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Abstract. Accurate estimation of hub-height wind speed is crucial for wind resources assessment at
prospective sites. Traditionally, long-term wind speed series are derived from short-term site observations
combined with reanalysis products, most commonly the ERAS single-level data at 10 m and 100 m heights.
However, the coarse spatial resolution of ERAS limits their reliability in complex mountainous regions,
leading to weak correlations with local wind measurements due to not adequately resolved near-surface
flow. This study investigates whether the use of wind speed estimates from upper atmospheric levels (i.e.,
model levels) of ERAS5 model level data set can improve wind speed representation in complex terrain. We
compared ERAS with hourly wind speed observations at 80 m from four meteorological masts located at
high elevations (2829-3796 m a.s.1.) in the tropical Andes of southern Ecuador, and developed site-specific
Random Forest (RF) models for calibrate ERA5 wind speeds. Our findings reveal that wind speeds from
upper model levels (~ 1000 — 1500 m for most of the sites) exhibit substantially stronger correlations with
mast observations than the theoretical hub-height. Compared with single-level inputs, model-level-driven
RF estimates achieved average improvements of 59% in Perkins Skill Score (PSS), 40% in R?, and 23% in
MAE/RMSE. Importantly, the bias in annual energy production (AEP) decreased to less than 7%, in
contrast with 22% when using ERAS single-level data. These improvements were greater for sites located
on exposed peaks, which are often preferred locations for wind farms, where the local flow is better captured
by upper model levels. Overall, our results demonstrate that selecting appropriate upper ERAS5 model levels
offers a cost-effective strategy to generate accurate, site-specific hub-height wind speed time series in
complex terrain. We encourage the wind energy community to exploit these upper atmospheric levels of
ERAS to enhance wind resource assessments in mountainous regions.

1. Introduction

Understanding long-term wind speed at turbine height is essential for the wind energy industry, particularly
for site assessment and energy yield estimation (Watson, 2023). Direct in-situ measurements from
meteorological masts remain the gold standard for assessing wind resources at onshore locations (McKenna
et al., 2022; Watson, 2023). However, due to the high costs associated with deploying this infrastructure
and the urgent demand for wind energy development, these measurement campaigns typically span only 1—
2 years. Such short-term datasets are insufficient to capture the long-term wind conditions needed for
accurate wind resource assessment over a project's lifetime (Basse et al., 2021). To overcome this limitation,
the Measure—Correlate—Predict (MCP) methodology is widely used to extrapolate short-term wind speed
records. MCP involves correlating measurements at the candidate site with long-term data from nearby
reference sites, typically using linear regression techniques (Carta et al., 2013; Houndekindo & Ouarda,
2025b). In recent years, MCP methods have evolved to incorporate machine learning approaches for
building transfer functions and have increasingly relied on wind data from Numerical Weather Prediction
(NWP) models as reference sources, especially in areas lacking in-situ measurements (e.g., meteorological
masts or weather stations) (Houndekindo & Ouarda, 2025b).

Data from NWP models, particularly mesoscale simulations and global reanalysis datasets—have become
increasingly common as reference sources in MCP applications (Houndekindo & Ouarda, 2025b). Although
mesoscale models offer higher spatial and temporal resolution than global reanalyses, they are available
only for limited areas worldwide and typically cover less than 20 years (Borgers et al., 2024). This constrain
is primarily due to the substantial computational resources required to run these models, limiting their utility
for most parts of the world (McKenna et al., 2022). In contrast, reanalysis although with a coarser spatial
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and temporal resolution than mesoscale models, it provides a global coverage making it useful in remote
areas (i.e., non-historical monitoring sites). Moreover, they often span multiple decades (e.g., 40 to 100
years) making them suitable for long-term resources assessments. Among these, the fifth generation
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis system (ERAS) is the
preferred reanalysis in the wind power meteorology community (Olauson, 2018). Studies by Ramon et al.
(2019) and Gualtieri (2022) highlight its superior accuracy, reduced uncertainty, and greater reliability
compared to other global reanalysis datasets.

Although ERAS wind speed data is sufficiently reliable on offshore and flat areas, significant discrepancies
are observed in mountainous regions. It is well-known that ERAS tends to underestimate wind speeds—
and thus wind power potential—in these complex terrains (Gualtieri, 2022). Additionally, the temporal
variability of wind is reproduced less accurately compared to flat or offshore locations. These inaccuracies
are largely attributed to ERAS’s coarse spatial resolution, which fails to capture the intricate topography
and surface roughness of mountainous areas. Grid-averaged winds in such regions often overlook speed-
up effects induced by terrain features (Gualtieri, 2022). In offshore and flat locations, several studies have
attempted to improve the MCP estimates incorporating physically-based covariates from ERAS and data
from mesoscale models using machine learning methods, particularly random forest (e.g., Bodini et al.,
2023; Hallgren et al., 2024; Liu et al., 2023; Rouholahnejad & Gottschall, 2025; Schwegmann et al., 2023).
Conversely, in mountainous areas, research in this regard is extremely limited. One notable exception is the
study by Cavaiola et al. (2023), who developed a random forest model using physics-based ERAS variables
related to wind speed to estimate long-term wind power in the Alpine region. Besides, the above-mentioned
studies incorporated additional meteorological or physical variables, all of them pointed out wind speed as
the most critical predictor. Therefore, efforts to obtain accurate wind speed are of most relevance.

