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Abstract. Wind turbines deployed in offshore wind energy lease areas along the U.S. East Coast could significantly contribute 

to the national electricity supply. This region is also impacted by powerful tropical and extra-tropical cyclones that may lead 

to high structural loading on wind turbines and support structures and, in the event of above cut-out wind speedsspeed, low 

power production (capacity factors  0.2). Four sets of high-resolution simulations are performed for two category 3 tropical 10 

cyclones that tracked close to current offshore wind energy lease areas to assess the possible impacts on, and from, wind 

turbines. Simulations of Hurricanes Irene and Sandy are performed at convective permitting resolution  (grid spacing in inner 

domain of 1.33 km) with both the Weather Research and Forecasting Modelmodel (WRF, v4.2.2) and the Coupled Ocean-

Atmosphere-Wave-Sediment Transport (COAWST) Model, v3.7) model to characterize geophysical conditions of relevance 

to offshore wind turbines. These simulations are performed without and with a wind farm parameterization (WFP) active with 15 

the latter using the assumption that existing lease areas are fully populated with 15 MW wind turbines at a 1.85 km spacing. 

Many aspects (e.g., track, near-surface wind speed, sea level pressure, precipitation volumes) are well reproduced in control 

simulations (no WFP) with both WRF and COAWST particularly for Hurricane Sandy. COAWST simulations lead to more 

intense cyclones with a slightly larger area of storm-force wind speeds, a higher likelihood of hub-height wind speeds  25 m 

s-1, plus higher precipitation volumes, possibly indicating under-estimation of hurricane risk in uncoupled simulations. All 20 

eight simulations indicate maximum hub-height wind speeds (HH WS) within the existing lease areas below 50 m s-1. However, 

COAWST simulations indicate frequent wind-wave misalignment of  30 and the joint occurrence of significant wave height, 

hub-height wind speed, and wave period in some lease areas reach levels that are likely to be associated with large structural 

loads. This work re-emphasizes the utility of coupled simulations in describing geophysical conditions of relevance to offshore 

wind turbine operating conditions. 25 

1 Introduction 

1.1 Motivation 

At the end of 2023, the global offshore wind energy installed capacity (IC) was approximately 75.2 GW (GWEC, 2024a) due 

in part to a 24% increase in installed capacity during 2023 (GWEC, 2024b). The plentiful offshore wind resource At the end 

of 2023, the global offshore wind energy installed capacity (IC) was approximately 75.2 GW (GWEC, 2024b) due in part to a 30 

24% increase in IC during 2023 (GWEC, 2024a). The plentiful offshore wind resource (Marvel et al., 2013; Bodini et al., 

2024; Pryor and Barthelmie, 2024b2024a) and recent reductions in the Levelized Cost of Energy for offshore deployments 

(Jansen et al., 2020; Wiser et al., 2021) mean that the number of wind turbines (WT) deployed in (coastal) offshore regions is 

projected to rapidly increase (GWEC, 2024b; Pryor and Barthelmie, 2024b).  

 35 
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along the U.S. East Coast (Fig. 1) in regions with high wind resource (power generation potential), close proximity to major 

demand centers, and shallow water depths (Pryor et al., 2021; Pryor and Barthelmie, 2024a, b). 

 40 

Figure 1: Tracks of Hurricane (a) Irene and (b) Sandy from the WRF and COAWST simulations derived from the minimum sea 

level pressure (SLP) every 10 min, along with the corresponding National Hurricane Center (NHC) best track locations every 6 h. 

Two letter abbreviations indicate variations in cyclone intensity/type: HU indicates hurricane stage, TS indicates tropical storm 

stage, and EX indicates extratropical stage. Also shown (in magenta) are the locations of the wind turbines (WTs) in the offshore 

lease areas (LAs) considered herein. Numbers in brackets represent the location at the 6 h NHC increments, where “1” represents 45 
27 August 2011 18:00 UTC with Irene and 29 October 2012 00:00 UTC with Sandy; 3a (28 August 2011 09:35 UTC) and 4a (28 
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August 2011 13:00 UTC) represent landfall with Irene, while 4a (29 October 2012 21:00 UTC) represents a downgrade to 

extratropical cyclone intensity and 4b (29 October 2012 23:30 UTC) represents when Hurricane Sandy made landfall. Additional 

details are provided in Table S1. 
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The offshore environment presents significant challenges for making long-term, climatologically representative robust 50 

measurements of properties such as wind speed at wind turbineWT hub-height (HH WS) (Foody et al., 2024) that are critical 

for determining the wind resource and key aspects of operating conditions (IEC, 2019b, a; Mudd and Vickery, 2024). The 

relative paucity of measurements leads to financial uncertainty and thus potentially jeopardizes realizing U.S. national goals 

for achieving the energy transition (Hansen et al., 2024). It also means that numerical modeling is playing a critical role in 

projecting wind resource and operating conditions in offshore wind energy development areas (Kresning et al., 2020; Pryor 55 

and Barthelmie, 2021; Bodini et al., 2024; Pryor and Barthelmie, 2024b2024a; Wang et al., 2024). 

 

Substantial offshore Limited over-ocean observations also limit our ability to characterize the characteristics of high intensity 

hurricanes, including those of relevance to the wind energy developments are planned orindustry, particularly in progress 

alongenvironments such as the U.S. East Coast (Fig. 1) in regions with high wind resource (power generation potential), close 60 

proximity to major demand centers, and shallow water depths (Pryor et al., 2021; Pryor and Barthelmie, 2024b, a). This region 

alsowhich has the potential to be impacted by tropical cyclones and/or transitioning tropical-extratropical cyclones (Xie et al., 

2005; Baldini et al., 2016; Barthelmie et al., 2021; Wang et al., 2024). but experiences only relatively few such storms each 

century (Schreck III et al., 2021).   

 65 

Wind speeds (WSs) within tropical cyclones frequently exceed the threshold at which wind turbinesWTs cease power 

production (25- to 30 m s-1) to avoid high operational loads (Petrović and Bottasso, 2014). There are reports of individual wind 

turbineWT failures during hurricanes (Chen and Xu, 2016), and six wind turbinesWTs in a wind farm without hurricane-

resistant wind turbinesWTs were damaged by 65 m s-1 wind speedsWSs during Typhoon Yagi in September 2024 (Yihe, 2024). 

Accordingly, hurricane-induced extreme wind conditions represent an important component of wind turbineWT design 70 

standards (IEC, 2019b, a; Ju et al., 2021; Martín del Campo et al., 2021). For offshore wind farm lease areas (LALAs) in 

coastal waters along the U.S. East Coast (Fig. 1), past research has suggested areas north of Maryland have the lowest risk of 

hurricane damage ( 5% probability that in a 20 yearyr period more than 10% of the wind turbinesWTs would be destroyed) 

(Rose et al., 2012b, a). Offshore LALAs near North Carolina experienced fewer than 40 instances of hurricane force winds 

(10- m wind speedsWS  33 m s-1) between 1900 and 2013, while those located near Maryland and farther northward 75 

experienced ~ 20 instances (Hallowell et al., 2018). Based on output from the 30 km resolution ERA5 gridded dataset, the 

highest 50-year yr return period (RP) wind speed (WS) at 100 m above sea level (a.s.l.) and significant wave heights (Hs, i.e., 

the mean height – crest to trough of the largest one-third of waves) for the U.S. East Coast offshore wind energy LALAs are 

~ 39.7 m s-1 and ~ 11 m, respectively (Barthelmie et al., 2021). Equivalent estimates from buoy measurements are; 32.6 m s-1 

and 9.5 m (Kresning et al., 2024). A further model-based study indicated 50-year yr RP Hs of 9- to 11 m for the northernmost 80 

LA considered here (McElman et al., 2024). 

 

Wind-wave coupling plays a key role in both near-surface atmospheric processes and wind turbineWT loading (Valamanesh 

et al., 2013; Valamanesh et al., 2015; Koukoura et al., 2016; Hallowell et al., 2018; Hashemi et al., 2021; Li et al., 2022; Müller 

et al., 2024). Analyses based on buoy-based measurements of wind and waves along the U.S. East Coast indicated the mean 85 

failure probability during a 20-year wind turbine yr WT lifetime is 9.6  10-6 for a functional wind turbineWT yaw control 

system and 2.9  10-4 for a non-functional yaw control system (Hallowell et al., 2018). Wind-wave directional offset is also 

considered in offshore wind turbineWT design codes (IEC61400-3) for loading on the support structure (IEC, 2019a). A 90° 

wind-wave misalignment is projected to increase the mud-line bending moment for a monopile foundation by up to a factor of 

five, and even more modest misalignment of 30° approximately doubles this bending moment (Fischer et al., 2011). This 90 

amplification of bending moment with wind-wave misalignment is greatly enhanced under high HH WS (Stewart and Lackner, 

2014).  
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Figure 1: Hurricane Irene (left) and Hurricane Sandy (right). (a, b) Hurricane tracks from model simulations presented herein 

(WRF without the action of wind turbines, WRF with the action of wind turbines, COAWST without the action of wind turbines,  100 
and COAWST with the action of wind turbines), derived from minimum SLP every 10 min and the corresponding NHC “best track” 

locations. HU indicates hurricane stage, TS indicates tropical storm stage, and EX indicates extratropical stage. Numbers in brackets 

represent the location at the times specified in Table 1. The time series plots are the 1-h precipitation volume within 375 km from 

the track location for each simulation and IMERG V07. (c, d) Accumulated IMERG V07 precipitation during the entire simulation 

period (1200 UTC on 24 August 2011 through 1200 UTC on 29 August 2011 and 1200 UTC on 25 October 2012 through 1200 UTC 105 
on 1 November 2012, respectively) and NHC best track locations (from (a) and (b)). Also shown are the U.S. state abbreviations; Maine 

(ME), New Hampshire (NH), Vermont (VT), Massachusetts (MA), Rhode Island (RI), Connecticut (CT), New York (NY), New Jersey (NJ), 

Pennsylvania (PA), Ohio (OH), West Virginia (WV), Maryland (MD), Delaware (DE), Virginia (VA), North Carolina (NC), and South 

Carolina (SC). (e, f) Difference in accumulated precipitation (WRF without the action of wind turbines minus IMERG) and the 

hurricane track from the WRF no WT simulation (every 10 min). (g, h) Difference in accumulated precipitation (COAWST without 110 
the action of wind turbines minus IMERG) and the hurricane track from the COAWST no WT simulation (every 10 min).  

