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Dear Editor and Reviewers:

We sincerely appreciate the opportunity to publish our work in Wind Energy Science
and are deeply grateful to the editor and reviewers for their time, expertise, and
constructive feedback, which have greatly enhanced the quality of our manuscript. We
are particularly encouraged by their recognition of our work’s significance and have
revised the manuscript based on the editor-in-chief's comments. The “Author
contribution” section has been added as requested. All main changes are highlighted

in colored to facilitate an ease review of the paper.

1. Response to the comments of Reviewer #EC1

Dear authors, thank you for submitting this interesting paper. I have a few comments
which I hope will be complementary to the upcoming reviews.

The authors mention an impressive dataset of 541 meteorological towers in a specific
region. Some more details would be relevant in order to understand if the data are
comparable — i.e., how does the terrain differ among the various met mast locations,
are the measurement heights the same, are the instruments the same (cup
anemometers, sonic anemometers, lidars)?

The IEC 61400, ed. 4 standard allows several different approaches to extrapolation,
including avoiding the extrapolation altogether by introducing a higher safety factor.
It will be useful if the authors could study/compare these different extrapolation
approaches in the context of their proposed methodology.

One significant challenge in the “fitting before aggregation” method is that the
distribution fitting on a few values is not very robust, and a few outliers or bad fits can
distort the aggregated result. It would be good to check the confidence in the
aggregated distribution predictions — for example by doing multiple local distribution
fits by bootstrapping the block maxima.

There is a dependency between the shape and scale parameters in a Weibull
distribution fit (if you choose a value of one parameter, it will define what is the value

of the other parameter that best represents the data set). Therefore, fitting separate




meta models for the scale and shape parameters of the Weibull distribution may limit
the accuracy of the results. In the current manuscript, it doesn’t get clear if the authors

fit one single MLP model with two outputs, or two separate models? Please discuss.

First of all, we would like to express our sincere gratitude to Reviewer #EC1 for the
valuable comments, and the time devoted to review our work. The reviewer brings
forward constructive questions. All of the comments are very helpful in improving the
quality of our manuscript. We have carefully referred to each of the comments and
made changes accordingly. The main corrections in the paper and the responds to the

reviewer's comments are as flowing:

1.1 Reviewer #EC1, Comment No.1:

The authors mention an impressive dataset of 541 meteorological towers in a specific
region. Some more details would be relevant in order to understand if the data are
comparable — i.e., how does the terrain differ among the various met mast locations,
are the measurement heights the same, are the instruments the same (cup

anemometers, sonic anemometers, lidars)?

Response 1.1: Thank you for your comment. The areas of meteorological towers used
in this paper are mainly in North China. Most of the meteorological towers are located
in the terrain of plains and hills, which are judged as L, M, and H classes in
accordance with the terrain in the IEC61400-1:2019 Chapter 11.2 with the
approximate proportions of 50%, 30%, and 20%.

The lowest height of these meteorological towers installed with wind speed and
direction sensors is 10 m, the highest height is between 70 m and 140 m, and using
the wind shear exponent to uniformly extrapolate to a height of 100 m.

The anemometers used in the meteorological towers are cup anemometers, no
ultrasonic or LiDAR.

The principle of using the above database is to cover as wide a range of wind
parameters as possible, making the model more widely applicable. We add the above

description in the manuscript. The revised parts are in the section 2, as follows:

The data utilized for extrapolation methods is derived from time series simulations of the turbine




operating across a specified wind range. The areas of meteorological towers used in this paper are
mainly in North China. Most of the meteorological towers are located in the terrain of plains and
hills, which are judged as L, M, and H classes in accordance with the terrain in the
IEC61400-1:2019 Chapter 11.2 with the approximate proportions of 50%, 30%, and 20%. The
lowest height of these meteorological towers installed with wind speed and direction sensors is 10
m, the highest height is between 70 m and 140 m, and using the wind shear exponent to uniformly
extrapolate to a height of 100 m. The anemometers used in the meteorological towers are cup

anemometers.