Expanding wind energy capacity, besides being strategic worldwide, is especially relevant in regions with
a low diversified energy matrix. This is the case of Ecuador, which although having considerable wind
resource potential in the Andes mountains, yet wind power currently accounts for only 0.6% of national
electricity production (Godoy et al., 2025), revealing a largely untapped opportunity for renewable energy
diversification. Additionally, the severe droughts experienced in 2023 and 2024 further exposed the
vulnerability of Ecuador’s electricity sector, which remains highly dependent on hydropower (Tapia et al.,
2026). Expanding wind energy capacity is therefore strategic not only for diversifying the national energy
matrix and increasing resilience during drought events, but also for supporting carbon-neutrality goals. In
light of these challenges, there is an urgent need for robust wind resource assessment studies to guide future
development. However, most potential wind farm locations in the region are situated in complex
mountainous terrain, where reanalysis-based wind resource estimates remain highly uncertain.

Martinez et al. (2024) highlighted that global and regional reanalysis tend to underestimate actual site
elevations due to the smoothed representation of orography in the Andes. It is known that NWP models
(which form the basis of reanalysis datasets) are highly sensitive to lower boundary conditions (Hahmann
et al., 2020). The degree of topographic smoothing negatively affects their ability to simulate terrain-
induced wind phenomena such as anabatic and katabatic flows, mountain waves, and valley channelling
which are often lost in coarse-resolution models (Kumar et al., 2025). Recent findings by Pauscher et al.
(2024) indicate that reanalysis products tend to underestimate wind speeds at sites located above the grid-
cell mean elevation and overestimate them at sites below it in complex terrain. This raises the question of
whether wind speed estimates from reanalysis at elevations higher than the traditionally used levels (i.e.,
10 m and 100 m) could provide a better match with observations in mountainous areas.

Our hypothesis is that, in mountainous regions, wind speed from upper model level in ERAS are more
representative of conditions at wind farm sites, as these locations are often exposed to free-atmospheric
flow rather than surface-level wind dynamics. It is important to highlight that ERAS single level dataset
(10 m and 100 m wind components above the ground) has been stablished as a standard dataset in this field.
Thus, wind speed from ERAS5 single level data has been commonly used as input data for MCP studies both
offshore and onshore. However, ERAS model level dataset also provides more detailed vertical resolution
data in the atmosphere (i.e., 137 model level heights) which may be more relevant for a detailed wind
energy assessment. Note that this dataset has only been used in few studies, particularly at offshore locations
due the higher height of wind turbines in comparison to onshore sites (e.g., Brune et al., 2021; Cheynet et
al., 2025; Hahmann et al., 2022; Hallgren et al., 2024; Soares et al., 2020). Given the mismatch between
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the orography represented in reanalysis data and the actual terrain of mountainous sites, utilizing higher-
altitude wind speed data from ERAS5 may be crucial for improving wind speed estimations in these areas.

Therefore, the aim of this study is to evaluate whether the use of higher atmospheric levels from ERAS
model level dataset can improve wind speed estimates and provide a more reliable time series for wind
resource assessment in the mountainous regions. Our study area is the tropical Andes of southern Ecuador
between 2829 and 3796 m a.s.l. To this end, we first analysed the relationship between observed wind speed
time series at hub height (80 m) and ERAS wind speed estimates across various model levels, ranging from
10 m to approximately 3200 m above ground level, in order to identify the model level that best represents
wind conditions at the study sites. Next, we developed a random forest model to calibrate ERAS and predict
wind speed estimates, using the optimal model height of wind speed from the model level dataset and
comparing against a reference model composed with the single level wind speed dataset. Finally, we
assessed the impact of these calibrated wind speed estimates on annual energy production (AEP), applying
power curves from existing wind farms in Ecuador. The findings of this study provide valuable insights for
improving wind speed estimation for wind resources assessment in complex terrains using reanalysis
datasets.

The structure of the paper is as follows: Section 2 describes the datasets and methodology; Section 3
presents the results; Section 4 discusses the findings; and Section 5 concludes the study with a summary
and final remarks.

