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Abstract. Wind energy projects in complex terrain are often associated with high uncertainties regarding the expected power
performance. These uncertainties are mostly attributed to difficulties in obtaining reliable wind speed estimates. However,
an additional factor is that the physical limits of energy extraction vary in these cases, and that the employed wind turbine
might operate differently than expected in these conditions. Reynolds-averaged Navier-Stokes (RANS) simulations of a wind
turbine modeled as an actuator disk (AD) subject to a neutral atmospheric inflow are performed. The influence of the turbine
position relative to a quasi-two-dimensional Gaussian hill on the maximum power performance and on the response of a torque
controller in region two of the power curve is investigated. When the turbine is located at the foot of the hill, the maximum
power coefficient increases by 3.5%. At the top of the hill, the maximum power decreases by 20.0%. A consequence of this is
that, when placing wind turbines on elevated locations, the power does not scale with the cube of the increase of wind speed. It
is furthermore found, that the torque controller operates in a way, that local flow angles remain constant, irrespectively of the
location of the turbine. Also, the power coefficient based on the disturbed wind speed in the rotor plane remains constant, which
does not necessarily coincide with the maximum power coefficient based on the undisturbed wind speed. As a consequence, a
torque controller does not track maximum performance in complex terrain. Overall, this study sheds light on the interpretation
of performance results of wind turbines in complex terrain and helps to shape efforts to decrease prediction uncertainties for

future onshore wind projects.

1 Introduction

Wind turbine control can be roughly divided into three regions depending on the wind speed. In region one, no power is
extracted, in region two, the primary objective is to maximize energy extraction from the flow field, and in region three, the
power generation is kept constant. An example of a power curve with these three regions and the respective rotor speed and
collective blade pitch is presented in Fig. 1. Also, regions 1.5 and 2.5 are shown, which are commonly used to set a minimum
rotor speed and to reduce loads and noise (Abbas et al., 2022). In this work, we focus solely on analyzing region two from an
aerodynamic perspective, where it is traditionally attempted to maintain a constant power and thrust coefficient to primarily
extract as much energy as possible from the flow. Nonetheless, for the sake of completeness, the other regions are included in
the simulations as well.

But what is actually the available energy in the flow? Recent research has shown that using only local hub position quantities,

like the free wind speed, is insufficient to quantify this energy content, but also the streamwise development of the free wind
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Figure 1. An example of a power curve of a wind turbine with the different control regions labeled: (a) Power and (b) rotor speed w and
blade pitch 6.

speed needs to be taken into account (Troldborg et al., 2022; Zengler et al., 2024; Revaz and Porté-Agel, 2024). In other words,
the location of a wind turbine and the development of the flow around this location affect the power performance. A streamwise
acceleration of the flow leads to an increase of power, while a deceleration leads to a decrease (Dar et al., 2023). On the one
side, power performance models that consider this effect are solely based on conservation equations (Cai et al., 2021; Zengler
et al., 2025a; Dar et al., 2025) without considering the controller. And on the other side, studies on wind turbine performance
in complex terrain often rely on certain controllers (Revaz and Porté-Agel, 2024; Liu and Stevens, 2020) without actively
investigating the influence of the control choice on performance results. This makes it difficult to draw definite conclusions
from these studies, because the exact interaction between controller and non-uniform background flow is not clear.

A common way of controlling a wind turbine in region two of the power curve uses a torque controller, which sets the
generator torque to enforce the appropriate equilibrium between generator and rotor torque (Bossanyi, 2000; Pao and Johnson,
2011). It relies on the rotational speed of the rotor as input, which, unlike wind speed, can be easily measured in both real life

and simulation environments. To derive the torque control law, we start with the power which can be calculated for a given
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wind speed Uger as

1 E
P= ipRZ/TCP()HevX) Uliefa (1)

with air density p, rotor radius R, and power coefficient C'p which depends on the tip-speed ratio A = wR/Uge, the blade
pitch 6, and also on the location X, as the aforementioned research shows. In the following, these dependencies will not be

explicitly mentioned. The rotor torque is related to the power as
1 2 Ug,{ef
T=—=—pR*nCp /%, 2)
w 2 w

In order to design a torque controller, it is desired to keep the local flow angles at the blade constant at the conditions, where
maximum Cp nax i reached. This means that the tip-speed ratio must remain constant. By substituting Uer = wR/Aopt, One
obtains (Bossanyi, 2000; Bianchi et al., 2007)

CP ,max
3
)‘opt
—————
k

w? = kw?, (3)

1
T= 5'0R57T

where the torque constant k is introduced. This equation can now be used to set the generator torque 7.y, as a function of the
rotor speed to ensure optimal operation. As the name suggests, k is kept constant in this case, representing optimal operation
in the environment the controller was calibrated for. The substitution of Uge¢ in order to maintain constant local flow angles is
essential to understand how a torque controller works from an aerodynamic perspective. Of course, the controller does not track
the local flow angles. But maintaining 7 o w? is from an aerodynamic perspective only possible when aerodynamic forces also
scale with the rotor speed squared, which is only the case, when local flow angles are kept constant This will become apparent
in the course of this paper. For now, we will adhere to the traditional approach of evaluating wind turbine performance in terms

of power coefficient and tip-speed ratio. In steady state, conservation of angular momentum between the rotor and the generator

yields
1 Cp Cp Cp
_ 2 5 2 ,max
TGen = TAero < kw” = §pR Wﬁw & )\gpt =5 4)
This means that for our example of a turbine in flat terrain, the turbine will always track the curve defined by 70}35;““" = %

opt

In computational fluid dynamics (CFD), an alternative to this type of control is to set the rotor speed (and also the blade
pitch) directly as a function of the wind speed in the rotor plane during operation of the turbine based on a calibration procedure
carried out in advance (van der Laan et al., 2014). It was previously shown that this approach is equivalent to a torque controller
in region two because in this region, rotational speed and disk velocity are linked by a constant (Zengler et al., 2025b).

