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Abstract. Accurate estimation of hub-height wind speed is crucial for wind resources assessment at 10 
prospective sites. Traditionally, long-term wind speed series are derived from short-term site observations 11 
combined with reanalysis products, most commonly the ERA5 single-level data at 10 m and 100 m heights. 12 
However, the coarse spatial resolution of ERA5 limits their reliability in complex mountainous regions, 13 
leading to weak correlations with local wind measurements due to not adequately resolved near-surface 14 
flow. This study investigates whether the use of wind speed estimates from upper atmospheric levels (i.e., 15 
model levels) of ERA5 model level data set can improve wind speed representation in complex terrain. We 16 
compared ERA5 with hourly wind speed observations at 80 m from four meteorological masts located at 17 
high elevations (2829–3796 m a.s.l.) in the tropical Andes of southern Ecuador, and developed site-specific 18 
Random Forest (RF) models for calibrate ERA5 wind speeds. Our findings reveal that wind speeds from 19 
upper model levels (~ 1000 – 1500 m for most of the sites) exhibit substantially stronger correlations with 20 
mast observations than the theoretical hub-height. Compared with single-level inputs, model-level-driven 21 
RF estimates achieved average improvements of 59% in Perkins Skill Score (PSS), 40% in R², and 23% in 22 
MAE/RMSE. Importantly, the bias in annual energy production (AEP) decreased to less than 7%, in 23 
contrast with 22% when using ERA5 single-level data. These improvements were greater for sites located 24 
on exposed peaks, which are often preferred locations for wind farms, where the local flow is better captured 25 
by upper model levels. Overall, our results demonstrate that selecting appropriate upper ERA5 model levels 26 
offers a cost-effective strategy to generate accurate, site-specific hub-height wind speed time series in 27 
complex terrain. We encourage the wind energy community to exploit these upper atmospheric levels of 28 
ERA5 to enhance wind resource assessments in mountainous regions. 29 

1. Introduction 30 

Understanding long-term wind speed at turbine height is essential for the wind energy industry, particularly 31 
for site assessment and energy yield estimation (Watson, 2023). Direct in-situ measurements from 32 
meteorological masts remain the gold standard for assessing wind resources at onshore locations (McKenna 33 
et al., 2022; Watson, 2023). However, due to the high costs associated with deploying this infrastructure 34 
and the urgent demand for wind energy development, these measurement campaigns typically span only 1–35 
2 years. Such short-term datasets are insufficient to capture the long-term wind conditions needed for 36 
accurate wind resource assessment over a project's lifetime (Basse et al., 2021). To overcome this limitation, 37 
the Measure–Correlate–Predict (MCP) methodology is widely used to extrapolate short-term wind speed 38 
records. MCP involves correlating measurements at the candidate site with long-term data from nearby 39 
reference sites, typically using linear regression techniques (Carta et al., 2013; Houndekindo & Ouarda, 40 
2025b). In recent years, MCP methods have evolved to incorporate machine learning approaches for 41 
building transfer functions and have increasingly relied on wind data from Numerical Weather Prediction 42 
(NWP) models as reference sources, especially in areas lacking in-situ measurements (e.g., meteorological 43 
masts or weather stations) (Houndekindo & Ouarda, 2025b). 44 

Data from NWP models, particularly mesoscale simulations and global reanalysis datasets—have become 45 
increasingly common as reference sources in MCP applications (Houndekindo & Ouarda, 2025b). Although 46 
mesoscale models offer higher spatial and temporal resolution than global reanalyses, they are available 47 
only for limited areas worldwide and typically cover less than 20 years (Borgers et al., 2024). This constrain 48 
is primarily due to the substantial computational resources required to run these models, limiting their utility 49 
for most parts of the world (McKenna et al., 2022). In contrast, reanalysis although with a coarser spatial 50 
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and temporal resolution than mesoscale models, it provides a global coverage making it useful in remote 51 
areas (i.e., non-historical monitoring sites). Moreover, they often span multiple decades (e.g., 40 to 100 52 
years) making them suitable for long-term resources assessments. Among these, the fifth generation 53 
European Centre for Medium-Range Weather Forecasts atmospheric reanalysis system (ERA5) is the 54 
preferred reanalysis in the wind power meteorology community (Olauson, 2018). Studies by Ramon et al. 55 
(2019) and Gualtieri (2022) highlight its superior accuracy, reduced uncertainty, and greater reliability 56 
compared to other global reanalysis datasets.  57 

Although ERA5 wind speed data is sufficiently reliable on offshore and flat areas, significant discrepancies 58 
are observed in mountainous regions. It is well-known that ERA5 tends to underestimate wind speeds—59 
and thus wind power potential—in these complex terrains (Gualtieri, 2022). Additionally, the temporal 60 
variability of wind is reproduced less accurately compared to flat or offshore locations. These inaccuracies 61 
are largely attributed to ERA5’s coarse spatial resolution, which fails to capture the intricate topography 62 
and surface roughness of mountainous areas. Grid-averaged winds in such regions often overlook speed-63 
up effects induced by terrain features (Gualtieri, 2022). In offshore and flat locations, several studies have 64 
attempted to improve the MCP estimates incorporating physically-based covariates from ERA5 and data 65 
from mesoscale models using machine learning methods, particularly random forest (e.g., Bodini et al., 66 
2023; Hallgren et al., 2024; Liu et al., 2023; Rouholahnejad & Gottschall, 2025; Schwegmann et al., 2023). 67 
Conversely, in mountainous areas, research in this regard is extremely limited. One notable exception is the 68 
study by Cavaiola et al. (2023), who developed a random forest model using physics-based ERA5 variables 69 
related to wind speed to estimate long-term wind power in the Alpine region. Besides, the above-mentioned 70 
studies incorporated additional meteorological or physical variables, all of them pointed out wind speed as 71 
the most critical predictor. Therefore, efforts to obtain accurate wind speed are of most relevance.  72 

