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Abstract. Accurate wind power prediction is required for grid integration of renewables, minimizing curtailment of renewable

energy, and performing resource assessments. Prior research has explored the use of numerical weather prediction, reanalysis

datasets, and observational data in power prediction and resource assessment applications. Observational data is spatially

limited and often proprietary. Reanalysis datasets are available globally, but have a large spatial resolution and therefore do

not capture the effects of complex geography well. Numerical weather prediction simulations allow for high spatial resolution5

flow models, but require significant processing resources and computational time. This work combines historical wind power

production data, observational data, MERRA-2 reanalysis, and WRF model data at three wind farms in Ontario, Canada to

determine the optimal data source, combination of data sources, and variables for prediction of wind power using a random

forests model. Results show that a model combining select data from all three data sources, including a combination of wind

speed, time, and other weather variables, improves predictive performance by up to 57% over the benchmark power curve10

model. Analysis of feature importance shows that aggregating wind speed allows the model to make better use of additional

weather features. The minimum subset of input data for the best performing model, which achieves a mean absolute error

(MAE) of 0.071 across all sites, consists of averaged wind speed, temperature, wind direction, pressure, air density, and time

variables (hour, day and month).

1 Introduction15

Development of wind energy is becoming increasingly important in the decarbonization of the electricity sector and mitigation

of climate change. Successful grid scale wind energy projects require accurate wind energy assessments during the development

phase and accurate wind power forecasts during operation to optimize wind turbine layouts, aid in transmission planning, and

maximize integration of wind power into the electricity grid. The intermittent nature of wind energy can introduce challenges

to grid operators for balancing electricity supply and demand, often leading to curtailment or the reduction in renewable20

generation below generating capability. The electricity grid operator in Ontario, Canada reports the percentage of curtailed

renewable generation in year-end reports - reported curtailment ranges from a minimum of 5.3% reported in 2014 to a maximum

of 26% in 2017 (Independent Electricity System Operator, 2021). When curtailment is estimated by comparing recorded

forecasts to actual output, curtailment is much higher at 13% in 2014 and 30% in 2017. Accurate wind energy predictions are

required to minimize wasting available energy at wind farms.25
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In order to make such assessments, meteorological towers are typically installed with sensors close to hub height to charac-

terize local wind conditions. Historical weather data combined with manufacturer provided data is used to estimate the annual

energy production (Milan et al., 2010). A minimum of one year of data collection is typically required to capture seasonal

variability (Brower et al., 2012). This data is temporally limited and typically not accessible to the public. Alternative datasets,

including weather stations, reanalysis data, and numerical weather prediction (NWP) may be able to make up for the limitations30

of on site meteorological towers.

Large amounts of data are publicly available from weather stations, which often contain multiple years to decades of histor-

ical weather data. However, weather stations are geographically sparse outside of populated areas, wind speeds are typically

only measured at a height of 10 meters (m), and data is often only available at an hourly resolution (Environment and Climate

Change Canada, 2011). There may also be periods with significant amounts of missing data due to weather events, communi-35

cation errors, and sensor failures.

Reanalysis data, which assimilates weather station data with global atmospheric simulations, is increasingly being used to

simulate wind power generation (Gruber et al., 2022; Staffell and Pfenninger, 2016; González-Aparicio et al., 2017; Gruber

et al., 2019) due to global coverage, extensive historical records and accessibility. However, there is a lack of validation for

reanalysis datasets outside of Europe, the United States, and China (Gruber et al., 2019) and studies have found significant40

spatial biases when compared to observed wind speeds or wind power. Reanalysis data also has coarse spatial resolution that

is unable to capture the effects of complex topography and turbine wake effects.

High resolution NWP modelling is often used as a tool in wind speed and power forecasting. This allows for accurate flow

field simulations (Prósper et al., 2019) as well as the simulation of turbulence and turbine wake effects (Fitch et al., 2012).

Resolution and physics parameterizations can be customized by application and geographic location. However, NWP com-45

putations require considerable computer memory and processing resources, can be time consuming to compute, and requires

quality observational data for initial and boundary conditions of simulations.

1.1 Literature review

In Staffell and Pfenninger (2016), MERRA-2 reanalysis data was used to simulate wind power in various European countries

using extrapolated MERRA-2 wind speeds and manufacturer provided power curves and found that the dataset led to both50

under and overestimates of wind power, particularly in regions with complex orography. This finding was reinforced in Gru-

ber et al. (2022), which aimed to validate both MERRA-2 and ERA5 reanalyses across various countries (US, Brazil, New

Zealand, South Africa) and found a large range of wind power bias depending on location. Various studies that have used

reanalysis datasets for wind power prediction have noted significant bias in topographically complex areas and the inability to

capture wind speed variations due to the coarse spatial resolution of reanalysis (Gruber et al., 2019; Morales-Ruvalcaba et al.,55

2020). Limited validation of reanalysis datasets has been completed within Canada, outside of Dolter and Rivers (2018) where

MERRA data was used to estimate decarbonization pathway costs, with a validation of the dataset against weather stations

provided in their work’s supplementary material.
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Table 1. Input variables, data sources, and power prediction methods used in previous wind power prediction papers reviewed in this work.

