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Abstract. As offshore wind systems become more complex, the risk of human error or equipment malfunction increases

during experimental testing. This study investigates a lab-scale incident involving a 1:50 scale 5 MW wind turbine, where a

generator failure led to rotor overspeed and a blade-tower strike. To improve early fault detection, we propose a data-driven

method based on multivariate long short-term memory (LSTM) models. High-frequency measurements are projected onto

principal components, and anomalies are identified using reconstruction error and its time derivative. Two models are trained5

on different healthy datasets and tested using single- and multi-principal component (1PC and MPC) variations. Results show

that combining both error and error derivative improves detection accuracy. The 1PC model detects faults faster, has a higher

recall rate, and achieves a 43% improvement in anomaly detection accuracy, while the MPC model yields higher precision.

This approach provides a simple and effective tool for early anomaly detection in lab-scale experiments, helping to reduce the

risk of future failures during the testing of new technologies.10

1 Introduction

Model scale laboratory testing is a necessity for early development of grid scale on- and offshore wind energy technologies,

and recent industry trends have driven increased demand for such testing (Mehlan and Nejad, 2024; Soares-Ramos et al., 2020).

In the case of offshore wind energy projects, operation and maintenance costs can amount to a third of a project’s life-cycle

cost, often quantified as the levelized cost of energy (LCOE). Small-scale validation and testing improve the maturity of new15

technologies (Mehlan and Nejad, 2024; Association, 2009; Leahy et al., 2016; Wang et al., 2022).

To meet this demand, lab-scale turbine systems are designed to match the performance of full-scale offshore commercial

wind plants, enabling accurate coupling between wind turbine aerodynamics and the hydrodynamic forces on the substructure

Fowler et al. (2023); Kim (2014); Cao et al. (2023). Due to the low Reynolds number at lab scale, thin airfoil sections are used

for the model turbine blades, such as the SD7032, to achieve full scale rotor performance. However, this increases blade flex-20

ibility and reduces structural strength. Additionally, because of strict mass constraints-particularly for floating configurations-
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system redundancy that accommodate equipment malfunctions is typically not included in the design (Parker, 2022). As a

result, lab-scale turbines are highly sensitive systems that require careful handling by operators to ensure safe and reliable

operation throughout a test campaign.

In experimental testing campaigns, particularly when testing novel control algorithms, the likelihood of fault events in-25

creases, and their impacts can be severe. These faults may arise from operator errors, incorrect control commands, or instru-

mentation malfunctions (Peng et al., 2023). Such incidents can result in costly equipment damage, violations of laboratory

safety standards, and substantial project delays. Therefore, efforts to develop efficient methods of detecting operational faults

are critical to improving the testing process (Leahy et al., 2016; Lu et al., 2024).

Vibration-based condition monitoring techniques, often evaluated using the root mean square (RMS) of velocity or accel-30

eration signals, are widely used for drivetrain fault detection, particularly to determine whether signal amplitudes exceed the

thresholds defined by standards such as ISO 10816-21 (ISO, 1996). For example, Nejad et al. (2018) demonstrated that angular

velocity measurements already available in existing control systems can be repurposed for fault detection, avoiding the need for

costly additional instrumentation. Their approach was motivated by the challenge of identifying faults in complex systems with

many interconnected components, where vibration signals may originate from various internal sources at different frequencies.35

In such cases, incorporating multiple sensor channels is often necessary to obtain a more complete understanding of system

behavior. However, this added complexity can increase computational cost and the risk of misinterpreting irrelevant or noisy

signal components.

