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Abstract. Accurate estimation of extreme wind speeds from tropical cyclones is a significant challenge within tropical cyclone

prone regions. This study presents a method to estimate the 50-year return wind speed at heights relevant to wind turbines.

The International Best Track Archive for Climate Stewardship data is combined with the Holland parametric model and the

Gumbel distribution to assess extreme winds within three tropical cyclone-affected regions within the Northern Hemisphere.

These regions are Taiwan, Japan, and the east coast of the United States of America. To assess the uncertainty within the results5

from differing input parameters, Monte Carlo simulations are used. The method performs well in Taiwan and Japan which can

be attributed to the large sample size of data points located within a limited spatial area. The east coast of the United States

performs less well, which conversely, is due to the smaller sample size and wider spatial region of which they cover. This study

shows that combining International Best Track Archive for Climate Stewardship data with parametric and statistical models

provides a practical approach to estimate extreme wind speeds while highlighting the need for an understanding of regional10

characteristics to ensure reliability of the results.

1 Introduction

Tropical cyclones (TCs) can be a devastating weather event, especially in coastal and offshore regions (Mortlock et al., 2018).

Therefore, assessment of extreme winds is increasingly important due to the current a global expansion of offshore infrastruc-

ture, including offshore wind farms (Chen and Su, 2022).15

The International Electrotechnical Commission (IEC), within standard 61400-1, provides a reference wind speed class

specifically for wind turbines in TC-prone regions, known as Class T (Commission, 2019). However, it also expresses that

the reference wind speed may not cover all regions prone to TCs.

There are a range of methods that have been used within previous studies to assess extreme wind speeds from TCs. For

example, many have taken advantage of the International Best Track Archive for Climate Stewardship (IBTrACS) (Knapp20

et al., 2010; Gahtan et al., 2024). IBTrACS is a state-of-the-art dataset containing information on TC parameters such as the

maximum wind speed, minimum sea level pressure, centre position, radius of maximum winds (RMW). IBTrACS is widely

known and used. Of those using the IBTrACS dataset, select studies, such as (Ott, 2006; Schreck et al., 2014; Kossin, 2018)
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focus on general TC analysis, whereas, others such as (Bloemendaal et al., 2020b; Morin et al., 2024; Xu et al., 2024) focus on

the combination of IBTrACS with other datasets to develop new synthetic datasets.25

The IBTrACS dataset, however, is not without its limitations. IBTrACS does not provide the entire wind wield but rather a

singular value for the maximum wind speed at each given time step. To obtain the entire wind field, parametric models, such as

the Holland Model (Holland, 1980), can be implemented to extrapolate a singular point into a wind field in a computationally

efficient way. Parametric models are used across academic and industrial fields to investigate TCs (Arthur, 2021) and the

combination of IBTrACS data with parametric models is a well used method (Ott, 2006; Fang et al., 2020; Wei et al., 2023).30

In an attempt to mitigate the damage caused by extreme winds, the IEC standard defines a reference speed for each class of

wind turbine. The reference speed is defined as the 10-minute wind speed average for a return period of 50 years (U50) at turbine

hub height. To align with the IEC standard, this paper focuses on these exact requirements. To calculate U50, Generalised

Extreme Value (GEV) is implemented, as previously used by Abild (1994); Larsén et al. (2015).

TC’s U50 has previously been studied, but they have rather focussed on using reanalysis data, or combining IBTrACS35

reanalysis data with IBTrACS (Anastasiades and McSharry, 2014), combining IBTrACS with more complex models to generate

a synthetic dataset (Vickery et al., 2009; Bloemendaal et al., 2020a), or comparing extreme value analysis methods for TCs

(Ott, 2006; Kong et al., 2024). Reanalysis datasets can provide useful information on TCs (Kossin, 2015) and other weather

phenomena (Mavromatis, 2022; Wang et al., 2023), but they often underestimate the maximum wind speeds of TCs (Li et al.,

2024), making it difficult to estimate the potential impact of TCs on offshore infrastructure (Gandoin and Garza, 2024; Liu40

et al., 2025). Another commonality between previous studies is the primary focus on either a single basin for winds at 10 m

(Ott, 2006; Kong et al., 2024) or a limited number of specific latitude-longitude coordinates (Vickery et al., 2009; Bloemendaal

et al., 2020a).

One particular study, Larsén and Ott (2022), focussed on overcoming the systematic underestimation of extreme TC wind

speed within reanalysis data. The missing wind variability was filled in within the Climate Forecast System Reanalysis (CFSR)45

reanalysis data using a spectral correction method. The application of the spectral correction uses the U50 estimation from Ott

(2006), which in turn is based upon using the Japanese Meteorological Agency (JMA) track data (a subset of the IBTrACS

dataset). This method was applied to two regions: the southwest of the northern Pacific Ocean and the western Atlantic Ocean,

and, later adjusted in Imberger et al. (2024) to include two more reanalysis datasets, ERA5 [European Centre for Medium-

Range Weather Forecast Reanalysis v5] and MERRA 2 [Modern-Era Retrospective analysis for Research and Applications]50

for where IBTrACS data is available. However, this study presents no validation through measurements.

This paper focuses on the use of the state-of-the-art IBTrACS data, updates the study of Ott (2006) which was only over the

Typhoon affected southwest of the northern Pacific ocean. The regions to extended to include: the ocean around Taiwan located

in the Western Pacific, the ocean around Japan also located in the Western Pacific and the east coast of the United States of

America (ECUS) located in the Northern Atlantic. These have been chosen as they encompass most of the regions affected by55

TCs in the Northern Hemisphere and areas contain offshore wind development.

The aim of this study is, first of all, to develop a computationally efficient method to derive U50 that can be applied across

many different regions, taking advantage of the IBTrACS data. Secondly, this study investigates the applicability of the IB-
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TrACS data in different regions for the calculation of U50 by recognising regional TC characteristics. Thirdly, this study

explicitly accounts for how uncertainties within IBTrACS propagate through to the final U50 results. This paper is a necessary60

complement to Ott (2006) with its more complete use of IBTrACS data, and to Larsén and Ott (2022) and Imberger et al.

(2024) due to the use of IBTrACS data.

Section 2 introduces the method developed to estimate U50 and the accompanying uncertainty analysis using Monte Carlo

simulations. Results are presented in Section 3, the uncertainty analysis is detailed in Section 4, followed by Discussions and

Conclusions in Section 5 and 6, respectively. A list for abbreviation is provided in the Appendix for readability.65

2 Method

This section will introduce and discuss the data used within the analysis and the method by which the data has been processed

to obtain U50 in three regions.

Below is a brief overview of the steps taken to calculate U50. Each step is explained in more detail in the corresponding

sections throughout the paper. Figure 1 shows the workflow of the method.70

1. Define the regions of interest: The three regions of focus are: Taiwan, Japan, and ECUS. The exact coordinates used to

define these regions are described in Section 2.2.