Other* variables include geometric properties determined from turbine spacing (Staid, Yan), lapse rate and rotor equivalent wind speed

(Sasser), turbulence intensity (Pang, Özen, Pombo), wind sheer (Pang), and other NWP variables (Özen). Özen, Shi, and Pombo differ from

other included studies in that they are forecasting models, however are included to show the use of extended variables.
Variables Data source Method

Paper wind speed wind direction temperature air density pressure humidity radiation time variables Other* Reanalysis WRF Met data SCADA Power curve Machine learning Other

This paper • • • • • • • • • • • • •

Staffel et al., 2016 Staffell and Pfenninger (2016) • • •

Gonzalez-Aparicio et al., 2017 González-Aparicio et al. (2017) • • •

Dolter et al., 2018Dolter and Rivers (2018) • • •

Gruber et al., 2019 Gruber et al. (2019) • • •

Morales-Ruvalcaba et al., 2020 Morales-Ruvalcaba et al. (2020) • • •

Gruber et al., 2021 Gruber et al. (2022) • • •

Hayes et al., 2021 Hayes et al. (2021) • • •

Lee et al., 2017 Lee and Lundquist (2017) • • •

Giannaros et al., 2017 Giannaros et al. (2017) • • •

Tomaszewaki et al., 2020 Tomaszewski and Lundquist (2020) • • •

Staid et al., 2018 Staid et al. (2018) • • • • • • • •

Bilal et al., 2018 Bilal et al. (2018) • • • • • • •

Sasser et al., 2021 Sasser (2021) • • • •

Pang et al., 2021 Pang et al. (2021) • • • • •

Yan et al., 2019 Yan and Ouyang (2019) • • • • •

- Özen et al., 2021 Özen et al. (2021) • • • • • • • • • • •

- Shi et al., 2018 Shi et al. (2018) • • • • • • •

- Pombo et al., 2021 Pombo et al. (2021) • • • • • • •

NWP models such as the WRF (Weather Research and Forecasting) model are able to capture the effects of complex terrain

and wake effects from wind turbines at higher resolutions (Skamarock et al., 2019). The WRF model has been used for60

wind energy assessments (Giannaros et al., 2017; Carvalho et al., 2012) and wind power forecasting (Prósper et al., 2019;

Tomaszewski and Lundquist, 2020) and has demonstrated the ability to simulate spatial and temporal variations in wind speeds

and power.

Machine learning methods are commonly used in renewable energy forecasting (Sweeney et al., 2020). The random forests

(RF) method has been found to perform similarly to or outperform other machine learning algorithms for wind power prediction65

due to the ability to handle noisy data and outliers in measured meteorological data (Singh et al., 2021; Staid et al., 2018; Shi

et al., 2018; Pombo et al., 2021; Arrieta-Prieto and Schell, 2024).

Previous studies have found that combinations of datasets and forecasting methods can improve wind power and wind speed

predictions. In Özen et al. (2021) and Wang et al. (2021), machine learning models were use to improve WRF wind power

and wind speed forecasts. Previous works, however, have not analyzed the effectiveness of combining all three aforementioned70

data sources using machine learning methods. This is the main research question posed by this study.

Some previous works have explored the impact of environmental variables other than wind speed on wind power output.

Shi et al. included temperature, pressure, and humidity, however these were filtered out by the feature selection process (Shi

et al., 2018). Pang et al. explored the impact of other environmental variables using Shapley values and found that turbulence

intensity, air density, and wind direction moderately impacted power output (Pang et al., 2021). Özen et al. included multiple75

WRF output variables as input to a power prediction model, however the importance of variables other than wind speed was

unclear due to the use of multiple wind speed variables at various heights (Özen et al., 2021). This paper further demonstrates

that wind speed measurements alone are not sufficient for wind power predictions.
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1.2 Contributions

This study advances the state-of-the-art through the assessment of the importance of key input variables, derived from open80

access datasets favored by the field, to the improvement of wind power prediction. Here, weather station, MERRA-2 reanalysis,

and WRF data are assessed for their ability to predict normalized wind power using the random forest machine learning

algorithm. A new machine learning interpretation method, Model Class Reliance (Smith et al., 2020), is used to determine an

optimal combination of variables from all three data sources as well as to quantify how much wind power prediction models rely

on different meteorological variables (wind speed, wind direction, temperature, pressure, air density, humidity, and irradiance)85

and time variables (month, day, and hour).

2 Data

2.1 Site Description

Three wind farms in Ontario were chosen based on power output data availability and proximity to public meteorological (met)

stations. Chosen wind farms, surrounding wind farms, and met stations used in this analysis are indicated in Figure 1. All three90

sites are located on land primarily classified as cropland in Ontario, Canada. Ontario experiences a four-season continental

climate that ranges between hot and humid summers to cold winters with moderate snowfall. Location, commission year,

capacity, turbine model, and turbine hub heights for each site are outlined in Table 2.

Erieau (WF1) is located on the western coast of Lake Erie in an area that is highly saturated by other wind farms. Eleva-

tion at this site ranges between approximately 170 and 210 meters above sea level. This site is 7 – 19 km away from three95

meteorological stations.

East Lake (WF2) is located on the north-east coast of the significantly smaller Lake St. Clair, approximately 40 km away

from WF1. WF2 is centered between one large and one smaller wind farm, both within 10 km of WF2. Elevation ranges

between 170 and 180 meters. The closest three meteorological stations to WF2 are 33 – 49 km away from the site and are the

same three stations surrounding WF1.100

Wolfe Island (WF3) is located on an island in northern Lake Ontario at the entrance of the St Lawrence River, where elevation

ranges between 70 and 90 meters. WF3 contains the greatest variation in land cover, with mostly cropland, some barren and

some temperate or deciduous forest. WF3 is 15 km away from two meteorological stations.
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Table 2. Wind farm specifications

WF1 WF2 WF3

Location (lat, lon) 42.3, -82 42.5, -82.4 44.2, -76.4

Commissioned (Year) 2013 2013 2009

Capacity (MW) 99 99 197.8

Turbine Model Vestas V90/1800 Vestas V90/1800 Siemens SWT-2.3-101

Hub Height (m) 80 80 80

0°

180°

90°270°

0°

180°

90°270°

0°

180°

90°270°

Selected wind farms

Other wind farms

Met towers

ESRI Gray (light)

Figure 1. Locations of selected wind farms, surrounding wind farms, and met stations used in analysis.

2.2 Weather station data

Historical climate data was obtained from meteorological stations operated and maintained by Environment and Climate105

Change Canada (ECCC) (Environment and Climate Change Canada, 2011). Data at the stations utilized in this study was

available at an hourly resolution. Wind speeds are measured at a height of approximately 10 m and all other climate variables

are measured at a height of 2 m (Environment and Climate Change Canada, 2022). Wind speed, wind direction, pressure,
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temperature, and relative humidity were collected from five met stations, three of which were located near WF1 and WF2 (19,

7, 9.7 km and 42, 33, 48.8 km away respectively), and two of which were located near WF3 (14.7 and 15.2 km away).110

Linear interpolation was used to fill in missing data points if the number of consecutive missing data points was below a

threshold of three. If consecutive missing data points were greater than this threshold, rows with missing data were removed.