Expanding wind energy capacity, besides being strategic worldwide, is especially relevant in regions with 73 
a low diversified energy matrix. This is the case of Ecuador, which although having considerable wind 74 
resource potential in the Andes mountains, yet wind power currently accounts for only 0.6% of national 75 
electricity production (Godoy et al., 2025), revealing a largely untapped opportunity for renewable energy 76 
diversification. Additionally, the severe droughts experienced in 2023 and 2024 further exposed the 77 
vulnerability of Ecuador’s electricity sector, which remains highly dependent on hydropower (Tapia et al., 78 
2026). Expanding wind energy capacity is therefore strategic not only for diversifying the national energy 79 
matrix and increasing resilience during drought events, but also for supporting carbon-neutrality goals. In 80 
light of these challenges, there is an urgent need for robust wind resource assessment studies to guide future 81 
development. However, most potential wind farm locations in the region are situated in complex 82 
mountainous terrain, where reanalysis-based wind resource estimates remain highly uncertain. 83 

Martinez et al. (2024) highlighted that global and regional reanalysis tend to underestimate actual site 84 
elevations due to the smoothed representation of orography in the Andes. It is known that NWP models 85 
(which form the basis of reanalysis datasets) are highly sensitive to lower boundary conditions (Hahmann 86 
et al., 2020). The degree of topographic smoothing negatively affects their ability to simulate terrain-87 
induced wind phenomena such as anabatic and katabatic flows, mountain waves, and valley channelling 88 
which are often lost in coarse-resolution models (Kumar et al., 2025). Recent findings by Pauscher et al. 89 
(2024) indicate that reanalysis products tend to underestimate wind speeds at sites located above the grid-90 
cell mean elevation and overestimate them at sites below it in complex terrain. This raises the question of 91 
whether wind speed estimates from reanalysis at elevations higher than the traditionally used levels (i.e., 92 
10 m and 100 m) could provide a better match with observations in mountainous areas. 93 

Our hypothesis is that, in mountainous regions, wind speed from upper model level in ERA5 are more 94 
representative of conditions at wind farm sites, as these locations are often exposed to free-atmospheric 95 
flow rather than surface-level wind dynamics. It is important to highlight that ERA5 single level dataset 96 
(10 m and 100 m wind components above the ground) has been stablished as a standard dataset in this field. 97 
Thus, wind speed from ERA5 single level data has been commonly used as input data for MCP studies both 98 
offshore and onshore. However, ERA5 model level dataset also provides more detailed vertical resolution 99 
data in the atmosphere (i.e., 137 model level heights) which may be more relevant for a detailed wind 100 
energy assessment. Note that this dataset has only been used in few studies, particularly at offshore locations 101 
due the higher height of wind turbines in comparison to onshore sites (e.g., Brune et al., 2021; Cheynet et 102 
al., 2025; Hahmann et al., 2022; Hallgren et al., 2024; Soares et al., 2020). Given the mismatch between 103 
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the orography represented in reanalysis data and the actual terrain of mountainous sites, utilizing higher-104 
altitude wind speed data from ERA5 may be crucial for improving wind speed estimations in these areas.  105 

Therefore, the aim of this study is to evaluate whether the use of higher atmospheric levels from ERA5 106 
model level dataset can improve wind speed estimates and provide a more reliable time series for wind 107 
resource assessment in the mountainous regions. Our study area is the tropical Andes of southern Ecuador 108 
between 2829 and 3796 m a.s.l. To this end, we first analysed the relationship between observed wind speed 109 
time series at hub height (80 m) and ERA5 wind speed estimates across various model levels, ranging from 110 
10 m to approximately 3200 m above ground level, in order to identify the model level that best represents 111 
wind conditions at the study sites. Next, we developed a random forest model to calibrate ERA5 and predict 112 
wind speed estimates, using the optimal model height of wind speed from the model level dataset and 113 
comparing against a reference model composed with the single level wind speed dataset. Finally, we 114 
assessed the impact of these calibrated wind speed estimates on annual energy production (AEP), applying 115 
power curves from existing wind farms in Ecuador. The findings of this study provide valuable insights for 116 
improving wind speed estimation for wind resources assessment in complex terrains using reanalysis 117 
datasets.  118 

The structure of the paper is as follows: Section 2 describes the datasets and methodology; Section 3 119 
presents the results; Section 4 discusses the findings; and Section 5 concludes the study with a summary 120 
and final remarks. 121 

 122 
2. Materials and methods 123 

 124 
2.1. Study area and in-situ masts 125 

Our study area is located in the Andes of southern Ecuador, spanning the provinces of Cañar, Azuay, and 126 
El Oro (Fig. 1). The region is characterized by complex topography and heterogeneous land cover. High 127 
wind power potential has been identified in areas situated above 2000 meters above sea level (m a.s.l.), 128 
primarily along the ridges of the Andean Cordillera, near the Continental Divide of the Americas. This wind 129 
potential has led to the planning of several wind farm projects in the region, including the construction of 130 
Ecuador’s largest operating wind farm, Minas de Huascachaca (57 MW). 131 

