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Response to Anonymous Referee #1

Thank you for taking the time to review our manuscript. We sincerely appreciate your
constructive feedback and careful evaluation. In response, we have revised the manuscript
accordingly, with all changes clearly marked in blue for your convenience. Corresponding up-
dates are also indicated in blue font within this response letter. We trust that these revisions
address your comments and enhance the clarity and quality of our work, and we hope the
updated version meets your expectations.

Key concerns:

1. Material and Damage Representation: The structural damage was introduced in metal
rather than in composite materials, which are more representative of real-world turbine
blades. Furthermore, a saw cut does not replicate the characteristics of a crack as it
would naturally occur.

Reply: We thank the reviewer for this valuable observation. We fully acknowledge
that our experimental setup, specifically, the use of an aluminum cantilever and the
introduction of damage via saw cuts, does not replicate the material composition or
crack morphology typical of modern composite wind turbine blades.

Our decision to use a metallic cantilever was driven by the need for a controlled and
repeatable environment to establish a proof of concept. The use of a saw cut enables
us to systematically vary the damage severity and assess its measurable impact on the
aerodynamic pressure field under well-defined and reproducible conditions. While the
induced damage may not mimic natural crack propagation mechanisms in composites,
it introduces a local stiffness reduction that suffices to validate the hypothesis that
structural changes manifest as measurable perturbations in the aerodynamic pressure
distribution.

This study is intended as a first step to demonstrate the feasibility of using aerodynamic
pressure measurements for structural condition assessment. Future work will focus on
extending the methodology to composite specimens and more realistic damage types,
such as delaminations or matrix cracking.

We have modified the manuscript in several locations and added a dedicated paragraph
to the revised manuscript explicitly acknowledging these limitations and clarifying the
motivation behind our experimental choices:

e line 160: We approximate a fixed WTB by mounting an airfoil on an aluminum
cantilever beam with a rectangular cross-section and placing it in a wind tunnel
test section.

e lines 173-178: An important limitation of our setup lies in the choice of material and
the manner in which damage is introduced. While real-world wind turbine blades
are composed of layered composite materials exhibiting complex failure modes
such as delamination and fiber breakage, our experiments employ an aluminum
cantilever with damage emulated via saw cuts. This simplification allows for con-
trolled, repeatable tests and the ability to systematically vary damage severity.
Although the artificial crack does not fully replicate the morphology or fracture
mechanics of a naturally occurring defect in composites, it produces a measurable
stiffness reduction, which is central to our proof-of-concept study.



e lines 589-592: Additionally, more advanced material models and realistic damage
representations will be necessary to accurately account for variations in material
properties and structural integrity. Future research efforts will aim to translate the
proposed methodology to composite specimens to more closely align with practical
applications in wind turbine blade monitoring.

Additionally, we sketch in the outlook of the revised manuscript a strategy, how the
proposed measurement and detection concept could be extended towards real-world
applicability (see lines 583-607):

Beside these immediate next steps, scaling the damage detection approach proposed
in this study to full-scale wind turbines and real-world environmental and operating
conditions (EOCs) requires substantial further research and development. We propose
the following multi-stage strategy to facilitate this scaling process:

e Simulation and experimental validation: Further numerical simulations and
experimental validation—such as wind tunnel testing using a miniature wind tur-
bine under varying wind speed conditions and turbulence intensities—are essential.
These efforts aim to deepen our understanding of how realistic inflow conditions,
rotational aerodynamic effects, and real-world damage scenarios influence the pres-
sure distribution along turbine blades. Additionally, more advanced material mod-
els and realistic damage representations will be necessary to accurately account for
variations in material properties and structural integrity. Future research efforts
will aim to translate the proposed methodology to composite specimens to more
closely align with practical applications in wind turbine blade monitoring.

e Spatial distribution of pressure sensors: Scaling damage detection to cover
the full blade span can be realized by deploying multiple Aerosense sensor nodes
along each blade, as illustrated in Figure 1(a) of the manuscript. This setup enables
the simultaneous acquisition and processing of aerodynamic pressure data at several
chord- and span-wise locations, thereby enhancing spatial resolution and detection
capability.

e Unsupervised or self-supervised damage detection: In real-world applica-
tions, labeled data are typically unavailable. Therefore, an unsupervised or self-
supervised approach to anomaly or damage detection is required. In ongoing work,
we are developing such a method tailored to the dataset presented in this study, to
be reported in a forthcoming publication. To adapt this to operational and envi-
ronmental variability, we propose leveraging local inflow information estimated via
other Aerosense methods (see Section 4 of [2] and Section 4.5 of [8]). Moreover,
fusing aerodynamic pressure data with measurements from the 6-DOF inertial mea-
surement unit embedded in each Aerosense node may further enhance robustness
and sensitivity.

e Field deployment and scaling: The final step involves implementing the pro-
posed sensor layout and detection methods on a small-scale operational wind tur-
bine. Field testing will serve to validate the performance of the unsupervised
detection framework. The knowledge and insights gained through this process
will inform the subsequent upscaling to full-scale wind turbines, enabling robust
aerodynamic pressure-based damage detection under realistic conditions.

According to the third bullet point from above, we add reference [3] to the manuscript.



2. Experimental Conditions: Both the wind excitation and imbalance excitation were kept
constant throughout the experiments, a condition not reflective of the variable nature
of real-world wind turbine environments.

Reply: We appreciate the reviewer’s thoughtful comment. We fully agree that the ex-
perimental conditions employed, namely constant wind inflow and harmonic excitation,
do not capture the full complexity of real-world wind turbine operation.

