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Abstract. E

As offshore wind systems become more complex, the
i rageequipment malfunction increases

risk of human error or «

during experimental testing. This study e
ef-investigates a lab-scale incident involving a 1:50 scale 5 MW

we propose a data-driven

to—enhaneereaction—time—and-prediction—quality-method based on multivariate long short-term memory (LSTM) models.
High-frequency measurements are projected onto principal components, and anomalies are identified using reconstruction error
and its time derivative. Two models are trained on different healthy datasets and tested using single- and multi-principal compo-

MPC) variations. Results show that combining both error and error derivative improves detection accuracy, The 1PC model
detects faults faster, has a higher recall rate, and achieves a 43% improvement in anomaly detection accuracy, while the MPC
mﬂ@i@lml%mmmm scale
sexperiments, helping to reduce the risk of future failures

during the testing of new technologies.

1 Introduction

Model scale laboratory testing is a necessity for early development of grid scale on- and offshore wind energy technologies,

and recent industry trends have driven increased demand for such testing (Mehlan and Nejad, 2024; Soares-Ramos et al.,
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2020). In the case of offshore wind energy projects, operation and maintenance costs can amount to a third of the-projeets-a

project’s life-cycle cost, often quantified as the levelized cost of energy (LCOE)~me&mﬂgfchaF - Small-scale validation and

testing improve the maturity of new technologies
(Mehlan and Nejad, 2024; Association, 2009; Leahy et al., 2016; Wang et al., 2022).

To meet this demand, lab-scale turbine systems are designed to match the performance of full-scale offshore commercial

wind plantste—facilitate-aceuratecoupling-of-wind-turbine-dynamies-with-, enabling accurate coupling between wind turbine
aerodynamics and the hydrodynamic forces on the substructure Fowler et al. (2023); Kim (2014); Cao et al. (2023). As—=a

models;-systemredundaney-in-the-ease-of-full scale rotor performance. However, this increases blade flexibility and reduces

structural strength. Additionally, because of strict mass constraints-particularly for floating configurations-system redundanc
that accommodate equipment malfunctions is net-generally-designed-for Parker(2022)-Censequentlytypically not included in

the design (Parker, 2022). As a result, lab-scale turbines are highly sensitive pieces-of-equipmentrequiring-acute-care-systems
that require careful handling by operators to ensure safe and reliable operation throughout a test campaign.

In experimental testing campaigns, and-particularly when testing novel control algorithms, the likelihood of fault events is

increases, and their impacts can be severe. These events
couldfold-asconsequences-of-an-operatorerrorerroneousfaults may arise from operator errors, incorrect control commands,
or instrumentation malfunctions (Peng et al., 2023). Such errors-canlead-to-costly-damage-to-lab-equipmentincidents can result

in costly equipment damage, violations of laboratory safety standards, and eause-significantproject-delays;-therefoeresubstantial
roject delays. Therefore, efforts to develop efficient methods of detecting operational faults are critical to improving the testing

process —(Leahy et al., 2016; Lu et al., 2024).
Guﬁeﬁﬂy—s&}dw&eﬁemwep&m}%ﬂbfa&e&basedrmwg\condmon monitoring techniques, such-as—veleeity—and
ionoften evaluated using the root mean square
demonstrated that angular velocity measurements already available in existing control systems can be repurposed for fault
detection, avoiding the need for costly additional instrumentation. Their approach was motivated by the challenge of identifying.
faults in commereial-scale-systems—(Nejad-et-al;2018);-however—in-complex systems composed-of-multiple-with many in-
terconnected components, where vibration signals may originate from multipte seurees-and-the-datacaptared-by-individual
mmmmmmmmwwwwmmgm incorporating
multiple data r-sensor channels is often necessary to obtain
a more complete understanding of system behavior-theugh-deing-so-can-come-at-the-expense-of-greater-. However, this added
mepmanonal cost and the risk of misinterpreting etherwise-irrelevant-signal-data—Suehrisksecan-be
irrelevant or noisy signal components.
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To mitigate these issues, dimensionality reduction techniques, such as principal component analysis (PCA), are often
employed during pre-processing to i i e ibaj i i
MW&WMMMM&
PCA to multi-point raw vibration data as a means of compressing the dataset prior to classification, thereby improving
computational efficiency without sacrificing key diagnostic information. These reduced-dimensional signals were then input to

a convolutional neural network (CNN) for automated fault classification and pattern recognition. Similarly, adaptive filterin
techniques, including linear and non-linear Kalman filters i i i i

