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Abstract. As offshore wind systems become more complex, the risk of human error or equipment malfunction increases
during experimental testing. This study investigates a lab-scale incident involving a 1:50 scale 5 MW wind turbine, where a
generator failure led to rotor overspeed and a blade-tower strike. To improve early fault detection, we propose a data-driven
method based on multivariate long short-term memory (LSTM) models. High-frequency measurements are projected onto
principal components, and anomalies are identified using reconstruction error and its time derivative. Two models are trained
on different healthy datasets and tested using single- and multi-principal component (1PC and MPC) variations. Results show
that combining both error and error derivative improves detection accuracy. The 1PC model detects faults faster, has a higher
recall rate, and achieves a 43% improvement in anomaly detection accuracy, while the MPC model yields higher precision.
This approach provides a simple and effective tool for early anomaly detection in lab-scale experiments, helping to reduce the

risk of future failures during the testing of new technologies.

1 Introduction

Model scale laboratory testing is a necessity for early development of grid scale on- and offshore wind energy technologies,
and recent industry trends have driven increased demand for such testing (Mehlan and Nejad, 2024; Soares-Ramos et al., 2020).
In the case of offshore wind energy projects, operation and maintenance costs can amount to a third of a project’s life-cycle
cost, often quantified as the levelized cost of energy (LCOE). Small-scale validation and testing improve the maturity of new
technologies (Mehlan and Nejad, 2024; Association, 2009; Leahy et al., 2016; Wang et al., 2022).

To meet this demand, lab-scale turbine systems are designed to match the performance of full-scale offshore commercial
wind plants, enabling accurate coupling between wind turbine aerodynamics and the hydrodynamic forces on the substructure
Fowler et al. (2023); Kim (2014); Cao et al. (2023). Due to the low Reynolds number at lab scale, thin airfoil sections are used
for the model turbine blades, such as the SD7032, to achieve full scale rotor performance. However, this increases blade flex-

ibility and reduces structural strength. Additionally, because of strict mass constraints-particularly for floating configurations-
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system redundancy that accommodate equipment malfunctions is typically not included in the design (Parker, 2022). As a
result, lab-scale turbines are highly sensitive systems that require careful handling by operators to ensure safe and reliable
operation throughout a test campaign.

In experimental testing campaigns, particularly when testing novel control algorithms, the likelihood of fault events in-
creases, and their impacts can be severe. These faults may arise from operator errors, incorrect control commands, or instru-
mentation malfunctions (Peng et al., 2023). Such incidents can result in costly equipment damage, violations of laboratory
safety standards, and substantial project delays. Therefore, efforts to develop efficient methods of detecting operational faults
are critical to improving the testing process (Leahy et al., 2016; Lu et al., 2024).

Vibration-based-condition-monitoring_In many condition monitoring applications, anomaly detection is performed using
dedicated sensors. For instance, vibration-based techniques, often evaluated using the root mean square (RMS) of velocity
or acceleration signals, are widely used for drivetrain fault detection —particularly-to-determine—whether-signal-amplitudes
exeeed-the-thresholds-defined-by-and are assessed against standards such as ISO 10816-21 (ISO, 1996). Ferexample;However,

deploying additional instrumentation is not always feasible or cost-effective. Nejad et al. (2018) demonstrated that angular ve-
locity measurements already available in-within existing control systems can be repurposed for fault detection, aveiding-thereby

—supplementary sensors. Similarly, Dameshghi and Refan (2019)

roposed a diagnostic approach for gearbox faults based on SCADA information multi-sensor fusion, avoiding the need for
additional data collection systems. These approaches illustrate the potential of multi-sensor anomaly detection methods that
leverage existing system measurements.

To mitigate these issues, dimensionality reduction techniques, such as principal component analysis (PCA), are often em-
ployed during pre-processing to retain the most informative features while reducing data redundancy. For instance, Dibaj et al.
(2022) applied PCA to multi-point raw vibration data as a means of compressing the dataset prior to classification, thereby im-
proving computational efficiency without sacrificing key diagnostic information. These reduced-dimensional signals were then
input to a convolutional neural network (CNN) for automated fault classification and pattern recognition. Similarly, adaptive
filtering techniques, including linear and non-linear Kalman filters, have been used to enhance fault detection capabilities in
dynamic environments, though their implementation can become increasingly complex for large-scale systems (Zhou and Zhu,
2023; Le and Matunaga, 2014; Ammerman et al., 2024). Overall, data-driven models, when combined with feature extraction
or filtering techniques, provide a robust framework for detecting changes in system state and identifying early signs of failure
or adverse environmental conditions (Dibaj et al., 2022; Alkarem et al., 2024, 2023).

