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We sincerely thank both reviewers for their thoughtful and constructive feedback. In response to
their comments, we have made several substantial revisions aimed at improving the overall
structure, clarity, and readability of the manuscript. The key modifications are summarized as
follows:

e A new section titled “Problem Statement” has been introduced between the Methodology
and Results sections. This section provides a clearer narrative by outlining the available
experimental dataset, describing the general hyperparameter setup of the models, and
presenting the rationale behind the selected anomaly detection criteria and their variations.

e The previously included subsection on “variation of anomaly detection criteria
combination to the accuracy of the models” has been removed. The relevant results and
insights are now integrated directly into the revised Results and Discussion sections for
improved coherence.

e Tables 1 and 2 from the earlier manuscript have been consolidated and replaced with a
single, more comprehensive table. This new table summarizes all models evaluated across
different datasets and experimental conditions and is discussed in depth in the updated
Discussion section.

o The sensitivity study subsection has been removed as a standalone section and its contents
have been redistributed across relevant parts of the Results and Discussion sections.

e A new Results subsection has been added to present model performance under a series of
synthetically introduced anomalies. This addition supports a broader evaluation of model
generalization and robustness across different fault scenarios.

RC1

1. Language and Grammar:

- Par 25: Some sentences contain grammatical errors and awkward phrasing, making it
challenging to understand the intended meaning. For instance, the use of the term "acute
care" in a technical context is not entirely appropriate. I suggest replacing it with more
suitable phrases such as "careful handling" or "close attention," depending on the tone you
want.



A) Thank you. The language is enhanced throughout the manuscript. Next is a screenshot of the
delta file — explaining changes between first and second submission — with the specific change
highlighted as requested).

To meet this demand, lab-scale turbine systems are designed to match the performance of full-scale offshore commercial
wind plantsto-facilitate-accurate-coupling-of -wind-turbine-dynamies-with-, enabling accurate coupling between wind turbine
aerodynamics and the hydrodynarmc forces on the substructure Fowler et al. (2023); Kim (2014); Cao et al. (2023). As-a

n-Due to the low Reynolds number
g}\}\% thin airfoil sections gﬁ%@g@m such as the SD7032, to achieve sealeéfmefpeffeffﬂaﬂe&,

memmm
structural strength. Additionally, because of strict mass constraints-particularly for floating configurations-system redundancy
that accommodate equipment malfunctions is notgenerally-designed-for Parker (2022)- Consequentlytypically not included in
the design (Parker, 2022). As a result, lab-scale turbines are highly sensitive pieces-of equipment requiring-acute-care systems

that require careful handling by operators to ensure safe and reliable operation throughout a test campaign.

-There are a few instances where the text contains repetitive expressions, such as "as a
consequence..." and "consequently," within the same paragraph. Reducing repetition will
help enhance readability.

A) We thank the reviewer for their comment. Here’s an updated version:

In experimental testing campaigns, and-particularly when testing novel control algorithms, the likelihood of fault events is

increases, and their impacts can be severe. These events

us-faults may arise from operator errors, incorrect control commands,
or instrumentation malfunctions (Peng et al., 2023). Such e

atincidents can result

in costly equipment damage, violations of laboratory safety standards, and eausesignificant project delays;thereforesubstantial
roject delays. Therefore, efforts to develop efficient methods of detecting operational faults are critical to improving the testing
process —(Leahy et al., 2016; Lu et al., 2024).

- Par 25. There are sentences that need to be fixed, for example, the sentence starting with
"Furthermore' should read "Furthermore, due to tight mass considerations, particularly
for floating models, system redundancy in the case of equipment malfunctions is generally
not implemented, as noted by Parker (2022)."