 

Table 1: The time (UTC) and date that correspond to the numbered locations for Hurricanes Irene and Sandy shown in Fig. 1. All 

dates for Irene are in 2011 and all dates for Sandy are in 2012.   

location Irene time and date Sandy time and date 

1 1800 27 Aug 0000 29 Oct 

2 0000 28 Aug 0600 29 Oct 

3 0600 28 Aug 1200 29 Oct 

3a 0935 28 Aug (landfall at 

Brigantine Island, NJ) 

- 

4 1200 28 Aug 1800 29 Oct 

4a 1300 28 Aug (landfall at 

Coney Island, NY) 

2100 29 Oct (downgraded 

to extratropical) 

4b - 2330 29 Oct (landfall at 

Brigantine Island, NJ) 

5 1800 28 Aug 0000 30 Oct 

6 0000 29 Aug 0600 30 Oct 

7 - 1200 30 Oct 

8 - 1800 30 Oct 

9 - 0000 31 Oct 

10 - 0600 31 Oct 

11 - 1200 31 Oct 

12 - 1800 31 Oct 

 115 

 

Estimation of design criteria extreme wind speedsWSs from numerical modeling is critically dependent on the grid spacing at 

which the model is applied (Larsén et al., 2012) and momentum dissipation at the ocean surface which in turn is determined 

by wind-wave coupling and the parameterization used to dictate the surface roughness length (z0) (Larsén et al., 2019; Wang 

et al., 2024). The Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system (Warner et al., 2010) 120 

comprises a series of linked model components. In thethis research presented herein these modelsmodel components are; the; 

Weather Research and Forecasting Model (WRF) model (Skamarock et al., 2019), the Regional Ocean Modeling System 

(ROMS) (Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008; Shchepetkin and McWilliams, 2009), and Simulating 

Waves Nearshore (SWAN) model (Booij et al., 1999) and they interact through use of the Model Coupling Toolkit (MCT) 

(Jacob et al., 2005; Larson et al., 2005; Warner et al., 2008).  125 
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Only limited previous research has sought to quantify the degree to which wind-wave coupling improves simulation fidelity 

and/or intensity for wind speedsWSs at heights of relevance to offshore wind turbinesWTs. One such study focused on 23 

intense cyclones in the North Sea and found that when WRF is coupled to SWAN through a wave boundary layer model with 

an innermost domain with grid spacing of 2 km, the inferred 50-year yr RP wind speedsWSs were systematically higher than 130 

those from WRF alone and the degree of agreement in extreme wind speedsWSs at five offshore and/or coastal masts was 

improved (Larsén et al., 2019). A further study found that for Tropical Storm Ana in the mid-Atlantic Bight, two-way coupled 

WRF and WaveWatch III (WW3) simulated peak 90- m wind speedsWS were a closer match to observations than the 

corresponding values from either a standalone WRF or one-way coupled WRF simulation (Gaudet et al., 2022). Simulation of 

Hurricane Sandy with WRF with FVCOM (coupled to the unstructured-grid, Finite-Volume Community Ocean Model) 135 

coupled (FVCOM) through the Earth System Model Framework also found improved agreement with observations for the 

central pressure location and intensity plus 10- m wind speedsWSs relative to simulation solely with WRF (Li and Chen, 

2022). COAWST (configured with WRF 3.2, ROMS 3.3, and SWAN 40.81) coupled with the MCT showed “modest 

improvement in track but significant improvement in intensity …. versus uncoupled (e.g., standalone atmosphere, ocean, or 

wave) model simulations” for Hurricane Ivan (Zambon et al., 2014a). Thus, there is provisional evidence that, in accord with 140 

expectations, detailed coupling of the(Zambon et al., 2014b). Thus, there is provisional evidence that, in accord with 

expectations, detailed coupling of atmosphere-wave and ocean models improves simulation of atmospheric parameters within 

these extreme events relative to simulations with WRF alone. 

 

In addition to the importance of intense cyclones (e.g., hurricanes) to wind turbineWT design standards, there have also been 145 

suggestions that very wide-spread deployment of offshore wind turbinesWTs in the U.S. coastal zone could aid in reducing 

the intensity of tropical cyclones and thus reduce damage onshore (Jacobson et al., 2014). Simulations of three hurricanes 

using the GATOR-GCMOM model indicated that offshore wind turbineWT arrays comprising 110,000 and 420,000 wind 

turbines (installed capacitiesWTs (IC  300 GW) at installed capacity densities (ICD) of 8 –to 17 MW km-2 might reduce 15- 

m wind speedsWS by over 25 m s-1 and reduce storm surge by up to 79% (Jacobson et al., 2014). Simulations with 22,000 to 150 

74,000 wind turbinesWTs also suggested that offshore wind turbinesWTs could reduce the amount of precipitation over land, 

downstream of the wind farms (Pan et al., 2018). 

1.2 Objectives 

Research presented herein uses storyline simulations of two of the most powerful hurricanes that have occurred within the 

U.S. East Coasteastern coastal waters in which offshore wind energy LALAs have been auctioned (Fig. 1, see further details 155 

in Table S1 and Figs. S1-S2). Four sets of simulations are performed for each of these hurricanes; (a) WRF, (b) WRF with the 

action of wind turbinesWTs included in offshore wind energy lease areasLAs purchased prior to mid-2023, (c) COAWST, and 

(d) COAWST with the action of wind turbinesWTs included. Our specific research questions are as follows:  

 

1) Are the characteristics of these hurricanes well captured using either the WRF or COAWST models? A sub-160 

component of this question is does the more explicit coupling in COAWST improve simulation fidelity? 

 

2) Do these simulations suggest that either of these hurricanes would have been characterized by either (a) widespread 

loss of power production across these lease areasLAs due to cut-out at high wind speedsWSs and for how long and/or 

(b) exceedance of wind turbineWT design wind speedsWSs and/or very high wind-wave structural loading? Again, 165 

a sub-component of this question is does use of COAWST versus WRF change wind speedWS intensity and/or the 

duration of time with low power production? 
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3) If wind turbineWT rotor extraction of momentum is simulated using a wind farm parameterizationWFP in WRF and 

COAWST, is there evidence of weakening of the hurricanes for wind turbineWT numbers and installed capacity 170 

densitiesICD that are likely to be achieved using the offshore wind energy lease areasLAs considered here? 

2 Data and Methods 

2.1 Characteristics of the hurricanes considered herein 

Research presented herein focuses on two recent hurricanes: 

 175 

1) Hurricane Irene became a category 3 hurricane, with 54 m s-1 wind speedsWSs at 10- m height in the Bahamas at 

1200 UTC on 24 August 2011 12:00 UTC (Avila and Cangialosi, 2011). It made landfall at Cape Lookout, North 

Carolina at 1200 UTC on 27 August 12:00 UTC with 39 m s-1 10- m wind speedsWSs. After moving out over the 

water, it again made landfall, this time as a tropical storm, with 31 m s-1 wind speedsWSs reported at Brigantine, New 

Jersey at 0935 UTCon 28 August. 2011 09:35 UTC (Fig. 1a). The cyclone then moved over Coney Island, New York 180 

with 28 m s-1 wind speedsWSs reported at 130013:00 UTC. Simulations presented herein are initialized at 1200 UTC 

on 24 August 2011 12:00 UTC and run through 1200 UTC on 29 August 2011 12:00 UTC. 

 

2) Hurricane Sandy became a category 3 hurricane, with 51 m s-1 wind speedsWSs at 10- m height in eastern Cuba at 

0525 UTC on 25 October 2012 05:25 UTC (Blake et al., 2013; Lackmann, 2015). It grew to have a roughly 1611 km 185 

diameter of tropical-storm-force wind speedsWSs, before making landfall near Brigantine, New Jersey as a post-

tropical cyclone with 36 m s-1 10- m wind speedsWSs and a minimum pressure of 945 hPa at 2330 UTCon 29 October. 

2012 23:30 UTC (Fig. 1b). Simulations presented herein run from 1200 UTC on 25 October 2012 12:00 UTC through 

1200 UTC on 1 November 2012 12:00 UTC. 

2.2 Modeling 190 

The source of initial and lateral boundary conditions (Khaira and Astitha, 2023) and specific model configurations employed 

within WRF and COAWST (including the coupling system) have a critical impact on simulated flow conditions (Mooney et 

al., 2019). In this research, both WRF (v4.2.2) and COAWST (v3.7 and MCT v2.6.0) simulations use two domains (Fig. 2a) 

and the coupling interval in COAWST is 10 min (Fig. 2b). The source of boundary and initial conditions and key physics 

options (Tables 3 and 4). At this coupling interval, a number of variables that are critical to air-sea coupling and lower 195 

atmosphere structure and/or WT design standards are exchanged between the model components (Fig. 2b, Fig. S3, and Table 

S2). The selection of these variables is based on previous research (Warner et al., 2010; Zambon et al., 2014b) and include sea 

surface temperature (SST) that is passed from ROMS to WRF, 10 m u- and v-wind components which are passed from WRF 

to SWAN, plus Hs and Tp (period of peak energy in the wave spectrum) that are passed from SWAN to WRF and ROMS. 