These and similar methods can also be applied to lab-scale models, with the additional caveat that computational efficiency

is even more critical. Due to time scaling and typically higher frequencies of motion at lab-scale, fault detection strategies on
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models must be able to operate quickly and with minimal overhead. To meet this need, pre-trained data-driven approaches offer
significant performance benefits over non-linear physics-based models.

The case study in this work comes from a fault incident which occurred during a standard scale model characterization test,
wherein the turbine generator disengaged during an experiment, causing the turbine to spin out of control and one of the blades
to strike the tower. The resulting damages caused significant delays in the campaign. Using this incident as a real example of
the need for online fault detection and mitigation strategies, a data-driven approach was applied to develop an efficient online
monitoring system which can detect failures or anomalous behavior before significant system effects are realized, increasing

reaction time for operators or enabling automated shutdown procedures to take place.

2 Methodology
2.1 Experimental setup

The experimental data for this study comes from a wind turbine characterization test performed on a scale model, at the Harold
Alfond Ocean Engineering Laboratory at the University of Maine’s Advanced structures and Composites Center. The layout
of the experiment is shown in Figure la, illustrating the arrangement of the wind machine and turbine model. During the
experiments, the turbine was controlled and monitored by 1 or 2 test operators stationed on the side of the basin, via a data
acquisition system (DAQ) based on the National Instruments cRIO platform. Figure 1b shows the installed experimental turbine
before testing began. To properly characterize the turbine’s aerodynamic performance, it was installed in a fixed configuration
within the wind field. Cross-bracing was installed to keep the turbine tower and mounting surface rigid during the test to target

rotor performance only.
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(a) Basin layout for scaled turbine characteriza- (b) Photograph of the experimental test turbine in-

tion experiment. stalled in the basin.

Figure 1. Experimental test setup: (a) an overview, and (b) an image of installed turbine (b).
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To fully characterize the rotor, experiments were performed at various wind speed/RPM pairs. Each experiment used a
previously generated setpoint file to cycle through blade pitch setpoints. Figure 2 shows blade pitch (2a) and rotor thrust (2b)
from one of the experiments. Results from these tests were then used to form rotor performance surfaces for future experiment

design.
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(a) Blade pitch schedule. (b) Rotor thrust measured.

Figure 2. (a) Scheduled blade pitch and (b) measured rotor thrust for sample characterization experiment run.

2.2 Failure incident

During one of the characterization runs, an operator mistakenly triggered an emergency stop on the turbine generator. As a
result, the rotor began accelerating unrestricted until a blade strike occurred with the tower. Plots of rotor speed and thrust load

during the incident are shown in Figure 3, with a vertical line indicating when the blade struck the tower.
2.3 Predictive model description

Detecting early signs of anomalies in testing campaigns can be beneficial. It can either provide data where operators can act
upon with informative decisions and/or it can be automated to abort the test in case certain thresholds are exceeded. However,
signaling a possibility of an anomaly requires real-time processes of incoming measurement data, which can be best done
using deep machine learning algorithms. Such algorithms indeed make it possible for predictive models to be trained on
certain healthy data and provide predictions of the systems’ states during similar runs.

Accidents with lab equipment can be costly and labor intensive and can cause delays. To mitigate such incidents, we propose
an early anomaly detection model to improve response times and reduce human error. To this effect, a multi-step, multivariate
Long Short-Term Memory (LSTM) model — a type of recurrent neural network (RNN) designated to address the vanishing
gradient issue that traditionally prevents models to capture long-term dependencies — was developed and trained on data

from a healthy aerodynamic characterization tests with similar wind speeds. When an anomaly occurs, the error between the
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(a) Rotor angular velocity in RPM. (b) Rotor thrust force.