—Online-, have been used to enhance fault detection capabilities in dynamic environments, though their implementation can
become increasingly complex for large-scale systems (Zhou and Zhu, 2023; Le and Matunaga, 2014, Ammerman et al., 2024

. Overall, data-driven
any-models, when combined with feature extraction or filtering techniques, provide a robust framework for detecting changes
in system state and identifying early signs of failure or adverse environmental conditions (Dibaj et al., 2022; Alkarem et al.,

2024, 2023).

These and similar methods can also be applied to lab-scale models, with the additional caveat that computational efficiency
is even more critical. Due to time scaling and typically higher frequencies of motion at lab-scale, fault detection strategies on
models must be able to operate quickly and with minimal overhead. To meet this need, pre-trained data-driven approaches offer
significant performance benefits over non-linear physics-based models.

The case study in this work comes from a fault incident which occurred during a standard scale model characterization test,
wherein the turbine generator disengaged during an experiment, causing the turbine to spin out of control and one of the blades
to strike the tower. The resulting damages caused significant delays in the campaign. Using this incident as a real example of
the need for online fault detection and mitigation strategies, a data-driven approach was applied to develop an efficient online
monitoring system which can detect failures or anomalous behavior before significant system effects are realized, increasing

reaction time for operators or enabling automated shutdown procedures to take place.

2 Methodology
2.1 Experimental setup

The experimental data for this study comes from a wind turbine characterization test performed on a scale model, at the Harold
Alfond Ocean Engineering Lab-Laboratory at the University of Maine’s Advanced structures and Composites Center. The
layout of the experiment is shown in Figure 1a, illustrating the arrangement of the wind machine and turbine model. During the
experiments, the turbine was controlled and monitored by 1 or 2 test operators stationed to-on the side of the basin, via a data
acquisition system (DAQ) based on the National Instruments cRIO platform. Figure 1b shows the installed experimental turbine

before testing began. To properly characterize the turbine’s aerodynamic performance, it was installed in a fixed configuration



within the wind field. Cross-bracing was installed to keep the turbine tower and mounting surface rigid during the test to target

90 rotor performance only.
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tion experiment. stalled in the basin.

Figure 1. Experimental test setup: (a) an overview, and (b) an image of installed turbine (b).

To fully characterize the rotor, experiments were performed at various wind speed-angular-veloeity-speed/RPM pairs. Each
experiment used a previously generated setpoint file to cycle through blade pitch setpoints. Figure 2 shows blade pitch (2a) and

rotor thrust (2b) from one of the experiments. Results from these tests were then used to form rotor performance surfaces for

future experiment design.
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(a) Blade pitch schedulefor—sample—characterization (b) Rotor thrust measuredfer—sample—characterization

Figure 2. (a) Scheduled blade pitch and (b) measured rotor thrust for sample characterization experiment run.
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Figure 3. Blade strike incident: (a) angular velocity in RPM, and (b) rotor thrust force. The dashed line represents the blade-strike instance.

2.2 Failure incident

During one of the characterization runs, an operator mistakenly triggered an emergency stop on the turbine generator. As a
result, the rotor began accelerating unrestricted until a blade strike occurred with the towerand-the-wind-generator-could-be
shut-dewn. Plots of rotor speed and thrust load during the incident are shown in Figure 3, with a vertical line indicating when

the blade struck the tower.
2.3 Predictive model description

Detecting early signs of anomalies in testing campaigns can be beneficial. It can either provide data where operators can act
upon with informative decisions and/or it can be automated to abort the test in case certain thresholds are exceeded. However,
signaling a possibility of an anomaly requires real-time processes of incoming measurements-measurement data, which can be

best done using deep machine learning algorithms. Such algorithms indeed make it possible for predictive models to be trained

on certain healthy data then;-w SSHRE ming suremen sin-the lab-durine similar-tesd

or-forecast-of-a-certain-state-of the-systemand provide predictions of the systems’ states during similar runs.

