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Abstract. Wind energy projects in complex terrain are often associated with high uncertainties regarding the expected power

performance. These uncertainties are mostly attributed to difficulties in obtaining reliable wind speed estimates. However,

an additional factor is that the physical limits of energy extraction vary in these cases, and that the employed wind turbine

might operate differently than expected in these conditions. Reynolds-averaged Navier-Stokes (RANS) simulations of a wind

turbine modeled as an actuator disk (AD) subject to a neutral atmospheric inflow are performed. The influence of the turbine5

position relative to a quasi-two-dimensional Gaussian hill on the maximum power performance and on the response of a torque

controller in region two of the power curve is investigated. When the turbine is located at the foot of the hill, the maximum

power coefficient increases by 3.5%. At the top of the hill, the maximum power decreases by 20.0%. A consequence of this is

that, when placing wind turbines on elevated locations, the power does not scale with the cube of the increase of wind speed. It

is furthermore found, that the torque controller operates in a way, that local flow angles remain constant, irrespectively of the10

location of the turbine. Also, the power coefficient based on the disturbed wind speed in the rotor plane remains constant, which

does not necessarily coincide with the maximum power coefficient based on the undisturbed wind speed. As a consequence, a

torque controller does not track maximum performance in complex terrain. Overall, this study sheds light on the interpretation

of performance results of wind turbines in complex terrain and helps to shape efforts to decrease prediction uncertainties for

future onshore wind projects.15

1 Introduction

Wind turbine control can be roughly divided into three regions depending on the wind speed. In region one, no power is

extracted, in region two, the primary objective is to maximize energy extraction from the flow field, and in region three, the

power generation is kept constant. An example of a power curve with these three regions and the respective rotor speed and

collective blade pitch is presented in Fig. 1. Also, regions 1.5 and 2.5 are shown, which are commonly used to set a minimum20

rotor speed and to reduce loads and noise (Abbas et al., 2022). In this work, we focus solely on analyzing region two from an

aerodynamic perspective, where it is traditionally attempted to maintain a constant power and thrust coefficient to primarily

extract as much energy as possible from the flow. Nonetheless, for the sake of completeness, the other regions are included in

the simulations as well.

But what is actually the available energy in the flow? Recent research has shown that using only local hub position quantities,25

like the free wind speed, is insufficient to quantify this energy content, but also the streamwise development of the free wind
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Figure 1. An example of a power curve of a wind turbine with the different control regions labeled: (a) Power and (b) rotor speed ω and

blade pitch θ.

speed needs to be taken into account (Troldborg et al., 2022; Zengler et al., 2024; Revaz and Porté-Agel, 2024). In other words,

the location of a wind turbine and the development of the flow around this location affect the power performance. A streamwise

acceleration of the flow leads to an increase of power, while a deceleration leads to a decrease (Dar et al., 2023). On the one

side, power performance models that consider this effect are solely based on conservation equations (Cai et al., 2021; Zengler30

et al., 2025a; Dar et al., 2025) without considering the controller. And on the other side, studies on wind turbine performance

in complex terrain often rely on certain controllers (Revaz and Porté-Agel, 2024; Liu and Stevens, 2020) without actively

investigating the influence of the control choice on performance results. This makes it difficult to draw definite conclusions

from these studies, because the exact interaction between controller and non-uniform background flow is not clear.

A common way of controlling a wind turbine in region two of the power curve uses a torque controller, which sets the35

generator torque to enforce the appropriate equilibrium between generator and rotor torque (Bossanyi, 2000; Pao and Johnson,

2011). It relies on the rotational speed of the rotor as input, which, unlike wind speed, can be easily measured in both real life

and simulation environments. To derive the torque control law, we start with the power which can be calculated for a given
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wind speed URef as

P =
1
2
ρR2πCP (λ,θ,X)U3

Ref , (1)40

with air density ρ, rotor radius R, and power coefficient CP which depends on the tip-speed ratio λ = ωR/URef , the blade

pitch θ, and also on the location X , as the aforementioned research shows. In the following, these dependencies will not be

explicitly mentioned. The rotor torque is related to the power as

τ =
P

ω
=

1
2
ρR2πCP

U3
Ref

ω
, (2)

In order to design a torque controller, it is desired to keep the local flow angles at the blade constant at the conditions, where45

maximum CP,max is reached. This means that the tip-speed ratio must remain constant. By substituting URef = ωR/λopt, one

obtains (Bossanyi, 2000; Bianchi et al., 2007)

τ =
1
2
ρR5π

CP,max

λ3
opt︸ ︷︷ ︸

k

ω2 = kω2, (3)

where the torque constant k is introduced. This equation can now be used to set the generator torque τGen as a function of the

rotor speed to ensure optimal operation. As the name suggests, k is kept constant in this case, representing optimal operation50

in the environment the controller was calibrated for. The substitution of URef in order to maintain constant local flow angles is

essential to understand how a torque controller works from an aerodynamic perspective. Of course, the controller does not track

the local flow angles. But maintaining τ ∝ ω2 is from an aerodynamic perspective only possible when aerodynamic forces also

scale with the rotor speed squared, which is only the case, when local flow angles are kept constant This will become apparent

in the course of this paper. For now, we will adhere to the traditional approach of evaluating wind turbine performance in terms55

of power coefficient and tip-speed ratio. In steady state, conservation of angular momentum between the rotor and the generator

yields

τGen = τAero ⇔ kω2 =
1
2
ρR5π

CP

λ3
ω2 ⇔ CP,max

λ3
opt

=
CP

λ3
. (4)

This means that for our example of a turbine in flat terrain, the turbine will always track the curve defined by CP ,max

λ3
opt

= CP

λ3 .