Figure 3. Blade strike incident: (a) angular velocity in RPM, and (b) rotor thrust force. The dashed line represents the blade-strike instance.

predicted signal and the measured signal increase which can be used to inform the operator of such an incident. The model

parameters were initially estimated intuitively, but these could be further refined for enhanced predictive accuracy.
2.4 Anomaly detection over the span of multiple channels

In complex systems such as offshore wind testing, there are numerous measurements and data channels, which can be used
to understand the overall behavior of the system. However, for anomaly detection purposes, it can be overwhelming and
computationally expensive to manually and in real-time search the data space for deviation in measured data. The operator
might not have sufficient time to abort the test before the anomaly becomes too consequential. Additionally, an anomaly might
not be detectable based on any single data channel to comprehend the full state of the system. Therefore, the predictive model
must be based on multiple data channels related to the test being conducted while providing the operator with a single, concise,
anomaly detection capability based on the most relevant information. To accomplish that, principal component analysis (PCA)
was carried out. A PCA creates combinations of variables that explain the largest amount of variance in the data.

Before performing the analysis, the raw data recorded by the data acquisition system were pre-processed to remove idle
measurements and non-numeric entries. Data channels collected comprises wind speed, angular velocity of the rotor, azimuth
angle, all blades pitch angles, generator torque, rotor torque, forces and moments at the base of the tower. We assume the
digital twin only has access to some of these channels (i.e., angular velocity, 9, rotor torque, (), and tower base forces and
moments: F,, Fy, F,, M, ,M,, M) to simulate cases where some measurements can be restricted by turbine manufacturers
and validate the model’s operability under restrictive data access. Figure 4a illustrates the correlation matrix between the
channels of interest.

Data are then standardized to ensure all channels (features) in the training dataset have a mean value, i, of 0 and a standard

deviation, o, of 1:
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Figure 4. Data pre-processing: (a) correlation matrix between available channels used in the models, and (b) covariance loadings of the first

5 principal components.
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where N is the number of channels included in the model. All subsequent testing dataset (whether healthy or anomalous) are
standardized using these scaler parameters. This ensures that the resulting transformed values might reflect deviations from the

training dataset, allowing the model to identify anomalous behavior.

Following standardization, the covariance matrix of the variables was computed and then diagonalized through eigendecom-

T = i=1,..,N, (1)

position, yielding a set of orthogonal transformed variables—i.e., the principal components (PCs)—ordered by the amount of
total variance they explain. Based on this ranked structure, a subset of components can be selected to reduce the dimension-
ality of the problem while preserving as much of the original variance as possible. For instance, the first 5 PCs and channel
loads/contributions to them is illustrated in Fig. 4b

The PCs were then used to train the RNN-model(s)-LSTM models that will later be used for prediction. As new data is
acquired, it is transformed/projected onto the same PCs that were used in training the models. For the purpose of anomaly
detection, the mean absolute error (MAE) is computed between measurements and predictions from the RNN-LSTM models,

and the error derivative is calculated, to estimate rapid fluctuations in the quality of the predictions. The choice of MAE as

the reconstruction error metric was made to reduce model sensitivity to transient spikes or noise, which may not correspond to
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true anomalies. An anomaly alert is reported to the operator when certain anomalous conditions are met. In this research, we
investigate conditions when both the error and its derivative were crossing certain thresholds. This procedure is illustrated in

Figure 5 and is explained in section 2.6.
2.5 Principal component selection

Two models developed vary in their projected principal component selection. The projected PC results from training data are
presented in Fig. 6. The first model compresses the data by retaining only the first PC; it is therefore named *1PC’. The second
model selects the group of (M) PCs that cumulatively explain 90% of the total variance, thus only neglecting the remaining

10%; this model is hence called "MPC’.
2.6 Error and error derivative thresholds selection for single/multiple PCs