2. Select relevant data: A set of data restrictions is applied to the IBTrACS data. These restrictions are (1) the data point

must fall within the region of interest, (2) the data point contain either the radius of maximum wind (RMW) or the 50 kt

radius, the minimum sea-level pressure and maximum wind speed and (3) the data point is over ocean. (2) is required75

as they are the necessary parameter inputs to the parametric model, and (3) is required as the parametric model used to

extrapolate a single data point to a wind field is only valid over ocean. The parametric model is discussed in point 4.

3. Convert wind speeds to common averaging period: The IBTrACS dataset is a compilation of data from agencies

across the globe. Hence, the maximum wind speed is given at different averaging periods. All wind speeds are converted

to a 10-minute averaging period using the method described in Harper et al. (2010). The 10-minute average was chosen80

as it is used as the reference speed at hub height within the IEC standard 61400-1 (Commission, 2019). Details of this

conversion process are provided in Section 2.3.

4. The Holland model: A 0.25◦× 0.25◦ latitude-longitude grid is defined. The grid was defined to be this resolution,

as a higher resolution grid requires larger computational resources, and a lower resolution could dilute key features of

U50. Once the grid is defined, the Holland model can be used. Using input parameters such as wind speed and RMW,85

the Holland model can extrapolate a single data point into a wind field. Following this, at each defined grid point, a

corresponding wind speed value is assigned. The Holland model wind field is computed for each data point available

from IBTrACS, given the data constraints. More information on the Holland model is provided in Section 2.4.
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5. Scale wind speeds to 100 m height: The Holland model returns wind speeds at gradient height, the height at wind

surface friction no longer significantly affects the wind flow. These winds are scaled down to 100 m. Any newly created90

data points from using the Holland Model, that now fall over land, are removed. This is discussed in Section 2.5.

6. Calculate the annual maxima: The scaled wind fields are separated into yearly groups, and the annual maxima is

calculated for each grid point. The annual maxima calculation is described in Section 2.6.

7. Fit the Gumbel distribution: From the annual maxima, the Gumbel distribution is fitted to estimate U50 at each grid

point. This is the final step in this method, provides a map of U50 for each region. The process is also described in95

Section 2.6.

Figure 1. Illustration of seven-step Workflow depicting the method used to calculate U50 at 100 m using IBTrACS.

2.1 Data

IBTrACS is a global tropical cyclone dataset maintained by the National Oceanic and Atmospheric Administration (NOAA).

NOAA compiles post-storm records of best estimate TC parameters from multiple regional meteorological agencies, providing

information such as storm position, central pressure, and maximum sustained wind speed at regular time intervals (typically100

every 3 hours). Every 3-hour time step, new values are provided where possible; however, a spatial realisation of the wind

field (or other parameters) is not available. IBTrACS serves as a consolidated and quality-controlled reference for historical

TC activity. Table 1 shows which agencies’ data is available within IBTrACS, in categories of data’s temporal resolution; those

in bold are used in the following methods in this study. The differences between agencies pose different challenges throughout

the analysis and will be detailed throughout.105

Table 2 shows a comparison between the three regions: the time frame of TCs captured for this analysis, the total TCs within

each region for the given time frame, the total TCs that have at least one data point with the needed parameters (maximum wind
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Table 1. Wind averaging period by agency

1-min wind 2-min wind 3-min wind 10-min wind

US Agencies China (CMA) India (IMD) Japan (JMA)

Australia (BoM)

La Reunion

Fiji (Nadi)

New Zealand (Wellington)

Hong Kong (HKO)

South Korea (KMA)

speed, RMW, minimum sea level pressure) and the number of IBTrACS data points used. Table 3 shows a regional comparison

of the grid resolution and the total number of grid points. For the latitude and longitude limits of each region, see Table 4.

Table 2. Regional data comparison

Region Time frame Total TCs Total TCs in analysis Total IBTrACS data points used

Taiwan 1977-01-01 – 2024-12-26 1004 612 12447

Japan 1977-01-01 – 2024-12-26 819 608 13795

ECUS 2001-01-01 – 2024-12-26 239 214 4990

Table 3. Regional grid comparison

Region Grid resolution (latitude × longitude) Total grid points

Taiwan 0.25◦ × 0.25◦ 7396

Japan 0.25◦ × 0.25◦ 19596

ECUS 0.25◦ × 0.25◦ 17892

2.2 Defining the “regions”110

While three regions are being evaluated within this study: Taiwan, Japan and ECUS, the primary focus is the coastal areas, as

this is where most offshore structures are located (e.g., Díaz and Guedes Soares (2020)). Given that TCs can be very intense

systems the TC extreme winds can still have a significant impact on areas hundreds of kilometres away from the eye, and

therefore, there needs to be consideration of the region chosen. The exact extent of how far damaging winds can reach is a

complex subject (Weatherford and Gray, 1988; Powell and Reinhold, 2007; Chan and Chan, 2012; Knaff et al., 2021). To115

ensure all potential TC effects are captured, a wide area has been chosen to evaluate, as shown by Fig.s 2a, 2b, and 2c. Within

these figures, a subset of IBTrACS data is shown to illustrate which IBTrACS data points are included in our calculation. A

region of approximately 500 km from the most Northern, Eastern, Western and Southern points are included within the map as
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shown by the black square. Any data points outside of the black box have been excluded; represented as dark blue dots in the

figure. The purple dots over land are also excluded from this study. The green dots represent included data points. The exact120

coordinate boundaries for each region are listed in Table 4.

(a) Taiwan region. Subset: TCs in the West-

ern Pacific, 01-01-2020 to 01-01-2025

(b) Japan region. Subset: TCs in the Western

Pacific, 2020–2025.

(c) ECUS region. Subset: TCs in the North

Atlantic, 2021–2024.

Figure 2. Coordinate restrictions and removed data points for each region. The inner black box represents the coordinate restrictions placed

on the IBTrACS data. The dark blue dots represent excluded data points due to being outside the coordinate. The purple dots represent

excluded data points due to being over land. The green dots represent data points included in the analysis. Only a subset of IBTrACS data is

shown to illustrate which data is excluded.

Table 4. Coordinate restrictions for regions

Taiwan Japan ECUS

Latitude min (degrees) 12◦N 21◦N 22◦N

Latitude max (degrees) 35◦N 55,5◦N 57,5◦N

Longitude min (degrees) 110◦W 120,5◦W -88,5◦W

Longitude max (degrees) 131,5◦W 156◦W -57◦W

For the ECUS region, data has been used from the pre-compiled US agencies’ variables within IBTrACS. All data for the

Taiwan region comes from the World Meteorological Organisation Regional Specialised Meteorological Centre in Tokyo. It is

operated by the Japanese Meteorological Agency (JMA) responsible for official typhoon forecasts in the western North Pacific.