In computational fluid dynamics (CFD), an alternative to this type of control is to set the rotor speed (and also the blade60

pitch) directly as a function of the wind speed in the rotor plane during operation of the turbine based on a calibration procedure

carried out in advance (van der Laan et al., 2014). It was previously shown that this approach is equivalent to a torque controller

in region two because in this region, rotational speed and disk velocity are linked by a constant (Zengler et al., 2025b).

The derivation of the torque control law indicates that the power coefficient is an essential part of the control design. How-

ever, it also depends on the background flow, raising the question of what impact a controller tuned to flat terrain has on the65

performance of the turbine located in complex terrain. This study seeks to entangle controller and complex terrain effects and

therefore contribute to a deeper understanding of simulation results and turbine operation in complex terrain. For this purpose,
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the steady-state control of a wind turbine in streamwise non-uniform flow fields is investigated through CFD simulations of

an actuator disk (AD) located at different positions relative to a hill, and the results are discussed based on theoretical consid-

erations. To the knowledge of the authors, this work for the first time investigates the influence of streamwise non-uniformity70

of the flow field on wind turbine control. The work is structured as follows: Sec. 2 presents the methodology which is largely

based on previous works, Sec. 3 presents the results and Sec. 4. discusses the results and put them in a broader context.

2 Methodology

Simulations of a turbine in three different terrain setups are considered as shown in Fig. 2. In the first case (A), the turbine

is operating in flat terrain, with no obstacles present. In the second case (B), the turbine is located at the foot of a hill, which75

accelerates the wake flow. The hill itself is quasi-two-dimensional parametrized by a Gaussian function. In the last case (C), the

turbine is located on the ridge of the hill, which results in a deceleration of the wake. For the last case, additional simulations

with varying hill height, width and surface roughness are performed. These are not analyzed in detail but serve as support for

arguments made in the discussion presented in Sec. 4. The direction of the onset wind is perpendicular to the ridge of the hill,

resulting in a quasi-two-dimensional flow field when the turbine is not operating. In general, the setup is similar to the one80

described by Zengler et al. (2024), employing Reynolds-averaged Navier-Stokes (RANS) simulations of a neutral atmospheric

inflow.

2.1 Turbine model

The blade geometries of the DTU 10 MW RWT with a rotor diameter of 178.3 m and a hub height of 119 m are used for the

simulations (Bak et al., 2013).85

2.2 Controller

A traditional pitch-torque control algorithm as described by Jonkman et al. (2009) is used to control the rotational speed of the

turbine. As mentioned before, the generator torque in region two is calculated as

τGen = kω2, (5)

where the torque constant k is90

k =
1
2
ρπR5 CP,max

λ3
opt

. (6)

The values of CP,max and λopt are obtained from the simulated flat terrain CP -λ-pitch surface later presented in Fig. 2 at the

blade pitch θopt which maximizes the power coefficient. In every iteration i of the simulation, ω is updated until convergence

based on the conservation of angular momentum of the rotor as

ωi+1 = ωi +
∆t

J
(τAero,i− τGen,i) , (7)95
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with the pseudo-time step ∆t, the rotor moment of inertia J and the aerodynamic torque τAero,i, which is extracted from the

flow simulation. A low-pass filter for the rotational speed is used in Eq. (7) as described by Jonkman et al. (2009). In a steady

state, aerodynamic and generator torque need to be in balance, which ensures that below rated wind speed in flat terrain, the

turbine tracks maximum power performance. Because steady-state simulations are performed, the dynamic response of the

controller is not of interest here and ∆t/J in Eq. (7) is solely tuned to improve solution convergence. Above rated wind speed,100

a proportional-integral (PI) controller modifies the pitch to maintain the rated rotor speed.

2.3 Reference wind speed and normalization of quantities

We introduce the following decomposition of the mean flow:

u = U + u′, (8)

where u is the flow field including the turbine interacting with it, U is the undisturbed flow field, and u′ quantifies the distur-105

bance by the turbine. The reference wind speed employed throughout this work is the undisturbed rotor-equivalent wind speed

(Wagner et al., 2011) calculated as

URef = 3

√√√√ 1
AR

∫

AR

U3
RdA, (9)

with UR being the undisturbed rotor-normal velocity component at the location of the rotor. This approach takes the variation

of available kinetic energy over the rotor plane into account, and allows for a more accurate assessment of the efficiency of a110

turbine. However, it does not consider the streamwise development of the undisturbed flow field.

At every turbine location, URef is obtained separately, thus quantities like λ, CP , and the axial induction a are normalized

by the respective local URef evaluated when the turbine is turned off and not by an upstream velocity.

2.4 Domain and grid design

The shape of the quasi-two-dimensional Gaussian hill is described by115

h = h0 exp
(
− x2

2σ2

)
(10)

and has in its standard configuration a height h0 of 1 D and a standard width σ of 1.5 D with D denoting the turbine diameter.