The histogram of error metrics between the trained model and the training data for the 1PC and MPC models are shown in
Fig. 7 for the 1PC model and in Fig. 8 for the MPC model. Inspired by the work of Dibaj et al. (Dibaj et al., 2024), the
thresholds were selected to be the highest values in the histogram for the training data error. However, in case of multiple
principal components being used. the weighted average of maximum errors (and error derivatives) of all principal components
was computed. The per-PC thresholds are weighted by the explained variance ratio of the corresponding principal component
shown in Fig. 6. These threshold values were used to assess the accuracy of the predictive model against measured data during

testing/anomaly detection stage.
2.7 Performance metrics

The overall accuracy of the model(s) was measured by a single score that combines precision and recall in its calculation

(Miele et al., 2022; Wang et al., 2019). Precision, P, illustrates the proportion of anomalies detected that are true, while recall,
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R, indicates which proportion of true anomalies are detected. They can be computed as:

T+
T T4+ F-

+
p=_1
TH+ F+

R 2)

where T+ represents the count of true positives (the identified anomalies are true), F'* are the count of false positives (i.e.,
for which the identified anomalies are not true), and F'~ are the false negatives (i.e., the unidentified true anomalies). These

contribute to an overall F'I score that ranges between 0 and 1 with 1 being a perfectly precise model and is expressed as:

PxR
FI=2 .
“P+R

3)

3 Problem statement

Three datasets, D1, D2, D3, were gathered during the test campaign. While wind speeds were kept constant (variation < 1%),
the rotor angular velocity for D, dataset was slightly lower by 12% and higher by 51% for Ds, relative to D;. The angular
velocity, and the resulting thrust force variations are illustrated in Fig. 9a and Fig. 9b, respectively. The blade pitch varied the
same way for these cases based on the pre-generated setpoints. The actual anomaly and blade strike occurred near the end of D3,
which was truncated to <200 s, while D; and Ds each span 1000 s. In addition, three altered variants of Dy were generated to

)

introduce a synthetic anomaly for further evaluation of the developed models: Déal), Dgaz), and D§“3 . The synthetic anomaly

was imposed by modifying the tower base fore-aft bending moment, M, through a time-varying amplification factor. This



160

165

170

[] []
m H 3004 [T— |
] s L=
s _ LI=]
200 _ [ =
12 12
| = 250 =" IS
1 1
1 1
1 1
] ]
4 1 1
150 H 200 . H
1 1
2 i z i
2 - 1 2 _ 1
k] I 1 3 150 1
100 — — H H
1 1
1 1
] i 1
H 100 H
1 1
1 1
50 I 1
1 1
H 1 50 1
1 1
H H I HH I
1 1
1
0 |_| . ' . . |_|'_"_."_‘ 0 . . |_.||_| = —
0.165 0170  0.175 0.180  0.185  0.190  0.195 0.000 0.001 0.002 0.003 0.004 0.005
error error derivative
(a) Error histogram in 1PC model. (b) Error derivative histogram in 1PC model.

Figure 7. 1PC Histograms of the (a) error, and (b) error derivative generated by comparing the model with the training data, and the maximum

error/error derivative as the selected threshold.

factor was applied starting from an arbitrary onset time (225 s), increased linearly to a maximum value by 250 s, and then
reduced back to unity by 275 s. The variants amplify the signal by 0.25%, 0.5%, and 1.00% per At for Dgﬂ), Dé‘ﬂ), and
’Déa?’), respectively. Table 1 summarizes the model setup and intervals of datasets utilized during training, validation, anomaly
criteria threshold selection, and testing tasks.

Channels used in training the models include angular velocity, rotor torque, and tower base forces and moments. For most
of the analyses presented in this paper, model M; was employed. This model is trained on a previously available healthy
dataset, D1, and serves as the primary reference. The rationale for this approach is based on the practical constraint that datasets
containing anomalies rarely have a corresponding healthy segment recorded immediately beforehand. As such, training a model
in real-time using only the healthy portion of a dataset that later exhibits an anomaly is typically infeasible. Nonetheless, for
comparative purposes, we also evaluate model M 3, which is trained on the healthy portion of dataset D3, under the hypothetical
assumption that similar data had been recorded under identical conditions in advance.