The source of boundary and initial conditions (Table 1) and key physics options are informed by previous simulations of 200 

Hurricanes Sandy (Zambon et al., 2014b)(Zambon et al., 2014a) and Irene (Mooney et al., 2016). The MYNN2 planetary 

boundary layer scheme is used due to the compatibility with the Fitch wind-farm parameterization (WFP)Physics settings 

include the WRF single-moment 6-class (WSM6; (Hong and Lim, 2006)) microphysics scheme, the Rapid Radiative Transfer 

Model (RRTM; (Mlawer et al., 1997)) for longwave radiation, the Dudhia scheme (MM5; (Dudhia, 1989)) for shortwave 

radiation, and the Unified Noah land surface model (Chen and Dudhia, 2001b, a; Ek et al., 2003; Tewari et al., 2004). The 205 

Kain-Fritsch (Kain, 2004) cumulus parameterization is used in the outer domain and no cumulus parameterization is used in 

the inner domain. The Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN2; (Nakanishi and Niino, 2006)) planetary 

boundary layer scheme is used due to the compatibility with the Fitch windfarm parameterization (WFP; (Fitch et al., 2012)) 
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that is used here in both domains to compute power production, momentum extraction, and turbulent kinetic energy (TKE) 

induced by the action of wind turbines.WTs. Following previous research (Pryor and Barthelmie, 2024b, a), we assume that 210 

all auctioned offshore lease areas along the U.S. East Coast shown in Fig. 2a are populated with IEA reference 15 MW wind 

turbines (Fig. 2c) with a spacing of 1.85 km for an average ICD of 4.3 MW km-2. This results in a total of 2642 wind turbines 

(Fig. 2a), each of which has a hub height of 150 m, and a rotor diameter of 240 m. The 1.85 km wind turbine(Pryor and 

Barthelmie, 2024a, b), we assume that all auctioned offshore LAs along the U.S. East Coast (Fig. 2a) are populated with 2642 

IEA reference 15 MW WTs, each of which has a hub height of 150 m, and a rotor diameter of 240 m (see power and thrust 215 

curves in Fig. 2c), at a spacing of 1.85 km for an average ICD of 4.3 MW km-2. This spacing and 1.33 km WRF domain 02 

(d02) grid spacing (dx) results in 2641 grid cells with at least one wind turbineWT; one grid cell has two wind turbinesWTs. 

Of the 71 unstaggered WRF vertical levels, level 15 has a mean height of 155 m in grid cells with wind turbinesWTs and is 

therefore used for HH WS. Note the wind speeds it is not an expectation that spatially averaged model output from d02 are for 

a nominal model will perfectly match time step of 2 s but are representative of a spatial average of 1.33 km by 1.33 km, while-220 

averaged point observations and further, the design standards are articulated for a sustained wind speedWS at a point (Larsén 

and Ott, 2022). The WSs presented here are output from d02, represent a nominal model time step of 2 s, and are from a grid 

cell with an area of 1.33 km by 1.33 km, but the effective model resolution is ~ 7 times the grid spacing (Skamarock, 2004) 

thus any spatial gradients will be under-estimated. 

 225 

 

Figure 2: (a) Simulation domains (d01 and d02) for WRF (W), ROMS (R), and SWAN (S) and locations of the wind turbines (WTs) 

in the offshore wind energy lease areas (LAs) considered herein (magenta). In the simulations with WTs, these LAs contain 2642 

WTs. Also shown are the locations of the eight National Data Buoy Center (NDBC) buoys used in the simulation evaluation 

(purple). (b) Schematic of information flow between COAWST model components for variables discussed herein: significant wave 230 
height (Hs), peak wave period (Tp), 10 m u- and v- wind components, surface roughness length (z0), mean wave direction, 

precipitation (Precip), and sea surface temperature (SST). For the complete information flow, see Fig. S3 and Table S2. (c) Power 

and thrust coefficients as a function of hub-height wind speed (HH WS) for the 15 MW IEA reference WT (Gaertner et al., 2020).  

 

 235 

Variation of wave state and surface roughness length with wind speed is an important determinant of extreme, near surface 

wind speeds and turbulence intensity (Zambon et al., 2014a; Porchetta et al., 2019; Porchetta et al., 2020; Porchetta et al., 

2021; Wang et al., 2024)Variation of wave state and z0 with WS is an important determinant of extreme, near surface WSs and 
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turbulence intensity (Zambon et al., 2014b; Porchetta et al., 2019; Porchetta et al., 2020; Porchetta et al., 2021; Wang et al., 

2024). The COAWST simulations are configured using the Taylor Yelland formulation (Taylor and Yelland, 2001) to calculate 240 

surface roughness lengthz0 following past research (Zambon et al., 2014b)(Zambon et al., 2014a) that found use of this 

parameterization resulted in better fidelity for Hurricane Sandy track, intensity, sea surface temperaturesSST, and wave 

heightsHs than alternatives (Oost et al., 2002; Drennan et al., 2005). Use of the MYNN surface layer with WRF and the 

DRAGLIM_DAVIS drag limiter option with COAWST, means all simulations implement a maximum ocean roughness drag 

coefficient of 2.85  10-3, consistent with research that has shown asymptotic behavior of drag at high wind speedsWSs (Davis 245 

et al., 2008). Data are output every 10 min and each simulation is subject to a warm restart every 6 h due to wall clock 

limitations on the compute platform. 

 

 

 250 

 

Table 

 

Figure 2: (a) Domains 01 and 02 (d01 and d02) for WRF (W), ROMS (R), and SWAN (S) and locations of offshore wind energy LA 

considered herein (in the simulations with wind turbines, these LA contain 2642 wind turbines which are shown in magenta). Also 255 
shown are the eight NDBC buoys used in the simulation evaluation. (b) Schematic of information flow among the COAWST model 

components. See Table 2 for additional details. (c) Power and thrust coefficient for the 15 MW IEA reference wind turbine1: Model 

configuration for WRF and COAWST simulations. (Gaertner et al., 2020).  
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Table 2: Additional details about the information flow among the COAWST model components in Fig 2b.   275 

name abbreviation units 

depth below mean sea level DEPTH m 

mean wave direction DIR rad 

peak wave direction DIRP rad 

energy dissipation due to bottom friction DISBOT W m-2 

energy dissipation due to surf breaking DISSURF W m-2 

energy dissipation due to white-capping  DISWCAP W m-2 

evaporation rate EVAP kg m-2 s-1 

downward long wave flux at ground surface GLW W m-2 

net short wave flux at ground surface GSW W m-2 

upward heat flux at the surface HFX W m-2 

significant wave height HSIGN m 

latent heat flux at the surface LH  W m-2 

mean sea level pressure  MSLP mb 

rainfall rate RAIN kg m-2 s-1 

relative humidity RELH - 

relative peak period RTP s 

sea surface temperature SST K 

temperature at 2 m T2 °C 

near bottom wave period TMBOT  s 

x-wind component at 10 m U10 m s-1 

surface u-stress USTRESS N m-2 

y-wind component at 10 m V10 m s-1 

current velocity component in x direction VELX m s-1 

current velocity component in y direction VELY m s-1 

surface v-stress VSTRESS N m-2 

mean wave length WLEN m 

peak wave length WLENP m 

water level WLEV m 

roughness length Z0 m 
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Table 3: Sources of initial and boundary conditions for WRF and COAWST.  

WRF (version 4.2.2)  

Atmosphere: North American Mesoscale Forecast System (NAM; 12 km, 6 h) 

Sea Surface Temperature: Group for High Resolution Sea Surface Temperature (GHRSST) Level 

4 Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) 

(OSTIA-UKMO-L4-GLOB-v2.0; 0.05°, 24 h) 

Horizontal resolutionResolution: 4 km for d01, 1.33 km for d02 

Model top / # vertical levelsTop / 

Vertical Levels: 

50 hPa / 72 

Time stepStep (dt): 6 s for d01, 2 s for d02 

ROMS (version 3.9)  

Coastlines: Global Self-consistent, Hierarchical, High-resolution Geography 

Database (GSHHG; full resolution) 

Bathymetry (also for SWAN): General Bathymetric Chart of the Oceans (GEBCO) 2022 (15 arc-

second) 

3D boundary conditions, initial 

conditionsBoundary Conditions, 

Initial  

     Conditions, and 

climatologyClimatology: 

HYbrid Coordinate Ocean Model (HYCOM GLBa0.08 expt 90.9) 

2D boundary conditions 

(tidesBoundary Conditions (Tides): 

Advanced Three-Dimensional Circulation Model (ADCIRC 2001v2e) 

Horizontal resolutionResolution: 10 km for d01, 3.33 km for d02 

Time step (baroclinic / barotropicStep 

(Baroclinic / Barotropic): 

1.5 s (d01), 0.5 s (d02) / 30 (d01 & d02) 

# vertical levelsVertical Levels: 25 

SWAN (version 41.31)  

Wind forcingForcing: Global Forecast System (GFS): 0.5°, 6 h 

Boundary conditionsConditions: parametric forcing file (TPAR): 30 min WaveWatch III (WW3) data 

Horizontal resolutionResolution: 10 km for d01, 3.33 km for d02 

Time stepStep: 12 s for d01, 4 s for d02 

Frequency rangeRange: 0.04 to 1.0 

 

 

 

 290 

 

 

Table 4: Physics settings used with WRF and COAWST simulations.  

Model physics Key reference(s) 

microphysics: WRF single-moment 6-class scheme (WSM6) (Hong and Lim, 2006)  

longwave radiation: Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) 
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shortwave radiation: Dudhia scheme (MM5) (Dudhia, 1989) 

surface layer: MYNN (Olson et al., 2021) 

land surface: Unified Noah land surface model (Chen and Dudhia, 2001b, a; Ek et 

al., 2003; Tewari et al., 2004) 

planetary boundary layer: Mellor-Yamada Nakanishi and Niino Level 2.5 

(MYNN2) 

(Nakanishi and Niino, 2006) 

cumulus param.: Kain-Fritsch (d01; none for d02) (Kain, 2004) 

wind farm param. (both domains) (Fitch et al., 2012) 

 

2.3 Evaluation data sets 295 

Critical aspects of the WRF and COAWST simulations without the action of wind turbinesWTs are evaluated using: 

 

(i) National Hurricane Center (NHC) “best track” information and wind radii maximum extent data from Tropical 

Cyclone Reports (Avila and Cangialosi, 2011; Blake et al., 2013) and the Atlantic hurricane database (HURDAT2; 

(Landsea and Franklin, 2013)). 300 

 

(ii) 30-minute min precipitation at 0.1 degree° resolution from the Integrated Multi-satellitE Retrievals for the Global 

Precipitation Measurement (GPM) mission (IMERG) V07 final run data set (Huffman et al., 2024). 