Accidents with lab equipment can be costly and labor intensive and can cause delays. to-To mitigate such incidents, we
propose an early anomaly detection model to improve response times and reduce human error. To this effect, a multi-step,
multivariate Long Short-Term Memory (MESTMLSTM) model — a type of recurrent neural network (RNN) designated to
address the vanishing gradient issue that traditionally prevents models to capture long-term dependencies — was developed
and trained on data from a healthy aerodynamic characterization tests with similar wind speeds. When an anomaly occurs,
the error between the predicted signal and the measured signal increase which can be used to inform the operator of such an
incident. The model parameters were initially estimated intuitively, but these could be further refined for enhanced predictive

accuracy.
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2.4 Anomaly detection over the span of multiple channels

In complex systems such as offshore wind testing, there are numerous measurements and data channels, which can be used
to understand the overall behavior of the system. However, for anomaly detection purposes, it can be overwhelming and
computationally expensive to manually and in real-time search the data space for deviation in measured data. The operator
might not have sufficient time to abort the test before the anomaly becomes too consequential. Additionally, an anomaly might
not be detectable based on any single data channel to comprehend the full state of the system. Therefore, the predictive model
must be based on multiple data channels related to the test being conducted while providing the operator with a single, concise,
anomaly detection capability based on the most relevant information. To accomplish that, principal component analysis (PCA)
was carried out. A PCA creates combinations of variables that explain the largest amount of variance in the data.

Prior to-performing-this-analysis;-earlier data reported-Before performing the analysis, the raw data recorded by the data
acquisition system is-eleaned-were pre-processed to remove idle measurements or-and non-numeric values—Then;-the-data

ad—forthe PCA by ctan

dizing-them;—using-their-mean-and-standard-deviation;-which-ensures-that-entries, Data
channels collected comprises wind speed, angular velocity of the rotor, azimuth angle, all blades pitch angles, generator torque,
rotor torque, forces and moments at the base of the tower. We assume the digital twin only has access to some of these channels
(i.e.. angular velocity, 6, rotor torque, Q, and tower base forces and moments: Fy. Fy F. My, My, M.) to simulate cases
where some measurements can be restricted by turbine manufacturers and validate the model’s operability under restrictive
data access. Figure 4a illustrates the correlation matrix between the channels of interest.

Data are then standardized to ensure all channels (features) are-on-the-same-seale-to-preventfeatures—with-largerranges

minate ha anoa 1 ~than OB ad fo ha nd ad hle h ha o ad he me d N
v ¢ V N W N —tO0O

zp=— =1, N, (1)
g;
where NN is the number of channels included in the model. Following standardization, the covariance matrix of the variables

was computed and then diagonalized through eigendecomposition, yielding a set of orthogonal transformed variables—i.e.
the principal components (PCs) : ibi 5 ract :

largest-possible-ameuntef—ordered by the amount of total variance —they explain. Based on this ranked structure, a subset of
components can be selected to reduce the dimensionality of the problem while preserving as much of the original variance as

ossible. For instance, the first 5 PCs and channel loads/contributions to them is illustrated in Fig. 4b
The PCs tch-a A io arh artables;-were then used to train the RNN model(s) that will

later be used for prediction. As new data is acquired, it is transofmedtransformed/projected onto the same PCs that were used in
training the models. For the purpose of anomaly detection, the mean absolute error (MAE) is computed between measurements

and predictions from the RNN models, and the error derivative is calculated, to estimate rapid fluctuations in the quality of
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Figure 4. Data pre-processing: (a) correlation matrix between available channels used in the models, and (b) covariance loadings of the first

5 principal components.
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Figure 5. Flowchart describing data stream, data preproeessingpre-processing, training the MESTM-LSTM model and using it for anomaly

detection.