4% of data points were excluded from WF1 and WF2, and 3% were excluded from WF3.

Wind speed was interpolated to hub height using the logarithmic wind speed profile (Equation 1), where v1 and v2 are wind

speeds at measured and extrapolated height, h1 and h2 are measurement and extrapolation heights, and z0 is the roughness115

length as obtained via the Global Wind Atlas (noa).

v2 = v1
log(h2/z0)
log(h1/z0)

(1)

2.3 Reanalysis data

Reanalysis data aims to assimilate historical meteorological data using a single global simulation. MERRA-2 (Modern-Era

Retrospective Analysis for Research and Applications), developed by NASA’s Global Modeling and Assimilation Office, has a120

spatial resolution of approximately 50 km in the latitudinal direction at the sites of interest (0.5 °× 0.625° latitude x longitude)

and a temporal resolution of 1 hour (Gelaro et al., 2017; Molod et al., 2015). The Renewables.Ninja (RN) project aims to

provide access to hourly simulations for wind and solar power using data from MERRA reanalysis (Staffell and Pfenninger,

2016; Pfenninger and Staffell, 2016). RN uses a Virtual Wind Farm and MERRA-2 data to spatially interpolate wind speeds

to specific coordinates, extrapolates wind speeds to hub height using a logarithmic wind profile, and then converts speeds to125

power output using manufacturer provided power curves. Hourly wind speed, temperature, air density, and irradiance data was

obtained from RN.

2.4 Wind farm production data

Generator output and capability data for transmission connected generation facilities greater than 20 megawatts (MW) are

made available by the IESO (Independent Electricity System Operator). Hourly output and capability data is available from130

2010 up to the current date (Independent Electricity System Operator, 2022).

Wind farms were chosen based on those within the reported data that had minimum estimated curtailment. While the IESO

does not report curtailment of individual power generating stations, reported data includes both forecast and actual power output

for all variable generating facilities. IESO forecasts and output were used to estimate curtailment. Chosen wind farms had an

estimated curtailment of 9% for WF1 and WF2, and 11% for WF3 between 2014 and 2021, compared to an overall average of135

20% over the same time period for all IESO connected wind farms within the province. WF1 and WF2 have production data

available starting late May 2013, and WF3 has production data available starting January of 2010.

IESO data was cross-referenced with the Natural Resources Canada wind turbine database for all wind turbines installed in

Canada based on open access data (Natural Resources Canada, 2021). The database contains location data, including latitude

and longitude, and technology used, including turbine model, capacity and hub height.140
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Reported IESO output data was normalized according to total wind farm capacity allowing for comparison between wind

farm sites (measured power output at each time step/total site capacity). While previous studies have found that a generalized-

logit transformation of the normalized data (Pinson, 2012; Arrieta-Prieto and Schell, 2022) stabilizes variance and improves

predictive accuracy, such an improvement was tested here, but found not to apply to the wind farms studied here.

2.5 WRF model145

D02: 3km, 97x97

D01: 9km, 92x92

Figure 2. Wind farm locations and WRF domains for WF3 with horizontal grid indicated - inner 1 km domain (red) not used in analysis.

An NWP model was used to provide higher resolution wind speed and climate data than can be obtained from reanalysis data.

The open access Weather Research and Forecasting (WRF) model, version 4.2.2, was used (Skamarock et al., 2019). WRF

preprocessing and postprocessing was assisted by GIS4WRF, an open access plugin within QGIS (Meyer and Riechert, 2019).

Model configuration and physics options are outlined in Table 3 with configuration modelled after Tomaszewski et al.

(Tomaszewski and Lundquist, 2020). Three nested domains were initially tested with 9, 3 and 1 km resolutions. Wind speed150

output at the 1 km resolution was found to give negligible improvement over wind speeds from the 3 km domain when

compared to observed meteorological data. Thus, the 1 km domain was removed in the interest of computational efficiency.

The WRF domain configuration for WF3 is illustrated in Figure 2.

The wind farm parameterization presented in Fitch et al. (2012), which represents the impact of the turbulence from individ-

ual wind turbines, was also tested at the 1 km resolution. Including the wake model did not change the results significantly at155

the chosen resolution and was not used in the final model. National Centers for Environmental Prediction (NCEP) 0.25 degree
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analysis data was used for initial and boundary conditions (National Centers for Environmental Prediction, National Weather

Service, NOAA, U.S. Department of Commerce, 2015).

The WRF model was computed for July and October of 2015 and January and April of 2016 to capture one month for each

season for a total of 4 months of data. One WRF model was computed centered over WF1 and WF2, and a second model was160

computed centered over WF3. Wind speed, wind direction, temperature, pressure, and relative humidity were extracted from

the WRF model from each unique cell that contained a wind turbine. Data were extracted from approximately 15 unique cells

for each wind farm. WRF data from multiple cells were included in initial testing to determine whether multiple locations

provided additional information to the model. As this was found to provide minimal improvement at the chosen resolution,

WRF data from the central location of each wind farm only was used as input data to final models.165

Table 3. Final WRF configuration

Land surface unified Noah land-surface model Ek et al. (2003)

Surface layer Revised MM5 Monin-Obukhov scheme

PBL MYNN 2.5 level Nakanishi and Niino (2006)

Shortwave radiation scheme Dudhia scheme Dudhia (1989)

Longwave radiation scheme RRTM scheme Mlawer et al. (1997)

Microphysics WSM 5-class scheme Hong et al. (2004)

Vertical levels 58

Time step (s) 30

Domains 2 nested domains (9 km, 3 km)

2.6 Other data

Time variables (month, day, and hour) were included in all models to capture diurnal and seasonal trends.

Power curve data was acquired from the and verified against wind farm and manufacturer documentation.