However, this study was designed as a proof of concept to assess whether structural
damage can be reliably detected from aerodynamic pressure measurements in a simpli-
fied and well-controlled setting. Given the indirect nature of aerodynamic pressure as a
proxy for structural condition, a controlled environment was necessary to observe and
isolate the underlying mechanisms governing damage detectability.

Moreover, we acknowledge that our findings are not directly transferable to full-scale
wind turbines. Nonetheless, they lay the groundwork for future research and scaled-up
experimental campaigns under more realistic and variable operating conditions. We
have revised manuscript at several locations to more clearly articulate this scope:

e line 6: This proof of concept study is based on a series of wind tunnel experiments
on a NACA 633418 airfoil.

e lines 180-188: Our investigation is conducted in a wind tunnel facility under con-
trolled environmental and operational conditions (EOCs) which do not reflect the
complexity of the EOCs real world wind turbines. However, given the indirect
nature of aerodynamic pressure as a proxy for structural condition, a controlled
environment is necessary to observe and isolate the underlying mechanisms gov-
erning damage detectability. Thus, this paper does not aim to answer whether it is
possible to detect and rank the severity of structural damage under real operational
(rotating wing aerodynamics, pitching, tension stiffening, etc.) and environmental
conditions (high turbulence, varying temperature and weather) of a wind turbine
and its findings are not directly transferable to full-scale wind turbines. Instead,
this paper rather aims to offer a proof of concept as to whether such highly indirect
pressure measurements can be conceived for use within an SHM setting and to lay
the groundwork for further research and the justification for scaled-up experimental
campaigns under more realistic and variable EOCs.

e lines 586-589: These line point to the first bullet point of our scaling strategy in
response to key concern 1. Therefore, please find this above.

3. Evaluation Methodology: A supervised classification method based on CNNs was em-
ployed. For real applications, datasets typically do not include labeled damage states,
necessitating unsupervised methods that do not rely on such data.

Reply: Thank you for this insightful observation. We fully agree that in real-world
applications, labeled data corresponding to specific damage states are generally not
available. As a result, supervised classification methods are not directly applicable,
and unsupervised or self-supervised anomaly detection methods must be pursued for
practical deployment.

In this study, we deliberately begin with the simpler, supervised classification setting to
assess the fundamental viability of using indirect aerodynamic pressure measurements
for structural damage detection. This controlled setup allows us to verify whether the
pressure signals—despite the complexity of the underlying aeroelastic dynamics—indeed



carry identifiable signatures of damage severity. Demonstrating success in this super-
vised task thus provides a crucial first step in validating the information content and
relevance of the measurement modality itself.

Moreover, the findings from this supervised task offer valuable architectural and signal-
processing insights that will inform the development of unsupervised approaches. For
instance, the convolutional neural network (CNN) architecture used here may serve as
a robust encoder in a future autoencoder-based anomaly detection framework. We are
actively working on this transition and will present the results in a forthcoming follow-up
publication.

To highlight this rationale and future direction in the manuscript, we have added the
following clarifying statements:

e lines 392-395: Although the supervised learning approach employed in this study
is not directly applicable to real-world scenarios due to the absence of labeled data,
it serves as a first step to assess the viability of indirect aerodynamic pressure mea-
surements for damage detection. The CNN architecture developed here may also
provide a suitable encoder for future unsupervised anomaly detection approaches.

e lines 597-603: These lines point to the third point of our scaling strategy in response
to key concern 1. As outlined there, future work will focus on the development of
unsupervised and self-supervised anomaly detection methods that are suitable for
real-world deployment.

4. Given these points, the manuscript’s findings have limited transferability to real-world
settings. Furthermore, the impact and scope of the work may be misaligned with the
target journal’s focus.

Reply: We appreciate your comment and fully acknowledge that our experimental setup
does not capture the full complexity of real-world operational conditions. However, we
respectfully argue that the value of our study lies in its role as a foundational proof-of-
concept. Conducting the investigation under controlled and simplified conditions was
an intentional and necessary first step to rigorously evaluate our central hypothesis:
that structural damage induces measurable perturbations in the aerodynamic pressure
distribution.

This controlled framework allows us to isolate key mechanisms governing damage de-
tectability, validate the efficacy of our indirect sensing approach, and assess the potential
of data-driven detection models before transitioning to more complex and variable real-
world environments. Such early-stage, hypothesis-driven studies are critical in estab-
lishing scientific feasibility and reducing risks in the subsequent development of scalable
monitoring systems.

In this sense, while the study may be limited in direct transferability, it contributes
meaningful insight to the wind energy and structural health monitoring communities by
advancing the understanding of aerodynamic sensing as a viable pathway for damage de-
tection. We believe this aligns with the journal’s scope, which includes the development
of novel methods with potential for future real-world application.

Specific points for improvement include:

1. Line 281 mentions that the parameters of the CNNs are fewer compared to alternative
methods. It would be helpful to specify the number of parameters used in the CNNs.



Reply Thank you for this helpful suggestion. We have now included the exact number
of trainable parameters used in our CNN model in the revised manuscript (lines 294-296)
to provide greater clarity and transparency.

Our decision is motivated by the fact that the number of trainable parameters in the
proposed CNN architecture—302,342 parameters—is substantially lower than in the
above mentioned alternative architectures, which typically involve significantly more
complex networks.

2. Line 284 notes the use of the Adam algorithm. Given that AdamW is now the standard,
why was the Adam algorithm chosen?

Reply: Thank you for this thoughtful comment. We were not aware of the advantages
of AdamW over Adam and compared our proposed CNN against a CNN with the same
architecture and training routine using AdamW and a small weight decay of 0.0001.
However, the overall classification accuracy yielded via the AdamW model was lower
compared to the classification accuracy reported in the preprint, as can be seen in
Table 1. The table reports slightly lower classification accuracies for the different splits
and a lower average classification accuracy for both datasets.