the predictions. An anomaly alert is reported to the operator when certain anomalous conditions are met. In this research, we
investigate conditions when both the error and its derivative were crossing certain thresholds. This procedure is illustrated in

Figure 5 and is explained in section 2.6.
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2.5 Principal component selection

Two models developed vary in their projected principal component selection. The projected PC results from training data are
presented in Figure-Fig. 6. The first model compresses the data by retaining only the first PC; it is therefore named "1PC’.
The second model selects the group of (M) PCs that cumulatively explain 90% of the total variance, thus only neglecting the

remaining 10%; this model is hence called "MPC’.
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Figure 6. Explained variance ratio and cumulative of all principal components.

2.6 Error and error derivative thresholds selection for single/multiple PCs

The histogram of the-derivative-of-the-error—error metrics between the trained model and the training data for the 1PC and

MPC models are shown in Figure-4-—Fig. 7 for the 1PC model and in Fig. 8 for the MPC model. Inspired by the work of
Dibaj et al. (Dibaj et al., 2024), the thresholds were selected to be the highest values in the histogram for the training data
error. This-willJater be-usedto-assess-whether-ornot-the-predictive-modelis-diverging from-the-However, in case of multiple
principal components being used. the weighted average of maximum errors (and error derivatives) of all principal components
was computed. The per-PC thresholds are weighted by the explained variance ratio of the corresponding principal component

shown in Fig. 6. These threshold values were used to assess the accuracy of the predictive model against measured data during
the-testing/anomaly detection stage.
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Figure 7. 1PC Histograms of the (a) error, and (b) error derivative generated by comparing the model with the training data, and the maximum

2.7 Performance metrics

The overall accuracy of the model(s) was measured by a single score that combines precision and recall in its calculation
(Miele et al., 2022; Wang et al., 2019). Precision, P, illustrates the proportion of anomalies detected that are true, while recall,
R, indicates which proportion of true anomalies are detected. They can be computed as:

T+ T+

P: R:
Tr+Ft T+ F-

2

where T+ represents the count of true positives (the identified anomalies are true), F'* are the count of false positives (i.e.,
for which the identified anomalies are not true), and F'~ are the false negatives (i.e., the unidentified true anomalies). These

contribute to an overall F'I score that ranges between 0 and 1 with 1 being a perfectly precise model and is expressed as:

PxR
FI=2 . 3
“P+R 3)

3 ResultsProblem statement

3.1 Pre-strike-anemaly-deteetion
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Three datasets, Dy, Dy, Dy, were gathered during the test campaign. While wind speeds were kept constant (variation < 1%),
the rotor angular velocity for Dy dataset was slightly lower by 12% and higher by 51% for D, relative to D, The angular
velocity, and the resulting thrust force variations are illustrated in Fig. 9a and Fig. 9b, respectively. The blade pitch varied the
same way for these cases based on the pre-generated setpoints. The actual anomaly and blade strike occurred near the end of D,

which was truncated to <200 s, while Dy and D5 each span 1000 s. In addition, three altered variants of Dy were generated to
) ) )

was imposed by modifying the tower base fore-aft bending moment, My, through a time-varying amplification factor. This
factor was applied starting from an arbitrary onset time (225 s), increased linearly to a maximum value by 250 s, and then
reduced back to unity by 275 5. The variants amplify the signal by 0.25%, 0.5%, and 1.00% per At for DIV, DY), and

criteria threshold selection, and testing tasks.

inrsevere damage as shown-infigure 13Channels used in training the models include angular velocity, rotor torque, and tower
base forces and moments. For most of the analyses presented in this paper, model M, was employed. This model is trained
on a previously available healthy dataset, D, and serves as the primary reference. The rationale for this approach is based on
the practical constraint that datasets containing anomalies rarely have a corresponding healthy segment recorded immediately.
beforehand. As such, training a model in real-time using only the healthy portion of a dataset that later exhibits an anomaly
is typically infeasible. Nonetheless, for comparative purposes, we also evaluate model Mg, which is trained on the healthy
portion of dataset D, under the hypothetical assumption that similar data had been recorded under identical conditions in

advance.