Wind farm power output data, reanalysis data, and observed met data were obtained for all hours computed in the WRF

model for a total of 4 months of data from each data source, capturing each season. Summary statistics are outlined in Table 4.170
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Table 4. Input variable summary statistics by location (WF1, WF2 or WF3) and data source (met, WRF or RN). Met stations for WF1 are

the same met stations for WF2 (met 1, met 2, met 3). Average of all WRF locations is displayed.

 Location WRF1  WF2  WF3 

Variable  
Data 
source   mean min max   mean min max   mean min max 

Power (MW) IESO   34.6 0.0 97.0   36.3 0.0 97.0   61.5 0.0 193.0 

Temperature 
(°C) 
  

met met 1 8.7 -16.3 30.6 met 1 met 4 7.4 -18.9 28.1 
met met 2 9.0 -14.7 30.6 met 2 met 5 7.4 -19.2 28.2 
met met 3 9.6 -11.9 29.1 met 3         
WRF   8.4 -13.0 28.6   8.4 -10.9 29.7   7.2 -16.4 26.9 
RN   9.6 -10.6 28.9   9.1 -11.9 30.4   7.9 -15.0 29.5 

Wind speed 
(m/s) 
  

met met 1 5.07 0.00 16.93 met 1 met 4 6.37 0.00 22.58 
met met 2 7.56 0.00 23.39 met 2 met 5 6.55 0.00 22.18 
met met 3 6.42 0.40 20.56 met 3         
WRF   8.11 0.55 23.07   7.81 0.56 21.77   7.84 0.53 27.25 
RN   7.88 0.31 20.16   7.70 0.08 18.91   6.50 0.63 19.20 

Wind 
Direction 
(degrees) 
  

met met 1 192 0 360 met 1 met 4 199 0 360 
met met 2 195 10 360 met 2 met 5 198 0 360 
met met 3 189 0 360 met 3         
WRF   193 2 356   191 4 357   185 3 356 

Pressure 
(kPa) 
  

met met 1 99.2 96.8 101.3 met 1 met 4 100.4 97.5 102.7 
met met 2 99.2 96.8 101.3 met 2 met 5 100.4 97.5 102.8 
met met 3 99.5 97.0 101.6 met 3         
WRF   99.3 96.9 101.3   99.4 97.2 101.4   100.5 97.7 102.7 

Relative 
Humidity (%) 
  

met met 1 73 21 96 met 1 met 4 70 22 96 
met  met 2 75 25 100 met 2 met 5 70 21 100 
met met 3 74 28 98 

8.7 -16.3 30.6 
9.0 -14.7 30.6 
9.6 -11.9 29.1 

5.07 0.00 16.93 
7.56 0.00 23.39 
6.42 0.40 20.56 

192 0 360 
195 10 360 
189 0 360 

99.2 96.8 101.3 
99.2 96.8 101.3 
99.5 97.0 101.6 

73 21 96 
75 25 100 
74 28 98 met 3        

WRF   76 37 100   75 36 100   73 29 100 
Air Density RN   1.22 1.13 1.34   1.22 1.13 1.34   1.24 1.14 1.38 
Irradiance RN   0.07 0.00 0.45   0.07 0.00 0.46   0.07 0.00 0.45 

3 Methods

3.1 Random forest model

The RF model was used to predict wind power output at each wind farm. RF is a regression ensemble learning method that

trains a number of individual decision trees and outputs an average prediction of all trees (Breiman, 2001a). The RF method

was chosen for its ability to handle outliers, a large number of variables, and correlated variables, with minimal negative impact175

on model performance (Jørgensen and Shaker, 2020). The RF method is described by equation (2), where B is the total number

of trees, x is a test sample, and Tb is a single decision tree.

f̂B
rf (x) =

1
B

B∑

b=1

Tb (x) (2)

Grid search with cross validation was used to optimize hyperparameters. Final models contained 500 trees. All RF modelling

and tuning was completed using the Scikit-learn (Pedregosa et al., 2011) package in Python version 3.9.7. Model performance180

was measured by mean absolute error (MAE) and root mean squared error (RMSE) of normalized wind power predictions,

as described in equations (3) and (4), where ŷi are predictions, yi are observations, and n is the number of observations. Ten
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random subsets of 70/30% train/test splits of data were used to test five scenarios (see Table 3.3 for scenario definitions), with

the same ten random subsets used across scenarios. Reported MAE and RMSE scores are the average of these ten tests.

MAE =
1
n

n∑

i=1

|yi− ŷi| (3)185

RMSE =

√√√√
n∑

i=1

(yi− ŷi)2

n
(4)

Percent improvement of RF models as compared to the benchmark power curve method was calculated as defined in equation

(5), where EM represents the evaluation metric.

%improvement =
EMbenchmark −EMRF

EMbenchmark
× 100% (5)

3.2 Benchmark Power Curves190

The theoretical power P of a wind turbine is defined by Equation 6, where Cp is the coefficient of performance, v is the wind

speed, ρ is the air density and A is the cross sectional area of the turbine.

P = Cp
1
2
ρAv3 (6)

Annual energy production can be approximated using manufacturer provided power curves (?), which condense Equation

6 to a relationship between wind speed and power output, for a given turbine design. Power curves are determined using195

measurement methodology defined by IEC 61400-12-1, and historical wind speed data measured on site (Milan et al., 2010).

Measured wind speeds from the three aforementioned data sources are used to find the expected power output given the power

curve of the turbine (Figure 3). This expected wind power is used as a benchmark method to quantify the improvement when

machine learning is introduced.

0 5 1 0 1 5 2 0 2 5 3 0 3 5

Wind Speed (m/s)

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

P
ow

er
 (

kW
)

SWT-2.3-101 (WF3)

V90-1800 (WF1/2)

Figure 3. Manufacturer provided power curves for wind turbines at selected sites.
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3.3 Variable selection in random forest models200

The “mean decrease impurity” (MDI) feature importance measure is often used as a variable reduction method, where X

number of features identified as most important are kept, or features below a certain importance threshold are removed (Wenting

et al., 2021; Shi et al., 2018). This default feature importance method defines importance as the mean reduction in mean squared

error for each feature over all trees in the forest (Louppe et al., 2013). When used in this study, it was found that the multiple

wind speed variables from different data sources were always classified as the most important to the model. This abundance of205

wind speed data resulted in the perfunctory removal of other weather and time variables that could improve model performance.

