical power-curve analysis,

allowing events such as starts, stops, and curtailments to be resolved at finer temporal scales than is possible with standard

SCADA. In an auxiliary illustration, sequences of embeddings were further shown to predict damage-equivalent moments555

(DEM) with competitive accuracy relative to a SCADA-based baseline, demonstrating that acceleration-derived representations

can preserve load-relevant information needed for fatigue-related applications.

Together, these findings establish acceleration-based operational embeddings as a practical and scalable complement to

SCADA for structural health monitoring and performance analysis. While the present validation was performed on a single off-
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shore farm, the results suggest a broader potential: cross-farm transfer, integration of physics-informed constraints, and tighter560

coupling of embeddings to load proxies are promising directions for future research. By leveraging ubiquitous accelerometers

and modern representation learning, SCADA-free monitoring becomes a viable path toward richer, higher-resolution insight

into turbine dynamics, unlocking new opportunities for condition assessment, fatigue extrapolation, and predictive maintenance

across large wind fleets.
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Appendix A: Hierarchical clustering from the precomputed MI dissimilarity D

Clustering was performed directly on the precomputed turbine×turbine matrix D, which encodes pairwise dissimilarity derived

from mutual information (MI) between turbine identity and embeddings. Larger entries in D indicate lower similarity (stronger675

turbine-specific signatures), the matrix is symmetric with a zero diagonal, and units are bits.

Agglomerative hierarchical clustering with average linkage (UPGMA) was applied to D. The number of clusters was de-

termined by the largest merge-jump rule: the tree was cut at the midway between the two consecutive merges exhibiting the

largest increase in linkage distance, yielding 5 clusters. Leaf labels were anonymized using the same mapping as in the main

text. The linkage distance on the vertical axis shares the units of D (bits). The resulting partition is the one used to color the680

geographic layout map in Fig. 5. The dendrogram below corresponds to embeddings trained without adversarial regularization

(γ = 0).
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Figure A1. Dendrogram from pairwise mutual-information dissimilarity D between turbines based on acceleration-derived embeddings (no

DANN). Each merge height reflects the dissimilarity in bits; higher values indicate more distinct turbine dynamics. The five clusters obtained

correspond to groups of turbines with similar vibration behavior as represented by the autoencoder.
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