Models M, and Mg were configured with identical training hyperparameters, except for the number of training epochs.
Both models utilize a prediction horizon of a single timestep and a look-back to prediction ratio of n/m = 10. The network
architecture consists of a single hidden layer with 100 neurons, trained using a batch duration of 60 seconds, a learning rate of
0.001, and no dropout regularization. Model M, was trained for 60 epochs, whereas model M required an extended training
schedule of 1000 epochs. This increase was motivated by the significantly shorter duration of training data available for Ms,
which spans only from 70 to 119 seconds due to the presence of an anomaly later in the dataset. as detailed in Table 1.

ta—Three combinations of anomaly detection
criteria were investigated. The symbols E and A FE refer to threshold-exceeding conditions based on the model prediction error
and its time derivative, respectively. The detection logic tested includes:

1. AE - the derivative of the error must exceed a threshold

2. AE\ E - either the error or its derivative must exceed its threshold

11



Table 1. Dataset usage by models M and M for different tasks. Time intervals are in seconds.

Training Dy (100, 4501
Validation_ Dy (450, 6751
My
Error threshold Dy 100, 1000]
Testing | D2 D02V, Dy | (100, 10001, [100, 350], (135, 190]
Training Dy (70, 119]
Validation_ Dy (119, 135]
Ms
Exror threshold Dy 70,1351
Testing Ds. (1335, 190]

3. AEAE - both the error and its derivative must exeeed-the-training-error-thresholds—This-was—shown-to-provide-the

210 most-aceurate-mode om-a-sensitivity-study-carried-out-and-presented-below)—Thetrained-modeltested-against- therun

their respective thresholds
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(a) Angular velocity of three experimental dataset. (b) Thrust force measurements of three experimental dataset.

Figure 9. Three experimental datasets and their variations in (a) angular velocities and (b) thrust forces.

4 Results

4.1 Model performance during healthy conditions

215 The performance of the M; model, in terms of normalized error and error derivative to their respective threshold values, when

tested against measured data during healthy operations, D5, are shown in Fig. 10. When using the lead principal component

12



(i.e., 1PC variation of M model), the error values were consistent throughout the test. The MPC variation experienced a slight
decline in error values as time progressed. As desired, both model variations exhibited no predicted anomalies based on any of
the exceeding threshold criteria discussed.
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(a) My 1PC model performance (b) M3 MPC model performance

Figure 10. Error and error derivative curves between measured and M; model during healthy D, testing dataset when (a) a single or (b
multiple principal components are used.

220 4.2 Performance under synthetic anomaly realizations

(a2) (a3)

Model M was tested on the synthetically altered variations of Do : datasets pld) p ,and D "’ using both 1PC and MPC
variations. The results are presented in Fig. 11, where the first row (Figs. 1la, b, and c¢) shows the 1PC model is-shownin

aresponses, and the second row (Figs.

resents the MPC model responses. Anomaly criterion selected for this analysis is the joint condition (AFE A F).

225 11d,e, and
The 1PC variation demonstrates overall enhanced coverage (highlighted in blue) and reduced detection delay relative to the
onset of the ground-truth anomaly (highlighted in red). The reduction in detection delay is also represented in Fig. 12 when
comparing IPC to MPC. Additionally, detection performance generally improved with increasing severity of the synthetically.
introduced anomaly. This is indicated in Fig. 12 which shows detection delay in seconds between synthetically introduced

230 anomaly and the predicted anomaly by the models: His i tts i
red-ine-can-only-existon-the right side-of, The figure also shows a sensitivity analysis of the models to the blackJine-Before

13
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Figure 11. Anomaly detection based on AE A E criterion during synthetically altered dataset variations of Dy and M, model detection

response, with (1) 1PC - DY (b) 1PC - D*? . (¢) 1PC - DY, (d) MPC - DIV (e) MPC - D2 . and (f) MPC - DS variations.

timestep at

which the data is sampled. Small timesteps (high sampling frequency) can provide reduce anomaly detection delay but at the

expense of computational cost.