To ensure variables other than wind speeds are considered, an iterative random forward and backward selection process was

used. To reduce the total number of features, highly correlated features (Pearson correlation coefficient > 0.97) were removed.

Next, a baseline set of features was defined from well performing models from initial variable combination testing. Forward

selection was used to iterate over the rest of the variables and the variable was kept if MAE improved. Backward selection was210

then used to iterate over selected variables – one feature at a time was removed, MAE was recalculated, and the feature was

kept if performance decreased. Forward and backward selection was repeated until no new features were added or removed.

The order of features in each process had some impact as some features may only be useful to the model in combination with

another feature, therefore variables were selected randomly in both forward and backward selection.

Following forward and backward selection, approximately 30 variables were selected with multiples of wind speeds, direc-215

tions, and other variable types from different met stations and WRF cells. Finally, MDI variable importance was used to select

the most important variable for each variable type. The wind speed averaged across all data sources was found to be the most

important and provided better results than models trained with WRF, RN, and met station wind speeds separately. A summary

of the variable selection scenarios is outlined in Table 5.

The difference between the same variables as obtained from each data source is illustrated by the sample time series in220

Figure 4. Of all three datasets, only the meteorological stations are capable of capturing the short-term variations in the wind

speed data, as exemplified by Figure 3a. Wind direction, humidity, pressure, and temperature were found to be very similar

between meteorological measurements and WRF output and using one data source over the other was found to make negligible

difference to the model output power. WRF data was therefore used over meteorological data to minimize missing data points

and reliance on measured data.225

Observed precipitation data from the met stations was found to improve model error metrics in early tests, however measured

precipitation data was limited and not included in final models.
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Figure 4. Sample time series for variables (Jan 1 - 10 2016 at one met station). Wind speeds interpolated to 80 m hub height. Air density and

irradiance as obtained from RN not pictured.

3.4 Assessing variable importance across wind farms

Model Class Reliance (MCR), a recent method proposed by Fisher et al. (2019) and extended to the Random Forest algorithm

(Smith et al., 2020), provides a more generalizable quantification of variable importance than traditional measures. MCR was230

used to quantify the importance ranges of the selected variables to the prediction of wind farm level power output. MCR (Fisher

et al., 2019), provides a range of importance values for single variables to a class of models that provide equal predictive

performance. The MCR for random forests python implementation as developed by Smith et al. (2020) was used for this

analysis.

Model Reliance (MR) is defined as the decrease in model performance when a variable is disrupted and quantifies how much235

a single model relies on a variable to achieve accurate output. In Smith et al. (2020), this is defined as the difference between

loss scores before and after a variable is disrupted.

Model reliance is defined in equation (7), where f is the predictive model, X1 is the variable of interest, X2 are other input

variables, and Y is the model target variable. EL(f,⟨X1,X2,Y ⟩) and EL
(
f,

〈
Xϕ

1 ,X2,Y
〉)

are the expected loss scores

before and after X1 has been rendered uninformative.240
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Table 5. Variable selection scenarios
Variable Source Met only Reanalysis only WRF only WRF and reanalysis Avg wind speed

Wind speed (m/s)

Average •

met •

WRF • •

RN • •

Temperature (°C)

met •

WRF • • •

RN •

Wind Direction (degrees)
met •

WRF • • •

Pressure (kPa)
met •

WRF • • •

Relative Humidity (%)
met •

WRF • • •

Air Density RN • • •

Irradiance RN • • •

Total number of variables 5 4 5 8 7

MRX1(f,Φ) = EL
(
f,

〈
Xϕ

1 ,X2,Y
〉)
−EL(f,⟨X1,X2,Y ⟩) (7)

The MCR range is defined for each variable by MCR- and MCR+, which are the minimum and maximum MR values

within the Rashomon set. Introduced by Breiman in Breiman (2001b), the Rashomon set is a set of different models with equal

predictive performance. The MCR method for random forests searches over the Rashomon set by starting with a well-defined

reference model, with hyperparameters fixed using cross-validation, and replaces trees within the model to minimize (MCR-245

) or maximize (MCR+) the new trees’ reliance on the feature being studied. New trees are only added if they maintain the

predictive accuracy achieved by the reference model, thus maintaining membership in the Rashomon set.

The MCR method is more useful than the node impurity variable importance measure used in the RF algorithm. This is

because MCR provides an assessment of input variables across all RF models, making the final importance levels from MCR

insensitive to the variances in the input dataset across single RF models.250

4 Results and Discussion

Five scenarios of open access data combinations were tested as input to an RF model used to estimate normalized hourly

production of three different wind farms. MAE and RMSE were used to evaluate different scenarios, the results of which are

presented in Tables 6 and 7.
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Table 6. Error metrics of random forest (RF) model and power curve (PC) predictions using met station data (MAE and RMSE of normalized

wind power predictions). Percent improvement (% imp) of RF over PC (PC using average of all met data).

RF PC met 1 PC met 2 PC met 3 PC avg met % imp
MAE 0.078 0.184 0.173 0.190 0.122 36%
RMSE 0.112 0.257 0.241 0.264 0.177 37%
MAE 0.089 0.193 0.206 0.217 0.153 42%
RMSE 0.126 0.271 0.285 0.297 0.218 42%
MAE 0.079 0.155 0.158 0.155 49%
RMSE 0.115 0.220 0.223 0.219 48%

WF1

WF2

WF3

met data only

Table 7. Error metrics of random forest (RF) model and power curve (PC) predictions using RN, WRF, and combinations of WRF, RN, and

met data. Percent improvement (% imp) of RF over PC.