2. Materials and methods

2.1. Study area and in-situ masts

Our study area is located in the Andes of southern Ecuador, spanning the provinces of Cafiar, Azuay, and
El Oro (Fig. 1). The region is characterized by complex topography and heterogeneous land cover. High
wind power potential has been identified in areas situated above 2000 meters above sea level (m a.s.l.),
primarily along the ridges of the Andean Cordillera, near the Continental Divide of the Americas. This wind
potential has led to the planning of several wind farm projects in the region, including the construction of
Ecuador’s largest operating wind farm, Minas de Huascachaca (57 MW).

The spatio-temporal variability of wind in the study area, and more broadly in the Andean region of
Ecuador, is influenced by both synoptic and valley-scale circulation patterns. At the seasonal scale, wind
patterns are primarily driven by the migration of the Intertropical Convergence Zone (ITCZ). The windy
season, which extends from June to September, corresponds to the northward migration of the ITCZ during
the boreal summer, strengthening the southern trade winds. Conversely, the calm season, from October to
May, is associated with the southward shift of the ITCZ over Ecuador (Lopez et al., 2023). Throughout the
year, winds predominantly flow from the east and southeast, while westerly winds are more common during
the calm season, particularly at sites located closer to the lower western flanks of the Andes. At the daily
scale, thermally induced winds contribute to variability: anabatic winds occur during the day as heated air
rises along mountain slopes, while katabatic winds prevail at night as cooler air descends.

Wind observations were collected from four operational meteorological masts managed by the Electric
Corporation of Ecuador (CELEC EP): M1, M2, M3, and M4 (Fig. 1). M4, located in the northern part of
the study area, is predominantly surrounded by cattle grazing lands and croplands. M1 and M2, situated
centrally within the region, are representative of highland environments characterized by alpine grasslands
locally known as pdramo. M3, in the southwest of the study area, is also surrounded by pdramo and pine
forest. All masts are situated in wind exposed sites on ridges or hilltops.

The masts measure various meteorological variables; however, for this study, only wind speed data were
used. Each mast is equipped with four first-class cup anemometers (Thies CLIMA 4.331.10.000) measuring
wind speed at heights of 40, 60, 78, and 80 m above ground level, with readings recorded every 10 minutes.
For our analysis, wind speed measurements at the highest level (80 m) were used. To ensure consistency
between the temporal resolution of the ERAS5 data and the mast observations, hourly wind speed averages
were computed from the 10-minute measurements. Only complete hours, defined as those with at least six
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valid 10-minute measurements, were included to avoid uncertainties in the hourly calculations. The wind
speed observations cover the period from January 1, 2021, to December 31, 2024.

Wind speed data at 80 m underwent quality control, through detailed visual inspection and correlation
analysis with wind speed measurements at the other heights, was done following MEASNET guidelines
(MEASNET, 2022). Data from July 20, 2022, to September 8, 2022, at M2 were excluded due to sensor
failure. Additional data gaps were identified, mainly related to maintenance campaigns and intermittent
power outages caused by persistent cloudy conditions at the sites. Further details on data gaps and site
characteristics are provided in Table 1.

Table 1: Details of the study sites and data availability at 80 m during the study period. The terrain
category was calculated using the standard deviation of elevation within a 10 km radius around each
site based on the criteria of Borowski et al. (2025).

Site Elevation Land cover Landform SD Eievaion  Terrain category Data
(mas.l.) (mas.l) availability
(%)
M1 3796 Paramo Ridge 471 Very complex 93.2
M2 3690 Paramo Ridge 317 Very complex 83.4
M3 3246 Paramo/Pine Forest Ridge 671 Very complex 99.6
M4 2829 Agriculture Hilltop 536 Very complex 97.4

[Istudyarea
A Mast
M4 (2697) [ eraspinel
A Orography (m a.s.l.)

I o500
[ 500- 1000
[ 1000- 1500
[ 1500 - 2000
[ 2000- 2500
[ 2500- 3000
[ 3000 - 3500
[ 3500 - 4000
[ 4000 - 4500
[ 4s00- 5000

M3 (2121)

Figure 1: Map of the study area and location of meteorological masts. The orography of the study
region according to the Shuttle Radar Topography Mission (SRTM) digital elevation model (30 m)
and the ERAS (~31 km) is shown in (a) and (b), respectively. In parenthesis is the in-situ and ERAS
elevation of sites in m a.s.l. The variability of orography inside the ERAS pixel for each site is shown
in (¢). Grid coordinates were omitted from all maps for confidential proposes.

2.2. ERAS data
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ERAS is the fifth-generation reanalysis product developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF). It combines numerical weather prediction models with historical
observational data using the Integrated Forecasting System (IFS) Cycle 4112 assimilation model to provide
hourly atmospheric variables dating back to 1940 (Hersbach et al., 2020). The spatial resolution of the
ERAS reanalysis dataset is approximately 31 km, with global coverage.

Two ERAS datasets were used in this study: (1) ERAS data on single levels, which provide wind
components at 10 m and 100 m above ground level, and (2) ERAS data on model levels, which provide
wind components from the surface up to approximately 80 km altitude across 137 vertical levels. The first
dataset has been widely used for wind resource assessment and is considered a standard reference in the
wind energy industry, whereas ERAS model level data have been less commonly applied in the literature.