The spatio-temporal variability of wind in the study area, and more broadly in the Andean region of 132 
Ecuador, is influenced by both synoptic and valley-scale circulation patterns. At the seasonal scale, wind 133 
patterns are primarily driven by the migration of the Intertropical Convergence Zone (ITCZ). The windy 134 
season, which extends from June to September, corresponds to the northward migration of the ITCZ during 135 
the boreal summer, strengthening the southern trade winds. Conversely, the calm season, from October to 136 
May, is associated with the southward shift of the ITCZ over Ecuador (López et al., 2023). Throughout the 137 
year, winds predominantly flow from the east and southeast, while westerly winds are more common during 138 
the calm season, particularly at sites located closer to the lower western flanks of the Andes. At the daily 139 
scale, thermally induced winds contribute to variability: anabatic winds occur during the day as heated air 140 
rises along mountain slopes, while katabatic winds prevail at night as cooler air descends. 141 

Wind observations were collected from four operational meteorological masts managed by the Electric 142 
Corporation of Ecuador (CELEC EP): M1, M2, M3, and M4 (Fig. 1). M4, located in the northern part of 143 
the study area, is predominantly surrounded by cattle grazing lands and croplands. M1 and M2, situated 144 
centrally within the region, are representative of highland environments characterized by alpine grasslands 145 
locally known as páramo. M3, in the southwest of the study area, is also surrounded by páramo and pine 146 
forest. All masts are situated in wind exposed sites on ridges or hilltops. 147 

The masts measure various meteorological variables; however, for this study, only wind speed data were 148 
used. Each mast is equipped with four first-class cup anemometers (Thies CLIMA 4.331.10.000) measuring 149 
wind speed at heights of 40, 60, 78, and 80 m above ground level, with readings recorded every 10 minutes. 150 
For our analysis, wind speed measurements at the highest level (80 m) were used. To ensure consistency 151 
between the temporal resolution of the ERA5 data and the mast observations, hourly wind speed averages 152 
were computed from the 10-minute measurements. Only complete hours, defined as those with at least six 153 
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valid 10-minute measurements, were included to avoid uncertainties in the hourly calculations. The wind 154 
speed observations cover the period from January 1, 2021, to December 31, 2024. 155 

Wind speed data at 80 m underwent quality control, through detailed visual inspection and correlation 156 
analysis with wind speed measurements at the other heights, was done following MEASNET guidelines 157 
(MEASNET, 2022). Data from July 20, 2022, to September 8, 2022, at M2 were excluded due to sensor 158 
failure. Additional data gaps were identified, mainly related to maintenance campaigns and intermittent 159 
power outages caused by persistent cloudy conditions at the sites. Further details on data gaps and site 160 
characteristics are provided in Table 1. 161 

Table 1: Details of the study sites and data availability at 80 m during the study period. The terrain 162 
category was calculated using the standard deviation of elevation within a 10 km radius around each 163 
site based on the criteria of Borowski et al. (2025). 164 

Site Elevation 
(m a.s.l.) 

Land cover Landform SD Elevation 
(m a.s.l.) 

Terrain category Data 
availability 
(%) 

M1 3796 Paramo Ridge 471 Very complex 93.2 
M2 3690 Paramo Ridge 317 Very complex 83.4 
M3 3246 Paramo/Pine Forest Ridge 671 Very complex 99.6 
M4 2829 Agriculture Hilltop 536 Very complex 97.4 

 165 

 166 

 167 

Figure 1: Map of the study area and location of meteorological masts. The orography of the study 168 
region according to the Shuttle Radar Topography Mission (SRTM) digital elevation model (30 m) 169 
and the ERA5 (~31 km) is shown in (a) and (b), respectively. In parenthesis is the in-situ and ERA5 170 
elevation of sites in m a.s.l. The variability of orography inside the ERA5 pixel for each site is shown 171 
in (c). Grid coordinates were omitted from all maps for confidential proposes. 172 

2.2. ERA5 data 173 
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ERA5 is the fifth-generation reanalysis product developed by the European Centre for Medium-Range 174 
Weather Forecasts (ECMWF). It combines numerical weather prediction models with historical 175 
observational data using the Integrated Forecasting System (IFS) Cycle 41r2 assimilation model to provide 176 
hourly atmospheric variables dating back to 1940 (Hersbach et al., 2020). The spatial resolution of the 177 
ERA5 reanalysis dataset is approximately 31 km, with global coverage. 178 

Two ERA5 datasets were used in this study: (1) ERA5 data on single levels, which provide wind 179 
components at 10 m and 100 m above ground level, and (2) ERA5 data on model levels, which provide 180 
wind components from the surface up to approximately 80 km altitude across 137 vertical levels. The first 181 
dataset has been widely used for wind resource assessment and is considered a standard reference in the 182 
wind energy industry, whereas ERA5 model level data have been less commonly applied in the literature. 183 

A total of 33 model levels, ranging from 10 m (level 137 - L137) to approximately 3000 m (level 105 -184 
L105), were selected from the ERA5 model level dataset to evaluate their relationship with wind 185 
observations. The wind components from both ERA5 datasets were downloaded using the Climate Data 186 
Store API in Python. For each of the four mast locations, ERA5 data were extracted from the nearest grid 187 
points without interpolation (see Fig. 1). This means that M1 and M2 masts have the same timeseries. 188 
Finally, wind speed was calculated from the u and v wind components for both datasets. 189 