To mitigate these issues, dimensionality reduction techniques, such as principal component analysis (PCA), are often em-

ployed during pre-processing to retain the most informative features while reducing data redundancy. For instance, Dibaj et al.40

(2022) applied PCA to multi-point raw vibration data as a means of compressing the dataset prior to classification, thereby im-

proving computational efficiency without sacrificing key diagnostic information. These reduced-dimensional signals were then

input to a convolutional neural network (CNN) for automated fault classification and pattern recognition. Similarly, adaptive

filtering techniques, including linear and non-linear Kalman filters, have been used to enhance fault detection capabilities in

dynamic environments, though their implementation can become increasingly complex for large-scale systems (Zhou and Zhu,45

2023; Le and Matunaga, 2014; Ammerman et al., 2024). Overall, data-driven models, when combined with feature extraction

or filtering techniques, provide a robust framework for detecting changes in system state and identifying early signs of failure

or adverse environmental conditions (Dibaj et al., 2022; Alkarem et al., 2024, 2023).

These and similar methods can also be applied to lab-scale models, with the additional caveat that computational efficiency

is even more critical. Due to time scaling and typically higher frequencies of motion at lab-scale, fault detection strategies on50

models must be able to operate quickly and with minimal overhead. To meet this need, pre-trained data-driven approaches offer

significant performance benefits over non-linear physics-based models.

The case study in this work comes from a fault incident which occurred during a standard scale model characterization test,

wherein the turbine generator disengaged during an experiment, causing the turbine to spin out of control and one of the blades

to strike the tower. The resulting damages caused significant delays in the campaign. Using this incident as a real example of55

the need for online fault detection and mitigation strategies, a data-driven approach was applied to develop an efficient online
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monitoring system which can detect failures or anomalous behavior before significant system effects are realized, increasing

reaction time for operators or enabling automated shutdown procedures to take place.

2 Methodology

2.1 Experimental setup60

The experimental data for this study comes from a wind turbine characterization test performed on a scale model, at the Harold

Alfond Ocean Engineering Laboratory at the University of Maine’s Advanced structures and Composites Center. The layout

of the experiment is shown in Figure 1a, illustrating the arrangement of the wind machine and turbine model. During the

experiments, the turbine was controlled and monitored by 1 or 2 test operators stationed on the side of the basin, via a data

acquisition system (DAQ) based on the National Instruments cRIO platform. Figure 1b shows the installed experimental turbine65

before testing began. To properly characterize the turbine’s aerodynamic performance, it was installed in a fixed configuration

within the wind field. Cross-bracing was installed to keep the turbine tower and mounting surface rigid during the test to target

rotor performance only.

(a) Basin layout for scaled turbine characteriza-

tion experiment.

(b) Photograph of the experimental test turbine in-

stalled in the basin.

Figure 1. Experimental test setup: (a) an overview, and (b) an image of installed turbine (b).

To fully characterize the rotor, experiments were performed at various wind speed/RPM pairs. Each experiment used a

previously generated setpoint file to cycle through blade pitch setpoints. Figure 2 shows blade pitch (2a) and rotor thrust (2b)70

from one of the experiments. Results from these tests were then used to form rotor performance surfaces for future experiment

design.
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(a) Blade pitch schedule.
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Figure 2. (a) Scheduled blade pitch and (b) measured rotor thrust for sample characterization experiment run.
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(a) Rotor angular velocity in RPM.
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(b) Rotor thrust force.

Figure 3. Blade strike incident: (a) angular velocity in RPM, and (b) rotor thrust force. The dashed line represents the blade-strike instance.

2.2 Failure incident

During one of the characterization runs, an operator mistakenly triggered an emergency stop on the turbine generator. As a

result, the rotor began accelerating unrestricted until a blade strike occurred with the tower. Plots of rotor speed and thrust load75

during the incident are shown in Figure 3, with a vertical line indicating when the blade struck the tower.

2.3 Predictive model description

Detecting early signs of anomalies in testing campaigns can be beneficial. It can either provide data where operators can act

upon with informative decisions and/or it can be automated to abort the test in case certain thresholds are exceeded. However,
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signaling a possibility of an anomaly requires real-time processes of incoming measurement data, which can be best done80

using deep machine learning algorithms. Such algorithms indeed make it possible for predictive models to be trained on

certain healthy data and provide predictions of the systems’ states during similar runs.