A total of 33 model levels, ranging from 10 m (level 137 - L137) to approximately 3000 m (level 105 -
L105), were selected from the ERAS5 model level dataset to evaluate their relationship with wind
observations. The wind components from both ERAS datasets were downloaded using the Climate Data
Store API in Python. For each of the four mast locations, ERAS data were extracted from the nearest grid
points without interpolation (see Fig. 1). This means that M1 and M2 masts have the same timeseries.
Finally, wind speed was calculated from the u and v wind components for both datasets.

2.3. Evaluation and selection of optimal heights from ERAS model level data

Measure-Correlate-Predict (MCP) methods traditionally require a high degree of correlation between wind
speed observations and reference data (e.g., reanalysis datasets) to be considered suitable for wind speed
prediction. This is commonly assessed using the correlation coefficient (Carta et al., 2013). We used the
Pearson correlation coefficient to evaluate the relationship between wind speed measurements from the
meteorological masts and wind speeds from various ERAS5 model levels (ranging from 10 m to 3000 m).
The model level height with the strongest correlation was then selected to estimate wind speed.

24. Wind speed prediction

Wind speed predictions were obtained using the Random Forest (RF) algorithm (Breiman, 2001). This
method has been widely used in recent years to estimate wind speed and wind energy production due to its
high flexibility and robustness. RF has demonstrated comparable results to other sophisticated machine
learning models (Abdelsattar et al., 2025), and is considered one of the most popular methods for wind
speed prediction (Houndekindo & Ouarda, 2025).

The RF algorithm builds an ensemble of individual decision trees. Each tree is constructed using a random
subset of the training data, which minimizes overfitting and ensures independent predictions. The final
prediction is computed as the average of the individual tree outputs. Additional details on the RF algorithm
can be found in Breiman (2001) and Gentleman and Poggi (2020).

In this study, the RF model was preferred over a conventional regression model because it provides more
consistent predictions (e.g., non-negative values), particularly at low wind speeds. Accordingly, the RF was
applied to estimate wind speed at 80 m for each site, using observed wind speed at this height as reference
data and ERAS wind speed as predictors. Specifically, we trained two RF models: (1) RF1 - a model using
hourly wind speed at 10 m and 100 m from the ERAS5 single-level dataset, and (2) RF2 - a model using
hourly wind speed at the height with the strongest correlation to mast measurements from the ERAS model-
level dataset (identified in section 2.3). The first model serves as a benchmark to compare the differences
and potential improvements achieved by using the optimal model level height. It is important to note that,
although most studies commonly use either 10 m or 100 m ERAS wind speed variables to estimate near-
surface wind speeds, we used both variables, as this combination explained a greater portion of variance in
the RF models than using a single variable alone (see Table. Al).

For each site, both models were trained using observed hourly wind speed data from the first three years of
the monitoring campaign (i.e., January 2021 to December 2023), and model performance was evaluated
using data from the last year (i.e., January 2024 to December 2024). Further details on the number of
samples used for training and testing for each site are provided in Table 2.

The number of trees and the minimum leaf size, which are the most important parameters of the RF model,
were set to 500 and 5, respectively. These values correspond to the recommended default settings of the
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randomForest function in R (Breiman et al., 2025). Since the main objective of this study is to highlight
the improvements achieved by incorporating appropriate ERAS5 wind speed heights, we did not conduct a
hyperparameter optimization for each site. This decision is further supported by the fact that some studies
have reported similar values for their optimal parameter settings (Hallgren et al., 2024; Liu et al., 2024).

Table 2: Number of samples used for training period (2021-2023) and testing period (2024) for the
random forest models. Percentage of data available relative to each period is shown in parentheses.

Site Training period Testing period

M1 23890 (90.9%) 8784 (100%)

M2 20458 (77.8%) 8784 (100%)

M3 26125 (99.4%) 8784 (100%)

M4 25904 (98.6%) 8237 (93.8%)
2.5. Performance evaluation metrics

In order to quantify the discrepancies between the wind speeds estimated by the RF models and the mast
wind speed data, three commonly used metrics were employed: root mean squared error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R?). The RMSE quantifies the average
magnitude of the errors and indicates how much the predictions deviate from the reference data. A higher
RMSE reflects larger deviations, as this metric gives greater weight to larger errors due to the quadratic
term. The MAE calculates the mean of the absolute differences between the reference values and the
predictions, treating larger and smaller errors equally without applying additional weighting. The R?
coefficient measures the strength of the linear correlation between the observed and predicted wind speeds.
These metrics are defined as follows (Eqgs. 1-3):

RMSE = ’71[ =902 Q)]

1 A
MAE = —¥iqly: — il (@)
Zit, 0i=90)?
2= q_ Zin 0im90*
R 1 T i-9)? &

where y; and J; are the ith measured and the corresponding predicted values of wind speed. The average
of the measured wind speed values is denoted by ¥. The total sample size in the test set is N.