2.3. Evaluation and selection of optimal heights from ERA5 model level data  190 

Measure-Correlate-Predict (MCP) methods traditionally require a high degree of correlation between wind 191 
speed observations and reference data (e.g., reanalysis datasets) to be considered suitable for wind speed 192 
prediction. This is commonly assessed using the correlation coefficient (Carta et al., 2013). We used the 193 
Pearson correlation coefficient to evaluate the relationship between wind speed measurements from the 194 
meteorological masts and wind speeds from various ERA5 model levels (ranging from 10 m to 3000 m). 195 
The model level height with the strongest correlation was then selected to estimate wind speed. 196 

2.4. Wind speed prediction 197 

Wind speed predictions were obtained using the Random Forest (RF) algorithm (Breiman, 2001). This 198 
method has been widely used in recent years to estimate wind speed and wind energy production due to its 199 
high flexibility and robustness. RF has demonstrated comparable results to other sophisticated machine 200 
learning models (Abdelsattar et al., 2025), and is considered one of the most popular methods for wind 201 
speed prediction (Houndekindo & Ouarda, 2025). 202 

The RF algorithm builds an ensemble of individual decision trees. Each tree is constructed using a random 203 
subset of the training data, which minimizes overfitting and ensures independent predictions. The final 204 
prediction is computed as the average of the individual tree outputs. Additional details on the RF algorithm 205 
can be found in Breiman (2001) and Gentleman and Poggi (2020). 206 

In this study, the RF model was preferred over a conventional regression model because it provides more 207 
consistent predictions (e.g., non-negative values), particularly at low wind speeds. Accordingly, the RF was 208 
applied to estimate wind speed at 80 m for each site, using observed wind speed at this height as reference 209 
data and ERA5 wind speed as predictors. Specifically, we trained two RF models: (1) RF1 - a model using 210 
hourly wind speed at 10 m and 100 m from the ERA5 single-level dataset, and (2) RF2 - a model using 211 
hourly wind speed at the height with the strongest correlation to mast measurements from the ERA5 model-212 
level dataset (identified in section 2.3). The first model serves as a benchmark to compare the differences 213 
and potential improvements achieved by using the optimal model level height. It is important to note that, 214 
although most studies commonly use either 10 m or 100 m ERA5 wind speed variables to estimate near-215 
surface wind speeds, we used both variables, as this combination explained a greater portion of variance in 216 
the RF models than using a single variable alone (see Table. A1).  217 

For each site, both models were trained using observed hourly wind speed data from the first three years of 218 
the monitoring campaign (i.e., January 2021 to December 2023), and model performance was evaluated 219 
using data from the last year (i.e., January 2024 to December 2024). Further details on the number of 220 
samples used for training and testing for each site are provided in Table 2. 221 

The number of trees and the minimum leaf size, which are the most important parameters of the RF model, 222 
were set to 500 and 5, respectively. These values correspond to the recommended default settings of the 223 
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randomForest function in R (Breiman et al., 2025). Since the main objective of this study is to highlight 224 
the improvements achieved by incorporating appropriate ERA5 wind speed heights, we did not conduct a 225 
hyperparameter optimization for each site. This decision is further supported by the fact that some studies 226 
have reported similar values for their optimal parameter settings (Hallgren et al., 2024; Liu et al., 2024). 227 

Table 2: Number of samples used for training period (2021-2023) and testing period (2024) for the 228 
random forest models. Percentage of data available relative to each period is shown in parentheses. 229 

Site Training period Testing period 
M1 23890 (90.9%) 8784 (100%) 
M2 20458 (77.8%) 8784 (100%) 
M3 26125 (99.4%) 8784 (100%) 
M4 25904 (98.6%) 8237 (93.8%) 

 230 

2.5. Performance evaluation metrics 231 

In order to quantify the discrepancies between the wind speeds estimated by the RF models and the mast 232 
wind speed data, three commonly used metrics were employed: root mean squared error (RMSE), mean 233 
absolute error (MAE), and the coefficient of determination (R²). The RMSE quantifies the average 234 
magnitude of the errors and indicates how much the predictions deviate from the reference data. A higher 235 
RMSE reflects larger deviations, as this metric gives greater weight to larger errors due to the quadratic 236 
term. The MAE calculates the mean of the absolute differences between the reference values and the 237 
predictions, treating larger and smaller errors equally without applying additional weighting. The R² 238 
coefficient measures the strength of the linear correlation between the observed and predicted wind speeds. 239 
These metrics are defined as follows (Eqs. 1–3): 240 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                                                                        (1) 241 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1                                                                                                                               (2) 242 

𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

                                                                                                                                  (3) 243 

where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 are the 𝑖𝑖th measured and the corresponding predicted values of wind speed. The average 244 
of the measured wind speed values is denoted by 𝑦𝑦�. The total sample size in the test set is N. 245 

In addition, the Perkins Score Skill test (PSS) was employed to quantifies the discrepancies in the frequency 246 
distribution between estimated and observed wind speed using Eq. (4). 247 

