Response to Report #2

This work proposes a PCA-LSTM anomaly detection approach for a lab-scale wind turbine
failure detection. While the methodology is sound and demonstrates clear value, several
technical details require clarification for improved reproducibility.

1) The discussion of vibration-based condition monitoring in introduction seems misplaced since
the approach used angular velocity, torque, and force measurements rather than vibration signals.
Please clarify the relevance or consider focusing the literature review on multi-sensor anomaly
detection methods more aligned with your methodology.

We appreciate the reviewer’s comment on this. Our intention was not to emphasize vibration-
based condition monitoring techniques but rather to highlight that effective fault detection can be
achieved using measurements already available in the system, such as angular velocity or torque
measurements, without the need for additional sensors. We have revised the paragraph in the
introduction to clarify this point and shifted the focus from vibration-based sensors and clarified
our emphasis on multi-sensor anomaly detection methods that leverage existing control system
data. We have added another citation regarding mutli-sensor fusion for anomaly detection that
aligns more directly with the methodology used in this study.

Vibration-based-eondition-monitoring-In_many condition monitoring applications, anomaly detection is performed usin,
dedicated sensors. For instance, vibration-based techniques, often evaluated using the root mean square (RMS) of velocity

or acceleration signals, are widely used for drivetrain fault detection ;-partieularly-to-determine-whether signal-amplitudes
execeed-the-thresholds-defined-by-and are assessed against standards such as ISO 10816-21 (ISO, 1996). Ferexample-However,

deploying additional instrumentation is not always feasible or cost-effective. Nejad et al. (2018) demonstrated that angular ve-
locity measurements already available is-within existing control systems can be repurposed for fault detection, aveidinsthereby

eliminating the need for eostly-additional-instrumentation—Their-approach—was—meotivated-by—the-challenge-ofidentifying
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sources-at-differentfrequeneies—Insueh-easesineorporating-multiple-sensoer-channels-is-often-neeessary-to-obtain—a-mere
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or-noisy-signal-components—supplementary sensors. Similarly, Dameshghi and Refan (2019)
proposed a diagnostic approach for gearbox faults based on SCADA information multi-sensor fusion. avoiding the need for
additional data collection systems. These approaches illustrate the potential of multi-sensor anomaly detection methods that

2) Please show absolute values in both correlation and covariance matrices in figure 4 for clearer

interpretation.

of-misinterpreting—irrelevant

Figure 4 has been updated to show the absolute values
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(a) Correlation matrix between channels of interest. (b) Covariance loadings matrix.

3&4) Please maintain consistent terminology throughout the paper. Authors refer to RNN in lines
113-115 but use LSTM elsewhere. Please consider using LSTM consistently to avoid confusion.
Why choose MAE over MSE for reconstruction error? MAE can be less sensitive to outliers, but
MSE might better capture the magnitude of deviations. Please justify this choice.

Thank you for pointing this important distinction. We chose the mean absolute error (MAE) over
the mean squared error (MSE) as our reconstruction error to reduce the model’s sensitivity to
transient spikes or noise that may not necessarily correspond to actual anomalies. This allows the
model to only detect sustained system variations from nominal behavior. With that said, we will
consider incorporating a comparative analysis in possible future extensions of this work to
further asses the impact of the choice of reconstruction error metric. In the meantime, we have
added a justification to the use of MAE in the manuscript as follows:

acquired, it is transformed/projected onto the same PCs that were used in training the models. For the purpose of anomaly

detection, the mean absolute error (MAE) is computed between measurements and predictions from the RNN-LSTM models,

true anomalies. An anomaly alert is reported to the operator when certain anomalous conditions are met. In this research, we
investigate conditions when both the error and its derivative were crossing certain thresholds. This procedure is illustrated in

Figure 5 and is explained in section 2.6.

5) Please specify the input sequence length for the LSTM model.

The input sequence length is specified in the manuscript as a look-back to prediction ratio of
n/m=10, corresponding to a look-back window (input sequence length) of 10 timesteps for a 1-
step prediction horizon. To improve clarity, we have now explicitly stated the input sequence
length in the text.



Models M and M3 were configured with identical training hyperparameters, except for the number of training epochs.

6) Given the standardization approach in equation 1 where data is normalized to mean zero and
standard deviation of one, and considering that synthetic anomalies are created by amplifying
monitored signals, a fundamental question arises: if both training healthy data and anomalous
test data are normalized to the same scale, how can the resulting deviations be detected by the
model? Please clarify in this regard.

We appreciate the reviewer’s thoughtful question. To clarify, the standardization procedure
described in Equation 1 is applied using the mean and standard deviation computed from the
healthy training dataset only. The resulting scaler is then stored and applied to transform all
subsequent input data (could be healthy or anomalous), prior to PCA projection (the PCA
transform, not to be confused with scaler transform) and prediction. This ensures that deviation
from the distribution of the healthy training data are preserved and detectable. We have updated
the manuscript to explicitly state that the standardization model (scaler) is fitted once on the
training data and reused for transforming new data.

deviation, o, of 1:
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where IV is the number of channels included in the model. All subsequent testing dataset (whether healthy or anomalous) are

standardized using these scaler parameters. This ensures that the resulting transformed values might reflect deviations from the

training dataset, allowi us behavior.

7) According to figure 11, it seems 1PC outperforms MPC despite MPC containing all
information from 1PC plus additional components. Please investigate whether certain channels
hinder rather than help anomaly detection, as this would strengthen the proposed methodology's
motivation.

We believe the reviewer is raising an interesting point of view. In the manuscript, we clarified
that the anomaly was introduced in the tower base signal, which has a relatively strong loading in
PC1. This likely contributed to 1PC performing better than MPC despite having MPC containing
all information from 1PC plus additional components. This is because this added information can
dilute the influence of specific anomalous channels, especially when the anomaly is strongly
represented in the leading component but has minimal contributions in subsequent components.
Conversely, if an anomaly were introduced in a channel with weak or near-zero loading in PC1,
its detection would likely require the inclusion of additional components. Thus, while MPC
offers broader coverage across the feature space, it may also distribute the reconstruction error in
a way that reduces sensitivity to certain localized anomalies. Therefore, the use of additional PCs



may become necessary to capture anomalies in channels that do not have high loading in PC.
Deeper investigation into how channel loadings influence anomaly detectability is an interesting

direction for future research.
That said, we also note that in a physically coupled system such as the one studied here,

localized anomalies may inherently manifest across multiple correlated channels due to system
dynamics. As a result, even anomalies originating in channels with low PC1 loadings could still

influence leading components via cross-correlations.

The 1PC variation demonstrates overall enhanced coverage (highlighted in blue) and reduced detection delay relative to the

onset of the ground-truth anomaly (highlighted in red). Fhe reduction-in-deteetion-delay-is-also-represented-This is particularly
evident in Fig. 12 when-eomparing-which compares detection delays for 1PC to-MPE-and MPC under various anomal
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Figure 11. Anomaly detection based on AE A E criterion during synthetically altered dataset variations of D, and M, model detection
response, with (1) 1PC - D{*V, (b) 1PC - D{*?, (c) 1PC - DS, (d) MPC - DS*Y, (¢) MPC - D{*), and (f) MPC - D§** variations.
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introduced anomaly. This is indicated in Fig. 12 which shows detection delay in seconds between synthetically introduced
anomaly and the predicted anomaly by the models. The figure also shows a sensitivity analysis of the models to the timestep at
which the data is sampled. Small timesteps (high sampling frequency) can provide reduce anomaly detection delay but at the

expense of computational cost.