The JMA dataset spans from 1951 to the present. For the Japan region, data from four agencies were combined to maximise the125

data availability. As previously mentioned, certain parameters are needed, and therefore, merging data from different agencies

can help to fill data gaps. A hierarchy of preference was established: JMA, HKO, CMA, US. This order of preference is based
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on the number of available data points for the Japan region, with JMA offering the highest count of data points and the US

agencies the least.

2.3 Wind Speed Conversion130

Different agencies report the maximum wind speed of TCs using different averaging periods. To ensure consistency across

datasets, all wind speeds have been standardised to a 10-minute average to align with IEC standard 61400-1. Shorter averaging

periods tend to return higher wind speeds, whereas a longer averaging period results in lower wind speeds as fluctuations of

turbulence are smoothed over time. Harper et al. (2010) derived algorithms to convert wind speeds measured at 10 m between

different averaging periods. The conversion factors used here are provided in Table 5. The recommended procedure to convert135

a shorter averaging period to a lower averaging period is as follows:

The wind speed conversion factor (CF ) for converting x minute wind speed to y minute wind speed, where x < y, is given

by:

CF =
Gy,3600

Gx,3600

where Gx,3600 is a conversion value which gives the highest x second mean (gust) wind speed (for example, 600 seconds - 10140

minutes) within 3600 seconds.

Table 5. Wind speed conversion between temporal resolutions of 1 minute to 10 minutes, and 2 minutes to 10 minutes

Conversion formula At-Sea

1 minute to 10 minutes G600,3600
G60,3600

1.03
1.11

= 0.93

2 minutes to 10 minutes G600,3600
G120,3600

1.03
1.07

= 0.96

2.4 Holland Model

The Holland model, developed by Holland (1980), is a conceptual, empirical model to extrapolate one point of data into a wind

field. Figure 3 illustrates a singular data point being extrapolated to an entire wind field. The following use of the Holland

model follows the method in Ott (2006). First, the B parameter is calculated:145

B =
(

Vmax

KM

)2

· ρ · e · 1
(Pn−Pc)

(1)

where Pn is the minimum sea level pressure, Pc is the ambient pressure, ρ is air density, Vmax is the maximum wind speed

at 10 m, e is Euler’s number, and the constant Km ≈ 0.7.

Using the B parameter, the gradient wind speed can be calculated at distance r from the TC centre:

Vg =

√
Pn−Pc

ρ
·B ·

(
R0

r

)B

· exp

(
−
(

R0
r

)B

2

)
(2)150
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where R0 is the RMW.

The RMW parameter is collected only by US agencies. Prior to 2001, the data availability of this parameter was limited to

at most seven data points per year, restricting the use of the US data to be from 2001 onwards.

The JMA dataset does not provide the RMW, but the 50 kt radius is provided. Specifically, the longest and shortest radii for

50 kt winds are reported, from which the RMW can be estimated. This data is available from 1977 onward. The JMA dataset155

only covers the Western North Pacific, and the 50 kt radii is not available for the ECUS region.

Figure 3. Illustration depicting an example data point from the IBTrACS dataset and the wind field result from using the parameters from

the data point as an input into the Holland Model.

2.5 Height scaling for wind

The Holland model outputs wind speed at gradient level (Holland, 1980); the height at which surface friction no longer signif-

icantly affects the wind flow. Therefore, the wind speed needs to be scaled to a height that is of use. For this paper, the wind

speed has been scaled to 100 m. Franklin et al. (2003) suggests that, for TCs, the layer below the broad maximum wind speed160

of 500 m, approximately follows the logarithm of the altitude. To scale the wind, firstly, the geostrophic drag law is solved for

the friction velocity (Rossby and Montgomery, 1935; Blackadar and Tennekes, 1968):

G =
u∗
κ

√(
ln
(

u∗
fcol · z0

)
−A

)2

+ C2 (3)

where u∗ is the friction velocity, G is the geostrophic wind, κ is the con Kármán constant, fcol is the Coriolis parameter, z0 is

the surface roughness length and A and C are constants defined by the neutral conditions. The constants are set as A = 1.8 and165
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C = 4.5. Using the friction velocity, the wind speed is scaled to a different height using the logarithmic wind law:

u(z) =
u∗
κ

ln
z

z0
(4)

where z is the target height. Combining the geostrophic wind law with the logarithmic profile of the wind is a well-established

method and already implemented into systems such as Wind Atlas Analysis and Application Program (WAsP) (Troen and

Petersen, 1989).170

The wind speeds were originally scaled to 10 m for comparison against the IBTrACS dataset. The approach was performed

for varying roughness lengths for each region. The optimal roughness length was selected by evaluating, on average, how well

the scaled wind speeds match the 10 m IBTrACS data. The adjusted values for the roughness length identified are 5e−6 m,

9e−6 m and 1e−5 m for the Taiwan, Japan and ECUS regions, respectively. Note that these are not actual roughness length,

rather values that provide the scaled wind speed from the gradient height to 10 m, matching the 10-m IBTrACS data.175

The commonly accepted deep ocean surface roughness value is 0.2 mm (He et al., 2021). However, Ott (2006) shows that

the eyewall profile follows the logarithm of the altitude using a surface roughness of 0.07 mm.

To scale to 100 m, the same method was performed using the adjusted roughness length.

2.6 The Gumbel Distribution

For each individual grid point and for each year, the maximum wind speed at 100 m is obtained following Section 2.4 and180

2.5. Using the annual maxima, the Gumbel distribution estimates U50. This method follows the approach described in (Abild,

1994; Larsén et al., 2015) in which Xm is the ascending sorted annual maxima (for each grid point), with n samples.

The sample mean is computed:

b0 =
1
n

n∑

i=1

Xm,i (5)

and the weighted mean185

b1 =
1

(n− 1)n

n∑

i=1

(i− 1) ·Xm,i (6)

The Gumbel distribution parameters α and β can be calculated such that:

α =
ln2

2b1− b0
and β = b0−

γ

α
(7)

where γ is Euler’s constant = 0.57721. The wind speed for the return period T is

UT =− 1
α

ln
(

ln
(

T

T − 1

))
+ β (8)190

and the standard deviation associated with the wind speed for the return period T is

σT =
π

α
√

6n

√
1 +1.14kT + 1.1k2

T . (9)

where kT =
√

6
π

(
− ln

(
ln
(

Treturn
Treturn−1

))
− 0.577

)
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3 Results

The results of calculating U50 are presented in three regions: Taiwan, Japan and ECUS regions are shown here. Each region195

will be discussed individually.

3.1 Taiwan

In Figure 4a, U50 at 100 m is presented for the Taiwan region. The region expands from latitude 12◦N to 33.5◦N and longitude

110◦W to 131.5◦W . Taiwan is located in the centre of the figure, with the Philippines to the south and mainland China to the

west.200

The highest values of U50 are observed east of longitude 120◦W , corresponding to areas east of Taiwan and the Philippines.