 

(iii) National Data Buoy Center (NDBC) buoy-based measurements of WS and wind speeds (WSgust (WG), sea level 305 

pressure (SLP), sea surface temperature (SST),, and significant wave height (Hs) (NDBC, 2009)(NDBC, 2009) 

(https://www.ndbc.noaa.gov) (see Fig.(Fig. 2a). Note: The eight buoys from which data are presented are a mixture 

of 3-meter m foam and 3-meter m discus buoys. The anemometer and barometer heights vary between 3.8 and 4.1 m, 

and 2.4 and 3.4 m.  

 310 

These data sets do have some inherent constraints, which include use of; subjective smoothing to produce representative 6 h 

best track data which does not necessarily equate to a precise storm history (Landsea and Franklin, 2013), spatial averaging 

on the gridded IMERG data which can underestimate high precipitation rates compared to point measurements (Hu and 

Franzke, 2020; Nie and Sun, 2020; Huffman et al., 2024), and the limited number and spatial coverage of buoys (NDBC, 

2009).   315 

2.4 Analysis approach 

Hurricane centroid locations are computed every 10 minutesmin as the minimum SLP after 33 smoothing is applied to the 

model output and are used(a mean value of SLP is computed for comparisoneach grid cell based on output for that grid cell 

and the eight adjacent grid cells) and compared with the NHC best track information. The initial tracking position is the first 

time step when the minimum SLP is fullylies within d02 and tracking continues until the implied translational speed/direction 320 

of motion between adjacent time steps is inconsistent with physical expectations in terms of direction or translational speed. 

Hurricane Irene is tracked for 33 h, from 1800 UTC 27 August 2011 18:00 UTC through 0300 UTC 29 August 2011 03:00 

UTC and Hurricane Sandy is tracked for 67 h, from 2300 UTC 28 October 2012 23:00 UTC through 1800 UTC 31 October 

2012 18:00 UTC (Fig. 1). Evaluation relative to SLP and wind speedWS data from the NDBC buoys is performed using a 

search area of 33 grid cells. Evaluation of simulated precipitation within d02 relative to IMERG over all of d02 is performed 325 

after regridding output to the IMERG grid. (Fig. 3). The volume of water exhausted as precipitation from the tropical cyclone 
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is computed using a search radius of 375 km (see examples in Fig. 34) around the cyclone centroid in the simulation output 

and from the best track locations applied to IMERG.  

 

WhenBecause prior research has indicated the challenges in perfectly reproducing hurricane tracks, when evaluating hurricane 330 

impacts on wind turbinesWTs within the U.S. East Coast LALAs, analyses are presented for both all 2641 grid cells containing 

wind turbines, andWTs, four LA clusters defined as in (Pryor and Barthelmie, 2024b) and listed from north to south;(Pryor 

and Barthelmie, 2024a); A (1073 WT), B (662 WT), C (624 WT), and D (283 WT) (Fig. ), and 2a). Because prior research has 

indicated the challenges in perfectly reproducing hurricane tracks, we consider conditions in both grid cells containing wind 

turbines and/or all ocean-based grid cells within the respective LA cluster area. To facilitate comparison across the LA clusters, 335 

power production computed by the Fitch WFP is used to compute capacity (Fig. 2a). Capacity factors (CFCFs), which are the 

ratio of the power produced divided by that which would be produced if all wind turbinesWTs were operating at rated capacity 

(15 MW).), are used to facilitate comparison of power production computed by the Fitch WFP across the LA clusters. System-

wide CF  0.2 are used here as an indicator of low power production. 

 340 

Three-dimensional and joint occurrences of HH WS, Hs, and peak period (Tp), in WT-containing grid cells from the COAWST 

simulations are presented along with histograms of estimated wind-wave misalignment at the LA cluster centers in HH WS 

classes of 3 –to  10.6 m s-1, 10.6 –to 25 m s-1, and  25 m s-1, to represent high thrust, moderate thrust, and above rated wind 

speedsWS (Fig. 2c). 

 345 

Three metrics are used to analyze the impact of wind turbinesWTs on hurricane intensity and are compared for simulations 

with WRF and COAWST without and with the WFP active. The cumulative volume of precipitation within 375 km of the 

minimum SLP and the mean wind speedWS at 500 hPa (approximately the level of non-divergence, e.g., (Riehl and Malkus, 

1961)) computed for grid cells that lie 50- to 375 km from the centroid (i.e., beyond the likely eye radius) (Morin et al., 2024; 

Müller et al., 2024) are used as metrics of intensity. The mean outermost radius of tropical storm force WSs at 10 m (R18, 18 350 

m s-1, see Fig. 3) wind speeds at 10-m4) is computed using azimuth sectors of 10° (Powell and Reinhold, 2007) for all sectors 

where the distance from the cyclone centroid to the d02 boundary is ≥ 200 km isand used as a measure of cyclone size. Mood’s 

test (Hettmansperger and Malin, 1975) is used to assess the statistical significance of differences in the median values of these 

metrics.  

 355 
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Figure 3: Time series of 1 h precipitation volume within 375 km of the cyclone centroid in each simulation and IMERG for (a) 

Hurricane Irene and (b) Hurricane Sandy. Accumulated precipitation from IMERG for (c) Hurricane Irene: 24 August 2011 12:00 360 
UTC through 29 August 2011 12:00 UTC and (d) Hurricane Sandy: 25 October 2012 12:00 UTC through 1 November 2012 12:00 

UTC. National Hurricane Center (NHC) best track locations are shown in purple and the magenta letters denote the U.S. state 

abbreviations; Maine (ME), New Hampshire (NH), Vermont (VT), Massachusetts (MA), Rhode Island (RI), Connecticut (CT), New 

York (NY), New Jersey (NJ), Pennsylvania (PA), Ohio (OH), West Virginia (WV), Maryland (MD), Delaware (DE), Virginia (VA), 

North Carolina (NC), and South Carolina (SC). Difference in modelled total precipitation minus IMERG for (e, g) WRF for (e) 365 
Hurricane Irene and (g) Hurricane Sandy and (f, h) COAWST for (f) Hurricane Irene and (h) Hurricane Sandy. Simulations exclude 

the actions of wind turbines (WTs). Brown dots denote the hurricane location (every 10 min) from the simulations. 
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Figure 4: Simulated precipitation from WRF (a, c) and COAWST (b, d) during two example 10 minutemin periods (background 370 
color) and contours of hub-height wind speed (HH WS) at 25, 35, and 45 m s-1 for 0900 UTC(a) 28 August 2011 (a, 09:00 UTC and 

(b) and 1900 UTC29 October 2012 (c, d)19:00 UTC when the hurricanes are close to wind turbine LA.(WT) lease areas (LAs). 

Magenta rings mark 50 km and 375 km from the minimum sea level pressure (SLP.). The black rings mark R18the mean outermost 

radii of 18 m s-1 WSs at 10 m (R18) of (a) 274 km, (b) 301 km, (c) 539 km, and (db) 541 km. For legibility, the colorbar is truncated. 

Maximum 10 min precipitation in any grid cell is (a) 14.0 mm, (b) 13.8 mm, (c) 18.4 mm, and (db) 16.8 mm. Similar output from 375 
WRF is shown in Fig. S4.  
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3 Results and discussion 

3.1 Evaluation of the no-wind turbine simulations without the action of wind turbines 

Simulations3.1.1 Hurricane Irene 380 

As shown in detail below, simulations of Hurricane Irene exhibit lower fidelity than those of Hurricane Sandy. The centroid 

of Hurricane Irene is consistently displaced west (further inland, Fig. 1a) than the NHC best track data, and the translational 

speed is also negatively biased in simulations with both WRF and COAWST simulations. This bias is consistent with previous 

COAWST simulations of this hurricane performed with 12 km grid spacing and using a range of initial and lateral boundary 

conditions (Mooney et al., 2019). Simulation bias is also evident in comparison with buoy observations (Table 52, Fig. 45, and 385 

Figs. S3-S9S5-S11) both in terms of the magnitudes and timing of the maximum wind speedsWSs and minimum SLP. The 

maximumMaximum near-surface wind speeds WSs (at 2.6 m) differ (model minus buoy observations) by between -4.2 andto 

0.7 m s-1 (WRF at 2.6 m) and -3.2 andto 6.0 m s-1 (COAWST at 2.6 m). The displacement of thewith Hurricane Irene centroid 

in the simulations results in higher over land precipitation (by up to 209 mm in some IMERG grid cells) and negative bias 

offshore (Fig. 13). However, the volume of water vented from the hurricane is relatively well reproduced in the simulations. 390 

During the time of tracking, the mean (1- h) precipitation volume within 375 km of the centroid is 9.87  108 m3 based on 

IMERG combined with the NHC best track data, while the corresponding values (and percent error) are 1.14  109 m3 (15.1% 

overestimation) and 1.18  109 m3 (19.9% overestimation), for the WRF and COAWST simulations, respectively (Fig. 13). 

Mean R18 is 279 km in the WRF simulation but is larger by an average of 23 km in 192 of the 199 tracked 10- min positions 

in the COAWST simulation. These mean R18 values are similar to, but smaller than, those reported at a 6-hrly h interval from 395 

HURDAT2 based on analyses in four quadrants (mean R18 of 495 km in the SE quadrant and 157 km in the NW quadrant). 