Models M; and M3 were configured with identical training hyperparameters, except for the number of training epochs.
Both models utilize a prediction horizon of a single timestep and a look-back to prediction ratio of n/m = 10, corresponding
to_an input sequence length of 10 timesteps. The network architecture consists of a single hidden layer with 100 neurons,

trained using a batch duration of 60 seconds, a learning rate of 0.001, and no dropout regularization. Model M was trained
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Figure 8. MPC Histograms of the (a) error, and (b) error derivative for the first 5 PCs, generated by comparing the model with the training

data, and the maximum error/error derivative per PC and the weighted average threshold.
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Table 1. Dataset usage by models M and M3 for different tasks. Time intervals are in seconds.

Model Task Dataset(s) Interval
Training Dy [100, 450]
Validation D1 (450, 675]
My
Error threshold D1 [100, 1000]
Testing Dy, D29 Dy | [100, 1000], [100, 350], (135, 190]
Training Ds [70, 119]
Validation Ds (119, 135]
M3
Error threshold Ds [70, 135]
Testing Ds (135, 190]

175 for 60 epochs, whereas model M3 required an extended training schedule of 1000 epochs. This increase was motivated by the
significantly shorter duration of training data available for M3, which spans only from 70 to 119 seconds due to the presence

of an anomaly later in the dataset, as detailed in Table 1.
Three combinations of anomaly detection criteria were investigated. The symbols £ and AFE refer to threshold-exceeding

conditions based on the model prediction error and its time derivative, respectively. The detection logic tested includes:
180 1. AFE - the derivative of the error must exceed a threshold
2. AFEV FE - either the error or its derivative must exceed its threshold

3. AFE A E - both the error and its derivative must simultaneously exceed their respective thresholds
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(a) Angular velocity of three experimental dataset. (b) Thrust force measurements of three experimental dataset.

Figure 9. Three experimental datasets and their variations in (a) angular velocities and (b) thrust forces.
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4 Results
4.1 Model performance during healthy conditions

The performance of the M; model, in terms of normalized error and error derivative to their respective threshold values, when
tested against measured data during healthy operations, Do, are shown in Fig. 10. When using the lead principal component
(i.e., 1PC variation of M model), the error values were consistent throughout the test. The MPC variation experienced a slight
decline in error values as time progressed. As desired, both model variations exhibited no predicted anomalies based on any of

the exceeding threshold criteria discussed.

10° 4 — Elko
---- AE/AE,
----threshold o
10 1
200 400 600 800 1000 200 400 600 800 1000
t(s) t(s)
(a) M1 1PC model performance (b) M1 MPC model performance

Figure 10. Error and error derivative curves between measured and M; model during healthy D- testing dataset when (a) a single or (b)

multiple principal components are used.

4.2 Performance under synthetic anomaly realizations

Model M was tested on the synthetically altered variations of D5: datasets Déal) R Dgﬂ) ,and Déag), using both 1PC and MPC
variations. The results are presented in Fig. 11, where the first row (Figs. 11a, b, and c) shows the 1PC model responses, and
the second row (Figs. 11d, e, and f) presents the MPC model responses. Anomaly criterion selected for this analysis is the
joint condition (AE A E).

The 1PC variation demonstrates overall enhanced coverage (highlighted in blue) and reduced detection delay relative to the

This is particularl
evident in Fig. 12 when-comparing-which compares detection delays for 1PC te-MPC-and MPC under various anomal

onset of the ground-truth anomaly (highlighted in red).

12
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Figure 11. Anomaly detection based on AE A E criterion during synthetically altered dataset variations of Dy and M, model detection

response, with (1) 1PC - DS*V, (b) 1PC - D™, (¢) 1PC - D™, (d) MPC - DSV, (¢) MPC - DS, and (f) MPC - D{** variations.

scenarios. Although the MPC model includes more principal components, this added information can dilute the influence of

specific anomalous channels, especially when the anomaly is strongly represented in the leading component but has minimal

contributions in subsequent components. Conversely, if an anomaly were introduced in a channel with weak or near-zero

loading in PCl, its detection would likely require the inclusion of additional components. Thus, while MPC offers broader

coverage across the feature space, it may also distribute the reconstruction error in a way that reduces sensitivity to certain

localized anomalies. Additionally, detection performance generally improved with increasing severity of the synthetically

introduced anomaly. This is indicated in Fig. 12 which shows detection delay in seconds between synthetically introduced
anomaly and the predicted anomaly by the models. The figure also shows a sensitivity analysis of the models to the timestep at
which the data is sampled. Small timesteps (high sampling frequency) can provide reduce anomaly detection delay but at the

expense of computational cost.
4.3 Pre-strike anomaly detection

During a high rotor angular velocity test, D3, an unexpected anomaly caused the rotor to accelerate rapidly. The resulting
increase in thrust forces caused significant blade deflection, and within four seconds, one of the blades struck the tower,

leading to severe damage, as shown in Figure 13.