The derivation of the torque control law indicates that the power coefficient is an essential part of the control design. How-
ever, it also depends on the background flow, raising the question of what impact a controller tuned to flat terrain has on the
performance of the turbine located in complex terrain. This study seeks to entangle controller and complex terrain effects and

therefore contribute to a deeper understanding of simulation results and turbine operation in complex terrain. For this purpose,
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the steady-state control of a wind turbine in streamwise non-uniform flow fields is investigated through CFD simulations of
an actuator disk (AD) located at different positions relative to a hill, and the results are discussed based on theoretical consid-
erations. To the knowledge of the authors, this work for the first time investigates the influence of streamwise non-uniformity
of the flow field on wind turbine control. The work is structured as follows: Sec. 2 presents the methodology which is largely

based on previous works, Sec. 3 presents the results and Sec. 4. discusses the results and put them in a broader context.

2 Methodology

Simulations of a turbine in three different terrain setups are considered as shown in Fig. 2. In the first case (A), the turbine
is operating in flat terrain, with no obstacles present. In the second case (B), the turbine is located at the foot of a hill, which
accelerates the wake flow. The hill itself is quasi-two-dimensional parametrized by a Gaussian function. In the last case (C), the
turbine is located on the ridge of the hill, which results in a deceleration of the wake. For the last case, additional simulations
with varying hill height, width and surface roughness are performed. These are not analyzed in detail but serve as support for
arguments made in the discussion presented in Sec. 4. The direction of the onset wind is perpendicular to the ridge of the hill,
resulting in a quasi-two-dimensional flow field when the turbine is not operating. In general, the setup is similar to the one
described by Zengler et al. (2024), employing Reynolds-averaged Navier-Stokes (RANS) simulations of a neutral atmospheric

inflow.
2.1 Turbine model

The blade geometries of the DTU 10 MW RWT with a rotor diameter of 178.3 m and a hub height of 119 m are used for the
simulations (Bak et al., 2013).

2.2 Controller

A traditional pitch-torque control algorithm as described by Jonkman et al. (2009) is used to control the rotational speed of the

turbine. As mentioned before, the generator torque in region two is calculated as
= kw? )
TGen w,

where the torque constant k is

1 C max
k= gpmR® 1;37 (6)

The values of Cp max and Aop¢ are obtained from the simulated flat terrain C'p-A-pitch surface later presented in Fig. 2 at the
blade pitch 0,,; which maximizes the power coefficient. In every iteration ¢ of the simulation, w is updated until convergence

based on the conservation of angular momentum of the rotor as

At
Wit1 = w; + 7 (TAero,i, - 7-Gren,i) , )
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with the pseudo-time step At, the rotor moment of inertia J and the aerodynamic torque Taero,;, Which is extracted from the
flow simulation. A low-pass filter for the rotational speed is used in Eq. (7) as described by Jonkman et al. (2009). In a steady
state, aerodynamic and generator torque need to be in balance, which ensures that below rated wind speed in flat terrain, the
turbine tracks maximum power performance. Because steady-state simulations are performed, the dynamic response of the
controller is not of interest here and At/J in Eq. (7) is solely tuned to improve solution convergence. Above rated wind speed,

a proportional-integral (PI) controller modifies the pitch to maintain the rated rotor speed.

2.3 Reference wind speed and normalization of quantities

We introduce the following decomposition of the mean flow:

u=U+, (8)

where w is the flow field including the turbine interacting with it, U is the undisturbed flow field, and u’ quantifies the distur-
bance by the turbine. The reference wind speed employed throughout this work is the undisturbed rotor-equivalent wind speed

(Wagner et al., 2011) calculated as

€))

with Ug being the undisturbed rotor-normal velocity component at the location of the rotor. This approach takes the variation
of available kinetic energy over the rotor plane into account, and allows for a more accurate assessment of the efficiency of a
turbine. However, it does not consider the streamwise development of the undisturbed flow field.

At every turbine location, Uge¢ is obtained separately, thus quantities like A, C'p, and the axial induction @ are normalized

by the respective local Urcr evaluated when the turbine is turned off and not by an upstream velocity.
2.4 Domain and grid design

The shape of the quasi-two-dimensional Gaussian hill is described by

CC2
h:hoexp (_M> (10)

and has in its standard configuration a height hy of 1 D and a standard width ¢ of 1.5 D with D denoting the turbine diameter.
When the turbine is located ahead/at the foot of the hill (B), it is 4.5 D away from the top of the hill. The surface roughness
is 0.001 m, which corresponds to a snowy surface in reality (Troen and Petersen, 1989). Three additional sets of simulations
of the turbine on top of the hill are performed. In one case, the surface roughness is changed to 0.1 m, in the next one, the hill
height is varied while the width is kept constant, and in the last case, the ratio between hill height and width is kept constant,
while the height is varied. An overview of all simulations is listed in Tab. 1. The simulations are performed in two steps: First,
the domain is simulated without the turbine to extract the undisturbed Ur at the turbine position. Second, after convergence

of the empty domain, the turbine is switched on, and the simulation converged again to extract power, induction, etc.
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Table 1. Conducted simulations within this study. The controller is tuned based on optimal operation obtained from A0.