4.3 Pre-strike anomaly detection

During a high rotor angular velocity test, D3, an unexpected anomaly caused the rotor to accelerate rapidly. The resulting

increase in thrust forces caused significant blade deflection, and within four seconds, one of the blades struck the tower,

leading to severe damage, as shown in Figure 13.
Models M, _and M3 were evaluated using both 1PC

error derivative, each scaled by their respective threshold values, are presented in Fig. 14. Anomalies are identified based on the
joint exceedance of both criteria (AF A E). As shown in the figure, the predicted anomaly region (blue) aligns well with the
ground-truth anomaly (red), demonstrating the efficacy of the detection method. Additionally, anomaly conditions are detected
prior to the blade strike, suggesting that such models could be used as preventive measures against consequential incidents.

14
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Figure 13. Blade damage after blade-tower collision due to high thrust forces.
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For all models, the error derivative remains below the threshold prior to the anomaly, indicating that system behavior was

model M, _shows threshold violations in the error metric £, before the onset of the actual anomaly. This can be attributed to
a mismatch in operating conditions: M;_was trained on dataset Dy, where the turbine operated at significantly lower angular
velocity, as illustrated earlier in Fig. 9a. This discrepancy introduces errors when applied to data from Dy, which exhibits 51%
Notably, this premature threshold crossing is not observed in the MPC variation of M, . By incorporating multiple principal
components, the MPC approach distributes the reconstruction error across several components, thereby diluting the influence
of a mismatch from a single channel. This is further supported by the principal component contribution analysis in Fig. 4b,
which shows that angular velocity @ is the dominant contributor to the leading principal component. Consequently, in the 1PC
case, discrepancies in angular velocity have a large impact on the error.

Despite exceeding error threshold in M, -1PC prior to the anomaly, the error derivative AE remains within acceptable
bounds, ensuring no false positive detection. When model M, trained on the healthy segment of dataset Ds, is used instead, the
predicted anomaly coincides precisely with the true event. This underscores the importance of matching operating conditions
between training and deployment for reliable anomaly detection.

v—Table 2 summarizes the anomaly detection
erformance of model M with its 1PC and MPC variations, evaluated on the healthy dataset Do, synthetically altered anomal
datasets {D\*Y D D3N and the ivati i

From these results, the following key observations can be made:
— The 1PC variation generally yields higher F1-scores compared to the MPC variation (43% enhancement under AE A\ E

— The combined threshold criterion AE A E provides the most consistent and reliable detection performance across

datasets;

— While the 1PC model achieves higher recall (1), the MPC model tends to produce higher precision (P).

Importantly, both model variations produce no false positive detections under healthy conditions (D-), regardless of the
threshold criterion employed. The 1PC model typically reacts more rapidly to actual anomalies, as it is not constrained by the
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Figure 14. Anomaly detection based on AE A E criterion during D3 anomaly dataset and model detection response of the (1) My - 1PC
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averaging of reconstruction errors across multiple principal components. This responsiveness contributes to its higher recall
scores. However, this same sensitivity can lead to over-detection, which reduces precision. In contrast, the MPC model’s error

280 aggregation results in more conservative detection behavior, improving its precision at the expense of some detection latency.
Figure 15 presents the relative percentages of true positives, false negatives, false positives, and true negatives for model M,

across the same set of testing datasets. In the horizontal bar charts, darker shades correspond to the presence of anomalies in

the data—hence their absence in the healthy dataset Dy. The sign of each classification outcome indicates whether the model

285  green denotes correct classifications, while red indicates incorrect ones. This visual encoding effectively communicates both
the correctness of model predictions and the operational context in which they occur, thereby emphasizing the model’s ability.
to distinguish between healthy and anomalous system states.