13
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Figure 12. Anomaly detection delay in seconds for M (both 1PC and MPC variations) when tested during various altered D datasets for

two timestep realizations.

Figure 13. Blade damage after blade-tower collision due to high thrust forces.
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Models M; and M3 were evaluated using both 1PC and MPC variations. The normalized error and error derivative, each
scaled by their respective threshold values, are presented in Fig. 14. Anomalies are identified based on the joint exceedance of
both criteria (AE A E). As shown in the figure, the predicted anomaly region (blue) aligns well with the ground-truth anomaly
(red), demonstrating the efficacy of the detection method. Additionally, anomaly conditions are detected prior to the blade
strike, suggesting that such models could be used as preventive measures against consequential incidents.

For all models, the error derivative remains below the threshold prior to the anomaly, indicating that system behavior was
consistent with healthy operation. However, the 1PC variation of model M; shows threshold violations in the error metric
FE, before the onset of the actual anomaly. This can be attributed to a mismatch in operating conditions: M; was trained on
dataset D, where the turbine operated at significantly lower angular velocity, as illustrated earlier in Fig. 9a. This discrepancy
introduces errors when applied to data from D3, which exhibits 51% higher angular velocity.

Notably, this premature threshold crossing is not observed in the MPC variation of M. By incorporating multiple principal
components, the MPC approach distributes the reconstruction error across several components, thereby diluting the influence
of a mismatch from a single channel. This is further supported by the principal component contribution analysis in Fig. 4b,
which shows that angular velocity @ is the dominant contributor to the leading principal component. Consequently, in the 1PC
case, discrepancies in angular velocity have a large impact on the error.

Despite exceeding error threshold in M;-1PC prior to the anomaly, the error derivative AE remains within acceptable
bounds, ensuring no false positive detection. When model M3, trained on the healthy segment of dataset Ds, is used instead, the
predicted anomaly coincides precisely with the true event. This underscores the importance of matching operating conditions

between training and deployment for reliable anomaly detection.

5 Discussion

Table 2 summarizes the anomaly detection performance of model M; with its 1PC and MPC variations, evaluated on the
healthy dataset D-, synthetically altered anomaly datasets {Déal) , Dgﬂ) , DgaB) }, and the blade-tower strike dataset D5. From

these results, the following key observations can be made:

— The 1PC variation generally yields higher F1-scores compared to the MPC variation (43% enhancement under AEA E

criterion);

— The combined threshold criterion AE A E provides the most consistent and reliable detection performance across

datasets;
— While the 1PC model achieves higher recall (R), the MPC model tends to produce higher precision (P).

Importantly, both model variations produce no false positive detections under healthy conditions (D), regardless of the
threshold criterion employed. The 1PC model typically reacts more rapidly to actual anomalies, as it is not constrained by the

averaging of reconstruction errors across multiple principal components. This responsiveness contributes to its higher recall
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scores. However, this same sensitivity can lead to over-detection, which reduces precision. In contrast, the MPC model’s error
aggregation results in more conservative detection behavior, improving its precision at the expense of some detection latency.

Figure 15 presents the relative percentages of true positives, false negatives, false positives, and true negatives for model My
across the same set of testing datasets. In the horizontal bar charts, darker shades correspond to the presence of anomalies in
the data—hence their absence in the healthy dataset D,. The sign of each classification outcome indicates whether the model
successfully detected an anomaly (positive) or failed to do so (negative). Color is used to convey prediction quality and context:
green denotes correct classifications, while red indicates incorrect ones. This visual encoding effectively communicates both
the correctness of model predictions and the operational context in which they occur, thereby emphasizing the model’s ability
to distinguish between healthy and anomalous system states.