Label Location Hill height ho [D]  Hill width o [D]  Surface roughnes zp [m]  Control/type of simulation

A0 Flat 0 - 0.001 C'p-A-0 surface, no control
B0 Foot of hill 1 1.5 0.001 C'p-A-0 surface, no control
Co Top of hill 1 1.5 0.001 Cp-\-0 surface, no control
Al Flat 0 0 0.001 Controller
B1 Foot of hill 1 1.5 0.001 Controller
C1 Top of hill 1 1.5 0.001 Controller
C2 Top of hill 1 1.5 0.1 Controller
C3.1 Top of hill 0.75 1.5 0.001 Controller
C3.2  Topof hill 0.50 1.5 0.001 Controller
C33 Top of hill 0.25 1.5 0.001 Controller
C4.1  Top of hill 0.75 1.125 0.001 Controller
C4.2  Top of hill 0.50 0.75 0.001 Controller
C4.3 Top of hill 0.25 0.375 0.001 Controller
C4.4 Top of hill 0.125 0.1875 0.001 Controller

The computational domain is in all cases a curvilinear grid with a size of 45 x 18 x 34 D3 in the z, y and z direction,
respectively, which correspond to the streamwise, lateral and vertical dimension. The hill is generated by deforming the bottom
surface of a flat domain. In total, the grid has a size of 256 x 192 x 192 = 9437184 cells. In the turbine region, the mesh is
refined with nearly cubic cells with a side length of 5 m, corresponding to a resolution of nearly 36 cells per D.

The turbine is simulated as an actuator disk, which is represented in the flow domain by a polar grid, and forces are projected
onto the computational grid by the actuator shape approach (Réthoré et al., 2014; Troldborg et al., 2015). The tip-loss correction
by Glauert is applied and the disk grid has 17 radial points and 64 azimuthal points.

For the case with the turbine located on the hill ridge, a sensitivity study the domain size has been performed by Zengler et al.
(2024) showing a variation of the disk-averaged velocity for a fixed Cr of less than 0.1 % when increasing the cross-sectional
area of the domain by a factor of eight. A sensitivity analysis of the cell size is carried out in this work, showing that Ures
varies by less than 0.01 % when increasing the cell volume by a factor of eight. When the turbine is operating with a controller,

the induction and power between these two different cell volumes vary by less than 2 %.
2.5 Turbulence model, inflow, boundary conditions and solver

The simulations are performed as RANS simulations using the k-¢- fp model (van der Laan et al., 2015b) as closure model.

The standard model coefficients are left unaltered and the inflow is described by the analytical log-law solutions for the velocity
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U, the turbulence kinetic energy k and the dissipation € (van der Laan et al., 2015a)

Us Z+Zzo uf ui
U=—"lo , k= , 6= ———, 1
K g( 20 ) VC, k(z+ z0) an

with the friction velocity u. and the von-Kdrman constant . It is important to mention that the level of turbulence intensity is

independent of the friction velocity, which is varied in order to change the hubheight velocity.

The described inflow is set as a boundary condition at the inlet and at the top of the domain in order to maintain the
logarithmic profile in the absence of obstacles. At the outlet, a zero-velocity gradient condition is imposed, and at the bottom,
a rough wall boundary condition as described by Sgrensen et al. (2007) is used. The lateral boundaries are periodic.

EllipSys3D (Michelsen, 1992, 1994; Sgrensen, 1995) is used to solve the incompressible Navier Stokes equation in finite-

volume formulation in a procedure similar to the SIMPLE algorithm (Sgrensen, 2018).

3 Results

The results are organized by first presenting the prescribed C'p-A-6 surfaces obtained at the three considered locations and
analyzing the differences in Cp max, Aopt, and fop. The controller constant k is set using the values of Cp max and Aops
obtained at the flat location (A0). After this, power curve calculations are performed at all three turbine positions with this

controller, and control-relevant quantities like A and induction factors are discussed in this context.
3.1 Cp-)\-0 surfaces

Figure 2 shows C'p as a function of the blade pitch angle and the tip-speed ratio (A0, B0, C0). The surfaces are obtained on a
grid with AX =1 and Af = 1 deg, and the maxima are found by cubic spline interpolation. In addition, at the optimal pitch in
flat terrain (- 1.8 deg), the C'p-A curves for all locations are simulated with AX = 0.5. These curves will be later shown in Fig.
3. On top of the hill, sufficient convergence could not be reached for cases of A = 10 and 6 = -5, -4 deg.