In addition, the Perkins Score Skill test (PSS) was employed to quantifies the discrepancies in the frequency
distribution between estimated and observed wind speed using Eq. (4).

PSS (H1rH2) = ZL=1 MIN(Fgl'FII';Z) “)

where H; and H, represents the first and second histogram and F? represents the normalized frequency for
bin b. The PSS represents the fraction of overlap between the two histograms, so that a PSS of 1 represents
complete overlap while a value of 0 indicates a complete mismatch. The PSS was calculated considering a
detailed bin width of 1 m s™! similar to Borgers et al. (2024).

2.6. Wind energy estimation and evaluation

This subsection outlines the methodology used to evaluate how wind speed data from different RF models
(i.e., using ERAS single-level or model-level data) influence the estimated annual energy production (AEP)
at the four study sites. Two power curves were considered in the analysis, based on the turbines installed in
existing wind farms in continental Ecuador (Villonaco: 2700 m a.s.l. and Minas de Huascachaca: 1100 m
a.s.l.): the Goldwind GW70/1500 and the Vestas V112/3450. Although Minas de Huascachaca operates
with Dongfang Electric Corporation wind turbines, the corresponding power curves were not publicly
available. Therefore, we used the Vestas V112/3450 power curve, which has similar characteristics to the
turbines installed at that site. Details on the turbine operational ranges, hub heights, and the power curves
used in this study are provided in Table 3 and Fig. A2 (in Appendix section), respectively.
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The AEP was calculated using wind speed estimates from the RF models at a hub height of 80 m. The
percentage error (PE) was used to quantify the differences in wind energy estimates based on the different
wind speed predictions. This evaluation was carried out for the year 2024 which was not part of the RF
training dataset. The PE was calculated using Eq. (5).

AEPRp—-AEPsyN
AEPRp

PE = x 100% )

where AE Py is the annual energy production modelled from wind speed estimated by the RF models, and
AEPgy ), is the synthetic annual energy production modelled from observed wind speed data.

Table 3: Details of the wind turbines considered in the study.

Model Power Cut-in  Rated Cut-off  Hub height Rotor Wind class
(MW) wind wind wind range (m) diameter
speed speed speed (m)
(ms!  (ms!) (msh)
GW70/1500 1.5 2.5 14 25 65 -100 70.3 IEC Ia/llal
V112/3450 3.45 4 12.5 25 69 -94 112 IEC A
3. Results
3.1. Evaluation and selection of optimal heights from ERAS model level data

The correlation between wind speed observations and ERAS model level data at different heights above
ground level (i.e., geometric altitude) is shown in Fig. 2. An inverted parabolic relationship is observed
between correlation magnitude and height: correlation values increase steadily from ~0.27 — 0.74 at hub-
height (79.04 m; the closest ERAS model level height) until reaching a maximum of ~0.80 — 0.89, after
which the correlation begins to decrease. The maximum correlation between observations and ERAS data
was consistently achieved at heights substantially higher (~600 - 1500 m) than the measurement height (80
m) across all mast locations. To corroborate our findings, we performed the same analysis at 3 sites with
flat topography in the Coast region of Ecuador (2 located at the coastline and 1 at inner location) (see Fig.
Al in Appendix). The results showed that, at coastal and flat locations, the strongest correlations with
observed wind speeds occurred near the actual hub height (< 245 m), with little differences in the correlation
values between the closest level to the observations and the height of highest correlation (r <0.03). In
addition, higher correlations between observations and ERAS were observed for the inner site in
comparison of coastal sites. These results using ERAS model level data indicates that wind speeds over flat
terrain is representative of hub-height conditions at coastal and inner flat sites but are not representative in
mountainous areas.
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Figure 2: Correlation between observed wind speed at four sites at 80 m height and ERAS data at
different geometric altitudes for the period Jan-2021 to Dec 2024. The red line shows the closest model
height to the observations. The highest correlation value and their respective altitude and model level
(in parenthesis) are indicated for each site.

Notably, at M3, the correlation increased from approximately 0.27 at the measurement hub height to 0.86
at the height of maximum correlation, underscoring the potential for improving wind speed estimates by
identifying optimal model heights. This pronounced difference, compared to the other sites, may be
attributed to the larger discrepancy between the actual site elevation and the ERAS model elevation. The
height of maximum correlation was similar for M1, M3, and M2, while for M4 it occurred at a lower
elevation. Interestingly, the magnitude of the maximum correlation was comparable for M1 (0.887), M2
(0.857), and M3 (0.864)—all of which are located on well exposed areas—but was lower for M4 (0.795),
which is situated around hills probably influencing local wind speed behaviour (see Fig. 1c).