When the turbine is located ahead/at the foot of the hill (B), it is 4.5 D away from the top of the hill. The surface roughness

is 0.001 m, which corresponds to a snowy surface in reality (Troen and Petersen, 1989). Three additional sets of simulations

of the turbine on top of the hill are performed. In one case, the surface roughness is changed to 0.1 m, in the next one, the hill120

height is varied while the width is kept constant, and in the last case, the ratio between hill height and width is kept constant,

while the height is varied. An overview of all simulations is listed in Tab. 1. The simulations are performed in two steps: First,

the domain is simulated without the turbine to extract the undisturbed URef at the turbine position. Second, after convergence

of the empty domain, the turbine is switched on, and the simulation converged again to extract power, induction, etc.
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Table 1. Conducted simulations within this study. The controller is tuned based on optimal operation obtained from A0.

Label Location Hill height h0 [D] Hill width σ [D] Surface roughnes z0 [m] Control/type of simulation

A0 Flat 0 - 0.001 CP -λ-θ surface, no control

B0 Foot of hill 1 1.5 0.001 CP -λ-θ surface, no control

C0 Top of hill 1 1.5 0.001 CP -λ-θ surface, no control

A1 Flat 0 0 0.001 Controller

B1 Foot of hill 1 1.5 0.001 Controller

C1 Top of hill 1 1.5 0.001 Controller

C2 Top of hill 1 1.5 0.1 Controller

C3.1 Top of hill 0.75 1.5 0.001 Controller

C3.2 Top of hill 0.50 1.5 0.001 Controller

C3.3 Top of hill 0.25 1.5 0.001 Controller

C4.1 Top of hill 0.75 1.125 0.001 Controller

C4.2 Top of hill 0.50 0.75 0.001 Controller

C4.3 Top of hill 0.25 0.375 0.001 Controller

C4.4 Top of hill 0.125 0.1875 0.001 Controller

The computational domain is in all cases a curvilinear grid with a size of 45 × 18 × 34 D3 in the x, y and z direction,125

respectively, which correspond to the streamwise, lateral and vertical dimension. The hill is generated by deforming the bottom

surface of a flat domain. In total, the grid has a size of 256 × 192 × 192 = 9437184 cells. In the turbine region, the mesh is

refined with nearly cubic cells with a side length of 5 m, corresponding to a resolution of nearly 36 cells per D.

The turbine is simulated as an actuator disk, which is represented in the flow domain by a polar grid, and forces are projected

onto the computational grid by the actuator shape approach (Réthoré et al., 2014; Troldborg et al., 2015). The tip-loss correction130

by Glauert is applied and the disk grid has 17 radial points and 64 azimuthal points.

For the case with the turbine located on the hill ridge, a sensitivity study the domain size has been performed by Zengler et al.

(2024) showing a variation of the disk-averaged velocity for a fixed CT of less than 0.1 % when increasing the cross-sectional

area of the domain by a factor of eight. A sensitivity analysis of the cell size is carried out in this work, showing that URef

varies by less than 0.01 % when increasing the cell volume by a factor of eight. When the turbine is operating with a controller,135

the induction and power between these two different cell volumes vary by less than 2 %.

2.5 Turbulence model, inflow, boundary conditions and solver

The simulations are performed as RANS simulations using the k-ε-fp model (van der Laan et al., 2015b) as closure model.

The standard model coefficients are left unaltered and the inflow is described by the analytical log-law solutions for the velocity

6

https://doi.org/10.5194/wes-2025-258
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



U , the turbulence kinetic energy k and the dissipation ε (van der Laan et al., 2015a)140

U =
u∗
κ

log
(

z + z0

z0

)
, k =

u2
∗√
Cµ

, ε =
u3
∗

κ(z + z0)
, (11)

with the friction velocity u∗ and the von-Kármán constant κ. It is important to mention that the level of turbulence intensity is

independent of the friction velocity, which is varied in order to change the hubheight velocity.

The described inflow is set as a boundary condition at the inlet and at the top of the domain in order to maintain the

logarithmic profile in the absence of obstacles. At the outlet, a zero-velocity gradient condition is imposed, and at the bottom,145

a rough wall boundary condition as described by Sørensen et al. (2007) is used. The lateral boundaries are periodic.

EllipSys3D (Michelsen, 1992, 1994; Sørensen, 1995) is used to solve the incompressible Navier Stokes equation in finite-

volume formulation in a procedure similar to the SIMPLE algorithm (Sørensen, 2018).

3 Results

The results are organized by first presenting the prescribed CP -λ-θ surfaces obtained at the three considered locations and150

analyzing the differences in CP,max, λopt, and θopt. The controller constant k is set using the values of CP,max and λopt

obtained at the flat location (A0). After this, power curve calculations are performed at all three turbine positions with this

controller, and control-relevant quantities like λ and induction factors are discussed in this context.

3.1 CP -λ-θ surfaces

Figure 2 shows CP as a function of the blade pitch angle and the tip-speed ratio (A0, B0, C0). The surfaces are obtained on a155

grid with ∆λ = 1 and ∆θ = 1 deg, and the maxima are found by cubic spline interpolation. In addition, at the optimal pitch in

flat terrain (- 1.8 deg), the CP -λ curves for all locations are simulated with ∆λ = 0.5. These curves will be later shown in Fig.

3. On top of the hill, sufficient convergence could not be reached for cases of λ = 10 and θ = -5, -4 deg.

In flat terrain, the optimal CP is 0.543 at a blade pitch angle of θ = -1.8 deg and a tip-speed ratio of 8.1. These values

differ from the ones specified for the DTU 10 MW RWT Bak et al. (2013), which can be mainly attributed to the well-known160

fact that the induction in the rotor plane is usually over-predicted in AD simulations (Mikkelsen, 2004; Zengler et al., 2025a).