Accidents with lab equipment can be costly and labor intensive and can cause delays. To mitigate such incidents, we propose

an early anomaly detection model to improve response times and reduce human error. To this effect, a multi-step, multivariate

Long Short-Term Memory (LSTM) model — a type of recurrent neural network (RNN) designated to address the vanishing85

gradient issue that traditionally prevents models to capture long-term dependencies — was developed and trained on data

from a healthy aerodynamic characterization tests with similar wind speeds. When an anomaly occurs, the error between the

predicted signal and the measured signal increase which can be used to inform the operator of such an incident. The model

parameters were initially estimated intuitively, but these could be further refined for enhanced predictive accuracy.

2.4 Anomaly detection over the span of multiple channels90

In complex systems such as offshore wind testing, there are numerous measurements and data channels, which can be used

to understand the overall behavior of the system. However, for anomaly detection purposes, it can be overwhelming and

computationally expensive to manually and in real-time search the data space for deviation in measured data. The operator

might not have sufficient time to abort the test before the anomaly becomes too consequential. Additionally, an anomaly might

not be detectable based on any single data channel to comprehend the full state of the system. Therefore, the predictive model95

must be based on multiple data channels related to the test being conducted while providing the operator with a single, concise,

anomaly detection capability based on the most relevant information. To accomplish that, principal component analysis (PCA)

was carried out. A PCA creates combinations of variables that explain the largest amount of variance in the data.

Before performing the analysis, the raw data recorded by the data acquisition system were pre-processed to remove idle

measurements and non-numeric entries. Data channels collected comprises wind speed, angular velocity of the rotor, azimuth100

angle, all blades pitch angles, generator torque, rotor torque, forces and moments at the base of the tower. We assume the

digital twin only has access to some of these channels (i.e., angular velocity, θ̇, rotor torque, Q, and tower base forces and

moments: Fx,Fy,Fz,Mx,My,Mz) to simulate cases where some measurements can be restricted by turbine manufacturers

and validate the model’s operability under restrictive data access. Figure 4a illustrates the correlation matrix between the

channels of interest.105

Data are then standardized to ensure all channels (features) have a mean value, µ, of 0 and a standard deviation, σ, of 1:

xi =
xi −µi

σi
, i= 1, ...,N, (1)

where N is the number of channels included in the model. Following standardization, the covariance matrix of the variables

was computed and then diagonalized through eigendecomposition, yielding a set of orthogonal transformed variables—i.e., the

principal components (PCs)—ordered by the amount of total variance they explain. Based on this ranked structure, a subset of110
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(a) Correlation matrix between channels of interest.
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Figure 4. Data pre-processing: (a) correlation matrix between available channels used in the models, and (b) covariance loadings of the first

5 principal components.

components can be selected to reduce the dimensionality of the problem while preserving as much of the original variance as

possible. For instance, the first 5 PCs and channel loads/contributions to them is illustrated in Fig. 4b

The PCs were then used to train the RNN model(s) that will later be used for prediction. As new data is acquired, it is

transformed/projected onto the same PCs that were used in training the models. For the purpose of anomaly detection, the mean

absolute error (MAE) is computed between measurements and predictions from the RNN models, and the error derivative is115

calculated, to estimate rapid fluctuations in the quality of the predictions. An anomaly alert is reported to the operator when

certain anomalous conditions are met. In this research, we investigate conditions when both the error and its derivative were

crossing certain thresholds. This procedure is illustrated in Figure 5 and is explained in section 2.6.

2.5 Principal component selection

Two models developed vary in their projected principal component selection. The projected PC results from training data are120

presented in Fig. 6. The first model compresses the data by retaining only the first PC; it is therefore named ’1PC’. The second

model selects the group of (M) PCs that cumulatively explain 90% of the total variance, thus only neglecting the remaining

10%; this model is hence called ’MPC’.
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Figure 6. Explained variance ratio and cumulative of all principal components.