A) The overall language is improved as follows:



To meet this demand, lab-scale turbine systems are designed to match the performance of full-scale offshore commercial
wind plantsto-facilitate-accurate-coupling-of wind-turbine-dynamies-with-, enabling accurate coupling between wind turbine
aerodynamics and the hydrodynamic forces on the substructure Fowler et al. (2023); Kim (2014); Cao et al. (2023). As-a

consequence of the low-Reynolds wind environmen atlab-seale;-modelturbine bladesrely-on-Due to the low Reynolds number
at lab scale, thin airfoil sections are used for the model turbine blades, such as the SD7032, to achieve scaled rotor performanee;

models;system-redundaney-in-the-ease-of full scale rotor performance. However, this increases blade flexibility and reduces
structural strength. Additionally, because of strict mass constraints-particularly for floating configurations-system redundanc
that accommodate equipment malfunctions is not-generally-designed-for Parker (2022)- Consequentlytypically not included in

the design (Parker, 2022). As a result, lab-scale turbines are highly sensitive pieces-of equipment requiring-acute-care systems
that require careful handling by operators to ensure safe and reliable operation throughout a test campaign.

- Par 150 is really difficult to understand (Especially the sentence starting with "The
combinations.."). Both in terms of English and some parameters, such as DE|E and DE&E
conditions, are not clearly explained.

A) This is now further enhanced under the “Problem statement” section:

Fhe-model-used-to-deteet-an-unomaly-is-based-on-a-double-condition-eriteria:-Three combinations of anomaly detection

2. AEVE - either the error or its derivative must exceed its threshold.

3. évww both the error and its derivative must exe

210 where-the-anomalytook-place—TFhe-evolution-of-the-error-derivative-of-the-first-ecomponent-for-simultaneously exceed

We’ve added the: V and A symbols to describe logical (or) and logical (and) mathematically.

- Par 160: FOR is written in capital. The sentence "As is...." Should be rewritten.
A) This paragraph has been omitted.
- Par 165: No verb in the first sentence.

A) This paragraph has been omitted.
- Par 190: Sentence ""This work ...." should be rewritten.

A) We thank the reviewer. The paragraph is rephrased as such:



This work serves as a proof of concept that stie sh-simple, interpretable, and computationally efficient tech-

niques can be #s

eployed to enhance safety and

operational awareness during laboratory-scale wind turbine testing. The approach holds promise for extension to ocean-based

355 and full-scale wind energy systems. where early anomaly detection is critical for preventing equipment failure and improving

system reliability during experimental campaigns and operational phases.

2. Clarity and Technical Accuracy:

- Par 35: In some sections, the explanation of velocity measurement as a vibration-based
monitoring technique is not entirely clear. A more detailed rationale or supporting reference
would improve comprehension.

A) We have clarified the explanation of vibration-based monitoring techniques, particularly the
use of velocity measurements, by referencing ISO 10816-21, which recommends evaluating
vibration amplitudes using the root mean square (RMS) of velocity or acceleration signals. The
paragraph has been revised accordingly for improved clarity, and additional supporting references
have been incorporated to strengthen the discussion:

Currently; studies-of coneeptual-vibration-based-Vibration-based condition monitoring techniques, such-as-veloeity—and
aceeleration-measurements; were proposed-for rapid-and-early-online fault deteetionoften evaluated using the root mean square
demonstrated that angular velocity measurements already available in existing control systems can be repurposed for fault
detection, avoiding the need for costly additional instrumentation. Their approach was motivated by the challenge of identifying

faults in ecommereis omplex systems composed-of multiple-with many in-
terconnected components, where vibration signals may originate from multiple-sourees-and-the-data-eaptured-by-individua
sensors-may-offer limited-insight-Consequentlyvarious internal sources at different frequencies. In such cases, incorporating
‘::..:............: o ‘ﬁ"-“‘-‘u'i?‘i"i ..... 1ve 'i"":-a‘

a more complete understanding of system behavior; though-doing so-can-come-at the expense of greater-. However, this added
complexity can increase computational cost and the risk of misinterpreting otherwise-irrelevantsignal-data—Sueh-risks-can-be

mitigated-through-dimensionreduction-strategies-during-system-irrelevant or noisy signal components.

- Par 95: What does rotating a matrix mean? Do you mean transposing it? Needs to be
clarified.