The differences in R18 and precipitation in thesesthese simulations versus HURDAT2 and IMERG are likely due to bias 

introduced by proximitychallenges in accurately computing these metrics when the simulated position is close to the d02 

boundary in the simulation and differences in the fraction of the systemcyclone over land (Chen and Yau, 2003) due to 

differences in storm tracks (Fig. 1).  400 

 

3.1.2 Hurricane Sandy 

As in past research (Zambon et al., 2014b)(Zambon et al., 2014a), both the WRF and COAWST simulations of Hurricane 

Sandy exhibit good agreement with NHC best track data up to about 12 h after landfall in New Jersey (Fig. 1b). The mean 

distance between the NHC and simulated cyclone centroids for locations; 1, 2, 3, 4, 4a, 4b, and 5 in Fig. 1b is 66.7 km (WRF) 405 

and 51.4 km (COAWST). For those seven times the distances of separationThe positional offsets range from 30.3 to 129.1 km 

(WRF) and 12.0 to 71.1 km (COAWST). These positional offsets) and are smaller than those presented in previous research 

on, for example, cyclonic storm Ockhi (Mukherjee and Ramakrishnan, 2022) and the mean values fromplus Tropical Storm 

Delta, Hurricane Ophelia, Hurricane Leslie, and Tropical Storm Theta (Calvo-Sancho et al., 2023). Consistent with 

expectations, agreement tends to degrade once the cyclone has made landfall as the system becomes less organized and more 410 

asymmetric (Zambon et al., 2014b). Modeled time series of SLP, SST, Hs, and wind speeds(Zambon et al., 2014a). Modeled 

time series of SLP, SST, Hs, and WS exhibit some level of agreement with the NDBC buoy observations in terms of time-

variability (Table 63, Fig. 45, and Figs. S3-S9S5-S11). As expected, due to spatial averaging and the difference in height, the 

maximum wind speedsWSs from the lowest model level (~ 2.6 m) are generally lower than the point observations on the buoys 

at 3.8 or 4.1 m. Seven of the eight values are smaller in the WRF simulation than reported by the buoys, and six of eight 415 

comparisons indicate lower values in the COAWST simulation. The maximumMaximum near-surface wind speedsWSs 
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(model minus buoy observations) differ by 3.1 to 9.0 m s-1 (WRF) and 2.9 to 7.8 m s-1 (COAWST). The mean absolute 

difference in minimum SLP is 3.1 hPa (WRF) and 2.6 hPa (COAWST). Significant wave heightsHs from COAWST are 

generally lower than those from the buoy observations,negatively biased with adifferences (model minus buoy observations) 

difference of -3.7 to 0.1 m (a bias of up to 37%). The spatial pattern of precipitation from the simulations exhibits some 420 

similarity with IMERG, although the centroid of the region of maximum precipitation centroid is displaced westward (towards 

the coast of North Carolina) in IMERG relative to the WRF and COAWST simulations by approximately 125 km (Fig. 13). 

The volume of precipitation vented from the hurricane exhibits relatively good agreement between the simulations and 

IMERG. The mean (1- h) precipitation volume within 375 km from the centroid is 5.35  108 m3 based on IMERG combined 

with the NHC best track data, while the corresponding values (and percent error) are 5.82  108 m3 (+8.7%) and 5.83  108 m3 425 

(+8.9%) for the WRF and COAWST simulations (Fig. 13). Mean R18 prior to landfall is 506 km in the WRF simulation and is 

larger by an average of 14 km in 119 of the 151 tracked 10- min positions in the COAWST simulation. The R18 estimates from 

6- h HURDAT2 data before and after landfall are 705 km and 776 km and are larger than those from the WRF and COAWST 

simulation due to biases in the calculation when the hurricane extends beyond the d02 boundary.  

 430 

 

Table 5: Comparison of WRF and COAWST output (the simulations without wind turbines) and buoy measurements. The 

magnitude2: Magnitude and time (in UTC) of thenear-surface maximum wind speed (Max WS), maximum significant wave height 

(Max Hs), and minimum sea level pressure (Min SLP are given) for each buoy and simulations with WRF and COAWST (simulated 

WS without wind turbines (WTs) for Hurricane Irene (August 2011). Simulated WSs are shown at two heights, 10 m | 2.6 m). All 435 
the times with Irene  and all variables are in August 2011. With the simulations, magnitudes are providedcomputed every 10 min. 

WithWS magnitudes from the buoys, magnitudes are providedavailable every 10 min for WSwhile Hs and providedSLP are reported 

at 50 min past the top of the hour for Hs and SLP.  

Irene maxMax 

WS (m s-1)  

time maxTime Max WS  max

Max 

Hs 

(m) 

time maxTime Max 

Hs 

minMi

n SLP 

(hPa) 

time minTime 

Min SLP 

4
1

0
0
1
 

 

buoy 19.7 1840 & 1850 27 Aug 18:40 & 

18:50 

10.0 1550 27 Aug 15:50 997.5 1850 27 Aug 

18:50 WRF 18.3 | 16.0 0150 28 Aug 01:50 - - 1002.0 1020 28 Aug 

10:20 COAWST 20.2 | 17.9 0540 28 Aug 05:40 5.1 0500 28 Aug 05:00 1002.1 1040 28 Aug 

10:40 

4
1

0
3
6
 buoy 25.1 1620 27 Aug 16:20 8.6 0550 27 Aug 05:50 957.1 0950 27 Aug 

09:50 WRF  27.1 | 22.9 2240 27 Aug 22:40 - - 965.3 2340 27 Aug 

23:40 COAWST 

 

34.4 | 31.1 2340 27 Aug 23:40 7.6 2040 27 Aug 20:40 958.2 2210 27 Aug 

22:10 

4
4

0
0
7
 buoy 16.5 1930 28 Aug 19:30 4.5 2150 28 Aug 21:50 983.2 0150 29 Aug 

01:50 WRF   22.5 | 15.6 0700 29 Aug 07:00 - - 977.5 0810 29 Aug 

08:10 COAWST  

 

23.3 | 19.1 1140 | 1150 29 Aug 11:40 | 

11:50 

5.5 0700 29 Aug 07:00 975.6 0810 29 Aug 

08:10 

4
4

0
0
8
 buoy 18.3 1750 28 Aug 17:50 8.2 1750 28 Aug 17:50 996.1 1950 28 Aug 

19:50 WRF  20.0 | 14.1 0700 29 Aug 07:00 - - 997.7 0420 29 Aug 

04:20 COAWST 

 

22.0 | 15.1 0550 | 0250 29 Aug 05:50 | 

02:50 

7.9 0650 29 Aug 06:50 997.1 0300 29 Aug 

03:00 

4
4

0
0
9
 buoy 21.4 2140 27 Aug 21:40 6.4 0450 28 Aug 04:50 958.3 0650 28 Aug 

06:50 WRF  27.9 | 22.1 1330 | 1710 28 Aug 13:30 | 

17:10 

- - 974.0 1700 28 Aug 

17:00 COAWST 

 

28.6 | 23.3 1330 | 1400 28 Aug 13:30 | 

14:00 

6.9 1410 28 Aug 14:10 976.5 1610 28 Aug 

16:10 

  

4
4

0
1
3
 buoy 18.8 1830 28 Aug 18:30 3.8 1550 28 Aug 15:50 984.0 2050 28 Aug 

20:50 WRF   24.7 | 17.1 0500 29 Aug 05:00 - - 979.2 0540 29 Aug 

05:40 COAWST  

 

22.7 | 15.7 0410 29 Aug 04:10 3.5 0420 & 0430 29 Aug 

04:20 & 04:30 

978.3 0610 29 Aug 

06:10 

4
4

0
2
0
 buoy 21.2 2350 28 Aug 23:50 2.4 1550 28 Aug 15:50 989.2 2050 28 Aug 

20:50 WRF   26.7 | 18.5 0600 | 0840 29 Aug 06:00 | 

08:40 

- - 987.2 0600 29 Aug 

06:00 COAWST 28.0 | 18.9 0520 29 Aug 05:20 3.6 0410 29 Aug 04:10 985.9 0520 29 Aug 

05:20 

4
4

0
6
5
 buoy 21.1 1220 28 Aug 12:20 8.0 1250 28 Aug 12:50 968.0 1250 28 Aug 

12:50 WRF  26.6 | 19.7 2030 28 Aug | 031020:30 | 29 

Aug 03:10 

- - 974.9 2350 28 Aug 

23:50 COAWST 

 

27.7 | 23.9 0350 29 Aug 03:50 5.5 2110 28 Aug 21:10 973.7 2240 28 Aug 

22:40 
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 445 

Figure 45: Time series of (a, b) wind speedsspeed (WS) and wind gusts (WS or gust (WG [m s-1]),), (c, d) sea surface 

temperaturestemperature (SST [K]),), and (e, f) sea level pressure (SLP [hPa])) and significant wave height (Hs [m])) from 

observations and simulations (WRF and COAWST) without wind turbines [WTs]) for Hurricane Irene (a, c, and e) and Hurricane 

Sandy (b, d, and f) at buoy 44009 (see location in Fig. 2a). 2a). Simulations performed without the action of wind turbinesSee Figs. 

S5-S11 for other buoys.  450 
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Table 6: Comparison of WRF and COAWST output (the simulations without wind turbines) and buoy measurements. The 

magnitude3: Magnitude and time (in UTC) of thenear-surface maximum wind speed (Max WS), maximum significant wave height 

(Max Hs), and minimum sea level pressure (Min SLP are given) for each buoy and simulations with WRF and COAWST (simulated 475 
WS without wind turbines (WTs) for Hurricane Sandy (October 2012). Simulated WSs are shown at two heights, 10 m | 2.6 m). All 

the times with Sandy  and all variables are in October 2012. With the simulations, magnitudes are providedcomputed every 10 min. 

WithWS magnitudes from the buoys, magnitudes are providedavailable every 10 min for WSwhile Hs and providedSLP are reported 

at 50 min past the top of the hour for Hs and SLP. . 

 480 

 

The evaluation3.1.3 Synthesis 

Evaluation of the WRF and COAWST simulations of Hurricane Sandy thus indicates relatively high fidelity. Nevertheless, 

the fidelity is lower for simulations of Hurricane Irene and biases relative to observations provide important context for the 

following analyses which focus on power production and extreme conditions at prospective offshore wind turbineWT 485 

locations. Due to the presence of errors in tropical cyclone tracking in the simulations, in the following discussion of 

geophysical conditions we consider not only grid cells with wind turbinesWTs in the LALAs, but also ocean-based grid cells 

nearby. In terms of agreement with: observed precipitation, cyclone size (R18), near-surface WS, and cyclone tracking, 

COAWST simulations exhibit higher skill than those of WRF.  