As a consequence, the power coefficient is higher, and the blades need to be pitched back more to account for the change of

the local flow angle. When the turbine is located at the foot of the hill, the maximum power performance increases by 3.5 %

accompanied by a decrease of optimal pitch (-2.1 deg) and an increase of the tip-speed ratio (8.3). At the top of the hill, the

opposite is true. The maximum power coefficient decreases by 20.0% to a value of 0.437 together with an increase of pitch165

(-0.4 deg) and a decrease of the tip-speed ratio (7.2). The indicated undisturbed velocity contours in Fig. 2 show that the flow

accelerates behind the turbine located at the foot of the hill, while it decelerates behind the turbine at the hill top. In line with

previous research (Revaz and Porté-Agel, 2024; Troldborg et al., 2022; Dar et al., 2023), deceleration results in a decrease in

power performance while acceleration results in an increase. The presented CP surfaces indicate that there is no possibility of

operating at the same optimal power coefficient as in the flat case when the turbine is operating on the hill, regardless of pitch170
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Figure 2. CP surfaces obtained in a flat domain (A0, left), on the foot of the hill (B0, center) and on top of the hill (C0, right). White stars

indicate the point of optimal power performance. Iso-curves of the undisturbed flow velocity magnitude in the graphic illustrate regions of

speed-up in the vicinity of the hill.

and tip-speed ratio, because the available power is limited by the flow development. However, this does not necessarily mean

that placing a turbine on top of a hill leads to worse power performance in absolute numbers, because wind speeds on top of

hills are often higher. The actual benefit one can expect by placing a wind turbine on a hill will be discussed in Sec. 4.3.

3.2 Simulations with active controller

The pitch and torque controllers are tuned based on the steady-state optimal performance in flat terrain (A0). The torque175

constant (Eq. 6) is set to k = 11× 106 Nms2 and the rated generator speed is set to 1.0 rad−1. The minimum pitch the pitch

controller can operate at is set to -1.8 deg. Because the pitch controller is a PI controller that tracks the error between generator

speed and rated generator speed, the negative error below rated wind speed will result in a negative pitch signal, which will

saturate at this minimum pitch of -1.8 deg. As a consequence, in region two, the pitch is held constant at -1.8 deg, which

can also be seen in Fig. 1 (b). With the calibrated controller, the power curves are run for an increasing wind speed, which is180

achieved by varying the friction velocity u∗ in Eq. (11).

The key simulation results at the three positions are shown in Fig. 3 (a). All power curves show the three typical distinct

regions in which a turbine operates: region one, below cut-in wind speed, where no energy is produced, region two, where the

primary objective is the maximization of energy production, and region three, where energy extraction is limited to the rated

power. The turbine on top of the hill produces significantly less energy below rated wind speed than the one in flat terrain for185

the same undisturbed rotor wind speed at the rotor, while the one at the hill’s foot produces slightly more energy for the same
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Figure 3. Simulation results for the controlled turbine placed at the three different positions (A1, B1,C1): (a) Power curves, (b) CP -λ curves

with control curve in solid black, steady state operational points below rated wind speed marked as crosses and maximum CP marked by

stars, (c) induction curves and operational points with a = 1−uR/URef where uR is the kinetic energy mean over the rotor calculated like

URef in Eq. (9) and (d) tangential induction a′ = uR,t/(ωr) evaluated as azimuthal mean at r = 0.75R.

undisturbed rotor wind speed. Note that although the wind speed changes, Reynolds-similarity leads to the development of

similar flow features independent of the wind speed (van der Laan et al., 2020), which is why the induction below rated wind

speed is unaltered by the inflow velocity. Above rated conditions, all turbines produce the same power as a consequence of

the pitch controller aiming at maintaining a certain rotor speed independently of the energy content of the flow. Although this190

work does not focus on region 2.5, one can see that its onset is delayed for the turbine on the hilltop due to a lower rotational

speed for a given undisturbed rotor wind speed.

Figure 3 (b) shows the CP -λ curve, including the points where the torque controller settles in region two during the power

curve calculation. Regardless of the turbine position, the controller settles at the intersections between the control curve given

by Eq. (4) and the respective performance curves. Especially from the case on top of the hill, it becomes apparent that this195

intersection does not necessarily represent the point of maximum power capture. In numbers, at the foot of the hill, the turbine

produces 2.4% more power than in flat terrain with the same undisturbed reference wind speed, while it produces 20.6% less

power on top of the hill.

Figure 3 (c) shows the axial induction as a function of λ. At the foot of the hill, it is always lower than in flat terrain, while

on top of the hill, it is always higher, corresponding to a higher and lower CP , respectively. It is observed that at the top of the200

hill, the optimal tip-speed ratio would be approximately 6.7, resulting in a decreasing induction relative to the flat case. On the

other side, the controller settles at a tip speed ratio of 7.5 with an increased induction relative to the flat case.