2.6 Error and error derivative thresholds selection for single/multiple PCs

The histogram of error metrics between the trained model and the training data for the 1PC and MPC models are shown in125

Fig. 7 for the 1PC model and in Fig. 8 for the MPC model. Inspired by the work of Dibaj et al. (Dibaj et al., 2024), the

thresholds were selected to be the highest values in the histogram for the training data error. However, in case of multiple

principal components being used. the weighted average of maximum errors (and error derivatives) of all principal components

was computed. The per-PC thresholds are weighted by the explained variance ratio of the corresponding principal component
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Figure 7. 1PC Histograms of the (a) error, and (b) error derivative generated by comparing the model with the training data, and the maximum

error/error derivative as the selected threshold.

shown in Fig. 6. These threshold values were used to assess the accuracy of the predictive model against measured data during130

testing/anomaly detection stage.

2.7 Performance metrics

The overall accuracy of the model(s) was measured by a single score that combines precision and recall in its calculation

(Miele et al., 2022; Wang et al., 2019). Precision, P , illustrates the proportion of anomalies detected that are true, while recall,

R, indicates which proportion of true anomalies are detected. They can be computed as:135

P =
T+

T+ +F+
, R=

T+

T+ +F− (2)

where T+ represents the count of true positives (the identified anomalies are true), F+ are the count of false positives (i.e.,

for which the identified anomalies are not true), and F− are the false negatives (i.e., the unidentified true anomalies). These

contribute to an overall FI score that ranges between 0 and 1 with 1 being a perfectly precise model and is expressed as:

FI = 2× P ×R

P +R
. (3)140
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Figure 8. MPC Histograms of the (a) error, and (b) error derivative for the first 5 PCs, generated by comparing the model with the training

data, and the maximum error/error derivative per PC and the weighted average threshold.
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3 Problem statement

Three datasets, D1, D2, D3, were gathered during the test campaign. While wind speeds were kept constant (variation < 1%),

the rotor angular velocity for D2 dataset was slightly lower by 12% and higher by 51% for D3, relative to D1. The angular

velocity, and the resulting thrust force variations are illustrated in Fig. 9a and Fig. 9b, respectively. The blade pitch varied the

same way for these cases based on the pre-generated setpoints. The actual anomaly and blade strike occurred near the end of D3,145

which was truncated to <200 s, while D1 and D2 each span 1000 s. In addition, three altered variants of D2 were generated to

introduce a synthetic anomaly for further evaluation of the developed models: D(a1)
2 , D(a2)

2 , and D(a3)
2 . The synthetic anomaly

was imposed by modifying the tower base fore-aft bending moment, My , through a time-varying amplification factor. This

factor was applied starting from an arbitrary onset time (225 s), increased linearly to a maximum value by 250 s, and then

reduced back to unity by 275 s. The variants amplify the signal by 0.25%, 0.5%, and 1.00% per ∆t for D(a1)
2 , D(a2)

2 , and150

D(a3)
2 , respectively. Table 1 summarizes the model setup and intervals of datasets utilized during training, validation, anomaly

criteria threshold selection, and testing tasks.

Channels used in training the models include angular velocity, rotor torque, and tower base forces and moments. For most

of the analyses presented in this paper, model M1 was employed. This model is trained on a previously available healthy

dataset, D1, and serves as the primary reference. The rationale for this approach is based on the practical constraint that datasets155

containing anomalies rarely have a corresponding healthy segment recorded immediately beforehand. As such, training a model

in real-time using only the healthy portion of a dataset that later exhibits an anomaly is typically infeasible. Nonetheless, for

comparative purposes, we also evaluate model M3, which is trained on the healthy portion of dataset D3, under the hypothetical

assumption that similar data had been recorded under identical conditions in advance.