In contrast, in the west of Taiwan and the Philippines, the wind speed is slower by approximately 10 - 20 m s−1. The majority

of TCs forming in the Western Pacific form to the south-east of Taiwan (Guo et al., 2025), where they can intensify before

weakening as they approach or move over land (Park et al., 2013). Therefore, it is expected to see the highest winds south-east

of Taiwan, before reaching land. The spatial distribution of the wind field looks somewhat consistent with previous studies205

based on IBTrACS data, such as Ott (2006); Kong et al. (2024). To compare with the results of Ott (2006); Kong et al. (2024),

U50 at 10 m is also provided here (Fig. 4d). The maximum value of U50 at 10 m in this area is 72.7 m s−1, which is 72 m s−1

in Ott (2006) and 70.4 m s−1 in Kong et al. (2024). Figure 4d here also includes more detailed spatial variability of U50 at 10

m than Ott (2006) and Kong et al. (2024) due to their larger spatial grid spacing of 1◦ x 1◦. It should be noted that the spatial

distribution of Fig 4a and 4d is very similar and the 10 m results simply return smaller values. The detailed spatial distribution210

of U50 at 100 m in this study is similar to the results in Larsén and Ott (2022) (their Figure 7a), which was based on the CFSR

reanalysis data with grid spacing of about 40 km, where the values of U50 were corrected to an equivalent temporal resolution

of 10 min.

The 95% confidence interval calculated using Eq. 9 in connection with the use of Gumbel distribution is shown in Fig.

4b. It widens in areas where U50 increases, peaking at approximately 15 m s−1, and it narrows to approximately 2 m s−1215

at the smallest. Note that the 95% confidence interval reflects the variability associated with the fitted Gumbel distribution.

Uncertainties for the entire process are discussed in Section 4. Figure 4c shows the number of data points above 19 m s−1 from

the Holland Model at each grid point. NOAA defines a tropical storm when the 1-minute average winds reach 34 kt at 10 m.

By converting 34 kt to m s−1, a 10-minute average and scaling the wind speed height to 100 m, the threshold becomes 19 m

s−1. These methods are all described in Section 2.220

3.2 Japan

In Figure 5a, U50 at 100 m is presented for the Japan region. The region expands from latitude 21◦N to 55.5◦N and longitude

120.6◦W to 156◦W . Japan is located in the centre of the figure, with South Korea, North Korea, Russia and China located to

the west. In this region, the genesis of TCs typically occurs at lower latitudes, and they move in a north-west direction. The

Coriolis force turns the TCs further north, and once it has reached mid-latitudes, the TC turns eastward due to westerlies in225
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(a) (b)

(c) (d)

Figure 4. Results for Taiwan. (a): U50 at 100 m. (b): The 95% confidence interval from the Gumbel distribution calculated using 1.96 σ50.

(c): The number of data points from the Holland model calculation that are equal to or above 19 m s−1. (d): U50 at 10 m.

addition to the Coriolis force (Cao et al., 2025). As they move north, the sea water temperature typically becomes cooler and

the TC weakens (Fei et al., 2020), hence the higher U50 values occurring at latitudes lower than 36◦N while the TC still holds

intensity. In Figure 5c, showing the number of values each grid point has above 19 m s−1, there are far fewer data points above

36◦N degrees latitude in comparison to below 36◦N degrees latitude, and above 46◦N degrees latitude there are few to no

data points giving explanation as to why wind speeds approach 0 m s−1 in this region. However, this does not mean that the230
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extreme wind speed in these areas is negligible, as other weather processes can take place, but this study solely focuses on

tropical cyclone extreme wind speed. This clearly demonstrates the uncertainty associated with too few data samples.

The southern coastline of Japan is the most exposed, though both the southwestern and southeastern coastlines still expe-

rience elevated wind speeds due to TCs. As in the Taiwan region, the 95% confidence interval increases with wind speed,

reaching its highest values in areas where there is substantial and strong TC activity.235

The spatial distribution as well as the magnitude of U50 at 100 m in Fig. 5a is quite similar to that in Larsén and Ott (2022)

(their Fig. 7a) for the overlapping area, including the patchy patterns. Such levels of detail are absent in Ott (2006) and Kong

et al. (2024) due to the coarser spatial resolution.

(a) (b) (c)

Figure 5. Results for Japan. (a): U50 at 100 m. (b) The 95% confidence interval from the Gumbel Distribution calculated using 1.96 σ50. (c):

The number of data points from the Holland Model calculation that are equal to or above 19 m s−1.

3.3 East Coast of the United States

In Figure 6a, U50 at 100 m is presented for the ECUS region. The region expands from latitude 22◦N to 57.5◦N and longitude240

-88.5◦W to -57◦W . The east coast of the United States of America is shown, along with the top of the Caribbean in the south.

The results from the ECUS region deviate from expectations. At a granular scale, the eyewall of the TC is evident as it

traverses over the region, and the U50 field exhibits a fragmented structure, which will be discussed in Section 5. On a macro

scale, the spatial distribution of U50 maxima and minima is unexpected. The highest wind speeds were anticipated to occur

consistently within the lower half of the region. This distribution was expected due to the positive correlation between latitude245

and RMW (Kimball and Mulekar, 2004; Vickery and Wadhera, 2008; Pérez-Alarcón et al., 2021) and TCs within the Gulf

of Mexico, on average, have a smaller RMW than those in the Atlantic (Vickery and Wadhera, 2008). The intensity of a TC

is inversely related to the RMW (Kimball and Mulekar, 2004; Chavas and Knaff, 2022), meaning, on average, storms with

smaller RMW tend to have stronger winds than TCs with large RMW.

The results here show, that while the highest return level is 74.9 m s−1 at 26.75◦N degrees latitude and -64.75◦W degrees250

longitude, the latitude further north also exhibits return levels which are nearly as high. The wind speeds between latitudes

33◦N and 40◦N and longitudes -64.5◦W and -59.5◦W are noted as rather high.
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The 95% confidence intervals follow the same pattern as in the previous cases: regions with higher wind speeds correspond

to a widening confidence interval. Furthermore, the confidence interval structure also follows the same structure as U50.

The study of Larsén and Ott (2022), reflecting the reanalysis CFSR wind field, does suggest a stronger U50,100m band south255

of 30◦N , between about (30◦N , -75◦W ) and (22◦N , -65◦W ), with the highest value of about 73 m s−1. Due to the Coriolis

force and westerlies, this strong U50,100m band turns north-east (their Fig. 7c). Compared to Larsén and Ott (2022), Fig. 6a

here captured the second, relatively weaker extreme wind band north of 30 ◦N , and did not capture the full picture of the first,

stronger extreme wind band. We argue that it is, on one side, caused by the few IBTrACS tracks in this region (see Fig. 6c),

and on the other side, related to the application of the Holland model. The detailed discussion is provided in Section 5. The260

hotspot in the Caribbean is both present in the current study and in Larsén and Ott (2022).

(a) (b) (c)

Figure 6. Results for ECUS. (a): U50 at 100 m. (b): The 95% confidence interval from the Gumbel Distribution calculated using 1.96 σ50.