In flat terrain, the optimal C'p is 0.543 at a blade pitch angle of & = -1.8 deg and a tip-speed ratio of 8.1. These values
differ from the ones specified for the DTU 10 MW RWT Bak et al. (2013), which can be mainly attributed to the well-known
fact that the induction in the rotor plane is usually over-predicted in AD simulations (Mikkelsen, 2004; Zengler et al., 2025a).
As a consequence, the power coefficient is higher, and the blades need to be pitched back more to account for the change of
the local flow angle. When the turbine is located at the foot of the hill, the maximum power performance increases by 3.5 %
accompanied by a decrease of optimal pitch (-2.1 deg) and an increase of the tip-speed ratio (8.3). At the top of the hill, the
opposite is true. The maximum power coefficient decreases by 20.0% to a value of 0.437 together with an increase of pitch
(-0.4 deg) and a decrease of the tip-speed ratio (7.2). The indicated undisturbed velocity contours in Fig. 2 show that the flow
accelerates behind the turbine located at the foot of the hill, while it decelerates behind the turbine at the hill top. In line with
previous research (Revaz and Porté-Agel, 2024; Troldborg et al., 2022; Dar et al., 2023), deceleration results in a decrease in
power performance while acceleration results in an increase. The presented C'p surfaces indicate that there is no possibility of

operating at the same optimal power coefficient as in the flat case when the turbine is operating on the hill, regardless of pitch
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Figure 2. Cp surfaces obtained in a flat domain (A0, left), on the foot of the hill (B0, center) and on top of the hill (CO0, right). White stars
indicate the point of optimal power performance. Iso-curves of the undisturbed flow velocity magnitude in the graphic illustrate regions of

speed-up in the vicinity of the hill.

and tip-speed ratio, because the available power is limited by the flow development. However, this does not necessarily mean
that placing a turbine on top of a hill leads to worse power performance in absolute numbers, because wind speeds on top of

hills are often higher. The actual benefit one can expect by placing a wind turbine on a hill will be discussed in Sec. 4.3.
3.2 Simulations with active controller

The pitch and torque controllers are tuned based on the steady-state optimal performance in flat terrain (A0). The torque
constant (Eq. 6) is set to k = 11 x 10° Nms? and the rated generator speed is set to 1.0 rad~!. The minimum pitch the pitch
controller can operate at is set to -1.8 deg. Because the pitch controller is a PI controller that tracks the error between generator
speed and rated generator speed, the negative error below rated wind speed will result in a negative pitch signal, which will
saturate at this minimum pitch of -1.8 deg. As a consequence, in region two, the pitch is held constant at -1.8 deg, which
can also be seen in Fig. 1 (b). With the calibrated controller, the power curves are run for an increasing wind speed, which is
achieved by varying the friction velocity wu, in Eq. (11).

The key simulation results at the three positions are shown in Fig. 3 (a). All power curves show the three typical distinct
regions in which a turbine operates: region one, below cut-in wind speed, where no energy is produced, region two, where the
primary objective is the maximization of energy production, and region three, where energy extraction is limited to the rated
power. The turbine on top of the hill produces significantly less energy below rated wind speed than the one in flat terrain for

the same undisturbed rotor wind speed at the rotor, while the one at the hill’s foot produces slightly more energy for the same
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Figure 3. Simulation results for the controlled turbine placed at the three different positions (A1, B1,C1): (a) Power curves, (b) Cp-) curves
with control curve in solid black, steady state operational points below rated wind speed marked as crosses and maximum Cp marked by

stars, (c) induction curves and operational points with a = 1 — ur /Urer Where upg is the kinetic energy mean over the rotor calculated like

Uger in Bq. (9) and (d) tangential induction @’ = up,;/(wr) evaluated as azimuthal mean at 7 = 0.75R.

undisturbed rotor wind speed. Note that although the wind speed changes, Reynolds-similarity leads to the development of
similar flow features independent of the wind speed (van der Laan et al., 2020), which is why the induction below rated wind
speed is unaltered by the inflow velocity. Above rated conditions, all turbines produce the same power as a consequence of
the pitch controller aiming at maintaining a certain rotor speed independently of the energy content of the flow. Although this
work does not focus on region 2.5, one can see that its onset is delayed for the turbine on the hilltop due to a lower rotational
speed for a given undisturbed rotor wind speed.

Figure 3 (b) shows the Cp-A curve, including the points where the torque controller settles in region two during the power
curve calculation. Regardless of the turbine position, the controller settles at the intersections between the control curve given
by Eq. (4) and the respective performance curves. Especially from the case on top of the hill, it becomes apparent that this
intersection does not necessarily represent the point of maximum power capture. In numbers, at the foot of the hill, the turbine
produces 2.4% more power than in flat terrain with the same undisturbed reference wind speed, while it produces 20.6% less
power on top of the hill.

Figure 3 (c) shows the axial induction as a function of A. At the foot of the hill, it is always lower than in flat terrain, while
on top of the hill, it is always higher, corresponding to a higher and lower Cp, respectively. It is observed that at the top of the
hill, the optimal tip-speed ratio would be approximately 6.7, resulting in a decreasing induction relative to the flat case. On the
other side, the controller settles at a tip speed ratio of 7.5 with an increased induction relative to the flat case.