Models M1 and M3 were configured with identical training hyperparameters, except for the number of training epochs.160

Both models utilize a prediction horizon of a single timestep and a look-back to prediction ratio of n/m= 10. The network

architecture consists of a single hidden layer with 100 neurons, trained using a batch duration of 60 seconds, a learning rate of

0.001, and no dropout regularization. Model M1 was trained for 60 epochs, whereas model M3 required an extended training

schedule of 1000 epochs. This increase was motivated by the significantly shorter duration of training data available for M3,

which spans only from 70 to 119 seconds due to the presence of an anomaly later in the dataset, as detailed in Table 1.165

Three combinations of anomaly detection criteria were investigated. The symbols E and ∆E refer to threshold-exceeding

conditions based on the model prediction error and its time derivative, respectively. The detection logic tested includes:

1. ∆E - the derivative of the error must exceed a threshold

2. ∆E ∨E - either the error or its derivative must exceed its threshold

3. ∆E ∧E - both the error and its derivative must simultaneously exceed their respective thresholds170
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Table 1. Dataset usage by models M1 and M3 for different tasks. Time intervals are in seconds.

Model Task Dataset(s) Interval

M1

Training D1 [100, 450]

Validation D1 (450, 675]

Error threshold D1 [100, 1000]

Testing D2, D(a1,a2,a3)
2 , D3 [100, 1000], [100, 350], (135, 190]

M3

Training D3 [70, 119]

Validation D3 (119, 135]

Error threshold D3 [70, 135]

Testing D3 (135, 190]
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(a) Angular velocity of three experimental dataset.
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(b) Thrust force measurements of three experimental dataset.

Figure 9. Three experimental datasets and their variations in (a) angular velocities and (b) thrust forces.

4 Results

4.1 Model performance during healthy conditions

The performance of the M1 model, in terms of normalized error and error derivative to their respective threshold values, when

tested against measured data during healthy operations, D2, are shown in Fig. 10. When using the lead principal component

(i.e., 1PC variation of M1 model), the error values were consistent throughout the test. The MPC variation experienced a slight175

decline in error values as time progressed. As desired, both model variations exhibited no predicted anomalies based on any of

the exceeding threshold criteria discussed.
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Figure 10. Error and error derivative curves between measured and M1 model during healthy D2 testing dataset when (a) a single or (b)

multiple principal components are used.

4.2 Performance under synthetic anomaly realizations

Model M1 was tested on the synthetically altered variations of D2: datasets D(a1)
2 , D(a2)

2 , and D(a3)
2 , using both 1PC and

MPC variations. The results are presented in Fig. 11, where the first row (Figs. 11a, b, and c) shows the 1PC model responses,180

and the second row (Figs. 11d, e, and f) presents the MPC model responses. Anomaly criterion selected for this analysis is

the joint condition (∆E ∧E). The 1PC variation demonstrates overall enhanced coverage (highlighted in blue) and reduced

detection delay relative to the onset of the ground-truth anomaly (highlighted in red). The reduction in detection delay is also

represented in Fig. 12 when comparing 1PC to MPC. Additionally, detection performance generally improved with increasing

severity of the synthetically introduced anomaly. This is indicated in Fig. 12 which shows detection delay in seconds between185

synthetically introduced anomaly and the predicted anomaly by the models. The figure also shows a sensitivity analysis of the

models to the timestep at which the data is sampled. Small timesteps (high sampling frequency) can provide reduce anomaly

detection delay but at the expense of computational cost.

4.3 Pre-strike anomaly detection

During a high rotor angular velocity test, D3, an unexpected anomaly caused the rotor to accelerate rapidly. The resulting190

increase in thrust forces caused significant blade deflection, and within four seconds, one of the blades struck the tower,

leading to severe damage, as shown in Figure 13.
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Figure 11. Anomaly detection based on ∆E ∧E criterion during synthetically altered dataset variations of D2 and M1 model detection
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Figure 13. Blade damage after blade-tower collision due to high thrust forces.

Models M1 and M3 were evaluated using both 1PC and MPC variations. The normalized error and error derivative, each

scaled by their respective threshold values, are presented in Fig. 14. Anomalies are identified based on the joint exceedance of

both criteria (∆E∧E). As shown in the figure, the predicted anomaly region (blue) aligns well with the ground-truth anomaly195

(red), demonstrating the efficacy of the detection method. Additionally, anomaly conditions are detected prior to the blade

strike, suggesting that such models could be used as preventive measures against consequential incidents.