Table 1: Classification results using the proposed CNN architecture and training procedure
together with the AdamW optimizer and a weight decay of 0.0001.

AoA split1 split 2 split3 average

0° 80.00% 97.80% 94.66% 90.82%
8° 79.40% 94.43% 87.12% 86.98%

To increase the classification accuracy, we introduced - further to the weight decay
implemented by AdamW - additional regularization in the form of standard dropout
layers after the activation of every convolutional layer.! For a dropout rate of 0.2 and a
weight decay of 0.0001, we obtain the accuracies on the different splits shown in Table 2:

Table 2: Classification results using the proposed CNN architecture enhanced by dropout
layers (dropout rate of 20%) after every convolutional layer and proposed training procedure
together with the AdamW optimizer and a weight decay of 0.0001.

AoA split1 split2 split3 average

0° 82.77% 98.70% 95.10% 92.19%
8° 82.63% 95.70% 88.20% 88.20%

The accuracy on the different splits shown in Table 2 is similar to the accuracy of the
model proposed in the preprint, for each single split and thus also for the average values.
Training either the AdamW or the AdamW + dropout model for more epochs, using
a different learning rate scheme, for example cosine annealing or exponential decay, or
varying the weight decay didn’t increase the accuracy of the model.

Furthermore, in response to your remark 5, we compare the loss curves of our proposed
model from the preprint with those of the AdamW + dropout variant, as both achieve

I This model is subsequently referred to as ’AdamW + dropout’ model
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Figure 1: Training loss curve, validation loss curve and the curve of the stepwise decreasing
learning rate of the model suggested in the preprint, plotted over the training epochs. These
curves correspond to training on split 2 of the 0° AoA dataset.

similar accuracy across all data splits. Figure 1 presents the training loss, validation loss,
and learning rate curves for the model proposed in the preprint. While the training loss
decreases steadily with only minor fluctuations, the validation loss exhibits pronounced
oscillations during the early training phase—particularly when the learning rate is high.
As the learning rate progressively decreases, the magnitude of these fluctuations in the
validation loss also diminishes. In the final ~ 40 iterations, the validation loss stabilizes
and fluctuates only mildly. Overall, the model demonstrates good convergence behavior,
despite the initial variability in the validation loss.

—— Training loss
—— Validation loss
-+ Learning rate

L10-2

Learning rate

Epochs

Figure 2: Training loss curve, validation loss curve and the curve of the stepwise decreasing
learning rate of the AdamW and dropout model described above, plotted over the training
epochs. These curves correspond to training on split 2 of the 0° AoA dataset.

Figure 2 shows the training loss, validation loss, and learning rate curves for the AdamW
+ dropout model. Similar to the model proposed in the preprint, the training loss de-
creases consistently over time (see panel a) of Figure 3). However, the validation loss
exhibits more pronounced fluctuations during the final ~50 training epochs when com-
pared to the validation loss of the preprint model (see panel b) of Figure 3). Additionally,
the learning rate does not decay as substantially as it does in the preprint model (again,
see panel a) of Figure 3).

When examining the smoothed validation loss curves in panel b)—of Figure 3 obtained
using debiased exponential smoothing with a smoothing factor of 0.7 (as implemented



in TensorBoard)—it becomes evident that the preprint model converges toward lower
validation loss values. Given this slightly more stable training behavior, the reduced
architectural complexity, and the absence of any significant difference in classification
accuracy between the two models, we have opted to retain the preprint model in this
study.
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Figure 3: Comparison of loss and learning rate curves for the model proposed in the preprint
(referred to by Learning rate Adam, Training Loss Adam and Validation Loss Adam in the
legend) and the AdamW + dropout variant. Panel a): Training loss and learning rate over
training epochs for data split 2 at an angle of attack (AoA) of 0°. Panel b): Smoothed training
and validation loss curves over training epochs for the same split.

3. Figure 8 suggests that labeled data is required. In real-world scenarios, where would
labeled data come from? What can be done if no labeled data is available?

Reply: Thank you for this important and insightful comment. As we also discussed in
our response to key concern 3, we fully acknowledge that in real-world scenarios, labeled
data indicating specific damage states are typically not available. This makes super-
vised learning approaches impractical for real deployment and highlights the necessity
of developing unsupervised or self-supervised anomaly detection methods.

In the present study, our primary goal is to demonstrate the feasibility of using aerody-
namic pressure measurements for structural damage detection through a simplified and
controlled setting. To this end, we rely on labeled experimental data as a first step to
validate that damage-related information is indeed encoded in the pressure signals and
can be learned by even relatively simple machine learning models.

We are currently working on a follow-up publication that addresses this exact challenge
by developing and evaluating unsupervised approaches tailored to the characteristics of
the pressure data. We have also revised the manuscript to clarify this research trajectory



and the rationale behind our current focus, as described in the response to key concern
3.

4. Figure 10 is confusing due to the inconsistent decimal places, e.g. 0.99 and 0.011.

Reply: Thank you for this remark. We adapt this in the revised manuscript (see line
359) as follows:
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Figure 4: Classification results for split 2 of both datasets depicted by confusion matrices
and rounded to three decimal places for non-zero values. The rows correspond to the true
class of a sample; the columns to the class predicted by the proposed method. The relative
frequencies are rounded to three decimals places. a) shows the results for 0° AoA and b) for
8° AoA.

5. While line 365 mentions fast classification times, how long does CNN training take?
Showing a training loss curve would be beneficial.