The error derivative appears to be the dominant criterion for accurate anomaly detection. As shown in Fig. 15, the com-
bined threshold criterion AE A E results in fewer incorrect classifications (i.e., reduced red regions), whereas more flexible
criteria—where either the error or its derivative alone exceeds the threshold—Iead to increased misclassifications. Notably,
the reconstruction error E serves as a useful indicator for identifying deviations due to previously unseen operating condi-
tions. In contrast, the error derivative AE is particularly effective in capturing abrupt transitions between the reconstructed and
measured signals, making it well-suited for detecting sudden-onset anomalies such as the one present in this paper.

As for the incident dataset, Ds, since the turbine was operating under different conditions than the training dataset for M
model, the error was high. Therefore, using the error derivative as an additional criterion helps with detecting the true positives.
This is an important aspect of a good anomaly detection model because most of the time, the anomaly will most likely occur
under conditions that have not been seen before.

It is eventually up to the developer/operator to gather certain amount of anomaly points before activating an alerting system
or before acting upon it to limit disturbance to the main testing campaign. It could also be developed such that the model can

trace back to which of the channels contributing to this anomaly based on the correlation matrix calculated during PC analysis.

6 Conclusions

This study demonstrates the feasibility and effectiveness of a multivariate long short-term memory (LSTM)-based reconstruc-
tion model for early anomaly detection in scaled wind turbine experiments. By leveraging principal component projections of
healthy operational data, the model enables robust monitoring through reconstruction error and its derivative. Various detection
criteria were evaluated, including threshold exceedance of the error F, its time derivative AF, and their logical combination.
Two models were trained on distinct datasets, each evaluated using both single and multiple principal component (1PC and
MPC) variations.

The results indicate that the criterion combining both error and error derivative (AFE A E) yields the most consistent and
accurate anomaly detection performance across test cases. The 1PC model offers superior responsiveness and recall, mak-

ing it well-suited for identifying abrupt anomalies, though at the expense of precision. In contrast, the MPC model exhibits

17



275

280

Table 2. Anomaly detection performance for models tested on datasets Da, Déal), Dgﬂ), Dgag), and D3, under different detection criteria:

AE,AEV E,and AENE.

1PC MPC
Criterion | Dataset
TV F~ F*t T P R FI |1t F~ F*¥ T P R FI
Do 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A

Dg“l) 75 26 30 369 0.74 071 0.73 18 36 17 382 0.82 0.18 0.29
AE Déag) 92 9 36 363 091 072 080 | 70 31 18 381 080 0.69 0.74
Dé‘m 95 6 38 361 094 071 0.81 88 13 32 367 0.73 087 0.80

D3 49 2 4 125 096 093 094 | 30 21 0 129  1.00 0.59 0.74

D2 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A
Déal) 90 11 30 369 0.89 0.75 0.81 64 37 8 391 0.89 0.63 0.74
AEVE Dgﬂ) 95 6 36 363 094 073 082 | 81 20 18 381 0.82 0.80 0.81
Déas) 97 4 38 361 096 072 082 | 90 11 32 367 0.74 089 0.81

D3 51 0 129 0 1.00 028 044 | 51 0 121 8 030 1.00 046

D2 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A
Déal) 65 36 21 378 0.64 076 0.70 18 83 1 398 095 0.18 0.30
AEANE Dé‘ﬂ) 87 17 28 371 083 0.75 0.79 | 65 36 17 382 0.79 0.64 0.71
Déag) 89 12 32 367 088 0.74 0.80 | 81 20 25 374 076 0.80 0.78

D3 49 2 4 125 096 093 094 | 30 21 0 129  1.00 0.59 0.74

greater robustness to false alarms due to its conservative aggregation of reconstruction error. Importantly, both model variations
demonstrated zero false positives when applied to healthy test data, underscoring their reliability for real-time deployment.
This work serves as a proof of concept that simple, interpretable, and computationally efficient techniques can be deployed
to enhance safety and operational awareness during laboratory-scale wind turbine testing. The approach holds promise for ex-
tension to ocean-based and full-scale wind energy systems, where early anomaly detection is critical for preventing equipment

failure and improving system reliability during experimental campaigns and operational phases.
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