For all models, the error derivative remains below the threshold prior to the anomaly, indicating that system behavior was

consistent with healthy operation. However, the 1PC variation of model M1 shows threshold violations in the error metric

E, before the onset of the actual anomaly. This can be attributed to a mismatch in operating conditions: M1 was trained on200

dataset D1, where the turbine operated at significantly lower angular velocity, as illustrated earlier in Fig. 9a. This discrepancy

introduces errors when applied to data from D3, which exhibits 51% higher angular velocity.

Notably, this premature threshold crossing is not observed in the MPC variation of M1. By incorporating multiple principal

components, the MPC approach distributes the reconstruction error across several components, thereby diluting the influence

of a mismatch from a single channel. This is further supported by the principal component contribution analysis in Fig. 4b,205

which shows that angular velocity θ̇ is the dominant contributor to the leading principal component. Consequently, in the 1PC

case, discrepancies in angular velocity have a large impact on the error.
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Figure 14. Anomaly detection based on ∆E ∧E criterion during D3 anomaly dataset and model detection response of the (1) M1 - 1PC

variation, (b) M1 - MPC variation, (c) M3 - 1PC variation, and (d) M3 - MPC variation.

Despite exceeding error threshold in M1-1PC prior to the anomaly, the error derivative ∆E remains within acceptable

bounds, ensuring no false positive detection. When model M3, trained on the healthy segment of dataset D3, is used instead, the

predicted anomaly coincides precisely with the true event. This underscores the importance of matching operating conditions210

between training and deployment for reliable anomaly detection.
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5 Discussion

Table 2 summarizes the anomaly detection performance of model M1 with its 1PC and MPC variations, evaluated on the

healthy dataset D2, synthetically altered anomaly datasets {D(a1)
2 ,D(a2)

2 ,D(a3)
2 }, and the blade-tower strike dataset D3. From

these results, the following key observations can be made:215

– The 1PC variation generally yields higher F1-scores compared to the MPC variation (43% enhancement under ∆E ∧E

criterion);

– The combined threshold criterion ∆E ∧E provides the most consistent and reliable detection performance across

datasets;

– While the 1PC model achieves higher recall (R), the MPC model tends to produce higher precision (P ).220

Importantly, both model variations produce no false positive detections under healthy conditions (D2), regardless of the

threshold criterion employed. The 1PC model typically reacts more rapidly to actual anomalies, as it is not constrained by the

averaging of reconstruction errors across multiple principal components. This responsiveness contributes to its higher recall

scores. However, this same sensitivity can lead to over-detection, which reduces precision. In contrast, the MPC model’s error

aggregation results in more conservative detection behavior, improving its precision at the expense of some detection latency.225

Figure 15 presents the relative percentages of true positives, false negatives, false positives, and true negatives for model M1

across the same set of testing datasets. In the horizontal bar charts, darker shades correspond to the presence of anomalies in

the data—hence their absence in the healthy dataset D2. The sign of each classification outcome indicates whether the model

successfully detected an anomaly (positive) or failed to do so (negative). Color is used to convey prediction quality and context:

green denotes correct classifications, while red indicates incorrect ones. This visual encoding effectively communicates both230

the correctness of model predictions and the operational context in which they occur, thereby emphasizing the model’s ability

to distinguish between healthy and anomalous system states.

The error derivative appears to be the dominant criterion for accurate anomaly detection. As shown in Fig. 15, the com-

bined threshold criterion ∆E ∧E results in fewer incorrect classifications (i.e., reduced red regions), whereas more flexible

criteria—where either the error or its derivative alone exceeds the threshold—lead to increased misclassifications. Notably,235

the reconstruction error E serves as a useful indicator for identifying deviations due to previously unseen operating condi-

tions. In contrast, the error derivative ∆E is particularly effective in capturing abrupt transitions between the reconstructed and

measured signals, making it well-suited for detecting sudden-onset anomalies such as the one present in this paper.