𝑃𝑃𝑃𝑃𝑃𝑃 (𝐻𝐻1,𝐻𝐻2) =  ∑ 𝑀𝑀𝑀𝑀𝑀𝑀�𝐹𝐹𝐻𝐻1
𝑏𝑏 ,𝐹𝐹𝐻𝐻2

𝑏𝑏 �𝑛𝑛
𝑏𝑏=1                                                                                                         (4) 248 

where 𝐻𝐻1 and 𝐻𝐻2 represents the first and second histogram and 𝐹𝐹𝑏𝑏 represents the normalized frequency for 249 
bin 𝑏𝑏. The PSS represents the fraction of overlap between the two histograms, so that a PSS of 1 represents 250 
complete overlap while a value of 0 indicates a complete mismatch. The PSS was calculated considering a 251 
detailed bin width of 1 m s-1 similar to Borgers et al. (2024). 252 

2.6. Wind energy estimation and evaluation 253 

This subsection outlines the methodology used to evaluate how wind speed data from different RF models 254 
(i.e., using ERA5 single-level or model-level data) influence the estimated annual energy production (AEP) 255 
at the four study sites. Two power curves were considered in the analysis, based on the turbines installed in 256 
existing wind farms in continental Ecuador (Villonaco: 2700 m a.s.l. and Minas de Huascachaca: 1100 m 257 
a.s.l.): the Goldwind GW70/1500 and the Vestas V112/3450. Although Minas de Huascachaca operates 258 
with Dongfang Electric Corporation wind turbines, the corresponding power curves were not publicly 259 
available. Therefore, we used the Vestas V112/3450 power curve, which has similar characteristics to the 260 
turbines installed at that site. Details on the turbine operational ranges, hub heights, and the power curves 261 
used in this study are provided in Table 3 and Fig. A2 (in Appendix section), respectively. 262 
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The AEP was calculated using wind speed estimates from the RF models at a hub height of 80 m. The 263 
percentage error (PE) was used to quantify the differences in wind energy estimates based on the different 264 
wind speed predictions. This evaluation was carried out for the year 2024 which was not part of the RF 265 
training dataset. The PE was calculated using Eq. (5). 266 

 267 

𝑃𝑃𝑃𝑃 =  𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅−𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

× 100%                                                                                                                      (5) 268 

 269 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 is the annual energy production modelled from wind speed estimated by the RF models, and 270 
𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 is the synthetic annual energy production modelled from observed wind speed data. 271 

 272 

Table 3: Details of the wind turbines considered in the study. 273 

Model Power 
(MW) 

Cut-in 
wind 
speed 
(m s-1) 

Rated 
wind 
speed 
(m s-1) 

Cut-off 
wind 
speed 
(m s-1) 

Hub height 
range (m) 

Rotor 
diameter 
(m) 

Wind class 

GW70/1500 1.5 2.5 14 25 65 - 100 70.3 IEC Ia/IIa1 
V112/3450 3.45 4 12.5 25 69 - 94 112 IEC A 

 274 

3. Results 275 
 276 

3.1. Evaluation and selection of optimal heights from ERA5 model level data 277 

The correlation between wind speed observations and ERA5 model level data at different heights above 278 
ground level (i.e., geometric altitude) is shown in Fig. 2. An inverted parabolic relationship is observed 279 
between correlation magnitude and height: correlation values increase steadily from ~0.27 – 0.74 at hub-280 
height (79.04 m; the closest ERA5 model level height) until reaching a maximum of ~0.80 – 0.89, after 281 
which the correlation begins to decrease. The maximum correlation between observations and ERA5 data 282 
was consistently achieved at heights substantially higher (~600 - 1500 m) than the measurement height (80 283 
m) across all mast locations. To corroborate our findings, we performed the same analysis at 3 sites with 284 
flat topography in the Coast region of Ecuador (2 located at the coastline and 1 at inner location) (see Fig. 285 
A1 in Appendix). The results showed that, at coastal and flat locations, the strongest correlations with 286 
observed wind speeds occurred near the actual hub height (< 245 m), with little differences in the correlation 287 
values between the closest level to the observations and the height of highest correlation (r <0.03). In 288 
addition, higher correlations between observations and ERA5 were observed for the inner site in 289 
comparison of coastal sites. These results using ERA5 model level data indicates that wind speeds over flat 290 
terrain is representative of hub-height conditions at coastal and inner flat sites but are not representative in 291 
mountainous areas. 292 
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 293 

Figure 2: Correlation between observed wind speed at four sites at 80 m height and ERA5 data at 294 
different geometric altitudes for the period Jan-2021 to Dec 2024. The red line shows the closest model 295 
height to the observations. The highest correlation value and their respective altitude and model level 296 
(in parenthesis) are indicated for each site. 297 

Notably, at M3, the correlation increased from approximately 0.27 at the measurement hub height to 0.86 298 
at the height of maximum correlation, underscoring the potential for improving wind speed estimates by 299 
identifying optimal model heights. This pronounced difference, compared to the other sites, may be 300 
attributed to the larger discrepancy between the actual site elevation and the ERA5 model elevation. The 301 
height of maximum correlation was similar for M1, M3, and M2, while for M4 it occurred at a lower 302 
elevation. Interestingly, the magnitude of the maximum correlation was comparable for M1 (0.887), M2 303 
(0.857), and M3 (0.864)—all of which are located on well exposed areas—but was lower for M4 (0.795), 304 
which is situated around hills probably influencing local wind speed behaviour (see Fig. 1c). 305 