In Fig. 3 (d), the azimuthally averaged tangential induction evaluated at 0.75 R is presented. The a′-λ curves show an

opposite trend to the a-λ curves. The tangential induction in general decreases with an increasing tip-speed ratio; however, for
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a given tip-speed ratio, it is always lower at the top of the hill and higher ahead of the hill, so following the opposite trend205

compared to the axial induction. In comparison to the axial induction, the tangential induction of the controlled cases (marked

by crosses) seems to stay rather constant during operation at the three different locations. Only a small trend can be observed:

Ahead of the hill, the tangential induction increases, while it decreases on top of the hill. In Sec. 4.1, it will be discussed

whether tangential induction is expected to stay constant during torque control. There, the radial distributions of axial and

tangential induction will also be shown.210

4 Discussion

The previous section showed that the power performance is markedly affected when a flat-terrain-designed turbine operates

under complex-terrain conditions. This is primarily a consequence of the flow physics as seen in Fig. 2. Additionally, the

controller leads to suboptimal performance in these situations as seen in Fig. 3 (b).

Next, we characterize the behavior of the torque and pitch controllers. It is furthermore asked how strong the deterioration of215

the actual power is, considering the effect of higher wind speeds on top of the hill relative to flat terrain. Lastly, the limitations

of the present study are discussed.

4.1 Role of torque controller

Figure 3 (b) shows that the torque controller follows its prescribed control curve as expected, even when the surrounding flow

field changes to conditions the controller was not calibrated for. On the one side, this is not surprising, because eventually a220

torque controller enforces

CP,max

λ3
opt

=
CP

λ3
(12)

for any operational state (as seen in Eq. (4)) with the left-hand side being constant and calibrated, for example, for flat terrain

in our case. On the other hand, this relation does not directly yield insights into how a or the local a′ change due to the effect

of complex terrain.225

4.1.1 Impact on performance coefficients

We formulate the torque control strategy based on the velocity at the disk during operation. For this purpose, we introduce the

operational power coefficient, thrust coefficient, and tip-speed ratio as

C∗P =
P

1
2ρu3

DA
= CP

(
URef

uD

)3

, (13)

C∗T =
T

1
2ρu2

DA
= CT

(
URef

uD

)2

, (14)230

λ∗ =
ωR

uD
= λ

URef

uD
, (15)
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Figure 4. Power coefficient and tip-speed ratio as a function of the induction in flat terrain, ahead of the hill and on top of it together with

Eq. (19) and Eq. (21) and the points of optimal operation at every position.

where uD is the flow in the turbine plane during operation, calculated similarly to Eq. (9). The optimal power operation is then

reformulated as

Pmax =
1
2
ρπR2C∗P,maxu

3
D =

1
2
ρπR5

C∗P,max

λ3
∗,opt︸ ︷︷ ︸

k

ω3 (16)

This shows that optimal control actually enforces an equilibrium between power and the velocity in the turbine plane during235

operation, independently of the free-stream velocity. This makes intuitive sense because eventually the forces and moments

on the turbine blades purely depend on what the local flow is at the disk. In fact, the only thing that a torque controller keeps

constant is the ratio between torque and rotor speed squared, regardless of what velocity is used as reference velocity as seen

in Eq (4). Because rotor speed and disk velocity are related by a constant during torque control in order to keep the local flow

angles constant, an equilibrium between power and disk velocity during operation is also achieved (Zengler et al., 2025b).240

Thus, a turbine calibrated for a certain operational point keeps C∗P constant and not CP . In our simulations, we find that C∗P

and λ∗ are practically constant; C∗P,max = 1.92± 0.0076 and λ∗,opt = 12.36± 0.016.

The introduction of certain non-dimensional quantities hides the actual physics happening here. The relation between CT

and a changes in terrain, but not the relation between the local blade forces and velocities. To circumvent this problem, one

could either use quantities for non-dimensionalization that do not change, such as uD in our case, or work exclusively in245

dimensional form. This, on the other hand, would make it difficult to compare results.

Returning to torque control, for the optimal thrust, it follows that

Topt =
1
2
ρπR2C∗T ,optu

2
D =

1
2
ρπR4

C∗T ,opt

λ2
∗,opt︸ ︷︷ ︸

constant

ω2, (17)
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from which it can be furthermore deducted that

CT

λ2
=

C∗T
λ2∗

= constant. (18)250

How do these considerations now affect a, a′, CP and CT during torque control? Based on Eqs. (13), (14), and (15) the

following relations are obtained

CP = C∗P,max (1− a)3 , (19)

CT = C∗T ,opt (1− a)2 , (20)

λ = λ∗,opt (1− a) . (21)255

In Fig. 4, Eqs. (19) and (21) are shown alongside the simulation results showing that indeed the turbine always operates on

these curves. At this point, it is worth taking a look at control strategies, which set blade forces based on uD and C∗T (van der

Laan et al., 2014; Meyers and Meneveau, 2010; Calaf et al., 2010). The current findings show that classical torque control is

equivalent to these strategies, keeping C∗T and C∗P constant, rather than CT and CP . This has also been shown before (Zengler

et al., 2025b).260

4.1.2 Impact on tangential induction

The question of why the tangential induction a′ shown in Fig. 3 (d) seems to be independent of the effects of the complex

terrain, when the other quantities are affected by it, is so far unanswered. In order to answer this, a local analysis of the blade

forces is carried out in appendix A. By considering only the effect of lift forces on the flow and neglecting drag, it can be shown

that a′ can be calculated as265

a′(µ) =
1
2

(
−1 +

√
1 +

Ct(µ)
λ2µ2

)
, (22)

with the non-dimensional radial coordinate µ = r/R and the local thrust coefficient Ct. From this equation, it is evident that