In Fig. 3 (d), the azimuthally averaged tangential induction evaluated at 0.75 R is presented. The a'-\ curves show an

opposite trend to the a-A curves. The tangential induction in general decreases with an increasing tip-speed ratio; however, for
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a given tip-speed ratio, it is always lower at the top of the hill and higher ahead of the hill, so following the opposite trend
compared to the axial induction. In comparison to the axial induction, the tangential induction of the controlled cases (marked
by crosses) seems to stay rather constant during operation at the three different locations. Only a small trend can be observed:
Ahead of the hill, the tangential induction increases, while it decreases on top of the hill. In Sec. 4.1, it will be discussed
whether tangential induction is expected to stay constant during torque control. There, the radial distributions of axial and

tangential induction will also be shown.

4 Discussion

The previous section showed that the power performance is markedly affected when a flat-terrain-designed turbine operates
under complex-terrain conditions. This is primarily a consequence of the flow physics as seen in Fig. 2. Additionally, the
controller leads to suboptimal performance in these situations as seen in Fig. 3 (b).

Next, we characterize the behavior of the torque and pitch controllers. It is furthermore asked how strong the deterioration of
the actual power is, considering the effect of higher wind speeds on top of the hill relative to flat terrain. Lastly, the limitations

of the present study are discussed.
4.1 Role of torque controller

Figure 3 (b) shows that the torque controller follows its prescribed control curve as expected, even when the surrounding flow
field changes to conditions the controller was not calibrated for. On the one side, this is not surprising, because eventually a

torque controller enforces

C(P max C’P
max _ Cp (12)
)\gpt A3

for any operational state (as seen in Eq. (4)) with the left-hand side being constant and calibrated, for example, for flat terrain
in our case. On the other hand, this relation does not directly yield insights into how a or the local a’ change due to the effect

of complex terrain.
4.1.1 Impact on performance coefficients

We formulate the torque control strategy based on the velocity at the disk during operation. For this purpose, we introduce the

operational power coefficient, thrust coefficient, and tip-speed ratio as

P URef)?’
- _¢o , (13)
P i A P( up
T URef>2
CF = =C , (14
T imA T( up )
o= B _ Vet (15)
Uup up

10



235

240

245

https://doi.org/10.5194/wes-2025-258 WIND
Preprint. Discussion started: 25 November 2025

~
© Author(s) 2025. CC BY 4.0 License. e We \ EZ:EEIT\I%YE

Flat x  Top of hill: actual
x  Foot of hill: actual *  Top of hill: optimum
*  Foot of hill: optimum

0.70 T 9.0
(o) ]
0.65 -a° | 85F Asopt (1 —a) |
*

0.60 | 1 8.0F \
& 0.55 = 75F

0.50 | 1 70F

*
045} 1 6.5}
*
0.40 . 6.0 i
0.30 0.35 0.40 0.30 0.35 0.40
atl all

Figure 4. Power coefficient and tip-speed ratio as a function of the induction in flat terrain, ahead of the hill and on top of it together with

Eq. (19) and Eq. (21) and the points of optimal operation at every position.

where up is the flow in the turbine plane during operation, calculated similarly to Eq. (9). The optimal power operation is then

reformulated as

1 1 C* max
Panax = 5 pr R Cp i = 5pmR> 5 o (16)
*,0pt
k

This shows that optimal control actually enforces an equilibrium between power and the velocity in the turbine plane during
operation, independently of the free-stream velocity. This makes intuitive sense because eventually the forces and moments
on the turbine blades purely depend on what the local flow is at the disk. In fact, the only thing that a torque controller keeps
constant is the ratio between torque and rotor speed squared, regardless of what velocity is used as reference velocity as seen
in Eq (4). Because rotor speed and disk velocity are related by a constant during torque control in order to keep the local flow
angles constant, an equilibrium between power and disk velocity during operation is also achieved (Zengler et al., 2025b).
Thus, a turbine calibrated for a certain operational point keeps C'j; constant and not C'p. In our simulations, we find that C%,
and A, are practically constant; C'p .. = 1.924+0.0076 and A op¢ = 12.36 £0.016.

The introduction of certain non-dimensional quantities hides the actual physics happening here. The relation between Cp
and a changes in terrain, but not the relation between the local blade forces and velocities. To circumvent this problem, one
could either use quantities for non-dimensionalization that do not change, such as up in our case, or work exclusively in
dimensional form. This, on the other hand, would make it difficult to compare results.

Returning to torque control, for the optimal thrust, it follows that

T _ 1 R?c* 2 _ 1 R4 0;701313 2 1
opt = 5 PT T,optUD = 5PT P} w, 17)
2 2 )\*,opt
constant
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from which it can be furthermore deducted that
% = iZT = constant. (18)

How do these considerations now affect a, a’, Cp and Cr during torque control? Based on Egs. (13), (14), and (15) the

following relations are obtained

Cp :C}i’,max(l_a)3> (19)
Cr=C o (1—0)*, (20)
A= opt (1—a). Q1)

In Fig. 4, Egs. (19) and (21) are shown alongside the simulation results showing that indeed the turbine always operates on
these curves. At this point, it is worth taking a look at control strategies, which set blade forces based on up and C7- (van der
Laan et al., 2014; Meyers and Meneveau, 2010; Calaf et al., 2010). The current findings show that classical torque control is
equivalent to these strategies, keeping C'}. and C, constant, rather than C'r and C'p. This has also been shown before (Zengler
et al., 2025b).