RF PC % imp RF PC % imp RF PC % imp RF PC % imp
MAE 0.080 0.167 52% 0.076 0.180 57% 0.074 0.167 56% 0.065 0.116 44%
RMSE 0.116 0.235 51% 0.110 0.262 58% 0.109 0.241 55% 0.097 0.178 45%
MAE 0.103 0.224 54% 0.080 0.175 54% 0.080 0.175 54% 0.076 0.133 43%
RMSE 0.143 0.301 52% 0.115 0.254 55% 0.117 0.247 53% 0.111 0.194 43%
MAE 0.103 0.177 42% 0.074 0.136 45% 0.075 0.135 45% 0.067 0.120 44%
RMSE 0.149 0.249 40% 0.109 0.196 44% 0.110 0.187 41% 0.101 0.172 42%

RN data only WRF data only RN and WRF met, WRF, and RN (avg wind speed)

WF1

WF2

WF3

4.1 Analyzing the impact of data source255

Power curve predictions at WF1 and WF2 were improved significantly by averaging available wind speeds (Table 6) and were

further improved by using a Random Forest (RF) model and combining wind speed with other meteorological variables. The

RF model is shown to be a significant improvement over predictions using only the power curve. Across input data, MAE

improvement ranges from 36% for met data to 57% (Table 7) for WRF data.

At all three wind farm locations, output modelled using WRF data performed better than both reanalysis and met station260

data alone according to MAE and RMSE metrics. WRF data also provided the most consistent results between all locations.

Models trained using RN data alone performed similarly to met station data at the WF1 but performed poorly compared to

WRF and met data at both WF2 and WF3. Models trained using meteorological station data performed similarly well at both

WF1 and WF3, both of which have met stations located within 20 km of the wind farm. The met data model did not perform as

well as for WF2, which is 33 km away from the nearest met station. Including both RN and WRF data was found to make little265

change in error metrics when compared to the WRF only model – a small improvement can only be seen in the WF1 results.

The best performing model for all three wind farms contained information from all three data sources, shown in Scenario 5 in

Table 7.

Across all three locations, including observed data from met stations improved results significantly, even at WF2 where the

closest met stations are 33-49 km away from the wind farm. Reanalysis data may have been unable to capture local weather270

effects from terrain due to its coarse spatial resolution. Models trained using reanalysis data performed the best at WF1 which
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has the least variation in geography and land use compared to the other locations. Models trained using WRF data provided the

most consistent and accurate results out of weather station data, reanalysis data, and WRF data.

4.2 Analyzing the impact of feature importance

MCR was calculated for three input datasets, described in Figure 5, to quantify and understand the importance of different275

input variables. Datasets were designed to quantify the importance of wind speeds from different sources and the importance

of other weather and time variables to each model. MCR was calculated on an RF model trained with input from all three

locations, in order to capture the overall impact of each variable. All datasets included wind direction, temperature, pressure,

and relative humidity data from the WRF models, irradiance and air density data from RN, and wind speed data from RN and

WRF (Dataset 1), RN, WRF, and met (Dataset 2), or an average of wind speed data from all three data sources (Dataset 3).280

MCR ranges for each variable in each dataset are displayed in Figure 5.

0 0.05 0.1 0.15 0.2

WRF - wspd_interp_80

RN - wind_speed

WRF - wdir

WRF - T2

RN - air_density

WRF - pressure

WRF - rh

Time_DAY

Time_HOUR

RN - irradiance_diffuse

Time_MONTH

(a) Dataset 1: RN and WRF (MAE: 0.079)

0 0.05 0.1 0.15 0.2

WRF - wspd_interp_80

met_WS 80m (m/s)

RN - wind_speed

WRF - T2

WRF - wdir

RN - air_density

WRF - pressure

Time_DAY

WRF - rh

Time_HOUR

RN - irradiance_diffuse

Time_MONTH

(b) Dataset 2: RN, WRF and met (MAE: 0.076)

0 0.05 0.1 0.15 0.2

ALL DATA_ave_wspd_80m

WRF - wdir

RN - air_density

WRF - T2

WRF - pressure

Time_DAY

WRF - rh

Time_HOUR

RN - irradiance_diffuse

Time_MONTH

(c) Dataset 3: average wind speed (MAE: 0.071)

Figure 5. MCR ranges by dataset (sorted by MCR- from lowest to highest)

No variables have an MCR- score of zero, therefore removing any variable from the model would decrease model per-

formance to some degree (this result is further elaborated in Table 8). Month, day, hour, irradiance, and relative humidity
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consistently have the lowest MCR- score, suggesting there is a model within each scenario where removing these variables

would have minimal impact on model performance. The month variable has a high MCR+ score for all scenarios, indicat-285

ing that some models rely heavily on the month to improve predictions. This also suggests month may be a good proxy for

seasonality in wind speeds.

Pressure, temperature, air density, and wind direction have similar ranges of MCR- and MCR+, across all datasets. The

overlapping MCR ranges suggest that these variables are correlated nonlinearly, and thus a model with similar predictive

power but with one or more of the correlated variables dropped may exist.290

As expected based from the theoretical power model, equation 6, wind speed variables are consistently the most important

variable across all input datasets. Results from Datasets 1 and 2 indicate that removing WRF wind speed data would have the

greatest impact on model performance, with both MCR- and MCR+ scores for WRF wind speed higher than the scores for

RN and met wind speeds. In Dataset 3, MCR- and MCR+ scores for average wind speed are significantly higher than all other

variables as the information from this variable can not be replaced by any other variable. In Datasets 1 and 2, MCR scores for295

wind speed variables are lower, as the models are able to obtain similar predictive accuracy by choosing to use one of the other

available wind speeds.

The MAE for Dataset 3 was lower than Dataset 2, suggesting that the model may be able to make better use of other variables

when variables of the same type are aggregated. This is also seen in MCR scores for the other weather variables, which are

higher in Dataset 3 than in Dataset 2. Given the nature of decision trees and the RF model, removing correlated variables may300

allow the model to make better use of other variables as they are more likely to be selected as splits in a decision tree.