Reply: Thank you for this remark. The training and validation loss curve our CNN
model is shown above in Figure 1. We include the training time to the revised manuscript
as subsequently shown in lines 389-391:

From a computational perspective our algorithm is efficient: while the model is trained
in approximately 445s on a cluster node using an Intel Xeon Gold 6336Y CPU and a
NVIDIA HGX A100 80GB GPU, the test set is classified in approximately 1.8s.

6. Section 5 would benefit from examining the model’s performance when presented with
data not included within the training data (e.g. other windspeed, bigger crack, etc.)

Reply: Thank you for this valuable suggestion. We agree that assessing the general-
ization capability of the model to unseen conditions—such as different inflow velocities
or damage severities—is critical for real-world applicability. However, at this stage, our
purely data-driven models, including the relatively small CNNs used in this study, do
not generalize well to conditions outside the training domain. This is a well-known
limitation of data-driven approaches, which tend to struggle with extrapolation beyond
the distribution of the training data.

We expect improved generalization by incorporating additional inputs that explicitly
describe the operational state—such as local angle of attack and relative inflow veloc-



ity—which can be estimated as outlined in Section 4 of[2] and Section 4.5 of[3]. Addi-
tionally, the use of more expressive architectures and expanded, more diverse training
datasets will be necessary to robustly address this limitation.

As a concrete next step, we plan to explore transfer learning strategies to enhance
generalization across varying inflow conditions. For instance, we aim to develop unsu-
pervised anomaly detection models trained on data at 0° angle of attack and evaluate
their applicability to data collected at 8°, thereby reducing the dependence on exhaustive
retraining.

These considerations have been incorporated into the revised manuscript as part of the
third bullet point in the forward-looking strategy outlined in response to key concern 1.

. Section 6.2 conducted studies under ambient excitation only, which depends on labo-
ratory conditions and may not be comparable to the controlled excitation in wind and
imbalance conditions in Section 5. This could also explain why certain frequencies were
not identified for some damage states.

Reply: Thank you for this pertinent observation. We fully acknowledge that the studies
presented in this work were conducted on a laboratory-scale mock-up under ambient
excitation conditions, and not on a rotating wind turbine in the field. The aim of this
setup is to provide a controlled, repeatable environment suitable for proof-of-concept
investigations.

While this setup does not fully replicate the complexities of real operational conditions,
including rotation of the blade, environmental variability, and less controlled excitation,
it allows us to systematically introduce and study damage scenarios, which would be
significantly more challenging to implement and evaluate on an operational turbine.

We agree that field deployment under realistic operational conditions, in the field, repre-
sents a crucial next step and a significantly more complex challenge. We hope to address
this in future work as we move from controlled laboratory validation toward real-world
implementation.

. The mode shapes in Figure 14 vary significantly between model orders. How were these
complex mode shapes transformed into real space? The first mode shape seems improp-
erly identified — what caused this?

Reply: Thank you for this insightful observation. In the original analysis, we employed
stochastic subspace identification (SSI) to extract modal parameters from acceleration
measurements collected under ambient excitation. However, these measurements were
limited to a total duration of approximately 60s, of which only 40s were actually used
for identification (the first 20s were discarded due to transient effects). We note here
that the manuscript mistakenly stated that 60s windows were used; this has now been
corrected in the revised version.

Given the relatively short signal length, SSI—being a time-domain method—struggled
to produce stable results, particularly for lower-energy modes. We believe this is the
primary reason for the high variability in mode shapes observed in Figure 14 and the
incorrect identification of the first mode. To address this issue, we re-analyzed the accel-
eration data using a frequency-domain approach, specifically the Automated Frequency
Domain Decomposition (AFDD) method [6], which is better suited to shorter ambient
response signals.



This revised analysis yielded more consistent results. Many of the natural frequencies
and several mode shapes previously identified via SSI were confirmed. However, the first
mode was indeed found to be incorrectly identified in the original analysis. Additionally,
the mode previously labeled as ¢g at approximately 53 Hz appears to be a spurious mode
and does not appear in the AFDD results. As also relevant to your remark 10, we can
confirm that mode 4 is now detected in the undamaged state, not only from damage
class 3 onward as previously reported.

We have revised Subsection 6.2 (“Evolution of the eigenfrequencies with increasing dam-
age”) and Subsection 6.3 (“Influence of the crack characteristics”) to reflect these up-
dated findings and corrected methodology:

e lines 450-462: We use automated frequency domain decomposition (AFDD), intro-
duced by [6], and its implementation in MATLAB. AFDD is based on frequency
domain decomposition that was originally introduced by [4, 3, 5]. The acceleration
measurements collected under ambient excitation have an approximate length of
60s. We discard the first 20s of each acceleration measurement and extract signal
windows of 10s duration from the remaining signal, using a sliding increment of
0.5s. Subsequently, the signal windows are preprocessed with a low-pass filter with
a cut-off frequency of 100s. In an additional step, we employ k-means clustering,
introduced by [11], to group the previously identified natural frequencies and mode
shapes into distinct clusters that represent different vibration modes of the ana-
lyzed structure. By computing the mean value p¢; and the standard deviation
oy; of each cluster ¢ of natural frequencies, we obtain the uncertainty associated
with the respective natural frequency. We use the same approach to compute the
mean values and standard deviations of the relative displacements of each mode
shape ¢; at the location of the sensors, thereby assessing the uncertainty related
to the identified mode shapes. Finally, we refine the determined frequency clusters
to identify reliable modes by eliminating natural frequencies that exceed a 5% de-
viation from the respective cluster mean or are only detected in a small number of
signal windows. The associated mode shapes are removed accordingly.