A) This section is revised and further explained as follows:



matrbx-with-transformed-variable;-adea-have a mean value, s, of 0 and a standard deviation, g, of 1:

Ti=——"% i=1,...N, M

largest-possible-amountof——ordered by the amount of total variance -they explain. Based on this ranked structure, a subset of

e ey

e e  a

- Par 130: Information given here is mentioned earlier and is repeated here. This reduces
the rigor, conciseness, and precision of the entire text.
A) Rephrased

235 4.3 Pre-strike anomaly detection

cted anomaly caused the rotor to accelerate rapidly. The resultin

During a high rotor angular velocity test, D3, an unex

increase in thrust forces caused significant blade deflection, and within four seconds, one of the blades struck the tower.
leading to severe damage, as shown in Figure 13.
- Tables 1 and 2 have a central importance to the paper. But they are not adequately
explained or referenced in the text. They should be explained and discussed
thoroughly. Providing more context, especially when discussing essential results or
comparisons, would enhance the reader's understanding.
A) Agreed. First, a new table describing dataset usage for the models is discussed in Problem

statement:



Table 1. Dataset usage by models M, and M for different tasks. Time intervals are in seconds.

Model Task Dataset(s) Interval
Training D1 [100, 450]
Validation D1 (450, 675]
My
Error threshold D1 [100, 1000]
Testing D,, D123 Dy | [100, 1000], [100, 3501, (135, 190]
Training D3 [70, 119]
Validation Ds (119, 135]
M3
Error threshold Ds [70, 135]
Testing D (135, 190]

This is important to help the reader understand the differences between the datasets used in the
paper. Table 1 is further explained in the text in the problem statement section:

Three datasets, D1, Do, D3, were gathered during the test campaign. While wind speeds were kept constant (variation < 1%).

75

80 increased linearly to a maximum value by 250 s, and then
' 0.25%, 0.5%. and 1.00% per At for DY, DLe?)

D(“ ). respectively. Table 1 summarizes the model setup and intervals of datasets utilized during training, validation, anomal

factor was applied starting from an arbitrary onset time (225 s).

reduced back to unity by 275 s. The variants amplify the signal b , and

criteria threshold selection. and testing tasks.

After we performed all the analysis, we summarized it all in Table 2:



Table 2. Anomaly detection performance for models tested on datasets D2, Dgal) . Dé’ﬂ) R Dg“*”. and D3, under different detection criteria:
AE.AEVE.and AENE.

1PC MPC
Criterion | Dataset
T+ F- F* T P R FI | T+ F- F* T P R FI
Da 0 0 0 1800 N/A NA NA 0 0 0 1800 N/A N/A N/A

DY | 75 26 30 369 074 071 073 | 18 36 17 382 082 018 029
AE DY | 92 9 36 363 091 072 080 | 70 31 18 381 080 069 074
DY | 95 6 38 361 094 071 081 | 8 13 32 367 073 087 080

Dy 49 2 4 125 096 093 094 30 20 0 129 100 059 074

D, 0 0 0 1800 NA NA NA| 0 0 0 1800 NA NA NA
DY | 90 11 30 369 089 075 081 | 64 37 8 391 089 063 074
AEVE | DY | 95 6 36 363 094 073 082 | 8 20 18 381 082 080 081
DY | 97 4 38 361 096 072 082 | 90 11 32 367 074 089 081

Ds 510 129 0 100 028 044 | 51 0 121 8§ 030 1.00 046
D, 0 0 0 1800 NA NA NA| 0 0 0 1800 NA NA NA

DY | 65 36 21 378 064 076 070 | 18 83 1398 095 018 0.30

AEAE | DY | 87 17 28 371 083 075 079 | 65 36 17 382 079 064 071
DI | 89 12 32 367 088 074 080 | 81 20 25 374 076 080 078

Dy 49 2 4 125 096 093 094 | 30 21 0 129 100 059 074

We explained the main findings thoroughly in the discussion session.