a′ only depends on the local blade forces and rotor speed. The reference velocity used for normalization of λ and Ct can be

omitted from the equation, because Ct is normalized by U2
Ref and λ by URef , so when dividing Ct by λ2, URef cancels out. It

was shown in Eq. (18) that the ratio CT

λ2 is constant for a torque controller. Based on this, it can therefore be argued that the270

local version of that ratio Ct(µ)
λ2 should be constant as well, as long as changes in the flow state due to terrain are uniform over

the disk. This explains why a′ is independent of the effects of complex terrain in region two, although rotor speed and thrust

change; it is simply a consequence of the torque control. In Fig. 5 (a) and (b), the local axial and tangential inductions are

shown as function of radial position along the blade as well as the angle of attack α in (c). Indeed, the tangential induction is

nearly identical in all cases. Only close to the root are deviations between the cases visible. A possible explanation for this is275

that in this region drag plays a significant role, also affecting the tangential induction.
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Figure 5. Azimuthally averaged axial induction (a), tangential induction (b), and angle of attack α (c) shown as a function of nondimensional

radial position µ = r/R.

4.1.3 Optimal performance

We briefly discuss how a controller would need to operate to always track optimal performance. From Eq. (21), one can see that

the rotor speed (λ) decreases with a decreasing disk velocity (an increasing induction a). In Fig. 4 (b), the optimal performance

on top of the hill would be reached by reducing the induction and also reducing the tip-speed ratio. From a local perspective,280

this results in higher axial velocities and lower relative tangential velocities. As a consequence, the local flow angle and angle

of attack increase when not adjusting pitch. However, as suggested by Fig. 2, also the pitch should be modified to track optimal

performance, which would eventually change the angle of attack.

Ahead of the hill, when the background flow is accelerating, the opposite is the case; to track optimal performance, the angle

of attack would need to decrease. This observation is also in agreement with previous findings based on momentum theory285

(Zengler et al. (2025a), see also Eq. (B5)), which show that in a decelerating flow, the optimal performance would be reached at

a lower induction, while in an accelerating flow, it would be reached at a higher induction. Without modification of the torque
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constant, a torque controller would therefore always operate below optimum in accelerating flow fields, because it effectively

keeps flow angles constant instead of adjusting them to the flow conditions. Since blades are often designed to achieve the best

two-dimensional polar lift-to-drag ratios at the angles of attack corresponding to region two operation, torque control ensures290

that the airfoil sections are performing well from a two-dimensional perspective. The reason for suboptimal power performance

is the changed (axial) induction response in accelerating flows.

A way of approaching this problem of suboptimal power performance outside the flat operating conditions would be to

include control algorithms, which slowly modify the torque constant (and pitch) over time to reach optimal performance (see

for example extremum seeking control, Creaby et al. (2009)). However, as Fig. 3 (b) indicates, the total gain in performance295

is rather low on a given curve. Also, the gradient ∂CP

∂λ might not be very strong. In combination with varying atmospheric

conditions, which are not part of this study, and also seasonal variations of the terrain, optimization of the torque constant

might be difficult and the expected gain possibly small, if not even negligible.

In summary, a torque controller enforces C∗P , C∗T , and λ∗ to stay constant. A consequence is that also a′ is constant, which

only depends on the local forces and flow. Because of the changing optimal inflow angles in complex terrain, a torque controller300

cannot operate optimally with this strategy.

4.2 Role of the pitch controller in region two

The pitch controller tracks the difference between the actual and rated rotor speed. In region three of the power curve, this leads

to the observed behavior that even in a non-uniform background flow, the same rated power is reached in the different cases.

In region two, the pitch controller remains inactive, although Fig. 2 suggests that performance could be increased by adjusting305

the pitch. The reason for this is the implementation of the pitch controller as a PI controller. Below the rated wind speed,

or rather the rated rotor speed, the difference between actual and rated rotor speed is negative, resulting in a negative pitch

signal saturating at the minimum pitch independently of the flow state. Similarly to the torque controller, one could imagine an

algorithm that modifies the minimum pitch seeking maximum power performance in region 2 of the power curve. However, in

practice, it might again be difficult because of the small differences between optimal and actual pitch.310

4.3 Speed-up factors

A common way to account for the effect of complex terrain is to use speed-up factors. Because power scales with the wind

speed cubed in the flat terrain case, the effect of terrain on the power of a turbine is usually estimated as

Phill ≈ Pflat(1 +∆U)3, (23)

with ∆U = (URef,hill−URef,flat)/URef,flat being a non-dimensional velocity speed-up factor. This estimate is only accurate315

as long as the actual power coefficient of the turbine is the same as that in the flat terrain case. However, as shown before,

when the turbine is located on a hill, the power coefficient decreases due to the streamwise development of the flow behind the

turbine. This raises the question of what is actually the maximum performance that can be reached by placing wind turbines

on elevated spots, such as hills.
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Figure 6. Expected and actual power at the top of the hill for different speed-up factors. The variation in speed-up is reached by changing the

roughness to 0.1 m (C2), varying the hill height and keeping the width constant (C3.1-C3.3), and by varying the hill height while keeping the

ratio between width to height constant (C4.1-C4.4). The turbines were simulated, including a controller, so the potential maximum power

performance would be around one percent higher.