Figure 3 shows the comparison between hourly wind speed time series for the year 2024 for all ERAS
datasets and the observations. The ERAS datasets include wind speeds at 10 m and 100 m, as well as wind
speeds at the closest height to the observations (79.04 m) and at the optimal correlation heights identified
in Fig. 2, both extracted from the ERAS single level and model level dataset, respectively. Fig 3. shows
substantial discrepancies between observed wind speeds and those estimated using ERAS5 single level data
(at 10 and 100 m). The wind speed from the model level data at the height closest to the observations shows
similar variability and magnitude to the ERAS single level data at 100 m showing a systematic
underestimation around the year.

In contrast, the wind speed time series retrieved using the optimal correlation heights demonstrated
substantial improvements in representing wind speed variability across all study sites, although wind speeds
were still underestimated particularly during high wind periods. The dynamics of wind speed were better
captured at the M1 and M2 sites compared to the others. This analysis clearly suggests the potential for
improving wind speed estimates by using higher model level heights from ERAS5 as reference data for MCP
modelling.
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Figure 3: Wind speed time series for the observations and ERAS data in 2024. The times series shows
the 24 h running average instead of the hourly time series for visualization proposes. Note that at M1,
M2 and M3, the wind speed series at 100 m (ERAS single level) and 79.04 m (ERAS model level)
overlap.

3.2. Evaluation of wind speed predictions

The frequency distributions of observed and predicted wind speed is shown in Fig. 4 along with their
evaluation metrics for the validation period (year 2024). A clear difference is observed in the measured
wind speed distribution of M1, M2 and M3 compared to M4 where high frequency of low wind speed
values (<2 m s!) is frequent in comparison to the other sites.

The optimal model height as input for wind speed prediction (i.e., RF2 model) provided the best match with
the observed data for all sites, leading to a higher R? and PSS performances and lower MAE and RMSE
values than the predictions that use ERAS single level data (i.e., RF1 model). The average values of the
four sites show an improvement of 40% in R? values while for MAE and RMSE led an improvement of
23% in both metrics. For PSS, the predictions reach an improvement of 59% respect to the reference model.
These results indicate a higher improvement in the predictions to simulate the wind speed dynamics and
distribution than the magnitude of wind speed.

The wind speed predictions of RF1 showed moderate similarity for all sites, with PSS values ranging from
0.75 t0 0.74 at M1, M2 and M4 and 0.63 at M3. At M1, M2 and M3 it was observed an underestimation of
extreme wind speed values (low and high) and the overestimation of middle range values (from 4-9 m s™).
The RF2 predictions specially overcome these high discrepancies of middle range wind speed values
increasing the PSS above 0.86 for all sites, indicating its superior capability to replicate the observed wind
speed distributions. The improvement is especially remarkable at M3, where the PSS increases from 0.63
in RF1 to 0.90 in RF2.
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variability of wind speeds, particularly at the distribution extremes.
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Figure 4: Comparison of wind speed frequency distributions between observed wind speeds and
predictions from two Random Forest (RF) models across the four study sites for the year 2024. The
left column (RF1) shows results using ERAS wind speeds at 10 m and 100 m (single-level dataset),
while the right column (RF2) shows results using ERAS wind speed at the optimal model level height
identified through correlation analysis. For each site, the figure also displays the performance

metrics.

3.3. Annual wind energy estimation
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The results presented in Table 4 show the annual energy production (AEP) estimates obtained using the
Random Forest models compared to the observed AEP values for different turbine types at the four study
sites. Overall, predictions using the optimal wind speed height (RF2 model) consistently outperformed the
estimates based on ERAS single level data (RF1 model), providing lower percentage errors across all
locations and turbine types.

The percentage error (PE) for RF2 was reduced by approximately a factor of three compared to the reference
model (RF1) for both turbines, indicating substantial improvements in AEP estimation accuracy. The
similar PE values obtained using the two different power curves suggest that the choice of power curve had
little influence on the relative accuracy of the AEP estimates in this case.

The RF2 model achieved the smallest discrepancies at the highest elevation site (M 1), with PE values of -
1.99% for the GW70/1500 turbine and -2.11% for the V112/3450 turbine. In contrast, the largest deviations
were observed at M2, where the PE reached approximately 7%.

These findings highlight the importance of using appropriate ERAS model level heights for improving wind
energy production estimates in complex mountainous environments.

Table 4: Annual Energy Production (AEP) estimates from various wind speed Random Forest models
compared with observed data. The best-performing models, showing the smallest discrepancies, are
highlighted in bold.