5 Discussion

e

y—Table 2 summarizes the anomaly detection
erformance of model M; with its 1PC and MPC variations, evaluated on the healthy dataset Dy, synthetically altered anomaly

datasets {DLY DL DL and the

1 lo dagivatinea D S i H £ ol 1 PR | ] 3 Jagivzati; L 12 P ar of 1 atac
Frsote dertratives 2eacombination of absobtte error vatte sd s dertative nst-be et snd-3hlade-tower strike dataset Dy,

From these results, the following key observations can be made:

— The 1PC variation generally yields higher F1-scores compared to the MPC variation (43% enhancement under AE A E

— The combined threshold criterion AE A E provides the most consistent and reliable detection performance across

/ the

red. The 1PC model typically reacts more rapidly to actual anomalies, as it is not constrained b

threshold criterion emplo

Additionally, we added a new figure that compares anomaly/non-anomaly events and the ability
of the models to predict those events for all datasets tested and various anomaly conditions criteria:
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- Uncertainty estimates for the P, R, and FI in Tables 1 and 2 would definitely help the
technical rigor of the paper. For example, those parameters are given with 3 decimal
resolution. Can this be justified?

A) Uncertainty quantification was considered out of scope for this publication but an

interesting point for future research discussion. There is no justification to the choice of

decimals resolution selected (2 decimal resolution in the new manuscript).

- Par 170: Increased frequency would help to make a faster detection, not reduced.

A) Correct. This is now reflected in Figure 12.
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3. Structural and Visual Presentation:

-The arrangement of the three graphs in Figure 9 can fit in a single line, which would
help in better page management and improve readability.

A) That figure has been removed and replaced with a simple version in Figure 12.

4. Additional Considerations:

- It would be valuable to discuss the physical or mathematical reasons behind why the
1PC model performed better in anomaly detection.

A) This is now further discussed in the discussion section. The newly introduced analysis (section
4.2 in the new manuscript) helped generalize the conclusion we reached. Also the discussion has
shifted from saying 1PC is always performing better in anomaly detection into more detailed
difference between the two variations. Namely, 1PC has higher recall, and therefore, earlier
anomaly detection but that can lead to over-detection. MPC, on the other hand, is more
conservative approach and has less recall but has higher precision. This, however, can lead to more
delay in the anomaly recall and some detection latency. Therefore, each has advantages and
disadvantages.



RC2

1) Details and example of data-preprocessing with time-series signals, idle sensors and
exact data cleaning method used for at least one representative case. What channels are
used and why were they picked.

A) Section 2.4 in the new manuscript provides a description of the numerous measurements and
data channels used in the analysis presented in the paper as well as some data pre-processing that
took place. For instance, we explained the standardization method for scaling, provide correlation
matrix between channels of interest, and covariance loadings matrix after performing PCA: This
is a screenshot of the delta file (difference between old and new manuscript):



2.4 Anomaly detection over the span of multiple channels

In complex systems such as offshore wind testing, there are numerous measurements and data channels, which can be used
to understand the overall behavior of the system. However, for anomaly detection purposes, it can be overwhelming and
computationally expensive to manually and in real-time search the data space for deviation in measured data. The operator
might not have sufficient time to abort the test before the anomaly becomes too consequential. Additionally, an anomaly might
not be detectable based on any single data channel to comprehend the full state of the system. Therefore, the predictive model
must be based on multiple data channels related to the test being conducted while providing the operator with a single, concise,
anomaly detection capability based on the most relevant information. To accomplish that, principal component analysis (PCA)

was carried out. A PCA creates combinations of variables that explain the largest amount of variance in the data.

Prior-to-performing-this-analysis—eartier-datareported-Before performing the analysis, the raw data recorded by the data

IRDT LS

acquisition system iﬁ-cleaﬁed—\@vrc gre p\N ocessed to remove idle measurements er-and non-numeric vatues—Fhen—the-data

-entries, Data

channels collected comprises wind speed, angular velocity of the rotor, azimuth angle, all blades pitch angles. generator torque
rotor torque, forces and moments at the base of the tower. We assume the digital twin only has access to some of these channels

(i.¢.. angular velocity, 0, rotor torque, @, and tower base forces and moments; F..F, we ko Mo, My, M) to simulate cases

where some measurements can be restricted by turbine manufacturers and validate the model’s operability under restrictive

AR AR NI

data access. Figure 4a illustrates the correlation matrix between the channels of interest.