Figure 3 shows the comparison between hourly wind speed time series for the year 2024 for all ERA5 306 
datasets and the observations. The ERA5 datasets include wind speeds at 10 m and 100 m, as well as wind 307 
speeds at the closest height to the observations (79.04 m) and at the optimal correlation heights identified 308 
in Fig. 2, both extracted from the ERA5 single level and model level dataset, respectively. Fig 3. shows 309 
substantial discrepancies between observed wind speeds and those estimated using ERA5 single level data 310 
(at 10 and 100 m). The wind speed from the model level data at the height closest to the observations shows 311 
similar variability and magnitude to the ERA5 single level data at 100 m showing a systematic 312 
underestimation around the year.  313 

In contrast, the wind speed time series retrieved using the optimal correlation heights demonstrated 314 
substantial improvements in representing wind speed variability across all study sites, although wind speeds 315 
were still underestimated particularly during high wind periods. The dynamics of wind speed were better 316 
captured at the M1 and M2 sites compared to the others. This analysis clearly suggests the potential for 317 
improving wind speed estimates by using higher model level heights from ERA5 as reference data for MCP 318 
modelling. 319 

 320 
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 321 

Figure 3: Wind speed time series for the observations and ERA5 data in 2024. The times series shows 322 
the 24 h running average instead of the hourly time series for visualization proposes. Note that at M1, 323 
M2 and M3, the wind speed series at 100 m (ERA5 single level) and 79.04 m (ERA5 model level) 324 
overlap. 325 

 326 

3.2. Evaluation of wind speed predictions 327 

The frequency distributions of observed and predicted wind speed is shown in Fig. 4 along with their 328 
evaluation metrics for the validation period (year 2024). A clear difference is observed in the measured 329 
wind speed distribution of M1, M2 and M3 compared to M4 where high frequency of low wind speed 330 
values (<2 m s-1) is frequent in comparison to the other sites. 331 

The optimal model height as input for wind speed prediction (i.e., RF2 model) provided the best match with 332 
the observed data for all sites, leading to a higher R2 and PSS performances and lower MAE and RMSE 333 
values than the predictions that use ERA5 single level data (i.e., RF1 model). The average values of the 334 
four sites show an improvement of 40% in R2 values while for MAE and RMSE led an improvement of 335 
23% in both metrics. For PSS, the predictions reach an improvement of 59% respect to the reference model. 336 
These results indicate a higher improvement in the predictions to simulate the wind speed dynamics and 337 
distribution than the magnitude of wind speed.  338 

The wind speed predictions of RF1 showed moderate similarity for all sites, with PSS values ranging from 339 
0.75 to 0.74 at M1, M2 and M4 and 0.63 at M3. At M1, M2 and M3 it was observed an underestimation of 340 
extreme wind speed values (low and high) and the overestimation of middle range values (from 4-9 m s-1). 341 
The RF2 predictions specially overcome these high discrepancies of middle range wind speed values 342 
increasing the PSS above 0.86 for all sites, indicating its superior capability to replicate the observed wind 343 
speed distributions. The improvement is especially remarkable at M3, where the PSS increases from 0.63 344 
in RF1 to 0.90 in RF2. 345 
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Despite the improved performance with RF2 model, systematic discrepancies remain. In general, the 346 
modelled distributions tended to underestimate the frequency of very low wind speeds (i.e., <1 m s-1) and 347 
overestimated the frequency of moderate wind speeds, particularly at M2 and M3. In addition, the frequency 348 
of high wind speeds (>15 m s-1) was underestimated for all sites, especially at M1, M2 and M3. These 349 
ranges, however, varied slightly by site (Fig. 4). These biases suggested yet challenges in capturing the full 350 
variability of wind speeds, particularly at the distribution extremes. 351 

 352 

Figure 4: Comparison of wind speed frequency distributions between observed wind speeds and 353 
predictions from two Random Forest (RF) models across the four study sites for the year 2024. The 354 
left column (RF1) shows results using ERA5 wind speeds at 10 m and 100 m (single-level dataset), 355 
while the right column (RF2) shows results using ERA5 wind speed at the optimal model level height 356 
identified through correlation analysis. For each site, the figure also displays the performance 357 
metrics. 358 

3.3. Annual wind energy estimation 359 
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The results presented in Table 4 show the annual energy production (AEP) estimates obtained using the 360 
Random Forest models compared to the observed AEP values for different turbine types at the four study 361 
sites. Overall, predictions using the optimal wind speed height (RF2 model) consistently outperformed the 362 
estimates based on ERA5 single level data (RF1 model), providing lower percentage errors across all 363 
locations and turbine types. 364 

The percentage error (PE) for RF2 was reduced by approximately a factor of three compared to the reference 365 
model (RF1) for both turbines, indicating substantial improvements in AEP estimation accuracy. The 366 
similar PE values obtained using the two different power curves suggest that the choice of power curve had 367 
little influence on the relative accuracy of the AEP estimates in this case. 368 

The RF2 model achieved the smallest discrepancies at the highest elevation site (M1), with PE values of -369 
1.99% for the GW70/1500 turbine and -2.11% for the V112/3450 turbine. In contrast, the largest deviations 370 
were observed at M2, where the PE reached approximately 7%. 371 

These findings highlight the importance of using appropriate ERA5 model level heights for improving wind 372 
energy production estimates in complex mountainous environments. 373 

Table 4: Annual Energy Production (AEP) estimates from various wind speed Random Forest models 374 
compared with observed data. The best-performing models, showing the smallest discrepancies, are 375 
highlighted in bold. 376 

Location Turbine 
AEP (MWh) 