WRF wind speeds were more important to model performance than reanalysis and meteorological station wind speeds.

An average of wind speeds from all data sources, however, was found to improve model performance. It was found that the

month variable can improve model performance relatively significantly, and likely should be included for sites with seasonal

variability.305

4.2.1 Minimum subset of input data

The overlapping MCR ranges for these variables - particularly air density, temperature and pressure - indicate that there may

be a smaller subset of variables within Dataset 3 that would give similar results. Subsets of Dataset 3 were tested to measure

the impact on predictive accuracy when variables are removed. In each case, removing a variable increased MAE and RMSE

by some percentage and the MAE and RMSE results were found to be significantly different when compared to the full Dataset310

3 results via a 2-tailed t-test. Removing any single variable decreases model performance, with irradiance and humidity having

the smallest impact in terms of percent decrease in MAE which was 0.5% and 1.1%, respectively (Table 8).

Kendall’s Tau correlation was used to help identify relationships among the input variables used in Dataset 3, with detailed

results provided in B. Many of the highly related variable interactions can be described by known physical processes. For

example, based on the theoretical wind power equation (Equation 6), wind speed and air density are known to impact power315

output. It is also known that air density is impacted by pressure, temperature, and humidity. Physical relationships between
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atmospheric variables appear to be captured by the machine learning model as indicated by the decrease in MAE and RMSE

when a variable is removed.

To further explore variable interactions within the model, all possible combinations of variables within Dataset 3 were tested

as input variables to the RF model. A sample of the highest performing combinations for various variable subsets is provided in320

9. Removing irradiance and humidity together was found to have effectively no impact on model performance, with a percent

change in MAE of -0.4%. Removing irradiance, humidity, and month was found to increase MAE by 1.6%, which increases

to 4.2% when hour is removed as well. It was found that the total number of input variables in the subset cannot be reduced to

less than six without increasing the MAE by 10% or more.

Other combinations of variables are explored in Appendix A. Results in Table A1 demonstrate that RF models trained using325

wind speed alone have MAE comparable to the power curve results, emphasizing the need to include other weather or time

variables.

Table 8. Impact of removing single variables on MAE and RMSE compared to RF model using all input data included in Dataset 3. (t-test

used to compare baseline to subsets, * represents p<0.01, ** represents p<0.001)

Variable removed MAE RMSE % change (MAE)

Full Dataset 3 0.071 0.106

air density 0.073** 0.108** 2.1%

pressure 0.074** 0.110** 4.1%

wind direction 0.074** 0.110** 3.3%

temp 0.073** 0.108** 2.2%

humidity 0.072** 0.108** 1.1%

irradiance 0.072* 0.107** 0.5%

month 0.073** 0.108** 1.9%

day 0.075** 0.109** 4.7%

hour 0.072** 0.108** 1.4%

Table 9. Minimum subsets of Dataset 3. Impact of removing variables on MAE and RMSE compared to full Dataset 3. (t-test used to compare

baseline to other variable scenarios, * represents p<0.01, ** represents p<0.001)

MAE RMSE ave wspd 80m WRF - T2 WRF - wdir WRF - pressure WRF - rh RN - irradiance RN - air density Hour Day Month count % change (MAE)

0.071 0.106 • • • • • • • • • • 10 (Full Dataset 3)

0.071 0.106 • • • • • • • • 8 -0.4%

0.073** 0.108** • • • • • • • 7 1.6%

0.075** 0.112** • • • • • • 6 4.2%

0.079** 0.118** • • • • • 5 9.9%
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4.3 Transferability: towards a generalized random forest model for wind power prediction

Staid et al. (2018) found that a RF model trained on one wind farm was able to predict power output of a second unrelated

wind farm with reasonable accuracy. To test the transferability of the input dataset developed in this paper, an RF model was330

trained using data from one of the three wind farms then tested on each of the other two sites. Performance metrics for the

RF model is compared to the power curve predictions using data from the site of interest. Results in Table 10 demonstrate the

ability to achieve similar or better predictive performance than power curve predictions. Compared to power curve calculations

in Table 6, a random forest model trained using WRF and RN data performs better than power curve predictions using data

from a single nearby met station. Models trained using WF3 data perform noticeably worse than models trained and tested on335

WF1 and WF2. This can be explained by differences in site characteristics (Figure 6).

Transferable models have applications in power prediction at locations where no historical data exists. A statistical model

can be trained using environmental variables and power output from an existing wind farm and potentially applied to a location

with no historical weather or power data.

Table 10. Random forest models trained using data from other sites compared to power curve calculations using closest meteorological

station data

RF RF PC RF RF PC

trained on: tested on: WF2 WF3 WF2 WF3

MAE 0.107 0.144 0.167 0.094 0.122 0.116
RMSE 0.152 0.186 0.241 0.135 0.162 0.178
trained on: WF1 WF3 WF1 WF3

MAE 0.131 0.155 0.175 0.113 0.137 0.133
RMSE 0.176 0.195 0.247 0.154 0.176 0.194
trained on: WF1 WF2 WF1 WF2

MAE 0.143 0.137 0.135 0.117 0.120 0.120
RMSE 0.192 0.183 0.187 0.157 0.158 0.172

WF1

WF2

WF3

met, WRF, and RN (avg wind speed)RN and WRF data
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Figure 6. Empirical cumulative distributions of input and output variables from each site. Average of all data sources displayed. WF3 has

noticeably different air pressure, density, temperature and power output characteristics.

5 Conclusions340

The random forest (RF) machine learning algorithm was used to predict wind power at three wind farms in Ontario using

various combinations of weather station, reanalysis, and NWP data to determine the effectiveness of each open access input

dataset, along with the optimal combination of datasets. MCR was used to quantify the impact of various meteorological

variables from different sources on wind power predictions.
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Models trained using data from a 3 km resolution in WRF consistently perform better than models trained with reanalysis or345

weather station data. In locations where weather stations have not been installed, the WRF model provides a viable alternative.

While computationally expensive, the WRF model can provide historical time series data for meteorological variables faster

than if a new weather station was installed.