Sandy maxMax 

WS (m s-1) 

time maxTime Max WS max

Max 

Hs 

(m)  

time maxTime Max 

Hs 

minMi

n SLP 

(hPa) 

time minTime 

Min SLP 

4
1

0
0
1
 buoy 28.4 0610 29 Oct 06:10 10.1 1350 29 Oct 13:50 969.6 2350 28 Oct 

23:50 WRF   37.4 | 32.2 0630 29 Oct 06:30 - - 962.8 0250 29 Oct 

02:50 COAWST 36.2 | 31.8 0630 29 Oct 06:30 9.8 1520 28 Oct 15:20 964.3 0200 29 Oct 

02:00 

4
1

0
3
6
 buoy 21.7 2250 27 Oct 22:50 5.7 2050 & 2150 27 Oct 

20:50 & 21:50 

992.1 0950 28 Oct 

09:50 WRF  25.0 | 20.9 0720 28 Oct 07:20 - - 995.3 1300 28 Oct 

13:00 COAWST 

 

24.6 | 21.5 0800 28 Oct 08:00 5.1 0630 28 Oct 06:30 995.0 1530 28 Oct 

15:30 

4
4

0
0
7
 buoy 18.0 0050 30 Oct 00:50 7.1 0350 30 Oct 03:50 995.9 0050 30 Oct 

00:50 WRF  23.8 | 16.6 0150 30 Oct 01:50 - - 995.6 0140 30 Oct 

01:40 COAWST 

 

23.6 | 16.6 0020 30 Oct | 235000:20 | 29 

Oct 23:50 

6.6 0230 30 Oct 02:30 995.6 0330 30 Oct 

03:30 

  

4
4

0
0
8
 buoy 22.4 1640 29 Oct 16:40 11.0 2050 29 Oct 20:50 981.2 1750 29 Oct 

17:50 WRF   27.4 | 18.6 1930 29 Oct 19:30 - - 981.9 1830 29 Oct 

18:30 COAWST 

 

26.5 | 21.5 1700 | 1620 29 Oct 17:00 | 

16:20 

8.6 1750 & 1800 29 Oct 

17:50 & 18:00 

982.5 1810 29 Oct 

18:10 

4
4

0
0
9
 buoy 23.7 2040 29 Oct 20:40 7.4 1050 29 Oct 10:50 956.4 2050 29 Oct 

20:50 WRF   26.8 | 22.8 2320 29 Oct | 040023:20 | 30 

Oct 04:00 

- - 963.0 0030 30 Oct 

00:30 COAWST  

 

29.8 | 25.6 0210 30 Oct 02:10 5.7 2140 29 Oct 21:40 950.3 0010 30 Oct 

00:10 

4
4

0
1
3
 buoy 20.4 1920 29 Oct 19:20 6.9 0150 30 Oct 01:50 988.2 0050 30 Oct 

00:50 WRF   25.0 | 17.3 2030 29 Oct 20:30 - - 989.2 2300 29 Oct 

23:00 COAWST  24.3 | 16.3 2140 29 Oct 21:40 7.0 2210 29 Oct 22:10 989.0 2230 29 Oct 

22:30  

4
4

0
2
0
 buoy 20.6 2000 29 Oct 20:00 3.1 1850 29 Oct 18:50 983.3 1950 29 Oct 

19:50 WRF 28.0 | 19.0 1940 29 Oct 19:40 - - 984.4 2040 29 Oct 

20:40 COAWST 

 

25.9 | 17.4 1930 29 Oct 19:30  2.9 1530 29 Oct 15:30 984.7 2110 29 Oct 

21:10 

4
4

0
6
5
 buoy 24.9 0010 30 Oct 00:10 9.9 0050 30 Oct 00:50 958.1 2150 29 Oct 

21:50 WRF  30.5 | 22.6 2310 29 Oct | 031023:10 | 30 

Oct 03:10 

- - 952.5 2310 29 Oct 

23:10 COAWST 

 

30.9 | 22.7 2200 29 Oct | 010022:00 | 30 

Oct 01:00 

6.2 0100 30 Oct 01:00 960.9 2320 29 Oct 

23:20 
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3.2 Wind turbine power production and operating conditions: 490 

3.2.1 Hurricane Irene 

Mean power production and CF computed for the entire Hurricane Irene simulation period using WRF and COAWST are; 

1.51  104 MW (0.38) and 1.56  104 MW (0.39), respectively. When Hurricane Irene is present in d02, equivalent CFCFs are 

0.39 and 0.40, respectively. These CFvalues are slightly lower than thepreviously reported climatologically representative CF 

estimates of 0.45 presented previously (Pryor and Barthelmie, 2024b, a)(Pryor and Barthelmie, 2024a, b) due to relatively low 495 

wind speedsHH WS in the vicinity of the offshore LALAs early in the simulation and to an extended period of above cut-out 

wind speedsWSs during the hurricane passage from late on 27 August to the middle of 29 August (Fig. 5a6a and Fig. 6a, b7a). 

However, the system-wide CF only drops below 0.2 for continuous periods of 5 h 50 min (2000 UTC 28 August 20:00 UTC 

through 0150 UTC 29 August 01:50 UTC) in WRF and 7 h 10 min (1950 UTC 28 August 19:50 UTC through 0300 UTC 29 

August 03:00 UTC) in COAWST (Fig. 5a6a). At no point is the projected power production zero. 500 
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Figure 56: Time series of simulated total instantaneous power production (Sum of Power) from all 2642 wind turbines (WTs) (left 505 
axis) and mean and maximum hub-heighheight wind speed (HH WS, ) (right axis) in grid cells containing wind turbinesWTs for (a) 

Hurricane Irene and (b) Hurricane Sandy simulations. The dashed gray vertical lines mark the start and end time of storm tracking 

within d02. The lower dashed gray horizontal line marks power production equivalent to a capacity factor (CF) of 0.2, and the upper 

dashed gray horizontal line marks HH WS = 25 m s-1.  



 

27 

 

 510 

 



 

28 

 

 

Figure 67: Mean wind turbine capacity factor (CF) from (a, c) WRF simulations and (b, d) COAWST simulations for (a, b) 

Hurricane Irene and (c, db) Hurricane Sandy. Also shown are time series of the CF and mean hub-height wind speed (HH WS) 

forover the four lease area (LA) clusters. Brown (green) symbols at the top of those time series indicate times when CFs from WRF 515 
exceed (are less than) those from COAWST by more than 0.05 (see also Fig. S12). Orange dashed lines indicate the start and end 

time of storm tracking within d02. The purple dashed line represents the time when the location of the minimum sea level pressure 

(SLP) is closest to the cluster center. The red dashed line indicates CF = 0.2, and the yellow line indicates HH WS of= 25 m s-1.  
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Time series of power production from WRF and COAWST indicate a high degree of agreement (Fig. 5a) but there are times 520 

when the models deviate both in terms of power production and extreme wind speed. Late6a). However, late on 27 August 

and early on 28 August when Hurricane Irene is south of the LAs, projected power production differs by a maximum of 1.09 

 104 MW (CF difference of 0.275). With Simulations with WRF, for the and the WFP active indicate a period of 5 h 50 min 

when thewith system-wide CF remains below 0.2, the and mean HH WS in grid cells with WTs (WT grid cells for the 

simulation with the WFP active ranges) ranging from 27.6 to 29.3 m s-1. Within the LALAs the maximum HH WS is 45.4 m 525 

s-1, which exceeds the 50-year yr RP WS at 100 m derived in earlier work using ERA5 output (Barthelmie et al., 2021), but 

remains below the 50 m s-1 sustained wind speedWS threshold for class I wind turbinesWTs and the 57 m s-1 threshold for 

tropical cyclone hardened wind turbinesWTs (class T) (IEC, 2019a). Analyses including all ocean-based grid cells within the 

four LA clusters indicate the mean HH WS as simulated by WRF with WFP active ranges from 24.2 to 27.0 m s-1 and the 

maximum HH WS reaches 46.4 m s-1. During the period when the system-wide CF from COAWST is  0.2, the mean HH WS 530 

in WT grid cells ranges from 27.2 to 29.3 m s-1 and the maximum reaches 41.8 m s-1. For all ocean-based grid cells within the 

four LA clusters, the mean HH WS as simulated by COAWST with the WFP active ranges from 23.1 to 27.0 m s-1 and the 

maximum reaches 42.1 m s-1. 

 

Mean HH WS  25 m s-1 in WT grid cells and CF  0.2 extend for 13.8, 13.3, and 7.2 h in the WRF simulation with the WFP 535 

active and 15.2, 12.8, and 7.3 h in the equivalent simulation with COAWST for LA clusters C, B, and A, respectively (Figs. 

67 and 78). Due to slight differences in the hurricane tracking (Fig. 1a), the mean CF from COAWST exceeds that with WRF 

for offshore LA cluster B and in the northern part of LA cluster C, while the mean CF with WRF exceeds that with COAWST 

in the southern part of LA cluster C (Fig. 6a, b7a and Fig. S11S15). Hurricane Irene tracks very close to LA cluster D, which 

experiences mean HH WS in WT grid cells  25 m s-1 and CF  0.2 for 15.5 and 17.3 h in the WRF and COAWST simulations, 540 

respectively. According to Mood’s test, the median CF for this LA from the WRF and COAWST simulations differ at the 95% 

confidence level. 

 

Nearly two-thirds of WT-containing grid cells and over three-quarters of ocean grid cells within the LA exhibit a higher 

frequency of HH WS  25 m s-1 in the COAWST simulations when Hurricane Irene is within d02. A larger R18 value is also 545 

much more frequent (≥ 96% of time stamps) in each COAWST simulation. Thus, consistent with the analyses of precipitation 

volume from Hurricane Irene given above, there is evidence that the simulations with COAWST result in a more intense and 

larger tropical cyclone.  