Data are then standardized to ensure all channels (features) are-on-the-same-seale-to-prevent-features—with-largerranges

have a mean value, s, of 0 and a standard deviation, g, of 1:

gi=2 T 1 N, (1
g;

where N is the number of channels included in the model. Following standardization, the covariance matrix of the variables

was computed and then diagonalized A‘HQM&J&E@Q&Q@Q&J"OHALCW"MLQLQ@Q&QQ@J transformed variables—i.e..
the yrlncnpal componenls (PCs):

=
largestpossible-ameuntef—ordered by the amount of total variance —they explain. Based on this ranked structure, a subset of

components can be selected to reduce the dimensionality of the problem while preserving as much of the original variance as

S

possible. For instance, the first 5 PCs and channel loads/contributions to them is illustrated in Fig. 4b
The PCs —whi

later be used for prediction. As new data is acquired, it is transefmedtransformed/projected onto the same PCs that were used in

s—were then used to train the RNN model(s) that will

13

training the models. For the purpose of anomaly detection, the mean absolute error (MAE) is computed between measurements

and predictions from the RNN models, and the error derivative is calculated, to estimate rapid fluctuations in the quality of
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(a) Correlation matrix between channels of interest. (b) Covariance loadings matrix.

5 principal components.



We also provided full description of the pre-processing analysis used to determine threshold values
for multiple principal component model (Figure 8 in the new manuscript). Additionally, in the new
problem statement section, we explained in high detail the various dataset (cases) used in the
analysis along with a description of the channels used in building the models and two plots that
show time series variations in signals from datasets used in training/testing:

Three datasets, Dy Dy, Dy, were gathered during the test campaign. While wind speeds were kept constant (variation < 1%).

o
22 P S

the rotor & ver by 12% and higher by 51% for D, relative to D,. The angular
cxolor angul [ SOWEL N <72 ANC NN DY 20 A S8 JEANE 2 S JIC Angal

VRL LISV AR Vel s

was imposed by modifying the tower base fore-aft bending moment, My, through a time-varying amplification factor. This

factor was applied starting from an arbitrary

criteria threshold selection. and testing tasks.

adv

Table 1. Dataset usage by models M and M3 for different tasks. Time intervals are in seconds.

Training. o (100, 4501
Validation_ Dy (450, 675]
T ey 1100, 1000]

Testing | D3, D000, Dy | (100, 1000], [100, 350], (135, 190)
Training Dy [70, 119]
" Validation Dy (119, 135]
3
Error threshold Dy [70, 135]
Testing Dy 135, 190]
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(a) Angular velocity of three experimental dataset.

Figure 9. Three ex
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(b) Thrust force measurements of three experimental dataset.

erimental datasets and their variations in (a) angular velocities and (b) thrust forces.



2) Training - testing methodology: Type and size of RNN model used, time / resources
needed for training.

A) Section 3 in the new manuscript also provides full description now of the
training/validation/testing methodology and the type, size, and hyperparameters of the models
being used:

Both models uti

T e

Table 1. Dataset usage by models M and M3 for different tasks. Time intervals are in seconds.

Training Dy [100,450]
Validation_ Dy (450,675

My
Error threshold Dy 100, 1000]
Testing | D3, D320, Dy | 1100, 10001, [100, 350], (135, 190]
Training Dy, (70, 119]

M3
Error threshold Dy (70,1351

3) How many different faulty and non faulty cases are considered in simulation and how do
1PC and MPC compare in terms of false positive and negative detection. If this has not
been studied yet, please add comments about this and/or add this as future work.

A) We divided the results section to include:
1) testing under healthy dataset:



4.1 Model performance during healthy conditions

The

tested against measured data during healthy operations, D5, are shown in Fig. 10. When using the lead principal component

rformance of the M, model, in terms of normalized error and error derivative to their respective threshold values, when

(i.e., IPC variation of M, model), the error values were consistent throughout the test. The MPC variation experienced a slight

decline in error values as time progressed. As desired, both model variations exhibited no predicted anomalies based on any of
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Figure 10. Error and error derivative curves between measured and M model during healthy D, testing dataset when (a) a single or (b

multiple principal components are used.