(c): The number of data points from the Holland Model calculation that are equal to or above 19 m s−1.

4 Uncertainty Analysis

As outlined in Section 2, there are several input parameters into the Holland model and the Gumbel distribution, which could

introduce uncertainty into the estimation of U50. Given the number of contributing variables, a Monte Carlo (Metropolis and

Ulam, 1949) approach was used to propagate uncertainty throughout the method. The parameters considered include wind265

speed, centre position, RMW, pressure, the B parameter, and scaled wind speed. Monte Carlo simulations are a common

method to estimate uncertainty within the wind energy sector, as shown by Ishihara and Yamaguchi (2015); Yasui et al. (2002);

Hu et al. (2023)

Most parameters within the uncertainty analysis are sourced from the IBTrACS dataset, and while data from many agencies

are consolidated, the associated errors are not, making the quantification of uncertainty challenging. IBTrACS is typically used270

as a reference dataset for validation purposes and does not consistently report uncertainty estimates for all variables. Therefore,

bespoke methods to quantify each parameter’s uncertainty have been used. Some parameters have a uniform range defined,
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others require comparison of values from various agencies for a standard deviation to be calculated, and one requires error

propagation.

Here in the Monte Carlo framework, each parameter was randomly sampled within an estimated 95% confidence interval275

using±1.96σ, allowing comparisons across parameters. The method was repeated 100 times for each parameter. The following

section outlines the approach taken to estimate the uncertainty for each variable.

4.1 Uncertainty associated with key parameters

4.1.1 Wind Speed

Wind speed is one of the few parameters for which uncertainties are provided within the IBTrACS documentation (IBTrACS280

Science Team, 2025), shown below in Table 6. As noted by the IBTrACS documentation, the uncertainty estimates are cal-

culated from the contributions from the 3rd IBTrACS Workshop attendees. It takes into account the changes of forecasting

methods over the year, changes in aircraft reconnaissance in the Western Pacific and Northern Atlantic and information pro-

vided from more than one agency for several basins. The absolute uncertainties change based on both year and ocean basin and

are noted to be qualitative in nature.285

While the absolute uncertainty is uniformly distributed, for this paper, the error distribution has been approximated as

Gaussian, with the half-width, a, being equivalent to 1.96σ. This is a further step of approximation than that from BIPM and

IEC and IFCC and ILAC and ISO and IUPAC and IUPAP and OIML (2008), which estimates the standard deviation of a

uniform distribution as

σ =
a√
3

(10)290

All parameters for which the absolute uncertainty is provided, the same approximation will take place.

Table 6. IBTrACS Wind Speed Uncertainty (Knots)

Year Northern Atlantic Western Pacific

1973 - 1978 ±20 kt ±20 kt

1978 - 1984 ±15 kt ±20 kt

1984 - 1987 ±10 kt ±10 kt

1987 - 1995 ±10 kt ±15 kt

1995 - 2000 ±10 kt ±10 kt

2000 - present ±7 kt ±10 kt

4.1.2 Position

The position refers to the centre latitude-longitude location of a TC. The uncertainty for the position is also available from the

IBTrACS documentation and is shown below in Table 7. Following the approximation within Section 4.1.1, the upper range
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of the absolute uncertainty is approximated as 1.96σ. For example, 1.96σ = 40 km, therefore the latitude and longitude will be295

varied within ±40 km from their original position.

Table 7. IBTrACS Position Uncertainty (Kilometres)

Intensity Uncertainty

Weak TC (Winds < 60 kt) ≈ 30− 40 km

Moderate TC (60 kt < Winds < 100 kt) ≈ 20− 25 km

Strong TC (Winds > 100 kt) ≈ 10− 15 km

4.1.3 RMW

The RMW uncertainty has been calculated differently for the Northern Atlantic, where the ECUS lies, and the Western Pacific,

where the Taiwan and Japan regions lie.

The ECUS will first be discussed. The US agencies’ RMW uncertainty can be found in an online NOAA report https:300

//www.nhc.noaa.gov/data/hurdat/hurdat2-format-atl-1851-2021.pdf, and a subset is shown below in Table 8. The report details

extra information on the HURDAT2 dataset (Landsea and Franklin, 2013), which is supplied to IBTrACS.

For the ECUS region, only years from 2001 are included. Satellites carrying scatterometers were active for the entire period

of analysis. Satellites providing near-global ocean coverage every 1-2 days include: QuikSCAT (1999–2009) (Hoffman and

Leidner, 2005), ASCAT on MetOp-A (from 2006) (Figa-Saldaña et al., 2002; Wagner et al., 2013), and MetOp-B/C (from305

2012/2018) (Wagner et al., 2013). Regions in which TCs occur are a priority for satellite coverage as many agencies rely

on up-to-date coverage of TCs for modelling and accurate short-term forecasts (Kishtawal, 2016). Therefore, the absolute

uncertainty was selected to be 12 nautical miles.

Given the approximation within Section 4.1.1, we define the absolute uncertainty, 12 nm equivalent to 1.96σ, and vary the

RMW within this range.310

Table 8. US agencies IBTrACS Radius of Maximum Wind Uncertainty (Nautical Miles)

Category and data available Uncertainty

Category 1 or 2 Hurricane - Satellite/no scatterometer within 6 hr ±16 nm

Category 1 or 2 Hurricane - Satellite/with scatterometer within 6 hr ±12 nm

Category 1 or 2 Hurricane - Aircraft and satellite ±9 nm

Category 1 or 2 Hurricane - U.S. landfall ±8 nm

Category 3, 4, or 5 Hurricane - Satellite/no scatterometer within 6 hr ±11 nm

Category 3, 4, or 5 Hurricane - Satellite/with scatterometer within 6 hr ±9 nm

Category 3, 4, or 5 Hurricane - Aircraft and satellite ±5 nm

Category 3, 4, or 5 Hurricane - U.S. landfall ±5 nm
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For the Western Pacific, the outcome of converting the 50 km radius to the RMW is compared to available values from the

US agencies within the Western Pacific region. From the differences, the mean standard deviation was 10567 m.

4.1.4 Pressure

For the Northern Atlantic, Landsea and Franklin (2013) defines the absolute pressure uncertainty as 9.5 hPa for major TCs

observed via satellite. For weaker TCs, such as category 1 or 2, the uncertainty is smaller. Therefore, using the uncertainty of315

9.5 hPa is likely a conservative approach. Following the approximation within Section 4.1.1, we assign the absolute uncertainty,

9.5 hPa, as equivalent to 1.96σ and vary the pressure value within this range.

Within the Western Pacific, multiple agencies provide pressure values for the same TC time steps. These agencies include

the JMA, HKO, CMA and US. Pressure values from these various agencies for each TC and time step were compared against

each. The comparisons were used to calculate the mean standard deviation, which returned as 2.13 hPa and set as equivalent to320

1.96σ.