The best performing models contain wind speed data from all three data sources. Weather station data improves power

predictions even at sites where the nearest weather station is 33 km away. Reanalysis data is likely unable to capture local350

variability in wind speeds due to its coarse spatial resolution, but has demonstrated utility in combination with other data

sources. It is also able to provide additional meteorological variables that are not often measured at weather stations, including

irradiance.

All meteorological variables (wind speed, wind direction, temperature, pressure, air density, humidity, and irradiance) and

time variables (month, day, and hour) were found to be useful to prediction performance to some degree based on MCR ranges355

and resulting changes to MAE and RMSE when variables were removed. Wind speeds from WRF were found to be most

important to performance, followed by met and then reanalysis data. Removing each variable alone decreased performance,

however removing both humidity and irradiance had very little impact on predictive performance. Time variables can increase

predictive performance significantly and can be included without the need for additional on-site measurements. The best

performing open access input dataset consisted of eight variables: 1) wind speed averaged from WRF, RN and weather stations360

sources; 2) temperature, 3) wind direction, and 4) air pressure from the WRF model; 5) air density from reanalysis data; and

time variables associated with the input data, including 6) hour of the day, 7) day of the week and 8) month of the year. It is

hypothesized that these time variables help the RF model capture the seasonality of wind speed.

It is important to note that the weather station data used in this study is measured well below hub height. Data measured at

tall on-site stations would be expected to provide improved power predictions and should be considered in future work. WRF365

data computed at a 3 km resolution was unable to capture the variability seen in weather station wind speeds - higher resolution

WRF models may be able to capture more variability and further prove WRF models as an alternative to local observational

data. ERA5 reanalysis has been shown to perform better than MERRA2 reanalysis in other locations (Gruber et al., 2022) and

should be considered in future work. Geometric variables based on wind direction and turbine spacing such as in (Yan and

Ouyang, 2019) could be explored to better understand the importance of wind direction and expand the spatial transferability370

of wind power prediction models.

Appendix A: Other variable combination scenarios (wind speed, weather, and time variables)

RF models trained using only wind speed data produce error similar to the power curve model. Including time variables

decreased MAE by up to 52%. MAE was further decreased by including weather variables. Time variables can be included by

expanding wind speed time series and do not require additional on-site measurements.375
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Table A1. Error metrics of RF model trained using combinations of wind speed, time, and weather variables from each data source. % change

compared to using wind speed alone. Time variables include hour, day, and month. Weather variables include temperature, air density, and

irradiance for RN and temperature, wind direction, relative humidity, and pressure for WRF and met data. RF models trained on all three

sites.

RN % change WRF % change met % change
MAE 0.213 0.185 0.146
RMSE 0.299 0.268 0.195
MAE 0.120 -44% 0.102 -52% 0.111 -48%
RMSE 0.172 -42% 0.149 -50% 0.161 -46%
MAE 0.161 -25% 0.093 -57% 0.108 -50%
RMSE 0.224 -25% 0.134 -55% 0.151 -49%
MAE 0.115 -46% 0.079 -63% 0.094 -56%
RMSE 0.162 -46% 0.116 -61% 0.133 -55%

Wind speed only

Wind speed & time

Wind speed & 
weather

Wind speed & 
weather & time

Appendix B: Kendall’s Tau test

Kendall’s Tau correlation coefficient was used to detect any monotonic relationships among the variables used in Scenario 3

(Tables B1 and B2). All variables were shown to have some degree of positive or negative monotonic relationship with the

actual power output, with wind speed speed having the highest positive correlation followed by air density and wind direction.

Temperature and pressure were shown to have a small negative correlation.380
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Table B1. Kendall’s Tau output - 20 highest KT scores (* represents p<0.02, ** represents p<0.001)

x y kt

Temperature Air Density -0.818**

Output (normalized) Wind Speed 0.642**

Temperature Month 0.47**

Air Density Month -0.42**

Irradiance Hour 0.386**

Relative Humidity Irradiance -0.275**

Pressure Air Density 0.266**

Temperature Irradiance 0.231**

Wind Speed Pressure -0.225**

Pressure Relative Humidity -0.215**

Air Density Irradiance -0.178**

Pressure Wind Direction -0.174**

Wind Speed Temperature -0.173**

Relative Humidity Hour -0.168**

Output (normalized) Temperature -0.155**

Output (normalized) Pressure -0.14**

Temperature Pressure -0.14**

Wind Speed Air Density 0.131**

Output (normalized) Air Density 0.122**

Relative Humidity Month -0.105**

Table B2. Kendall’s Tau output - output vs all other variables (* represents p<0.02, ** represents p<0.001)

x y kt

Output (normalized) Wind Speed 0.642**

Output (normalized) Temperature -0.155**

Output (normalized) Pressure -0.14**

Output (normalized) Air Density 0.122**

Output (normalized) Month -0.099**

Output (normalized) Wind Direction 0.079**

Output (normalized) Day -0.036**

Output (normalized) Hour 0.035**

Output (normalized) Irradiance -0.027**

Output (normalized) Relative Humidity 0.017*
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Appendix C: Kolmogorov-Smirnov test

Table C1. KS test output (* represents p<0.05, ** represents p<0.02, *** represents p<0.001)

comparison between: WRF1 - WRF2 WRF1 - WRF3 WRF2 - WRF3

variable ks equal? ks equal? ks equal?

Output (normalized) 0.044** FALSE 0.268*** FALSE 0.266*** FALSE

Wind Speed 0.045** FALSE 0.098*** FALSE 0.079*** FALSE

Temperature 0.02 TRUE 0.082*** FALSE 0.07*** FALSE

Pressure 0.089*** FALSE 0.534*** FALSE 0.478*** FALSE

Relative Humidity 0.043** FALSE 0.083*** FALSE 0.07*** FALSE

Wind Direction 0.039* FALSE 0.106*** FALSE 0.071*** FALSE

Air Density 0.026 TRUE 0.169*** FALSE 0.148*** FALSE

Irradiance 0.006 TRUE 0.042** FALSE 0.042** FALSE
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