4.1.2 Impact on tangential induction

The question of why the tangential induction a’ shown in Fig. 3 (d) seems to be independent of the effects of the complex
terrain, when the other quantities are affected by it, is so far unanswered. In order to answer this, a local analysis of the blade
forces is carried out in appendix A. By considering only the effect of lift forces on the flow and neglecting drag, it can be shown

that a’ can be calculated as

1 C
a (1) =3 (—1+ 1+ Agif?), (22)

with the non-dimensional radial coordinate = r/R and the local thrust coefficient C;. From this equation, it is evident that
a’ only depends on the local blade forces and rotor speed. The reference velocity used for normalization of A and C; can be
omitted from the equation, because C} is normalized by Uﬁef and A\ by Ugeg, so when dividing C, by A2, Urer cancels out. It
was shown in Eq. (18) that the ratio % is constant for a torque controller. Based on this, it can therefore be argued that the
local version of that ratio % should be constant as well, as long as changes in the flow state due to terrain are uniform over
the disk. This explains why a’ is independent of the effects of complex terrain in region two, although rotor speed and thrust
change; it is simply a consequence of the torque control. In Fig. 5 (a) and (b), the local axial and tangential inductions are
shown as function of radial position along the blade as well as the angle of attack « in (c). Indeed, the tangential induction is
nearly identical in all cases. Only close to the root are deviations between the cases visible. A possible explanation for this is

that in this region drag plays a significant role, also affecting the tangential induction.

12
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Figure 5. Azimuthally averaged axial induction (a), tangential induction (b), and angle of attack a (c) shown as a function of nondimensional

radial position u =r/R.

4.1.3 Optimal performance

We briefly discuss how a controller would need to operate to always track optimal performance. From Eq. (21), one can see that
the rotor speed (\) decreases with a decreasing disk velocity (an increasing induction a). In Fig. 4 (b), the optimal performance
on top of the hill would be reached by reducing the induction and also reducing the tip-speed ratio. From a local perspective,
this results in higher axial velocities and lower relative tangential velocities. As a consequence, the local flow angle and angle
of attack increase when not adjusting pitch. However, as suggested by Fig. 2, also the pitch should be modified to track optimal
performance, which would eventually change the angle of attack.
Ahead of the hill, when the background flow is accelerating, the opposite is the case; to track optimal performance, the angle
of attack would need to decrease. This observation is also in agreement with previous findings based on momentum theory
(Zengler et al. (2025a), see also Eq. (B5)), which show that in a decelerating flow, the optimal performance would be reached at

a lower induction, while in an accelerating flow, it would be reached at a higher induction. Without modification of the torque
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constant, a torque controller would therefore always operate below optimum in accelerating flow fields, because it effectively
keeps flow angles constant instead of adjusting them to the flow conditions. Since blades are often designed to achieve the best
two-dimensional polar lift-to-drag ratios at the angles of attack corresponding to region two operation, torque control ensures
that the airfoil sections are performing well from a two-dimensional perspective. The reason for suboptimal power performance
is the changed (axial) induction response in accelerating flows.

A way of approaching this problem of suboptimal power performance outside the flat operating conditions would be to
include control algorithms, which slowly modify the torque constant (and pitch) over time to reach optimal performance (see
for example extremum seeking control, Creaby et al. (2009)). However, as Fig. 3 (b) indicates, the total gain in performance
is rather low on a given curve. Also, the gradient % might not be very strong. In combination with varying atmospheric
conditions, which are not part of this study, and also seasonal variations of the terrain, optimization of the torque constant
might be difficult and the expected gain possibly small, if not even negligible.

In summary, a torque controller enforces C';,, C7, and A, to stay constant. A consequence is that also @’ is constant, which
only depends on the local forces and flow. Because of the changing optimal inflow angles in complex terrain, a torque controller

cannot operate optimally with this strategy.
4.2 Role of the pitch controller in region two

The pitch controller tracks the difference between the actual and rated rotor speed. In region three of the power curve, this leads
to the observed behavior that even in a non-uniform background flow, the same rated power is reached in the different cases.
In region two, the pitch controller remains inactive, although Fig. 2 suggests that performance could be increased by adjusting
the pitch. The reason for this is the implementation of the pitch controller as a PI controller. Below the rated wind speed,
or rather the rated rotor speed, the difference between actual and rated rotor speed is negative, resulting in a negative pitch
signal saturating at the minimum pitch independently of the flow state. Similarly to the torque controller, one could imagine an
algorithm that modifies the minimum pitch seeking maximum power performance in region 2 of the power curve. However, in

practice, it might again be difficult because of the small differences between optimal and actual pitch.
4.3 Speed-up factors

A common way to account for the effect of complex terrain is to use speed-up factors. Because power scales with the wind

speed cubed in the flat terrain case, the effect of terrain on the power of a turbine is usually estimated as
Phin ~ Paag (1 + AU)?, (23)

with AU = (URef nill — URef, flat)/URef fat being a non-dimensional velocity speed-up factor. This estimate is only accurate
as long as the actual power coefficient of the turbine is the same as that in the flat terrain case. However, as shown before,
when the turbine is located on a hill, the power coefficient decreases due to the streamwise development of the flow behind the
turbine. This raises the question of what is actually the maximum performance that can be reached by placing wind turbines

on elevated spots, such as hills.