Location Turbine PE (%)
AEP (MWh)

RF1 RF2
Ml GW70/1500 7787.97 -7.71 -1.99
V112/3450 18059.60 -7.78 -2.11
M2 GW70/1500 6097.76 -16.35 -7.06
V112/3450 14221.59 -17.60 -7.14
M3 GW70/1500 6059.96 -20.78 -5.72
V112/3450 14063.40 -21.63 -5.77
M4 GW70/1500 3137.02 -18.83 -4.20
V112/3450 7180.74 -20.02 -4.18

4. Discussion

Our study evaluated the hypothesis that, in the Andean mountainous region, wind speed from higher model
levels in ERAS are more representative of conditions at wind farm sites that the traditionally used 10 or
100 m single level ERAS, as these locations are often exposed to free-atmospheric flow rather than surface-
level wind dynamics. Even if the topographic issue in mountain areas was previously identified in the
literature (Gualtieri, 2022), this is the first time that higher model level heights were explored, identifying
its suitability.

The results presented above confirms that ERAS consistently underestimates wind speed variability in the
tropical Andes in line with other studies in complex terrain (e.g., Draeger et al., 2024; Hu et al., 2023;
Jourdier, 2020; Khadka et al., 2022). A central result, in line with our hypothesis, is that higher atmospheric
levels of ERAS (i.e., from model levels dataset) above the hub-height are stronger correlated to observed
wind speed than lower levels at the hub-heights. This is not the case for coastal masts where higher
correlations between ERAS and observed wind speed were very close to the hub-heights (Fig. Al).
Although in both Pacific coast and Andean regions, the highest correlation is above the hub-height of 80
m, these differences are significantly amplified for Andean sites. Therefore, these results support our
hypothesis that observed wind speed in the Andes is more closely tied to upper atmospheric levels of ERAS
than to surface-level data.

Interestingly, optimal heights in the Andes were higher when differences between in-situ measured and
ERAS topography were larger too. This pattern may be explained by the coarse spatial terrain representation

11

WIND
ENERGY
SCIENCE



https://doi.org/10.5194/wes-2025-272

Preprint. Discussion started: 22 January 2026 Py
(© Author(s) 2026. CC BY 4.0 License. e we \

398
399
400
401
402
403

404
405
406
407
408
409
410

411
412
413
414
415
416
417
418
419
420
421
422
423

424
425
426
427
428
429
430
431
432
433
434
435

436
437
438
439
440
441
442
443
444
445

446
447
448
449
450

european academy of wind energy

of ERAS, which smooths the intricated terrain features within each grid cell, simulating lower wind speeds.
For instance, the highest improvement in the level of correlation between hub height and the optimal level
height was achieved particularly in M3 where differences in topography were strong. In this particular case,
M3 is located at a peak compared to most of the surrounding landscape area within the ERAS grid (Fig.
1c). These results highlight the possibility to estimate wind speed using ERAS wind speed for a particular
site by selecting higher model level heights.

A substantial improvement in the prediction of wind speed was obtained using optimal height information
of ERAS model levels in comparison with the commonly used 10 m and 100 m wind speed heights of ERAS
single levels, corroborating the suitability of using this specific dataset for mountain areas. Wind speed
estimation showed similar performance for all sites using the optimal heights of ERAS model levels
compared to the ERAS single level datasets; however, relatively small differences were noticed at M4. The
lower performance in M4 is caused by the lower performance of the RF models in estimating particularly
lower wind speeds (i.e., 0-2 m s™) where high frequency values within this range are common in this site.

Comparing our findings with previous studies in a strictly fair way is challenging because two main reasons:
(i) most studies considered other covariables in the predictive models or/and (ii) include wind speed
observations at surface level (e.g., meteorological stations) as input variables in the predictive models. It is
expected that for both aforementioned cases better wind speed estimates would be achieved compared to
our study that use only a single variable from reanalysis data in comparison to a model that use local
information (e.g., observed wind speed generally at 2 m or 10 m). However, despite the limited input
features included in our model (i.e., a single height of wind speed) and the source of its information (i.e.,
ERAS reanalysis), our results were comparable in terms of performance with previous studies
(Houndekindo & Ouarda, 2025a; Hu et al., 2023; Liu et al., 2023). Liu et al. (2023) used a RF model to
estimate wind speed at several hub-heights using measured wind speed at 10 m (anemometer) and 300 m
(radar wind profiler) and ERAS covariables as input features for a coastal location in China. Hu et al. (2023)
used the eXtreme gradient boosting (XGBoost) algorithm using topographical position index and ERAS
variables to predict wind speed at 10 m over Europe.

Our estimates were also comparable with the outcomes of more sophisticated machine learning algorithms.
For instance, Houndekindo & Ouarda (2025a) used a long short-term memory (LSTM) and transformers
models to bias correct ERAS hourly wind speeds for WRA. The models outperformed static bias correction
approaches and other machine learning methods. Particularly at hilly and mountainous sites, median values
of the testing sites shown an r=0.79. This performance is similar to that of our study, where M1 (r = 0.86),
M2 (r = 0.82) and M3 (r = 0.83) showed even larger r values. In addition, the distribution of wind speed
was better estimated with our approach showing higher values of PSS (PSS > 75% or 0.75). It is important
to note that Houndekindo and Ouarda (2025) included time-resolved covariates (e.g., 10 m u- and 10 m v-
components, 10 m wind speed, 2 m temperature, boundary layer height, and surface pressure) and several
static covariates (derived from a Digital Elevation Model and land cover maps) in their model. All these
comparisons highlight the competitiveness of our parsimonious approach for a local site estimation of wind
speed in complex mountainous areas.