To answer this question, we consult the additional simulations mentioned at the beginning (C2, C3.1-C3.3, C4.1-C4.4) and320

use a model that incorporates the effect of streamwise velocity gradients on the power coefficient (Zengler et al., 2025a). By

assuming that the maximum deceleration behind the hill is similar to the speed-up ahead of the hill and that the speed-up region

is smaller than the region where the wake pressure equalizes with the surrounding pressure, the change of the maximum power

coefficient as a function of the speed-up ∆U , i.e. CP,max(∆U), according to this model can be estimated, which is outlined

in appendix B in more detail. Because this model yields identical results to momentum theory for ∆U = 0, the scaling of the325

power on a hill can be estimated to be

Phill = Pflat
CP,max(∆U)

16/27
(1 +∆U)3, (24)

≈ Pflat(1 +∆U)1.5, (25)

with the second line being an approximation based on visual inspection of the resulting curves. This estimate requires that

the flow recovers to the flat terrain-state directly behind the turbine, and can therefore be interpreted as a lower bound to the330

possible maximum power performance. To investigate how the power changes on top of the hill in the simulations presented,

the actual power increase is shown together with the traditional cubic trend (Eq. (23)), the lower bound from Eq. (24), its

approximation (Eq. (25)), and a quadratic scaling for reference in Fig. 6. It is important to keep in mind that the simulation

results also include a controller; thus, the actual maximum available power is expected to be around one percent higher, as

shown in Fig. 3 (b).335
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As expected, the actual power increase on top of the hill does not follow a cubic trend, but is in all cases lower. When the

flow separates behind the hill, as is the case for z0 = 0.1 m, and the velocity immediately behind the turbine does not decelerate

so strongly, the power is closer to the cubic relationship. The same conclusions can be made comparing simulations C3.1-C3.3

with C4.1-C4.4. When the width does not change, the deceleration behind the turbine is weaker, and the respective power

performance is higher. Reducing both width and height results in a more local speed-up followed by a strong deceleration.340

None of the presented cases seems to scale according to Eq. (24), the scaling is always higher, rather than being close to a

quadratic trend. Only for very small speed-ups, the scaling seems to approach the predictions. As outlined previously, this

can be explained through the assumptions made for deriving Eq. (24), which requires a very local speed-up with immediate

wake recovery. These observations suggest that if terrain and flow features in the vicinity of the turbine are more similar to

flat terrain features, such as a very long hill or a separation bubble that delays deceleration, the maximum power coefficients345

are also similar, leading to a more cubic scaling of power. If this is not the case, and flow and terrain features vary on similar

length scales as those of the turbine, a stronger influence on the power coefficient can be expected.

Based on this analysis, it is concluded that placing a wind turbine in a spot where the speed is locally highest is beneficial for

power performance. However, the limitation of the free stream velocities in the wake region potentially reduces the achievable

gain from what is expected from the classical cubic relation (Eq. (23)). In cases where turbines are located in smaller local free350

stream speed-up regions, the scaling exponent from the simulations was closer to 2, with even slower (but still positive) scaling

indicated by Eq. (24) by theoretical means.

4.4 Limitations

Although this work deals with complex terrain, the studied case of a wind turbine on a quasi-two-dimensional Gaussian

hill remains a significant simplification. The undisturbed flow field is quasi-two-dimensional and varies only in the vertical355

and streamwise direction. Furthermore, the effect of atmospheric stability was not included. It remains a subject for future

studies how a three-dimensional, unsteady flow would interact with the wind turbine, and to what extent the result that optimal

induction decreases in a decelerating flow and increases in an accelerating flow also holds there.

5 Conclusions

Wind turbine performance in complex terrain is affected by a streamwise non-uniform flow field, resulting in changing limits360

of maximal energy extraction and by the control algorithm, not capable of adjusting properly to the physics caused by the

modified flow conditions. It was shown that a torque controller keeps thrust and power coefficient based on the disturbed flow

field constant, which do not necessarily correspond to the point of operation, which yields maximum power performance in

non-uniform flow fields. The present results suggest that a torque-based control would always lead to a non-optimal power

performance in accelerating flows, because the optimal local flow angles change, while a torque controller keeps the local365

flow angles constant. Whether including additional knowledge about the flow field in the control strategy and adjusting the

torque constant and pitch is beneficial overall remains to be investigated. It was shown that placing turbines in elevated regions
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with higher wind speeds is beneficial for power performance. However, the degradation of the power coefficient leads to a

reduced power output, not scaling with the speed-up over the hill cubed. The observed scaling in the simulations was closer to

a quadratic trend, while theoretical considerations suggest a lower limit of the scaling close to the power of 1.5.370

Code and data availability. EllipSys3D used for the simulations is a proprietary software developed at DTU Wind and Energy Systems and

distributed under licence.

Appendix A: The effect of flow acceleration on the tangential induction

The simulation results show that the tangential induction is barely affected by the acceleration of the background flow, and

major differences between the simulations can only be observed close to the root. At the root, the energy conversion process is375

different compared to the blade tips, because structural constraints require thick airfoils with a low lift-to-drag ratio, resulting

in a flow that is significantly influenced by the drag of the airfoil. With this knowledge in mind, we now seek to investigate

why the tangential induction is rather independent of flow acceleration in the outer region of the blade.