 

In the COAWST simulation with the WFP active, maximum Hs in WT grid cells within LA clusters A, B, C, and D is; 8.6, 550 

8.5, 7.6, and 7.2 m, respectively (Fig. 89), and thus are all below the 50-year yr RP Hs of ~ 11 m estimated using the ERA5 

dataset (Barthelmie et al., 2021). LA cluster A exhibits the highest frequency (~ 4%) of joint Hs, HH WS, and Tp values (Fig. 

89) that fall in the classes centered at Hs ≥ 8.4 m, HH WS ≥ 35 m s-1 (approximately equivalent to 5- m WS of 21.5 m s-1), and 

Tp ≥ 11.2 s that were previously reported to be associated with high mudline bending moments based on simulations with 3D 

IFORM applied to the 5 MW NREL offshore reference wind turbineWT (Valamanesh et al., 2015). The COAWST simulation 555 

also indicates frequent occurrence of wind-wave misalignment. In the HH WS class 10.6 –to 25 m s-1, 47, 86, 74, and 32% of 

the time periods have wind-wave misalignment ≥ 30° at the center of LA clusters A, B, C, and D, respectively. For HH WS  

25 m s-1, the corresponding values are 22, 41, 44, and 31%, respectively.  
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Figure 78: Mean simulated hub -height wind speed (HH WS) from COAWST with the wind farm parameterization (WFP) active 

for (a) Hurricane Irene and (b) Hurricane Sandy. The time series ofshow the fraction of wind turbine (WT) grid cells with HH WS 565 
 25 m s-1 (left axis, black) plus the mean (blue) and maximum (green) HH WS in those grid cells (right axis) in). Gray (magenta) 

symbols at the top of the time series indicate times when the mean HH WS from WRF andexceeds (is lower than) COAWST 

simulations with the WFP activeby  0.5 m s-1. Orange dashed lines indicate the start and end time of storm tracking within d02. 

The purple dashed line represents the time when the location of the minimum sea level pressure (SLP) is closest to the lease area 
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(LA) cluster center. The yellow line indicates HH WS of= 25 m s-1. For simulations without the WFP active, see Fig. S10.See also 570 
Figs. S13 and S14.   
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Figure 8: Extreme conditions based on simulations of Hurricane Irene using COAWST with the WFP active. (a-d) 3-D bubble charts 

of the joint 9: Joint occurrence of (a-d) hub-height wind speed (HH WS, ), significant wave height (Hs,), and peak wave period (Tp) 

(5 classes for each variable for a total of 125 possible classes) for all wind in COAWST simulations of Hurricane Irene with wind 585 
farm parameterization (WFP) active for wind turbine (WT) grid cells in each lease area (LA) cluster (A-D).  (e-h) Joint probability 

distributions of HH WS and Hs where the magenta symbols denote 10- min output from all WT grid cells in each LA cluster and 

the contours denote probabilityprobabilities of 0.01 (blue), 0.02 (green), and 0.05 (yellow). (i-l) Histograms of theDirectional 

misalignment (hub-height direction difference (HH WS minus Hsmean wave direction) at the center of each LA cluster for the three 

HH WS classes: 3 to  10.6 m s-1, 10.6 to 25 m s-1, and  25 m s-1.  590 

3.3 Wind turbine power production and operating conditions:
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3.2.2 Hurricane Sandy 

Mean instantaneous power production and CF from WRF and COAWST for the entire Hurricane Sandy simulation period are; 

2.03  104 MW (0.51) and 2.07  104 MW (0.52), respectively. Considering only the time whenWhen Hurricane Sandy is 

within d02, equivalent CFCFs are 0.62 and 0.61, respectively. The high CFCFs are reflective of high, but below cut-out, HH 595 

WS prior to the passage of the hurricane over the LALAs and the relatively short duration of HH WS  25 m s-1 within the 

LALAs (Fig. 5b6b and Fig. 6c, d7b). Simulated system-wide CF drops below 0.2 for 8 h (scattered during 1320 UTC 29 

October 13:20 UTC through 0100 UTC 30 October 01:00 UTC) in the WRF simulation and for 15 h (1010 UTC 29 October 

10:10 UTC through 0110 UTC 30 October 01:10 UTC) in the COAWST simulation (Fig. 5b6b). A single time-step (2100 

UTC 29 October 21:00 UTC) has zero system-wide power production in the COAWST simulation. 600 

 

During periods whenWhen the system-wide CF  0.2 (including landfall in New Jersey), the mean HH WS in WT grid cells 

is  25 m s-1 in both the WRF and COAWST simulations with the WFP active (Fig. 5b). In the WRF simulation with the WFP 

active, during6b). During the longest continuous time when the system-wide CF from WRF remains below 0.2 (171029 

October 17:10 through 204020:40 UTC 29 October), the mean HH WS is 30.6 to 34.8 m s-1 in WT grid cells and 29.7 to 31.9 605 

m s-1 in all ocean-based grid cells within the LA clusters. Equivalent values from COAWST (also with WFP active), are 26.0 

to 38.5 m s-1 and 25.8 to 35.0 m s-1. 

 

HH WS  50 m s-1 is simulated in tens of thousands of space-time sample combinations in both the WRF and COAWST 

simulations with the WFP active. However, none occurred within 170 km of any LA centroid. Maximum HH WS in WT grid 610 

cells and the frequency of HH WS  25 m s-1 in WT grid cells is higher (59% and 65% of time stamps when Hurricane Sandy 

is within d02) in the COAWST simulation than in the WRF simulation with and without the WFP active (Fig. 78). In all ocean-

based grid cells within the LA clusters, 63% and 69% of the time stamps exhibit more grid cells with HH WS  25 m s-1 in the 

COAWST simulations. Maximum HH WS in ocean-based grid cells within the LA clusters is 45.1 m s-1 in WRF and 48.9 m 

s-1 in COAWST (Fig. 78). In the COAWST simulation with the WFP active, the maximum HH WS in WT grid cells in LA 615 

clusters A, B, and C are; 44.6, 47.7, and 45.4 m s-1, respectively (Fig. 910). They thus exceed the highest 50-year yr RP wind 

speedWS at 100 m a.s.l. of 39.7 m s-1 computed using ERA5 output (Barthelmie et al., 2021), but are below the 50 m s-1 and 

57 m s-1 thresholds for class I and class T wind turbinesWTs (IEC, 2019a). Larger R18 values prior to landfall are also more 

frequent in the COAWST simulations ( 70% of time stamps in both the simulations without and with the WFP). Thus, 

consistent with analyses of the simulations of Hurricane Irene, there is evidence that use of COAWST (for the configuration 620 

used herein) results in a larger and more intense hurricane. 

 

Minor differences in the tracking (Fig. 1b) and intensity of the hurricane-induced wind speedsWS (Fig. 78), causes higher 

mean CF from LA cluster A and parts of B and C in the simulation with COAWST than the simulation with WRF (Fig. 67 and 

Fig. S11S15). The simulations track the centroid of Hurricane Sandy close to LA clusters B and C and accordingly, periods 625 

with CF  0.2 are of the greatest duration for these clusters (20.0 and 23.5 h in WRF and 23.3 and 31.0 h in COAWST, 

respectively) (Fig. 6). Largest7). The largest differences in CF are found for LA cluster D. The duration of time with CF  0.2 

is substantially longer in the COAWST simulation due to the prevalence of HH WS  25 m s-1 and the median CF for this 

cluster between the two simulations differs at the 99% confidence level according to Mood’s test.  

 630 
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Figure 10: Joint occurrence of (a-d) hub-height wind speed (HH WS), significant wave height (Hs), and peak wave period (Tp) (5 

classes for each variable for a total of 125 possible classes) in COAWST simulations of Hurricane Sandy with wind farm 

parameterization (WFP) active for wind turbine (WT) grid cells in each lease area (LA) cluster (A-D). (e-h) Joint probability 

distributions of HH WS and Hs where the magenta symbols denote 10 min output and the contours denote probabilities of 0.01 635 
(blue), 0.02 (green), and 0.05 (yellow). (i-l) Directional misalignment (hub-height direction minus mean wave direction) at the center 

of each LA cluster for three HH WS classes: 3 to  10.6 m s-1, 10.6 to 25 m s-1, and  25 m s-1.  
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Maximum simulated Hs of 8.3, 10.4, 7.5, and 6.9 m in LA clusters A, B, C, and D (Fig. 10) are higher than those for Hurricane 

Irene but are also below the 50-year yr RP values of ~ 11 m derived from ERA5 (Barthelmie et al., 2021) (Fig. 9).. LA cluster 640 

B exhibits the highest frequency ( 4%) of joint Hs, HH WS, and Tp values (classes centered at Hs ≥ 8.4 m, HH WS ≥ 35 m 

s-1 [5- m WS ~ 21.5 m s-1], and Tp ≥ 11.2 s) close to those associated with a peak mudline moment (of  120 MN-m) 

(Valamanesh et al., 2015). MisalignmentWind-wave misalignment of wind and waves by ≥ 30 is common in the COAWST 

simulation for both the HH WS classclasses of 10.6 –to 25 m s-1 and  25 m s-1. Based on COAWST output from the centroids 

of LA A, B, C, and D, wind-wave misalignment ≥ 30 is found for; 43 (49), 63 (27), 83 (41) and 34 (49) % of time steps (value 645 

in brackets for WS HH  25 m s-1). 
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Figure 9: Extreme conditions based on simulations of Hurricane Sandy using COAWST with the WFP active. (a-d) 3-D bubble 

charts of the joint occurrence of HH WS, Hs, and Tp (5 classes for each variable for a total of 125 possible classes) for all wind 

turbine grid cells in each LA cluster (A-D). (e-h) Joint probability distributions of HH WS and Hs where the magenta symbols denote 650 
10-min output from all WT grid cells in each LA cluster and the contours denote probability of 0.01 (blue), 0.02 (green), and 0.05 

(yellow). (i-l) Histograms of the direction difference (HH WS minus Hs) at the center of each LA cluster for the three HH WS classes: 

3 to  10.6 m s-1, 10.6 to 25 m s-1, and  25 m s-1.  