e lines 466-478: The results of uy; and oy; for the eigenmodes up to 60Hz in all
structural states are given in Table A4. The evolution of these natural frequencies
fi for increasing damage is presented graphically in Figure 5. Additionally, the
eigenmodes ¢; that have been identified for experiment 15 are exemplarily given
in Figure 6. While the mode shapes ¢1, ¢o and ¢5 are consistently detected in
the data of experiment 15, the mode shapes related to f3 and f; exhibit higher
variance. In Figures 5 a) and b) the eigenfrequencies f; and f2 of the first two
vertically oscillating eigenmodes ¢; and ¢o exhibit a an overall decreasing trend
with increasing crack length (not considering damage class 1 with the added mass
here). Considering the associated standard deviations of f; and fo, this trend is
more pronounced for fi. In contrast, the evolution of the eigenfrequencies f3, f4
and f5 is non-monotonic. Possibly, the eigenmodes corresponding to f3, f4 and
f5 are sensitive towards perturbations in the boundary conditions of the system.
Moreover, due to their higher variability, f3 and f; might not represent merely
vertically oscillating eigenmodes, but coupled ones. To obtain further insight in
the these eigenfrequencies and eigenmodes, we offer the results of a simulation in
the next section, which aims to replicate the experiment. For the monotonically
and approximately monotonically decreasing eigenfrequencies f; and fo holds that
the absolute change between the least and the most damaged state is approximately
0.06Hz and 0.14Hz respectively.

10
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Figure 5: Evolution of the mean values (circular markers) and standard deviations (error
bars) of the first five eigenfrequencies f;, determined with AFDD and clustering, plotted over
the damage classes. The exact values of f; for each damage class are given in Table A4.
Figenmode ¢; could not be detected in experiment 6 and 63 which correspond to damage
class 0 and 3. Thus for fi, there is only one value presented in damage classes 0 and 3.

e lines 510-514: The mode shapes ¢2 ,, and ¢4, of the FE-model oscillate only hori-
zontally (see Figure 15). As a consequence, these cannot be consistently identified
with the experimental acceleration data and in the OMA, as the accelerometers
along the cantilever beam only measure vertical accelerations. Comparing the ex-
perimentally determined mode shapes with the vertically oscillating mode shapes
of the FE-model, it is noticeable that the eigenvalue analysis of the FE-model does
not predict modes the ¢3 and ¢4 at 23.304Hz and 34.040Hz. Furthermore, looking
at the mode shape ¢3 and ¢4 (see Figure 13, c¢) and d)), it is observed that the
cantilever beam remains approximately straight between 200mm and 800mm.

Additionally, we update the Table A4 in the appendix, which includes all the eigenfre-
quencies for all detected modes up to 60Hz and all damage states.

Furthermore, we added the references [0, 4, 3, 5, 11] to the revised manuscript.

9. Line 482 suggests comparing identified mode shapes with those from the FE model using
the MAC for clarity.

Reply: Thank you for this remark. We added a comparison between the modes shapes
from the FE model and the operational modal analysis in terms of the Modal Assurance
Criterion to the manuscript in lines 517-527:

The modes shapes ¢1, ¢2 and ¢5 inferred via OMA (see Figure 13 a), b) and f)) seem to
be the mode shapes most similar to the FE-estimated mode shapes ¢1 ., ¢3,, and ¢5
(see Figure 15). To evaluate this, we compute the modal assurance criterion (MAC),
introduced by [1], between the model-based and experimental (from experiment 15,

11
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Figure 6: Mode shapes of the first five vertically oscillating eigenmodes ¢; of experiment
15, determined with AFDD and k-means clustering. The errorbars indicate the standard
deviation associated with the relative vertical displacements of the degrees of freedom of each
mode shape. The mode shapes are scaled to comprise a maximum value of 1.0.
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Table 3: Values of the modal assurance criterion (MAC) between the modes ¢;, determined
by OMA, and the modes ¢; ,,, computed from the FE-model, rounded to two decimal digits.
The most similar mode shapes are highlighted by a bold MAC value.

10.

¢1 ®2 ¢3 Q4 O

$1m  0.99 0.04 0.02 0.02 0.01
¢3m O 0.98 0.16 0 0.02
¢5m 0.08 0.02 0.74 0.70 0.96

see Figure 13) mode shapes from the undamaged system. For that purpose, we use
the data of the five accelerometers and of the FE-model at the same locations. The
results shown in Table 3 confirm that the mode shapes ¢1 and ¢1,,, ¢2 and @3,
and ¢5 and ¢s ,, are the most similar mode shapes, as these exhibit the highest MAC,
given the five vertical degrees of freedom considered in the computation. Also, the
corresponding eigenfrequencies of f1 ~ 1.95Hz and f> ~ 13.88Hz, and f; ,, = 1.93Hz and
f3m = 11.91Hz are close to each other. However, f5 ~ 44.921Hz and f5,, = 52.070Hz,
differ more. Nevertheless, due to the good match for the first two natural frequencies
and eigenmodes, we conclude that the simulation model offers a sufficient approximation
of the experimental setup and may be used for further analysis.

Line 490 raises doubts regarding the assumption that Mode 4 results from the cut, as
it appears in the stabilization diagram in Figure 12 for the healthy state and could
be probably identified at higher model orders. The saw cut does not have the same
dynamic characteristics as a real crack, which would only become apparent at higher
vibration amplitudes.

Reply: Thank you for this insightful remark. We conducted another OMA based on
frequency domain decomposition and there the mode at approximately 34Hz is identified
also in the healthy state. Thus we can confirm your remark and have updated the revised
manuscript as shown in the answer to remark 8. Thank you very much for this remark.
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Response to Anonymous Referee #2

Thank you for taking the time to review our manuscript. We sincerely appreciate your
constructive feedback and careful evaluation. In response, we have revised the manuscript
accordingly, with all changes clearly marked in blue for your convenience. Corresponding up-
dates are also indicated in blue font within this response letter. We trust that these revisions
address your comments and enhance the clarity and quality of our work, and we hope the
updated version meets your expectations.