The study of the impact of wind estimates on energy production is not commonly assed in previous studies.
The higher improvement in the reduction of underestimation of AEP estimates is promising for the
evaluation of annual production. The best AEP estimates in M1 in comparison to the other sites are related
to the lower occurrence of low wind speed which all the sites poorly estimate as was indicated previously.
The impact of standard power curves used in this study shown negligible influence on the AEP estimation
in our study area. This is because the cut-in wind speed of turbines considered in the study are above 2-4
m s”, being discarded values below this threshold in the calculation of AEP. This result indicates that wind
speed estimates obtained by our approach could be reliable for the estimation of AEP using different turbine
models. However, higher underestimations would be expected for sites with high frequencies of low wind
speed.

It should be noted that as our main objective was to highlight the suitability of an optimal model level height
to estimate wind speed, no other heights were included in the RF model. Further studies could consider
additional closest level heights to the optimal level as input features to improve the wind speed estimates.
We expect that the inclusion of these levels might improve the representation of interactions between
atmospheric heights as they emulate wind shear effects as was evidenced using 10 m and 100 m ERAS
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wind speed in the reference model. In addition, due to the highly complex topography interactions in the
Andes, sub-grid scale variables from ERAS representing surface-atmosphere interactions could be tested
to improve wind speed estimates. Particularly, gravity waves have been identified as a relevant variable to
estimate wind speed in mountainous areas (e.g., Hu et al., 2023). We are also aware that optimal heights
were obtained after a detailed search of candidate heights which may require analyse relatively large
amounts of information. Thus, future studies are necessary to include more masts sites to identify
relationships between the performance of ERAS and differences in topographical features as a practical
model for the search of optimal levels for sites.

Anticipating the impacts of climate change on the future energy yield of wind farm projects is essential for
strategic planning in the wind industry. A common approach is to directly analyse Global Climate Model
(GCM) projections (e.g., Devis et al., 2018; Hahmann et al., 2022; A. Martinez & Iglesias, 2024). However,
the coarse spatial resolution of GCM data (typically >100 km grid spacing) limits their suitability to regional
or global-scale assessments. Further studies could explore the use of higher atmospheric model levels from
GCMs to support downscaling of wind speed projections to local scales in mountainous regions, without
the need for computationally expensive full dynamical downscaling. Alternatively, a hybrid statistical-
dynamical framework, such as the approach proposed by Borgers et al. (2025), which integrates mesoscale
model output with GCM projections, could offer a promising solution for producing reliable local-scale
wind speed projections in complex terrain and prospective wind farm sites.

5. Conclusions

This study examined whether the use of higher atmospheric levels from the ERAS model-level dataset can
improve wind speed predictions compared to the conventional use of ERAS single-level data in the complex
mountainous terrain of the tropical Andes. Site-specific Random Forest (RF) models were trained using
three years of hourly wind speed observations at 80 m from four high-altitude masts located in southern
Ecuador. The predictions were validated against an independent year of observations and further tested for
energy applications through the estimation of annual energy production (AEP) using two representative
power curves.

The results demonstrate that wind speeds from higher ERAS model levels (i.e., levels above ~1000 m for
most sites) show stronger correlations with observed wind speeds than the conventional single-level data
at 10 m and 100 m. Consequently, the ERAS model level with the highest correlation proved more suitable
for wind speed prediction. Improvements were most pronounced at well-exposed sites located on peaks,
while localized sites with surrounding obstacles (e.g., M4) showed smaller gains. Predictions captured wind
speed variability and distribution more effectively than absolute magnitudes (i.e., RMSE). For energy
applications, the percentage error in AEP was significantly reduced to ~2—7% compared with ~8-22% when
using ERAS single level data.

These findings highlight the potential of combining higher ERA5 model level data with Random Forest
models as a powerful and cost-effective approach for wind resource assessment in mountainous areas. Since
this method relies on freely available reanalysis data and requires relatively low computational cost, it
provides a practical alternative to mesoscale climate models for estimating long-term site-specific wind
speed and energy production in complex terrain.

Appendices

Table Al: Percentage of explained variance of Random Forest models trained using various
combinations of ERAS single level wind speed inputs. In bold the best model for each site.

Input M1 M2 M3 M4
10 m 34.02 36.01 -30.99 21.89
100 m 33.97 39.58 -16.42 31.07
10 m+ 100 m 48.04 50.45 21.78 48.84
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