14
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Figure 6. Expected and actual power at the top of the hill for different speed-up factors. The variation in speed-up is reached by changing the
roughness to 0.1 m (C2), varying the hill height and keeping the width constant (C3.1-C3.3), and by varying the hill height while keeping the
ratio between width to height constant (C4.1-C4.4). The turbines were simulated, including a controller, so the potential maximum power

performance would be around one percent higher.

To answer this question, we consult the additional simulations mentioned at the beginning (C2, C3.1-C3.3, C4.1-C4.4) and
use a model that incorporates the effect of streamwise velocity gradients on the power coefficient (Zengler et al., 2025a). By
assuming that the maximum deceleration behind the hill is similar to the speed-up ahead of the hill and that the speed-up region
is smaller than the region where the wake pressure equalizes with the surrounding pressure, the change of the maximum power
coefficient as a function of the speed-up AU, i.e. Cp yax(AU), according to this model can be estimated, which is outlined
in appendix B in more detail. Because this model yields identical results to momentum theory for AU = 0, the scaling of the
power on a hill can be estimated to be
Cp,max(AU)

16/27
~ Paas(1+ AU)S,

Puin = Paat (1+AU)?, (24)

(25)

with the second line being an approximation based on visual inspection of the resulting curves. This estimate requires that
the flow recovers to the flat terrain-state directly behind the turbine, and can therefore be interpreted as a lower bound to the
possible maximum power performance. To investigate how the power changes on top of the hill in the simulations presented,
the actual power increase is shown together with the traditional cubic trend (Eq. (23)), the lower bound from Eq. (24), its
approximation (Eq. (25)), and a quadratic scaling for reference in Fig. 6. It is important to keep in mind that the simulation
results also include a controller; thus, the actual maximum available power is expected to be around one percent higher, as

shown in Fig. 3 (b).
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As expected, the actual power increase on top of the hill does not follow a cubic trend, but is in all cases lower. When the
flow separates behind the hill, as is the case for zy = 0.1 m, and the velocity immediately behind the turbine does not decelerate
so strongly, the power is closer to the cubic relationship. The same conclusions can be made comparing simulations C3.1-C3.3
with C4.1-C4.4. When the width does not change, the deceleration behind the turbine is weaker, and the respective power
performance is higher. Reducing both width and height results in a more local speed-up followed by a strong deceleration.
None of the presented cases seems to scale according to Eq. (24), the scaling is always higher, rather than being close to a
quadratic trend. Only for very small speed-ups, the scaling seems to approach the predictions. As outlined previously, this
can be explained through the assumptions made for deriving Eq. (24), which requires a very local speed-up with immediate
wake recovery. These observations suggest that if terrain and flow features in the vicinity of the turbine are more similar to
flat terrain features, such as a very long hill or a separation bubble that delays deceleration, the maximum power coefficients
are also similar, leading to a more cubic scaling of power. If this is not the case, and flow and terrain features vary on similar
length scales as those of the turbine, a stronger influence on the power coefficient can be expected.

Based on this analysis, it is concluded that placing a wind turbine in a spot where the speed is locally highest is beneficial for
power performance. However, the limitation of the free stream velocities in the wake region potentially reduces the achievable
gain from what is expected from the classical cubic relation (Eq. (23)). In cases where turbines are located in smaller local free
stream speed-up regions, the scaling exponent from the simulations was closer to 2, with even slower (but still positive) scaling

indicated by Eq. (24) by theoretical means.
4.4 Limitations

Although this work deals with complex terrain, the studied case of a wind turbine on a quasi-two-dimensional Gaussian
hill remains a significant simplification. The undisturbed flow field is quasi-two-dimensional and varies only in the vertical
and streamwise direction. Furthermore, the effect of atmospheric stability was not included. It remains a subject for future
studies how a three-dimensional, unsteady flow would interact with the wind turbine, and to what extent the result that optimal

induction decreases in a decelerating flow and increases in an accelerating flow also holds there.

5 Conclusions

Wind turbine performance in complex terrain is affected by a streamwise non-uniform flow field, resulting in changing limits
of maximal energy extraction and by the control algorithm, not capable of adjusting properly to the physics caused by the
modified flow conditions. It was shown that a torque controller keeps thrust and power coefficient based on the disturbed flow
field constant, which do not necessarily correspond to the point of operation, which yields maximum power performance in
non-uniform flow fields. The present results suggest that a torque-based control would always lead to a non-optimal power
performance in accelerating flows, because the optimal local flow angles change, while a torque controller keeps the local
flow angles constant. Whether including additional knowledge about the flow field in the control strategy and adjusting the

torque constant and pitch is beneficial overall remains to be investigated. It was shown that placing turbines in elevated regions
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with higher wind speeds is beneficial for power performance. However, the degradation of the power coefficient leads to a
reduced power output, not scaling with the speed-up over the hill cubed. The observed scaling in the simulations was closer to

a quadratic trend, while theoretical considerations suggest a lower limit of the scaling close to the power of 1.5.

Code and data availability. EllipSys3D used for the simulations is a proprietary software developed at DTU Wind and Energy Systems and

distributed under licence.

Appendix A: The effect of flow acceleration on the tangential induction

The simulation results show that the tangential induction is barely affected by the acceleration of the background flow, and
major differences between the simulations can only be observed close to the root. At the root, the energy conversion process is
different compared to the blade tips, because structural constraints require thick airfoils with a low lift-to-drag ratio, resulting
in a flow that is significantly influenced by the drag of the airfoil. With this knowledge in mind, we now seek to investigate
why the tangential induction is rather independent of flow acceleration in the outer region of the blade.