4.1.5 B parameter

The B parameter is not provided directly in the IBTrACS dataset, but rather calculated from other variables. These variables

are the central pressure and the maximum wind speed. As such, there is no documented uncertainty associated with the B

parameter. To estimate its uncertainty, the error propagation formula for correlated variables is applied:325

σ2
b =

(
∂b

∂Vmax

)2

σ2
Vmax

+
(

∂b

∂Pc

)2

σ2
Pc

+ 2
(

∂b

∂Vmax

)(
∂b

∂Pc

)
Cov(Vmax,Pc) (11)

This expression is derived from the first-order Taylor expansion, and its general application is described in Taylor (1997),

while its application to meteorological contexts is described in detail in BIPM and IEC and IFCC and ILAC and ISO and

IUPAC and IUPAP and OIML (2008).

The estimation relies on the assumption that the errors are small compared to the mean of the maximum wind speed and the330

pressure, the errors are unbiased and symmetric, and the errors are independent, or the covariance is accounted for, which is

the case here.

In the Western Pacific, the uncertainty in wind speed varies over time, resulting in corresponding temporal variation in the B

parameter uncertainty. Once the variation in wind speed uncertainty over time is taken into account, for each time period, the

mean B parameter standard deviation is found and used. In contrast, for ECUS, only data from 2001 onward are used, during335

which a single wind speed uncertainty value applies. Consequently, a single B parameter uncertainty estimate is reported for

the ECUS region.

4.1.6 Scaled Wind Speed

The Holland model returns the wind speed at the gradient level. To understand the wind speed impact on offshore infrastructure,

the wind speed at a more relevant height should be calculated. The method of scaling the wind height from the gradient level340
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Table 9. B Parameter Standard Deviation (unitless)

Northern Atlantic Western Pacific

1973 - 1984 na 0.6999

1984 - 1987 na 0.3362

1987 - 1995 na 0.5433

1995 - 2001 na 0.3839

2001 - present 0.2444 0.3839

to 100 m is detailed in Section 2.5. For validation, the wind speed was scaled to 10 m and the value was compared against

IBTrACS. Using the difference between the two, the standard deviation could be calculated.

Table 10. Scaled Wind Speed Standard Deviation (m s−1)

Taiwan Japan ECUS

0.0171 m s−1 0.0216 m s−1 0.0393 m s−1

4.1.7 Contributions to Total Uncertainty

To assess the influence of input parameters on the overall uncertainty of U50, a variance-based sensitivity analysis is performed.

This captures both individual effects and interaction terms. This approach is an approximation of the first and second order345

indices of Sobol (2001). Sobol’s indices are widely used in sensitivity analysis (Dykes et al., 2014; Locatelli et al., 2017; Thapa

and Missoum, 2022; Tsvetkova and Ouarda, 2019), however, this implementation follows a simpler approach: parameters are

randomly sampled within their 95% confidence intervals.

Let xp,m,i be the value of parameter p of Monte Carlo simulation m at grid point i. Normalise each value at each grid point for

each parameter:350

x̃p,m,i =
xp,m,i−xp,i

xp,i
, (12)

where xp,i is the mean of all simulation values for grid point i and parameter p. Firstly, the variation around the mean is

calculated using xp,m,i−xp,i. Following this, the variation is normalised by xp,i to find the relative variation. The relative

variation is used so that direct comparison can be made between parameters which have different units and scales of magnitude.

To calculate the variance (diagonal terms), which represent the individual parameters’ contributions to total uncertainty, the355

following steps are taken:

Firstly, the variance term of parameter p at a singular grid point i is calculated by:

Varp,i =
1
N

∑

m

x̃2
p,m,i (13)

where N is the total number of simulations. The total variance from all parameters is defined as
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Vardiag total =
∑

p,i

Varp,i (14)360

To account for the interaction terms, the covariance is computed, showing how parameter uncertainties interact. A positive

value indicates that the parameters amplify each other’s uncertainty, whereas a negative value indicates that the parameters

partially counteract each other’s uncertainty. The magnitude of the value indicates how strong this interaction is and how much

the interaction contributes to the overall uncertainty. While each Monte Carlo simulation varies a singular parameter at each

time, following the completion of the simulations, x̃p,m,i can be calculated for each parameter at each grid point. This allows365

the calculation of the covariance term between parameters p1 and p2 at a singular grid point i and can be shown as:

Covp1,p2,i = 2
1
N

∑

m

x̃p1,m,i x̃p2,m,i (15)

where N is the total number of simulations. The contribution to the total off-diagonal variance from the covariance terms sum

over all possible combinations:

Varoff-diag total =
∑

x,y
x̸=y

∑

i

Covpx,py,i, (16)370

where x ̸= y ensures that only distinct pairs of parameters are considered at each grid point.

The total variance can be defined as the sum of all variance and covariance terms and is 100%.

Vartotal = Vardiag total + Varoff-diag total (17)

To calculate the percentage of total variation that each individual parameter and each interaction contributes towards is

calculated by summing the variation for each individual parameter and each interaction across all grid points:375

Varp =
∑

i

Varp,i (18)

Varpx,py
=
∑

i

Covpx,py,i, (19)

and dividing by the total variation from all parameters and interactions calculated in Equation 17.

4.2 Uncertainty Results

The mean U50 and the standard deviation were calculated for each parameter for each set of 100 simulations. Each parameter380

was varied exclusively, while all others were held constant. Each parameter was varied within its approximate 95% confidence

interval. The regional results are presented in Fig.s 7, 8 and 9.
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As shown in Tables 11, 12 and 13 across all regions, specific individual parameters dominate the overall uncertainty, rather

than the interactions, where all parameter interactions contribute below 1% in all cases.

The results shown in Tables 11 for Taiwan and 12 for Japan are, as expected, similar. They are close in proximity and385

have similar data restrictions. In both regions, the B parameter dominates the impact on the overall uncertainty. This could

be attributed to the B parameter incorporating the uncertainty of two parameters, leading to a larger combined variance. The

RMW has a smaller impact on the Taiwan and Japan regions; however, it contributes significantly to uncertainty within the

ECUS region, particularly to the south, which will be further discussed in Section 5. Within the ECUS region, RMW, wind

speed and the B parameter have similar uncertainty; however, the method takes into account the entire defined region. From390

Figure 9, it is clear the RMW uncertainty is primarily heightened in the southern half of the region. By breaking the region

down further, the contribution to overall uncertainty would likely shift.

Wind speed uncertainty for all regions has a substantial impact, which is expected given its direct role in the U50 calculation.

Surprisingly, pressure uncertainty shows little influence in all three regions, suggesting that either the Holland model has

low sensitivity to pressure variation or that the uncertainty associated with pressure is minimal. Scaling the wind speed and395

changing the latitude/longitude of the maximum wind speed appear to have a negligible impact on the overall uncertainty.