PE (%) 
    RF1  RF2  
M1 GW70/1500 7787.97 -7.71 -1.99 
  V112/3450 18059.60 -7.78 -2.11 
M2 GW70/1500 6097.76 -16.35 -7.06 
  V112/3450 14221.59 -17.60 -7.14 
M3 GW70/1500 6059.96 -20.78 -5.72 
  V112/3450 14063.40 -21.63 -5.77 
M4 GW70/1500 3137.02 -18.83 -4.20 
  V112/3450 7180.74 -20.02 -4.18 

 377 
 378 

4. Discussion 379 

Our study evaluated the hypothesis that, in the Andean mountainous region, wind speed from higher model 380 
levels in ERA5 are more representative of conditions at wind farm sites that the traditionally used 10 or 381 
100 m single level ERA5, as these locations are often exposed to free-atmospheric flow rather than surface-382 
level wind dynamics. Even if the topographic issue in mountain areas was previously identified in the 383 
literature (Gualtieri, 2022), this is the first time that higher model level heights were explored, identifying 384 
its suitability.  385 

The results presented above confirms that ERA5 consistently underestimates wind speed variability in the 386 
tropical Andes in line with other studies in complex terrain (e.g., Draeger et al., 2024; Hu et al., 2023; 387 
Jourdier, 2020; Khadka et al., 2022). A central result, in line with our hypothesis, is that higher atmospheric 388 
levels of ERA5 (i.e., from model levels dataset) above the hub-height are stronger correlated to observed 389 
wind speed than lower levels at the hub-heights. This is not the case for coastal masts where higher 390 
correlations between ERA5 and observed wind speed were very close to the hub-heights (Fig. A1). 391 
Although in both Pacific coast and Andean regions, the highest correlation is above the hub-height of 80 392 
m, these differences are significantly amplified for Andean sites. Therefore, these results support our 393 
hypothesis that observed wind speed in the Andes is more closely tied to upper atmospheric levels of ERA5 394 
than to surface-level data. 395 

Interestingly, optimal heights in the Andes were higher when differences between in-situ measured and 396 
ERA5 topography were larger too. This pattern may be explained by the coarse spatial terrain representation 397 

https://doi.org/10.5194/wes-2025-272
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



12 
 

of ERA5, which smooths the intricated terrain features within each grid cell, simulating lower wind speeds. 398 
For instance, the highest improvement in the level of correlation between hub height and the optimal level 399 
height was achieved particularly in M3 where differences in topography were strong. In this particular case, 400 
M3 is located at a peak compared to most of the surrounding landscape area within the ERA5 grid (Fig. 401 
1c). These results highlight the possibility to estimate wind speed using ERA5 wind speed for a particular 402 
site by selecting higher model level heights. 403 

A substantial improvement in the prediction of wind speed was obtained using optimal height information 404 
of ERA5 model levels in comparison with the commonly used 10 m and 100 m wind speed heights of ERA5 405 
single levels, corroborating the suitability of using this specific dataset for mountain areas. Wind speed 406 
estimation showed similar performance for all sites using the optimal heights of ERA5 model levels 407 
compared to the ERA5 single level datasets; however, relatively small differences were noticed at M4. The 408 
lower performance in M4 is caused by the lower performance of the RF models in estimating particularly 409 
lower wind speeds (i.e., 0-2 m s-1) where high frequency values within this range are common in this site.  410 

Comparing our findings with previous studies in a strictly fair way is challenging because two main reasons: 411 
(i) most studies considered other covariables in the predictive models or/and (ii) include wind speed 412 
observations at surface level (e.g., meteorological stations) as input variables in the predictive models. It is 413 
expected that for both aforementioned cases better wind speed estimates would be achieved compared to 414 
our study that use only a single variable from reanalysis data in comparison to a model that use local 415 
information (e.g., observed wind speed generally at 2 m or 10 m). However, despite the limited input 416 
features included in our model (i.e., a single height of wind speed) and the source of its information (i.e., 417 
ERA5 reanalysis), our results were comparable in terms of performance with previous studies 418 
(Houndekindo & Ouarda, 2025a; Hu et al., 2023; Liu et al., 2023). Liu et al. (2023) used a RF model to 419 
estimate wind speed at several hub-heights using measured wind speed at 10 m (anemometer) and 300 m 420 
(radar wind profiler) and ERA5 covariables as input features for a coastal location in China. Hu et al. (2023) 421 
used the eXtreme gradient boosting (XGBoost) algorithm using topographical position index and ERA5 422 
variables to predict wind speed at 10 m over Europe.  423 

Our estimates were also comparable with the outcomes of more sophisticated machine learning algorithms. 424 
For instance, Houndekindo & Ouarda (2025a) used a long short-term memory (LSTM) and transformers 425 
models to bias correct ERA5 hourly wind speeds for WRA. The models outperformed static bias correction 426 
approaches and other machine learning methods. Particularly at hilly and mountainous sites, median values 427 
of the testing sites shown an r = 0.79.  This performance is similar to that of our study, where M1 (r = 0.86), 428 
M2 (r = 0.82) and M3 (r = 0.83) showed even larger r values. In addition, the distribution of wind speed 429 
was better estimated with our approach showing higher values of PSS (PSS > 75% or 0.75). It is important 430 
to note that Houndekindo and Ouarda (2025) included time-resolved covariates (e.g., 10 m u- and 10 m v-431 
components, 10 m wind speed, 2 m temperature, boundary layer height, and surface pressure) and several 432 
static covariates (derived from a Digital Elevation Model and land cover maps) in their model. All these 433 
comparisons highlight the competitiveness of our parsimonious approach for a local site estimation of wind 434 
speed in complex mountainous areas. 435 