The error derivative appears to be the dominant criterion for accurate anomaly detection. As shown in Fig. 13, the combined

threshold criterion AE A E results in fewer incorrect classifications (i.e., reduced red regions), whereas more flexible criteria—where

290

295  shows similar patterns but-with-lower F-/-seores-alone exceeds the threshold—lead to increased misclassifications. Notably,
the reconstruction error I serves as a useful indicator for identifying deviations due to previously unseen operating conditions.
In_contrast, the error derivative AE is particularly effective in capturing abrupt transitions between the reconstructed and
measured signals, making it well-suited for detecting sudden-onset anomalies such as the one present in this paper.

300

305
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320

Table 2. 1PCquality-of-anomaly-prediction-quantifieationAnomaly detection performance for models tested on datasets Do, piet) ple?)
D(as), and D3, under different detection criteria: AE, AEV E,and AE A E.

T P 1PC = MPC
Criterion Dataset

Precision | Reeall 7™  FlSeore F_ Ft T P
ARD, 339 320 40, 04521800 6:892N/A
ARDY) s 26 30, 369 074
AE Dy 92 9 36. 363 .91
Dy 95 6 38 361 0.94
6762 D3 4 2 4 125 096
HR D, 0 0 0 1800 N/A
HR DY) 690 1 630, 369 0.89.
ptp) Fto5 ~6  Preeision 36 Reeall 363 FISeore 0.94
AR DY) 2597 104 1238 361 0.96
HR Dy 51 0 14129 0 1.00
ARD, 90 0 80, 1800 N/A
AR DY) 3565 1636 221 378 0.64
AENE HR D{*? 087 1617 28 371 0.83
Dy 89 12 32 367 088
D5 4 2 4 125 096
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As—for-the-ineident-dataset--As for the incident dataset, D3, since the experiment-has-also-different-operatingconditions;

the-turbine was operating under different conditions than the training dataset for M; model, the error was high. Therefore,
using the error derivative as an additional criterion helps with detecting the true positives. This is an important aspect of a good

325 anomaly detection model because most of the time, the anomaly will most likely occur under conditions that have not been
seen before.

It is eventually up to the developer/operator to gather certain amount of anomaly points before activating an alerting system

or before acting upon it to limit disturbance to the main testing campaign. It could also be developed such that the model can

trace back to which of the channels contributing to this anomaly based on the correlation matrix calculated during the-PC

330 analysis.

T
E T* ! F~  Ft_ T~ |
Actual anomaly Predicted anomaly

1PC - AE IPC-AEVE 1IPC-AEANE
D, D, D,
a(1) a(1) a(1)
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Figure 15. Percentage of true positives, false negatives, false positive, and true negatives occurrence when testing M model for the various

testing datasets.

6 Conclusions

This research-hie

and effectiveness of a multivariate long short-term memory (LSTM)-based
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335

340

345

350

355

360

reconstruction model for earl
anomaly detection in scaled wind turbine experiments. By leveraging principal component projections of healthy operational

data, the model enables robust monitoring through reconstruction error and its derivative. Various detection criteria were
evaluated, including threshold exceedance of tvati tnati thi Heri

adt the error 7, its time derivative A, and their logical combination.
Two models were trained on distinct datasets, each evaluated using both single and multiple principal component (1PC and
MPC) variations.

The results indicate that the criterion combining both error and error derivative (AE A\ E) yields the most consistent and
accurate anomaly detection performance across test cases. The 1PC model offers superior responsiveness and recall., making it
well-suited for identifying abrupt anomalies, though at the expense of precision, In contrast, the anematy response-time short:

MPC model exhibits greater
robustness to false alarms due to its conservative aggregation of reconstruction error. Importantly, both model variations
demonstrated zero false positives when applied to healthy test data, underscoring their reliability for real-time deployment.

This work serves as a proof of concept that such-easy-to-establish-simple, interpretable, and computationally efficient tech-

niquescanbe ed-as-a-satety-precavtton-durtnetuture-campaten-testtnes-toreduece-human-—errorand-equipment-maltunetion

operational awareness during laboratory-scale wind turbine testing. The approach holds promise for extension to ocean-based
and full-scale wind energy systems, where early anomaly detection is critical for preventing equipment failure and improvin
system reliability during experimental campaigns and operational phases.
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