Examining the interaction contributions to the total uncertainty in Tables 11, 12 and 13, given that RMW, wind speed, and

the B parameter are the biggest individual contributors to uncertainty, it is unsurprising that their interactions are the biggest

contributions to uncertainty. Two notable features of the data are observed: (1) the largest interaction is between the RMW and

B parameter in Taiwan, accounting for 7.2%; (2) the wind speed and B parameter interaction in Japan is negative, indicating400

that the uncertainty of these parameters partially counteract each other. However, given the confidence intervals associated

with all interaction contributions, these effects could be close to negligible. Therefore, the primary focus should remain on the

individual effects.

5 Discussion

There have been several methods developed in the literature to estimate the extreme winds in TC-prone areas.405

Studies on this subject have previously used the IBTrACS data and covered the western North Pacific Ocean, with the winds

at 10 m height, as in Ott (2006); Kong et al. (2024). This study differs from the previous by examining the entire IBTrACS

data records from different agencies. The study area not only includes the western North Pacific Ocean, but also the east coast

of the US. We examine both the wind speeds at 10 m, in order to compare with previous studies, but primarily wind speeds at

100 m, which is more relevant for modern wind turbines.410

In this study, three regions were selected due to relatively high level of activities for offshore wind deployment: Taiwan,

Japan and ECUS. Given a set of data restrictions, data from IBTrACS was used as input to the Holland model. The Holland

model returned a wind field for each given data point. The wind speed was scaled down to 100 m using an adjusted roughness

length. To estimate the adjusted roughness length, the Holland model output was scaled to 10 m and compared against the

maximum wind speed from IBTrACS. The surface roughness, which resulted in the best fit to the IBTrACS values, was415
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. Monte Carlo Simulation results for Taiwan. (a)-(f) shows the mean wind speed from 100 simulations for each varying parameter and

(g)-(l) shows the standard deviation from 100 simulations for each varying parameter. (a) and (g): Wind speed. (b) and (h): Eye coordinates.

(c) and (i): RMW. (d) and (j): Pressure. (e) and (k): B parameter. (f) and (l): Scaled Wind Speed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Monte Carlo Simulation results for Japan. (a)-(f) shows the mean wind speed from 100 simulations for each varying parameter and

(g)-(l) shows the standard deviation from 100 simulations for each varying parameter. (a) and (g): Wind speed. (b) and (h): Eye coordinates.

(c) and (i): RMW. (d) and (j): Pressure. (e) and (k): B parameter. (f) and (l): Scaled Wind Speed.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9. Monte Carlo Simulation results for ECUS. (a)-(f) shows the mean wind speed from 100 simulations for each varying parameter and

(g)-(l) shows the standard deviation from 100 simulations for each varying parameter. (a) and (g): Wind speed. (b) and (h): Eye coordinates.

(c) and (i): RMW. (d) and (j): Pressure. (e) and (k): B parameter. (f) and (l): Scaled Wind Speed.
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Table 11. Contribution to Total Uncertainty in Taiwan (Percentage)

Parameter Percentage Std Interaction Percentage Std

Wind Speed 23.0% 7.0% Position 0.1% 0.7%

RMW 1.2% 1.0%

Pressure 0.3% 0.2%

B Parameter 1.8% 2.4%

Scaled Wind Speed 0.0% 0.0%

Position 1.2% 1.21% RMW -0.3% 0.5%

Pressure -0.0% 0.1%

B Parameter -0.0% 0.93%

Scaled Wind Speed 0.0% 0.0%

RMW 8.3% 9.8% Pressure 0.1% 0.1%

B Parameter 7.2% 5.1%

Scaled Wind Speed 0.0% 0.0%

Pressure 0.5% 0.3% B Parameter 0.7% 0.4%

Scaled Wind Speed 0.0% 0.0%

B Parameter 56.7% 8.7% Scaled Wind Speed 0.0% 0.0%

Scaled Wind Speed 0.0% 0.0%

selected. The standard deviation of the fit was used within the Monte Carlo simulations. As the surface roughness was selected

based on comparison against 10 m data, and this study primarily focuses on wind speeds at 100 m, there is potential for further

uncertainty to arise, which has not been taken into account. Following the scaling of the wind speed to 100 m, at each grid

point, the annual maxima was calculated. Lastly, using the Gumbel distribution, U50 was calculated as the final result.

Monte Carlo simulations were used for uncertainty analysis, where the parameters including wind speed, position, RMW,420

pressure, B parameter and scaled wind speed were randomly varied 100 times within their 95% confidence interval range.

How well the method performed in each of the regions and the associated errors can be attributed to regional differences in TC

characteristics.

The method seemed to work well for the Taiwan region by comparison against other studies. The maximum wind speed

of U50 at 10 m from this study was 0.7 ms−1 larger than that from Ott (2006), 2.3 ms−1 larger than Kong et al. (2024) and425

0.3 ms−1 smaller than that in Larsén and Ott (2022). It also presented a similar spatial distribution of winds in which the

maximum winds occur to the north-east of the Philippians, high wind speeds extend north, while gradually weakening towards

the south of Japan and weaker wind speeds to the west of the Philippians compare to the east of the Philippians. The three

studies previously mentioned also included the Japan region, also showing the peak wind speeds occurring to the south of

Japan, gradually weakening as the latitude increases. The ECUS region differed from the previous two by deviating from430

expectations.
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Table 12. Contribution to Total Uncertainty in Japan (Percentage)

Parameter Percentage Std Interaction Percentage Std

Wind Speed 29.2% 17.7% Position 0.4% 1.0%

RMW -0.3% 4.7%

Pressure -0.3% 1.0%

B Parameter -3.4% 3.1%

Scaled Wind Speed 0.0% 0.0%

Position 1.0% 1.25% RMW 0.2% 0.6%

Pressure -0.1% 0.8%

B Parameter -0.2% 1.0%

Scaled Wind Speed 0.0% 0.0%

RMW 6.2% 6.4% Pressure -0.0% 0.1%

B Parameter 4.5% 4.0%

Scaled Wind Speed 0.0% 0.0%

Pressure 2.6% 4.3% B Parameter 0.8% 1.8%

Scaled Wind Speed 0.0% 0.0%

B Parameter 59.5% 16.9% Scaled Wind Speed 0.0% 0.0%

Scaled Wind Speed 0.0% 0.0%

Here, we discuss the differences between the regions, primarily why the ECUS looks to be less reliable than the other

regions.

Firstly, the focus will be on the prominent appearance of specific tracks within the ECUS region in comparison to the much

weaker appearance in Japan and Taiwan. By evaluating the data availability of these regions, it becomes apparent that, per year435

on average, the ECUS region has the least amount of data points, which can be calculated from Table 2. The smaller data count

is then coupled with the wider spatial spread of data points, as shown in Fig. 6c. Following this, the ECUS neighbouring grid

points can exhibit larger variations in annual maximum wind speeds compared to Japan and Taiwan. In Taiwan and Japan the

spatial gradients are generally smoother. The Gumbel distribution is fitted directly to the annual maxima at each grid point,

meaning that, the larger differences in annual maxima for neighbouring grid points will produce different U50 estimations,440

causing the fragmented appearance.