2) testing under synthetically introduced anomalies:
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Figure 11. Anomaly detection based on AE A E criterion during synthetically altered dataset variations of D2 and M model detection
response, with (1) 1PC - D§*Y . (b) 1PC - D2 () 1PC - D, (d) MPC - DY, (e) MPC - D§*? |, and (f) MPC - DS** variations.




3) and the previous pre-strike anomaly case (actual anomaly):
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We then aggregated all these analysis in the discussion section into a single bar plot that shows all
true positives, false negatives, false positives, and true negatives events for all these different cases:
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Figure 15. Percentage of true positives, false negatives, false positive, and true negatives occurrence when testing M model for the various

testing datasets.



This figure simply illustrates how the models were able to classify faulty and non-faulty
conditions and how they compare to one another for various datasets tested:

280 across the same set of testing datasets. In the horizontal bar charts,

The error derivative appears to be the dominant criterion for accurate anomaly detection. As shown in Fig. 15, the combined

threshold criterion AE A E results in fewer incorrect classifications (i.e., reduced red regions), whereas more flexible criteria—where

either the error or its derivative

290

—cHoes s = e o —seote: e —Ho

shews-stmtlar-patterns-but-with-dowerF/seeres—alone exceeds the threshold—lead to increased misclassifications. Notabl
the reconstruction error & serves as a useful indicator for identifying deviations due to previously unseen operating conditions.

295 In contrast, the error derivative AL is particularly effective in capturing abrupt transitions between the reconstructed and

measured signals, making it well-suited for detecting sudden-onset anomalies such as the one present in this paper.

£hes

This analysis is also described numerically in Table 2:

Table 2. Anomaly detection performance for models tested on datasets D, Déal), 'Dgﬂ) R Dg"s), and D3, under different detection criteria:
AE.AEVE,and AENE.

1PC MPC
Criterion | Dataset
T+ F~- F* T P R FI|TY F- F* T P R FI
Do 0 0 0 1800 N/A NA NA 0 0 0 1800 N/A NA NA

Dg“l) 75 26 30 369 0.74 071 0.73 18 36 17 382 082 0.18 0.29
AE ’Dg“m 92 9 3 363 091 072 080 | 70 31 18 381 080 0.69 0.74
’Dgas) 95 6 38 361 094 071 081 88 1332 367 073 0.87 0.80

Ds 49 2 4 125 096 093 094 | 30 21 129 1.00 059 074

0
D, 0 0 0 1800 NA NA NA| 0 0 0 180 NA NA NA
DY | 90 11 30 369 089 075 081 | 64 37 8 391 089 063 074
AEVE | DY | 95 6 36 363 094 073 082 | 81 20 18 381 082 080 081
DY | 97 4 38 361 096 072 08| 90 11 32 367 074 089 081

Ds 51 0 129 0 1.00 028 044 | 51 0 121 8§ 030 1.00 046

D, 0 0 0 180 NA NA NA| 0 0 0 180 NA NA NA
DY | 65 36 21 378 064 076 070 | 18 83 1 398 095 0.8 030
AEAE | DY | 87 17 28 371 083 075 079 | 65 36 17 382 079 0.64 071
DI | 89 12 32 367 088 074 080 | 81 20 25 374 076 080 078

Ds 49 2 4 125 096 093 094 30 21 0 129 100 059 074




It is very interesting to see how the two models vary in terms of recall and precision. Namely, 1PC
has higher recall, and therefore, earlier anomaly detection but that can lead to over-detection. MPC,
on the other hand, is more conservative approach and has less recall but has higher precision. This,
however, can lead to more delay in the anomaly recall and some detection latency. Therefore, each
has advantages and disadvantages. We are, therefore, shifting our language from specifically
saying one model is better than the other and leaving it open to discussion. The newly introduced
analysis (section 4.2 in the new manuscript) helped generalize the conclusion we reached.