 



 

38 

 

3.43.3 Wind turbine impacts on hurricane properties 655 

Consistent with expectations, removal of kinetic energy by wind turbinesWTs means that maximum HH WS in WRF and 

COAWST simulations with the WFP active tend to be lower than those when the wind turbinesWTs are excluded (see Fig. 

56). For example, output from the no wind turbineWT COAWST simulation of Hurricane Irene indicates HH WS in ocean-

based grid cells beyond the LALAs  50 m s-1 837 times while the corresponding number for the simulation with wind 

turbinesWTs is 333. However, simulations using both WRF and COAWST with full deployment of wind turbinesWTs in 660 

existing lease areas (approximately 2600 at an ICD of 4.3 MW km-2),LAs, indicate that for this scale of offshore wind 

turbineWT deployment, the net impact is small expectexcept for hub-height wind speedsHH WS near the lease areasLAs. 

 

For all other metrics, the simulations with WRF or COAWST differ more than the simulations with or without the action of 

wind turbinesWTs included (Fig. 1011). The 10- min mean precipitation volume within 375 km of the Hurricane Irene centroid 665 

differs (without WT versus with WFP active) by 4.7% and 3.9% in simulations with WRF and COAWST, respectively, but 

differs (WRF versus COAWST) by 11.8% and 9.2% in the no WT and WT simulations, respectively. The equivalent values 

for Hurricane Sandy are 8.7% for WRF and 12.9% for COAWST (without WFP active versus with WFP active) and 13.0% 

for the no WT and 11.6% for the WT simulations (WRF versus COAWST). Similarly, the mean 500 hPa wind speedWS close 

to the hurricane centroids differ by  2 m s-1 in simulations of Hurricanes Irene and Sandy with and without WTWTs with no 670 

consistent signal in terms of which simulation is higher (Fig. 1011). The mean R18 for Hurricane Irene based on WRF 

simulations with and without the WFP active differ by  2 km (mean of  280 km). Mean R18 from COAWST simulations 

with and without the WFP active also differ by  2 km (mean of  300 km). Thus, while median R18 from WRF versus 

COAWST are statistically different (at p  0.01) for simulations with and without the WFP active, the use of the WFP does 

not yield significantly different R18 values in simulations with a given model. Simulations with WFP active produce equal or 675 

slightly more total precipitation. For Hurricane Irene, the 10- min mean (median) precipitation volume from WRF without and 

with the WFP active are 1.88  108 m3 (1.89  108 m3) and 1.88  108 m3 (1.93  108 m3), while equivalent values from 

COAWST are 1.93  108 m3 (1.93  108 m3) and 1.98  108 m3 (2.02  108 m3), respectively. For Hurricane Sandy, the 

corresponding values are 8.64  107 m3 (8.60  107 m3) versus 8.68  107 m3 (8.10  107 m3) from WRF and 8.69  107 m3 

(9.19  107 m3) versus 8.87  107 m3 (7.79  107 m3) from COAWST. 680 

 

 

 

 

Formatted: Font color: Auto



 

39 
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Figure 1011: Time series of (a, c) 10- min precipitation volume within a 375 km radius from the minimum sea level pressure (SLP 

location) and (b, d) mean 500 hPa wind speed of grid cells from(WS) 50 to 375 km from the minimum SLP location in d02 forfrom 

simulations with WRF and COAWST of (a, b) Hurricane Irene and (c, d) Hurricane Sandy. The colored horizontal lines near “D” 

and “C” in panels a and b and near “B” and “C” for panels c and d, mark thelabels denote times when the minimum SLP is within 690 
100 km of the center of the specified offshore wind energy lease area (LA) cluster centroid. See also Fig. S12 for comparison of wind 

speeds at 10-m a.s.lS16. 

 

4 Concluding remarks 

Results of analysesAnalyses of simulations with WRF and COAWST of two of the most powerful hurricanes that tracked 695 

within 100 km of offshore wind energy lease areasLAs along the U.S. East Coast during the last 25 years can be summarized 

as: 
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1) Many aspects of Hurricane Sandy are well reproduced in WRF and COAWST control simulations that exclude the 

action of wind turbines.WTs. Consistent with past research, simulations of Hurricane Irene exhibit lower fidelity 700 

relative to a range of observations in part due to the negative bias in translational speed. In contrast to similar 

simulations of Typhoon Muifa (Liu et al., 2015) but consistent with past research on intense cyclones in the North 

Sea (Larsén et al., 2019), COAWST simulations of both hurricanes indicate generally better agreement with 

observations, a slightly larger area of storm-force wind speedsWS (R18) and hub-height wind speedsHH WS  25 m 

s-1 plus higher precipitation volumes than are indicated by the WRF simulations. This coupled with the ability of 705 

COAWST to quantify additional geophysical parameters of importance to offshore structures strongly indicates the 

need for increasing investment in coupled simulations for the offshore wind energy industry.  

 

2) Despite the intensity and size of these hurricanes and their proximity to the offshore wind energy lease areasLAs, 

simulations presented herein, that assume a 15 MW reference wind turbineWT deployed with a spacing of 1.85 km, 710 

indicate only fairly brief periods with low power production (system-wide CF  0.2). System-wide capacity factors 

belowCF < 0.2 due to wide-spread occurrence of hub-height wind speeds aboveHH WS  25 m s-1 extend for only 6- 

to 7 h in the simulations of Hurricane Irene and 8- to 15 h for Hurricane Sandy (the longer period is based on the 

COAWST simulation with COAWST). Further, neither hurricane is simulated to produce hub-height wind speedsHH 

WS  50 m s-1 in the current offshore lease areasLAs. Thus, based on these simulations of these intense tropical 715 

cycloneshurricanes there is no evidence of a need for hurricane hardening of wind turbinesWTs deployed in the 

current offshore lease areas.these LAs. Also, these simulations even suggest even such that the projected fleet of 

offshore wind turbinesWTs will continue to supply substantial amounts of electricity to the grid even during these 

extreme events. However, simulations of both hurricanes with COAWST result in wave-wind conditions that have 

previously been identified as being associated with high mudline bending moments on monopile foundations. The 720 

COAWST simulations of both hurricanes also indicate and a relativerelatively high frequency of HH WSwind-wave 

directional misalignment ( 30°) in these lease areasLAs. 

                                 

3) There is no evidence that deployment of 2642 wind turbinesWTs at an ICD of 4.3 MW km-2 within existing offshore 

wind energy lease areasLAs along the U.S. East Coast would have substantially weakened either of the hurricanes 725 

considered herein. Although much denser and larger deployments might have an influence on hurricanes, even for 

Hurricane Irene that tracked closest to the offshore wind energy lease areasthese LAs, simulations with either WRF 

or COAWST differ more than simulations with either WFP inactive or active with respect to the volume of 

precipitation near the hurricane center, storm intensity, and/or extent.  

  730 

Mesoscale simulations performed at convection permitting resolution such as those presented herein allow simulation of the 

hurricane lifespans and associated power production over large domains and can be used as here to assess whether improved 

treatment of atmosphere-ocean dynamical coupling alters extreme conditions of relevance to offshore wind turbines.WTs. 

However, it is important to acknowledge that the highest structural loading may occur in the cyclone eye-wall (Han et al., 

2014) that is of a scale (Marks et al., 2008) that is not fully represented in the simulations presented here. Nevertheless, analyses 735 

of the simulations suggest the structure of the hurricanes is reasonably represented in our modeling (Fig. 34 and Fig. S4) and 

simulations performed at the same grid spacing were shown to represent some aspects of flow in the eye wall (Müller et al., 

2024). Future work employing mesoscale-microscale coupling (Wang et al., 2024) could be used to evolve further details of 

geophysical properties of relevance to structural loading. Further, the hurricanes simulated herein were extremely powerful 

and both tracked within 100 km of offshore wind energy lease areaLA cluster centers (C and D for Hurricane Irene, B and C 740 

for Hurricane Sandy). However, they do not represent a comprehensive climatology of historical or possible intense 
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tropical/extratropical cyclones (Barthelmie et al., 2021). Undertaking comparable simulations of additional extreme cyclones 

and simulations with different configurations including alternative z0 parameterizations (Porchetta et al., 2019; Fu et al., 2023) 

and a wave boundary layer model within SWAN (Du et al., 2017) would also be useful in determining if findings presented 

herein are generalizable and to quantify the degree to which the meteorological and oceanic extreme conditions vary according 745 

to the precise model formulation.  

Code and data availability 

COAWST software can be downloaded from: https://github.com/DOI-USGS/COAWST. NAM data can be downloaded from: 

https://rda.ucar.edu/datasets/d609000/ and https://www.ncei.noaa.gov/products/weather-climate-models/north-american-

mesoscale. OSTIA-UKMO-L4-GLOB-v2.0 SST data can be downloaded from: https://podaac.jpl.nasa.gov/dataset/OSTIA-750 

UKMO-L4-GLOB-v2.0. GHSHHG data can be downloaded from: https://www.ngdc.noaa.gov/mgg/shorelines/. GEBCO data 

can be downloaded from: https://download.gebco.net/. HYCOM GLBa0.08 expt 90.9 data can be downloaded from: 

https://tds.hycom.org/thredds/catalog.html. ADCIRC 2001v2d data can be downloaded from: 

https://adcirc.org/products/adcirc-tidal-databases/. GFS wind forcing data can be downloaded from: 

https://www.ncei.noaa.gov/thredds/catalog/model/gfs.html. WW3 data for boundary conditions can be downloaded from: 755 

https://www.ncei.noaa.gov/thredds-ocean/catalog/ncep/nww3/catalog.html. NHC “best track” data can be downloaded from: 

https://www.nhc.noaa.gov/data/tcr/index.php. HURDAT2 data can be downloaded from: 

https://www.nhc.noaa.gov/data/#hurdat. IMERG V07 data can be downloaded from: 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary?keywords=”IMERG_final”. NDBC buoy data can be 

downloaded from: https://www.ndbc.noaa.gov/. Scientific color maps can be downloaded from 760 

https://www.fabiocrameri.ch/colourmaps/ (Crameri et al., 2020). Namelist information can be found at 

https://zenodo.org/records/14895862. 

Supplemental materials 

See the attached document. 
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