Secondly, within the ECUS, it was also expected to see the highest wind speeds consistently appear at lower latitudes due to

the correlation of lower latitudes and smaller RMW (Kimball and Mulekar, 2004; Vickery and Wadhera, 2008; Pérez-Alarcón

et al., 2021) which indicate stronger winds (Kimball and Mulekar, 2004; Chavas and Knaff, 2022). While this feature is not

apparent, it can be explained through examination of the Holland model.445

The Holland model is known to underestimate wind speeds at distances two to three times the RMW (Willoughby and Rahn,

2004) as it rapidly decreases the wind speed at these distances. The limitation becomes more pronounced when the RMW
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Table 13. Contribution to Total Uncertainty in ECUS (Percentage)

Parameter Percentage Std Interaction Percentage Std

Wind Speed 23.5% 11.2% Position 0.1% 2.1%

RMW 2.3% 2.2%

Pressure 0.3% 0.3%

B Parameter 2.7% 1.6%

Scaled Wind Speed 0.0% 0.0%

Position 6.94% 8.03% RMW 0.2% 4.19%

Pressure 0.0% 0.5%

B Parameter 0.2% 2.1%

Scaled Wind Speed 0.0% 0.1%

RMW 31.0% 26.8% Pressure 0.1% 0.5%

B Parameter 1.31% 1.61%

Scaled Wind Speed 0.0% 0.0%

Pressure 1.01% 1.5% B Parameter -0.5% 0.7%

Scaled Wind Speed 0.0% 0.0%

B Parameter 30.8% 20.1% Scaled Wind Speed 0.0% 0.0%

Scaled Wind Speed 0.0% 0.0%

is small: the area at two to three times the RMW is still relatively close to the TC’s centre, where wind speeds remain high.

Therefore, the Holland model’s tendency to underestimate winds reduces the accuracy of capturing the extreme wind field from

small-RMW TCs. This problem further exacerbates the first issue, which is why at the lower latitudes we see smaller areas of450

high wind speeds.

In contrast, TCs which track further north in the ECUS region often have larger RMW (Kimball and Mulekar, 2004) and

typically have lower maximum wind speeds (Kimball and Mulekar, 2004; Chavas and Knaff, 2022). While the Holland model

may still underestimate the wind speeds at two to three times the RMW, this corresponds to a distance much further from

the TC’s core, where the wind speeds have already weakened. Due to this, the underestimation primarily affects less critical455

regions of the wind field for this study, while the important core winds are captured reasonably well.

We do not see the spatial fragmentation, to the same extent, occurring within the Taiwan and Japan regions, supporting the

theory that the key of the issue is the smaller dataset in the ECUS region. While the underestimation of winds outside two to

three times the RMW will still be present, the number of data points in Taiwan and Japan is higher, and it is consolidated into

a smaller region in comparison to the ECUS . The annual maxima displays reduced spatial variability between neighbouring460

points which is reflected in the Gumbel distribution and the U50 estimation. Therefore, it is the combination of a smaller dataset

in the ECUS than Taiwan and Japan and a consistent area where small-RMW TCs occur that makes this method less reliable

for the ECUS region.
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This rationalisation is supported by the uncertainty analysis. As shown in Figure 9, the RMW within the southern half of

the ECUS region plays an important role within the uncertainty, whereas its influence in the Taiwan and Japan regions is much465

smaller, (Fig.s 7 and 8), even though the same methodology is applied. The larger uncertainty within the Taiwan and Japan

regions comes from the B parameters. These differences reflect how regional TC characteristics influence outcomes in each of

the regions.

Given that many parameters are involved in this method, Monte Carlo simulations were effective to address the associated

uncertainty. However, the diversity of uncertainties within the IBTrACS data makes this a challenging analysis. While the470

uncertainty analysis undertaken in this study may not capture all possible uncertainties, results could provide an indication of

the potential range of uncertainty and which parameters affect uncertainty the most.

Data availability in the ECUS is heavily limited by the availability of parameter RMW, which is only recorded from 2001

onward. One way to extend the availability is to estimate the RMW using a reanalysis dataset and integrate it with IBTrACS.

Another potential option is to use a synthetic dataset, such as STORM (Bloemendaal et al., 2020b) for the analysis. However,475

this study was intended to specifically focus on IBTrACS data. To better capture the extreme winds from small-RMW TCs, a

variation of the Holland model could be used that captures the differences between the inner core and the outer regions, as is

suggested by Chavas et al. (2015).

6 Conclusions

Overall, this analysis demonstrates that combining IBTrACS data with the Holland model and the Gumbel distribution can480

provide a viable approach for estimating U50 in some TC-affected regions. This approach is most robust in regions with

substantial, spatially consolidated datasets and where RMW are not consistently small, such as in Taiwan and Japan. But in

regions, like the ECUS, in which the dataset does not fit this criteria, the method shows limitations. Monte Carlo simulations

were effective in quantifying uncertainties, highlighting the influence of region specific TC characteristics on the results. While

some uncertainties could remain unaccounted for, the approach offers insight into extreme wind estimation at heights relevant485

for modern wind turbines.

The key findings of this study are summarized as follows:

– The method integrates IBTrACS data, the Holland model, and the Gumbel distribution to estimate extreme wind speeds

U50 at 10 m and 100 m, complementing previous studies.

– Data for the Taiwan and Japan regions is substantial and consolidated into a specific area allowing for smooth spatial490

gradients in the annual maxima when comparing neighbouring grid points, leading to more smooth U50 estimation across

the regions.

– ECUS shows larger variability between neighbouring grid points due to smaller, more widely spread data points which

is exacerbated at the lower latitudes due to a higher occurrence of small-RMW TCs.
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– The Holland model underestimates wind speeds at distances two to three times RMW, particularly affecting small-RMW495

TCs and contributing to spatial fragmentation in ECUS.

– Monte Carlo simulations capture the uncertainty from input parameters, though some sources of uncertainty remain

unquantified.

Data availability. The IBTrACS data is available at https://www.ncei.noaa.gov/products/international-best-track-archive, https://doi.org/10.

25921/82ty-9e16 (Gahtan et al., 2024), https://doi.org/10.1175/2009BAMS2755.1 (Knapp et al., 2010).500
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Appendix A: Appendix A

Table A1. Abbreviation

Abbreviation Full Name

CFSR Climate Forecast System Reanalysis

CMA China Meteorological Administration

ECUS East Coast of the United States

ERA5 European Centre for Medium-Range Weather Forecast Reanalysis v5

IBTrACS International Best Track Archive for Climate Stewardship

IEC International Electrotechnical Commission

JMA Japan Meteorological Agency

HKO Hong Kong Observatory

MERRA2 Modern-Era Retrospective analysis for Research and Applications

NOAA National Oceanic and Atmospheric Administration

RMW Radius of Maximum Winds

TC Tropical Cyclone

US United States
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