A control volume analysis of the conservation of angular momentum yields (Hansen, 2015)

dQ = ru+
t dṁ = 4πρR2µ3λU2

Ref(1− a)a′ dr, (A1)380

with u+
t being the tangential velocity in the wake, which relates to the tangential induction as a′ = u+

t /(2ωr). Further we used

for the mass flux dṁ = URef(1−a)2πrdr. Note that URef(1−a) only describes the velocity in the rotor plane, independently

of what caused this velocity. Shifting the view towards the blade, the angular momentum can be calculated as

dQ = ftNBrdr, (A2)

with the tangential force per spanlength ft and the number of blades NB . When taking a look at the force and flow vectors at385

each blade section, we now consciously ignore the drag of the airfoil yielding for the flow angle ϕ

tanϕ =
URef(1− a)
ωr(1 + a′)

=
ft

fn
, (A3)

with the blade normal force per spanlength fn. For the local thrust coefficient, we obtain

Ct =
dT

1
2ρU2

Ref dA
=

dT

πρU2
Refrdr

=
fnNB

πρU2
Refr

. (A4)

Combining Eq. (A3) with Eq. (A4) yields for the tangential force390

ft =
1− a

1 + a′
πRρU2

RefCt

λNB
, (A5)

and by combining this with Eq. (A1) and Eq. (A2), we obtain

a′(1 + a′) =
Ct

4λ2µ2
, (A6)

17

https://doi.org/10.5194/wes-2025-258
Preprint. Discussion started: 25 November 2025
c© Author(s) 2025. CC BY 4.0 License.



which can be solved for the tangential induction yielding Eq. (22), showing that indeed, in regions where lift dominates the

flow, the tangential induction only depends on Ct

λ2 , which a torque controller keeps constant.395

The same result can be obtained in a vortex-theory framework without the need for a control-volume analysis, which is

briefly outlined below. For an actuator disk with azimuthal constant loading, the induced tangential velocity due to the bound

vortex of strength ΓB can be calculated from the definition of circulation Γ as

Γ =
∮

us ds = 2πru+
t,i = NBΓB (A7)

with us being the tangential velocity along the curve s and u+
t,i being the mean induced velocity behind the disk. Ahead of400

turbine, the mean induced velocity is u−t,i = 0 and therefore in the disk plane the induced velocity is

ut,i =
1
2
(
u−t,i + u+

t,i

)
=

NBΓB

4πr
. (A8)

Based on the Kutta-Joukowsky condition, the axial force per spanlength is calculated as fn = ρΓBut, yielding for the local Ct

previously defined in Eq. (A4)

Ct =
ΓButNB

U2
Refπr

. (A9)405

The total local tangential velocity relative to the blades can be calculated as the sum of the rotational component and the

induced velocity

ut = URefλµ + ut,i. (A10)

Using Eq. (A8) and introducing the non-dimensional bound circulation γ = ωNBΓB

πU2
Ref

yields

ut = URefλµ(1 + a′) , (A11)410

with the tangential induction defined as

a′ =
γ

4λ2µ2
. (A12)

Inserting this into Eq. (A9) yields

Ct = 4a′λ2µ2 (1 + a′) , (A13)

which is identical to the result from the momentum analysis Eq. (A6).415

Appendix B: Change of maximum CP on an isolated hill

Zengler et al. (2025a) developed an engineering model based on momentum theory, which incorporates the effect of a stream-

wise acceleration of the background flow field. The modified equation for the power coefficient is

CP = 4a(1− a)2 + 4a(1− a)lβ, (B1)
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with the term lβ being the product of a non-dimensional length scale l and a non-dimensional streamwise velocity gradient420

β = D
URef

dU
dx . The length scale was assumed to be the distance behind the turbine, where the pressure in the wake equalizes with

the surrounding pressure. It is often assumed that this point is around one diameter behind the turbine (Crespo et al., 1999;

Dar and Porté-Agel, 2022), although research shows that its actual position depends on the thrust coefficient of the turbine

and might be longer than one diameter (Liew et al., 2024). The undisturbed velocity behind the turbine where the background

pressure equalizes is consequently425

U1 = URef(1 + lβ). (B2)

Now we consider a turbine located on a small hill. The speed-up ∆U over the hill is assumed to occur over a distance smaller

than the distance over which the pressures in the wake of the turbine equalize. So we are speaking of a very local speed-up

close to the turbine. As a consequence, the velocity U1, at which the pressures equalize, is limited by this speed-up or rather

speed-down behind the hill. With the notation introduced in the discussion of the speed-up factors in Sec. 4.3 with URef,hill430

being the undisturbed velocity on top of the hill and URef,flat being the undisturbed velocity around the hill, this means that

U1 = URef,flat. Expressing it in terms of the velocity on top of the hill, where the turbine is located yields

U1 = URef,hill

(
1− ∆U

1 +∆U

)
. (B3)

Comparing this expression with Eq. (B2), we see that

lβ =− ∆U

1 +∆U
. (B4)435

Next, we ask what the optimal performance a turbine can achieve is based on these considerations. Keeping the lβ-notation for

the sake of brevity, the induction, which maximizes CP is found by differentiation of Eq. (B1) to be

aopt =
2
3

+
1
3
lβ− 1

3

√
1 + lβ + l2β2. (B5)

For lβ = 0, one obaines aopt = 1
3 , which is the classical result from momentum theory. CP,max can be determined by inserting

the optimal induction into the equation for the power coefficient (B1). This result is, based on the previous argument, only valid440

for the case, where the undisturbed velocity behind the turbine immediately recovers to the velocity around the hill before the

pressure equalizes with the surrounding flow.
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