The paper “On the Potential of Aerodynamic Pressure Measurements for Structural Damage
Detection” by Franz et al. explores a proposed novel method for detecting structural damage
in wind turbine blades (or similar elastic, aerodynamically loaded structures) using aerody-
namic pressure measurements instead of traditional vibration-based sensing. The authors
conduct a series of wind tunnel experiments using a heaving airfoil mounted on a cantilever
beam, where structural damage is simulated by incrementally sawing the beam near its sup-
port. The aerodynamic pressure distribution across the airfoil is captured using a wireless,
MEMS-based sensing system. A convolutional neural network (CNN) is then trained to clas-
sify damage severity based solely on these pressure time series, achieving high accuracy across
various inflow conditions and damage states.

In summary, the proposed method is interesting and could be very useful to researchers and
practitioners alike. However, before being reconsidered for full acceptance, the following re-
marks should all be addressed by the authors

Specific Remarks:

1. Remark 1 & Remark 2: The paper emphasises a controlled wind tunnel proof-of-concept,
but it’s important to better discuss how the proposed approach could scale to actual,
real-life, real-size, field operational conditions. Related to the first remark, further dis-
cussion of challenges or plans to generalize from airfoil-level to full blade implementation
would add value to the scientific paper.

Reply: Thank you for these closely related and highly relevant remarks. We fully
agree that providing a clear roadmap for scaling the proposed approach to real-world,
full-scale applications is essential and adds significant value for the readership of Wind
Energy Science. In response, we have included a new paragraph in the outlook section
of the revised manuscript (see lines 583-607), which outlines a multi-stage strategy for
transitioning from this proof-of-concept study to field deployment under realistic envi-
ronmental and operational conditions (EOCs). The new section reads:

Beside these immediate next steps, scaling the damage detection approach proposed
in this study to full-scale wind turbines and real-world environmental and operating
conditions (EOCs) requires substantial further research and development. We propose
the following multi-stage strategy to facilitate this scaling process:

e Simulation and experimental validation: Further numerical simulations and
experimental validation—such as wind tunnel testing using a miniature wind tur-
bine under varying wind speed conditions and turbulence intensities—are essential.
These efforts aim to deepen our understanding of how realistic inflow conditions,
rotational aerodynamic effects, and real-world damage scenarios influence the pres-
sure distribution along turbine blades. Additionally, more advanced material mod-
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els and realistic damage representations will be necessary to accurately account for
variations in material properties and structural integrity. Future research efforts
will aim to translate the proposed methodology to composite specimens to more
closely align with practical applications in wind turbine blade monitoring.

e Spatial distribution of pressure sensors: Scaling damage detection to cover
the full blade span can be realized by deploying multiple Aerosense sensor nodes
along each blade, as illustrated in Figure 1(a) of the manuscript. This setup enables
the simultaneous acquisition and processing of aerodynamic pressure data at several
chord- and span-wise locations, thereby enhancing spatial resolution and detection
capability.

e Unsupervised or self-supervised damage detection: In real-world applica-
tions, labeled data are typically unavailable. Therefore, an unsupervised or self-
supervised approach to anomaly or damage detection is required. In ongoing work,
we are developing such a method tailored to the dataset presented in this study, to
be reported in a forthcoming publication. To adapt this to operational and envi-
ronmental variability, we propose leveraging local inflow information estimated via
other Aerosense methods (see Section 4 of [2] and Section 4.5 of [8]). Moreover,
fusing aerodynamic pressure data with measurements from the 6-DOF inertial mea-
surement unit embedded in each Aerosense node may further enhance robustness
and sensitivity.

e Field deployment and scaling: The final step involves implementing the pro-
posed sensor layout and detection methods on a small-scale operational wind tur-
bine. Field testing will serve to validate the performance of the unsupervised
detection framework. The knowledge and insights gained through this process
will inform the subsequent upscaling to full-scale wind turbines, enabling robust
aerodynamic pressure-based damage detection under realistic conditions.

This proposed roadmap emphasizes that while our current work is a controlled proof-
of-concept, it provides a critical foundation for the long-term goal of achieving robust
structural health monitoring on operational wind turbines.

According to the third bullet point from above, we add reference [3] to the manuscript.

. The paper acknowledges that sensor placement and distribution on full blades have not
been explored; this aspect may be investigated a little more, or discussed in further
detail with the current information.

Reply: Thank you for this important comment. We have conducted a preliminary
analysis of sensor placement at the airfoil level, specifically investigating spanwise sensor
distribution. Initial results suggest that the relevance of individual sensor positions for
damage detection varies depending on the inflow conditions. These findings indicate
that sensor importance is not uniform and could be influenced by local aerodynamic
behavior. Given the practical implications of this observation, we are currently working
on a follow-up publication that will investigate this aspect more systematically.

Regarding the placement of sensors along the full length of a wind turbine blade, our
conceptual approach envisions multiple sensor nodes distributed along the span. How-
ever, this aspect cannot be addressed using the currently available experimental dataset.
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A thorough investigation of full-blade sensor distribution would require high-fidelity sim-
ulation models capable of capturing the coupled interaction between blade vibrations
and surrounding aerodynamic flow fields.

While we fully agree that this is a highly relevant and practically significant question, it
is also a complex one that falls outside the scope of the present proof-of-concept study.
Nevertheless, we believe this constitutes an important direction for future research, and
we now briefly mention this in the outlook section of the revised manuscript (see lines
593-596 - these lines point to bullet point two of the scaling strategy described above).

. The CNN is selected for its small parameter count, but its generalization to unseen data
(especially with small training sets) may need stronger justification or comparison with
simpler ANN models.