A control volume analysis of the conservation of angular momentum yields (Hansen, 2015)
dQ = ruf dim = 4rpR* P ANUE (1 — a)d’ dr, (A1)

with uj‘ being the tangential velocity in the wake, which relates to the tangential induction as a’ = u?‘ /(2wr). Further we used
for the mass flux din = Uger(1 — a)27r dr. Note that Urer(1 — a) only describes the velocity in the rotor plane, independently

of what caused this velocity. Shifting the view towards the blade, the angular momentum can be calculated as
dQ = f¢Nprdr, (A2)

with the tangential force per spanlength f; and the number of blades Ng. When taking a look at the force and flow vectors at

each blade section, we now consciously ignore the drag of the airfoil yielding for the flow angle ¢

_ URef(l —a) - ﬁ

t = A3
an¢ wr(l+ad)  fn’ (A3)
with the blade normal force per spanlength f,,. For the local thrust coefficient, we obtain
dr dTl N,
= = = (Ad)
5PURsdA  mpUgerdr  mpUg 1
Combining Eq. (A3) with Eq. (A4) yields for the tangential force
1—a 7RpUZ C;
= < A5
ft 1+a )\NB ) ( )
and by combining this with Eq. (A1) and Eq. (A2), we obtain
Cy
a'(lJra/) = W, (A6)
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which can be solved for the tangential induction yielding Eq. (22), showing that indeed, in regions where lift dominates the
flow, the tangential induction only depends on %, which a torque controller keeps constant.

The same result can be obtained in a vortex-theory framework without the need for a control-volume analysis, which is
briefly outlined below. For an actuator disk with azimuthal constant loading, the induced tangential velocity due to the bound

vortex of strength I' 5 can be calculated from the definition of circulation I" as
I‘:]{usds:%rruzi:NBI‘B (A7)

with u, being the tangential velocity along the curve s and u;t , being the mean induced velocity behind the disk. Ahead of

turbine, the mean induced velocity is u, ; = 0 and therefore in the disk plane the induced velocity is

NI’
utvizi(u;z‘—l—u;): B B.

47r (A8)

Based on the Kutta-Joukowsky condition, the axial force per spanlength is calculated as f,, = pI' puy, yielding for the local C;
previously defined in Eq. (A4)

_ I'puyNp

Cy (A9)

5 .
Ui T
The total local tangential velocity relative to the blades can be calculated as the sum of the rotational component and the

induced velocity
U = Unet M+ e . (A10)

(.UNB FB s
e yields

Using Eq. (A8) and introducing the non-dimensional bound circulation v =
= Uneehut (L + ), (A1)

with the tangential induction defined as

2
Inserting this into Eq. (A9) yields
Cy=4d > (1+4d), (A13)

which is identical to the result from the momentum analysis Eq. (A6).

Appendix B: Change of maximum C'p on an isolated hill

Zengler et al. (2025a) developed an engineering model based on momentum theory, which incorporates the effect of a stream-

wise acceleration of the background flow field. The modified equation for the power coefficient is

Cp = 4a(1 —a)?+4a(1 —a)lp, (B1)
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with the term 3 being the product of a non-dimensional length scale [ and a non-dimensional streamwise velocity gradient

0= Uf - %. The length scale was assumed to be the distance behind the turbine, where the pressure in the wake equalizes with

the surrounding pressure. It is often assumed that this point is around one diameter behind the turbine (Crespo et al., 1999;

Dar and Porté-Agel, 2022), although research shows that its actual position depends on the thrust coefficient of the turbine
and might be longer than one diameter (Liew et al., 2024). The undisturbed velocity behind the turbine where the background

pressure equalizes is consequently
Uy = Uret(1+13). (B2)

Now we consider a turbine located on a small hill. The speed-up AU over the hill is assumed to occur over a distance smaller
than the distance over which the pressures in the wake of the turbine equalize. So we are speaking of a very local speed-up
close to the turbine. As a consequence, the velocity U, at which the pressures equalize, is limited by this speed-up or rather
speed-down behind the hill. With the notation introduced in the discussion of the speed-up factors in Sec. 4.3 with Ugef nin
being the undisturbed velocity on top of the hill and Uret aat¢ being the undisturbed velocity around the hill, this means that

Ui = URet,aat- Expressing it in terms of the velocity on top of the hill, where the turbine is located yields

AU
Ui = Uret nint <1 - HA(]) . (B3)
Comparing this expression with Eq. (B2), we see that
AU
f=———. B4
& 14+ AU (B4)

Next, we ask what the optimal performance a turbine can achieve is based on these considerations. Keeping the [ 3-notation for

the sake of brevity, the induction, which maximizes Cp is found by differentiation of Eq. (B1) to be

2 1 1
opt = = + I8 — -V 1+16+1262 B5
Gopt = 5+ 518 — 5V 1B+ 5 (B5)

For I3 = 0, one obaines aqpt = %, which is the classical result from momentum theory. C'p max can be determined by inserting
the optimal induction into the equation for the power coefficient (B1). This result is, based on the previous argument, only valid
for the case, where the undisturbed velocity behind the turbine immediately recovers to the velocity around the hill before the

pressure equalizes with the surrounding flow.
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