As for the incident dataset, D3, since the turbine was operating under different conditions than the training dataset for M1

model, the error was high. Therefore, using the error derivative as an additional criterion helps with detecting the true positives.240

This is an important aspect of a good anomaly detection model because most of the time, the anomaly will most likely occur

under conditions that have not been seen before.
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Table 2. Anomaly detection performance for models tested on datasets D2, D(a1)
2 , D(a2)

2 , D(a3)
2 , and D3, under different detection criteria:

∆E, ∆E ∨E, and ∆E ∧E.

Criterion Dataset
1PC MPC

T+ F− F+ T− P R FI T+ F− F+ T− P R FI

∆E

D2 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A

D(a1)
2 75 26 30 369 0.74 0.71 0.73 18 36 17 382 0.82 0.18 0.29

D(a2)
2 92 9 36 363 0.91 0.72 0.80 70 31 18 381 0.80 0.69 0.74

D(a3)
2 95 6 38 361 0.94 0.71 0.81 88 13 32 367 0.73 0.87 0.80

D3 49 2 4 125 0.96 0.93 0.94 30 21 0 129 1.00 0.59 0.74

∆E ∨E

D2 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A

D(a1)
2 90 11 30 369 0.89 0.75 0.81 64 37 8 391 0.89 0.63 0.74

D(a2)
2 95 6 36 363 0.94 0.73 0.82 81 20 18 381 0.82 0.80 0.81

D(a3)
2 97 4 38 361 0.96 0.72 0.82 90 11 32 367 0.74 0.89 0.81

D3 51 0 129 0 1.00 0.28 0.44 51 0 121 8 0.30 1.00 0.46

∆E ∧E

D2 0 0 0 1800 N/A N/A N/A 0 0 0 1800 N/A N/A N/A

D(a1)
2 65 36 21 378 0.64 0.76 0.70 18 83 1 398 0.95 0.18 0.30

D(a2)
2 87 17 28 371 0.83 0.75 0.79 65 36 17 382 0.79 0.64 0.71

D(a3)
2 89 12 32 367 0.88 0.74 0.80 81 20 25 374 0.76 0.80 0.78

D3 49 2 4 125 0.96 0.93 0.94 30 21 0 129 1.00 0.59 0.74

It is eventually up to the developer/operator to gather certain amount of anomaly points before activating an alerting system

or before acting upon it to limit disturbance to the main testing campaign. It could also be developed such that the model can

trace back to which of the channels contributing to this anomaly based on the correlation matrix calculated during PC analysis.245

6 Conclusions

This study demonstrates the feasibility and effectiveness of a multivariate long short-term memory (LSTM)-based reconstruc-

tion model for early anomaly detection in scaled wind turbine experiments. By leveraging principal component projections of

healthy operational data, the model enables robust monitoring through reconstruction error and its derivative. Various detection

criteria were evaluated, including threshold exceedance of the error E, its time derivative ∆E, and their logical combination.250

Two models were trained on distinct datasets, each evaluated using both single and multiple principal component (1PC and

MPC) variations.
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Figure 15. Percentage of true positives, false negatives, false positive, and true negatives occurrence when testing M1 model for the various

testing datasets.

The results indicate that the criterion combining both error and error derivative (∆E ∧E) yields the most consistent and

accurate anomaly detection performance across test cases. The 1PC model offers superior responsiveness and recall, mak-

ing it well-suited for identifying abrupt anomalies, though at the expense of precision. In contrast, the MPC model exhibits255

greater robustness to false alarms due to its conservative aggregation of reconstruction error. Importantly, both model variations

demonstrated zero false positives when applied to healthy test data, underscoring their reliability for real-time deployment.

This work serves as a proof of concept that simple, interpretable, and computationally efficient techniques can be deployed

to enhance safety and operational awareness during laboratory-scale wind turbine testing. The approach holds promise for ex-

tension to ocean-based and full-scale wind energy systems, where early anomaly detection is critical for preventing equipment260

failure and improving system reliability during experimental campaigns and operational phases.
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