Reply: Thank you for this thoughtful remark. We acknowledge the importance of
justifying the choice of model architecture, especially in light of the limited training data
and the need for generalization. While we understand your suggestion to compare our
CNN to simpler ANN architectures, our selection of the CNN was based on its favorable
trade-off between model complexity, classification performance, and suitability for small
datasets.

Prior to selecting the CNN architecture, we conducted preliminary evaluations using
alternative classification approaches, including feature extraction methods such as the
catch22 time-series feature library (introduced by [12]), as well as time-series transfor-
mation techniques like ROCKET and MiniROCKET, followed by standard classifiers
(e.g., Random Forests, Gradient Boosting, and Multi-Layer Perceptrons). However, all
of these combinations yielded lower classification accuracies compared to the proposed
CNN model.

At present, we have no evidence that simpler ANN architectures—or hybrid models
combining feature transforms with ANNs—can achieve comparable performance with
the available data. That said, we agree that including a broader architectural compari-
son would strengthen the evaluation and is a valuable direction for future work. Due to
space and scope constraints, we have chosen to focus this study on demonstrating the
feasibility and performance of our proposed CNN architecture. A more comprehensive
investigation, including comparisons with alternative and potentially simpler models,
will be addressed in our planned follow-up work on unsupervised damage detection.

. The consistent confusion between damage classes 4 and 5 at higher AoA suggests model
limitations or overlapping feature distributions. This should be discussed more explic-
itly and in more detail.

Reply: Thank you for this valuable observation. We agree that the consistent mis-
classification between damage classes 4 and 5 at an 8° angle of attack (AoA) merits
further discussion. As shown in Figure 11 of the manuscript, particularly the heaving
amplitudes for experimental series 5 and 6 (corresponding to damage classes 4 and 5)
are highly similar at 8° AoA and thus indicate similar pressure distributions. This, in
combination with only minor shifts in the structural eigenfrequencies between these two
damage states, likely contributes to significant overlap in the learned feature represen-
tations.

Moreover, the increased aerodynamic unsteadiness and turbulence at higher AoA further
reduces the signal-to-noise ratio, making it more difficult for the model to distinguish

16



subtle structural differences. Given these factors, and considering the limited capacity
of the small CNN architecture used in this study, the observed confusion is not un-
expected. While a more in-depth interpretation (e.g., using explainability tools such
as SHAP) could provide further insight, it is beyond the current scope. We plan to
include such analyses in future work to better understand model decisions and improve
class separability under more complex conditions. We now acknowledge and discuss this
limitation more explicitly in the revised manuscript (see lines 367-376).

Furthermore, we observe a consistent confusion between damage classes 4 and 5 at 8°
AoA in Figure 10. In the set of considered damage states, the variation from class 4
to 5 represents the smallest relative change between two damage states and, following
Figure 11, particularly the acceleration amplitudes and thus also the velocity amplitudes
for experimental series 5 and 6 (corresponding to damage classes 4 and 5) are highly
similar at 8° AoA. Based on the simplified relationship of Equation (7), this indicates
similar pressure distributions. This, in combination with only minor shifts in the struc-
tural eigenfrequencies between these two damage states, likely contributes to significant
overlap in the learned feature representations. Moreover, the increased aerodynamic
unsteadiness and turbulence at higher AoA further reduces the signal-to-noise ratio,
making it more difficult for the model to distinguish subtle structural differences. Given
these factors, and considering the limited capacity of the small CNN architecture used
in this study, the observed confusion is not unexpected.

. The concept of pressure-based damage indicators vs conventional vibration-based ones
is very interesting from a conceptual perspective, however, a more quantitative compar-
ison would be useful, even only in a small dedicated subset, to better compare the novel
proposed and conventional methodologies. For instance, RMS acceleration (Section 6.1)
and eigenfrequency evolution (Section 6.2), which are widely used damage-sensitive fea-
tures, can be used similarly to train a CNN - or other kinds of ANNs.

Reply: Thank you for this thoughtful comment. We agree that a quantitative compar-
ison between pressure-based and conventional vibration-based damage indicators would
offer valuable insight and context for the reader. However, such a comparison lies beyond
the scope of the current study, which is focused on exploring the feasibility of using aero-
dynamic pressure measurements as a basis for damage detection. We fully acknowledge
that vibration-based features—such as RMS acceleration and eigenfrequency shifts—are
well-established and often more directly sensitive to structural changes. From a purely
diagnostic standpoint, they may indeed offer superior performance in many scenarios.

That said, one of the core motivations of our study is to investigate alternative sensing
modalities that may be more readily available or easier to integrate in certain applica-
tions. For example, in the context of wind turbines, aerodynamic pressure measurements
are often already acquired for control or performance monitoring purposes, while the
installation and maintenance of vibration sensors (especially on rotating components)
can be logistically complex and costly. Thus, while not necessarily superior in terms of
raw sensitivity, pressure-based indicators can offer a pragmatic and scalable option for
structural health monitoring in environments where access to direct structural measure-
ments is limited. We agree that future work should include a dedicated quantitative
comparison to assess the trade-offs between these sensing approaches, and we now men-
tion this explicitly in the revised manuscript (see lines 608-612):

Moreover, another future research direction consists in quantitative comparison between
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pressure-based and conventional vibration-based damage indicators. Although from a
purely diagnostic standpoint, vibration based features may offer superior performance
in many scenarios, aecrodynamic pressure-based indicators might offer a pragmatic and
scalable option for structural health monitoring in environments where access to direct
structural measurements is limited. Hence, a quantitative comparison to assess the
trade-offs between these sensing approaches, would offer valuable insights.