The study of the impact of wind estimates on energy production is not commonly assed in previous studies. 436 
The higher improvement in the reduction of underestimation of AEP estimates is promising for the 437 
evaluation of annual production. The best AEP estimates in M1 in comparison to the other sites are related 438 
to the lower occurrence of low wind speed which all the sites poorly estimate as was indicated previously. 439 
The impact of standard power curves used in this study shown negligible influence on the AEP estimation 440 
in our study area. This is because the cut-in wind speed of turbines considered in the study are above 2-4 441 
m s-1, being discarded values below this threshold in the calculation of AEP. This result indicates that wind 442 
speed estimates obtained by our approach could be reliable for the estimation of AEP using different turbine 443 
models. However, higher underestimations would be expected for sites with high frequencies of low wind 444 
speed. 445 

It should be noted that as our main objective was to highlight the suitability of an optimal model level height 446 
to estimate wind speed, no other heights were included in the RF model. Further studies could consider 447 
additional closest level heights to the optimal level as input features to improve the wind speed estimates. 448 
We expect that the inclusion of these levels might improve the representation of interactions between 449 
atmospheric heights as they emulate wind shear effects as was evidenced using 10 m and 100 m ERA5 450 
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wind speed in the reference model. In addition, due to the highly complex topography interactions in the 451 
Andes, sub-grid scale variables from ERA5 representing surface-atmosphere interactions could be tested 452 
to improve wind speed estimates. Particularly, gravity waves have been identified as a relevant variable to 453 
estimate wind speed in mountainous areas (e.g., Hu et al., 2023). We are also aware that optimal heights 454 
were obtained after a detailed search of candidate heights which may require analyse relatively large 455 
amounts of information. Thus, future studies are necessary to include more masts sites to identify 456 
relationships between the performance of ERA5 and differences in topographical features as a practical 457 
model for the search of optimal levels for sites. 458 

Anticipating the impacts of climate change on the future energy yield of wind farm projects is essential for 459 
strategic planning in the wind industry. A common approach is to directly analyse Global Climate Model 460 
(GCM) projections (e.g., Devis et al., 2018; Hahmann et al., 2022; A. Martinez & Iglesias, 2024). However, 461 
the coarse spatial resolution of GCM data (typically ≥100 km grid spacing) limits their suitability to regional 462 
or global-scale assessments. Further studies could explore the use of higher atmospheric model levels from 463 
GCMs to support downscaling of wind speed projections to local scales in mountainous regions, without 464 
the need for computationally expensive full dynamical downscaling. Alternatively, a hybrid statistical-465 
dynamical framework, such as the approach proposed by Borgers et al. (2025), which integrates mesoscale 466 
model output with GCM projections, could offer a promising solution for producing reliable local-scale 467 
wind speed projections in complex terrain and prospective wind farm sites. 468 

5. Conclusions 469 

This study examined whether the use of higher atmospheric levels from the ERA5 model-level dataset can 470 
improve wind speed predictions compared to the conventional use of ERA5 single-level data in the complex 471 
mountainous terrain of the tropical Andes. Site-specific Random Forest (RF) models were trained using 472 
three years of hourly wind speed observations at 80 m from four high-altitude masts located in southern 473 
Ecuador. The predictions were validated against an independent year of observations and further tested for 474 
energy applications through the estimation of annual energy production (AEP) using two representative 475 
power curves. 476 

The results demonstrate that wind speeds from higher ERA5 model levels (i.e., levels above ~1000 m for 477 
most sites) show stronger correlations with observed wind speeds than the conventional single-level data 478 
at 10 m and 100 m. Consequently, the ERA5 model level with the highest correlation proved more suitable 479 
for wind speed prediction. Improvements were most pronounced at well-exposed sites located on peaks, 480 
while localized sites with surrounding obstacles (e.g., M4) showed smaller gains. Predictions captured wind 481 
speed variability and distribution more effectively than absolute magnitudes (i.e., RMSE). For energy 482 
applications, the percentage error in AEP was significantly reduced to ~2–7% compared with ~8–22% when 483 
using ERA5 single level data. 484 

These findings highlight the potential of combining higher ERA5 model level data with Random Forest 485 
models as a powerful and cost-effective approach for wind resource assessment in mountainous areas. Since 486 
this method relies on freely available reanalysis data and requires relatively low computational cost, it 487 
provides a practical alternative to mesoscale climate models for estimating long-term site-specific wind 488 
speed and energy production in complex terrain. 489 

Appendices 490 

Table A1: Percentage of explained variance of Random Forest models trained using various 491 
combinations of ERA5 single level wind speed inputs. In bold the best model for each site. 492 

Input M1 M2 M3 M4 
10 m 34.02 36.01 -30.99 21.89 
100 m 33.97 39.58 -16.42 31.07 
10 m + 100 m 48.04 50.45 21.78 48.84 

 493 

 494 
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 495 

Figure A1: Power curves of the two reference turbines employed in this study. 496 

 497 

 498 

Figure A2: Correlation between observed wind speed at four Coast sites at 80 m height and ERA5 499 
data at different geometric altitudes for the period Jan-2021 to Dec 2024. In the left side, the map 500 
shows, in parentheses, the actual elevation of each site (m a.s.l.). In the right side, the highest 501 
correlation value and their respective altitude and model level (in parenthesis) are indicated for each 502 
site. 503 

 504 

 505 
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