. Since the approach is fully data-driven, more insight into the physical interpretability of
the CNN outputs and feature relevance (even only in a qualitative, descriptive manner)
would improve trust in the method.

Reply: Thank you for this important remark. We fully agree that interpretability
is a critical aspect of data-driven methods, particularly in safety-critical domains such
as structural health monitoring, where trust and transparency are essential. In the
present study, our focus was on demonstrating the feasibility of using aerodynamic
pressure measurements in combination with a CNN to detect structural damage. We
acknowledge that the CNN is used here more as a black-box classifier, and we have not
yet conducted a detailed post-hoc interpretability analysis.

Initially, we explored more physically interpretable approaches using feature libraries
such as catch22 ([12]), as well as hand-crafted features based on aerodynamic princi-
ples. However, these methods did not yield satisfactory performance on our dataset,
motivating the shift to a purely data-driven approach. Although we do not currently
provide formal interpretability results, we recognize the need to enhance understanding
of what the CNN is learning—particularly which pressure patterns or dynamic sig-
natures contribute most to damage classification. Techniques such as saliency maps,
feature attribution, or layer-wise relevance propagation could offer valuable insights and
are excellent candidates for future investigation. We have revised the manuscript ac-
cordingly and added the following sentence to the outlook to emphasize this point (see
lines 578-582):

Further future work should also focus on applying interpretable machine learning tech-
niques—such as saliency maps, feature attribution methods, or layer-wise relevance
propagation—to better understand the features learned by the model. Enhancing inter-
pretability is essential for building trust in data-driven damage indicators and supporting
informed decision-making in structural health monitoring, especially if these are based
on such indirect proxies for structural damage as aerodynamic pressure measurements.

. Including added mass as a damage class, to simulate damage occurrence without ac-
tually damaging the specimens, has been done several times by well-known Authors.
However, this Reviewer has never been fully convinced about the reliability of this ap-
proach. Apart from similar shifts in natural frequencies (of course, can be manipulated
by decreasing the n-th modal stiffness or increasing the corresponding n-th modal mass),
the structural implications of adding masses differ significantly from reducing stiffnesses
(which itself is only an approximation of actual crack initiation, growth, and coales-
cence). Hence, further justification to use this approach should be provided, and its
limitations should be fully and explicitly discussed.

Reply: Thank you for your thoughtful remark. We understand your concern and would
like to clarify that the added mass in the experimental setup is not intended to represent
a different type of crack or structural damage. Instead, it is meant to simulate the effect
of ice accretion (”icing”) on a wind turbine blade, which also results in an increase in
mass. We realize that this was not clearly explained in the original manuscript and
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apologize for any confusion this may have caused. We added an additional sentence
in Section 3.3 "Design of Experiments” (see lines 250-251) to clarify this point in the
revised manuscript:

While the cuts with different lengths should represent the stiffness reduction of cracks
of different length, the added mass is meant to represent ice accretion, also known as
”icing”, on the wind turbine blade.

8. Apart from wind turbine blades, aerodynamic pressure plays a key, pivotal role in long-
span suspended bridges — see e.g. https://doi.org/10.1016/j.proeng.2017.09.576,
https://doi.org/10.1007/978-3-031-61425-5_46,
https://doi.org/10.1061/JSENDH.STENG-12095. These works may be cited in the pa-
per to provide a broader context.

Reply: Thank you for this valuable suggestion. We were not aware of these publications
and agree that long-span bridges may offer further interesting application scenarios for
the Aerosense measurement system. We cite the suggested publications in the outlook
(see lines 612-617) of the revised manuscript and address the application of the Aerosense
system to long-span suspended bridges as follows:

Finally, another interesting application scenario, beyond wind turbines, for the Aerosense
measurement system and for aerodynamic pressure based damage detection, consists in
slender, long-span suspension bridges. For such bridges, excitation by wind loading and
thus aerodynamic pressure plays an essential role [9, 7, 10]. Here, the Aerosense system
could not only contribute by monitoring the wind loading at selected points, but also by
enhancing existing acceleration based damage detection methods by information derived
from aerodynamic pressure data.

9. Similarly to comment 8, referring to Fig 15, saw cutting a specimen to simulate damage
is extremely common and acceptable, but the difference between this unrealistic damage
scenario, which is straight cut and thick, and actual real-life cracks, which are irregular
in shape and hair-like thin, should be explicitly discussed.

Reply: Thank you for your insightful remark. We agree with you and modify the
manuscript at several locations to explain the difference between the introduced unre-
alistic damage scenario and actual, real-world cracks as follows:

e lines 173-178: An important limitation of our setup lies in the choice of material and
the manner in which damage is introduced. While real-world wind turbine blades
are composed of layered composite materials exhibiting complex failure modes
such as delamination and fiber breakage, our experiments employ an aluminum
cantilever with damage emulated via saw cuts. This simplification allows for con-
trolled, repeatable tests and the ability to systematically vary damage severity.
Although the artificial crack does not fully replicate the morphology or fracture
mechanics of a naturally occurring defect in composites, it produces a measurable
stiffness reduction, which is central to our proof-of-concept study.

e lines 589-592: Additionally, more advanced material models and realistic damage
representations will be necessary to accurately account for variations in material
properties and structural integrity. Future research efforts will aim to translate the
proposed methodology to composite specimens to more closely align with practical
applications in wind turbine blade monitoring.

10. The reference https://doi.org/10.5281/ZENODO.8018677 is linked to the powerpoint of
a presentation; it would be better to use a peer-reviewed journal or conference article
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instead.

Reply: Thank you for your comment. We only used one of the pictures for Figure
1 b) from the conference presentation of our co-author and thus cited it here initially.
However, as we have not used any other contents from this presentation, we removed
the citation in the revised version.
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