1.2 Reviewer #EC1, Comment No.2:
The IEC 61400, ed. 4 standard allows several different approaches to extrapolation,

including avoiding the extrapolation altogether by introducing a higher safety factor.
It will be useful if the authors could study/compare these different extrapolation

approaches in the context of their proposed methodology.

Response 1.2: Thank you for your comment. This is a very good suggestion, and we
believe that the reason why the IEC standard allows for the existence of different
extrapolation methods with a high safety factor is that each method has a rationale and
the truth value cannot be verified to a certain extent, and in this case a high safety
factor can only be used to ensure safety.

The core objective of this paper is to explore the feasibility of the technical approach.
Comparisons between different technical methods and uncertainty analysis will not be
addressed in this paper.

We have identified the technical route of “fitting before aggregation” through
previous research, and in the test case we have only compared the results under this
route and called it the IEC method. The aggregation before fitting and the inverse
first-order reliability method (IFORM) are not compared in the current manuscript. In
fact, this work we are in progress because we also realize the differences in the results
of the different methods and the importance of uncertainty analysis in the

extrapolation of ultimate loads.

1.3 Reviewer #EC1, Comment No.3:
One significant challenge in the “fitting before aggregation” method is that the

distribution fitting on a few values is not very robust, and a few outliers or bad fits can




distort the aggregated result. It would be good to check the confidence in the
aggregated distribution predictions — for example by doing multiple local distribution

fits by bootstrapping the block maxima.

Response 1.3: Thank you for your comment. The problem you mentioned is indeed
the challenge we face in this method. In the process of local distribution fitting, we
introduced the Normal, Log-normal, Gumbel and Weibull distributions as candidate
distributions, and through the fitting test, we found that none of these distributions can
fully satisfy all the samples. As described in Section 4.2, in order to ensure the
consistency of the MLP model output, we chose the Weibull distribution, which fits
the most samples better. This also leads to a deviation of the local distribution from
reality for some wind speeds, refer to the 6.1 Discussion, which perturbs the load
extrapolated results. In fact, we have seen in the literature that the use of Gaussian
mixture model gives better results than distributions such as Weibull to avoid and
reduce outliers or bad fits, now we are trying in this way. And we will also try by

doing multiple local distribution fits and by bootstrapping the block maxima.

1.4 Reviewer #EC1, Comment No.4:

There is a dependency between the shape and scale parameters in a Weibull
distribution fit (if you choose a value of one parameter, it will define what is the value
of the other parameter that best represents the data set). Therefore, fitting separate
meta models for the scale and shape parameters of the Weibull distribution may limit
the accuracy of the results. In the current manuscript, it doesn’t get clear if the authors

fit one single MLP model with two outputs, or two separate models? Please discuss.

Response 1.4: Thank you for your comment. Actually we have used one single MLP
model with three outputs. But due to the Weibull distribution parameter loc=0 we
have used, it can also be considered as two outputs. We described it in detail in the

manuscript.

The input of the Local Peaks Distribution Meta-Model includes wind speed, its corresponding
turbulence intensity, wind shear, air density, inflow angle, and yaw misalignment (configured
according to the IEC standard with values of -8, 0, and 8 degrees). The output comprises the shape
parameter and scale parameter of the Weibull distribution (with the location parameter set to 0).




Additionally, normalization is applied based on the training samples, using the method shown in
the following equation:

=t (12)

where p is the mean of the training samples, and ¢ is the standard deviation of the training
samples.

2. Response to the comments of Reviewer #RC1

The paper deals with a rapid evaluation of the extreme loads using extrapolation
methods. currently the extrapolation requires a significant number of simulations to
provide sufficient samples of extreme loads in order to perform the extrapolation
procedure. The manuscript uses a machine learning based meta model to accelerate
this process while providing extrapolation result with uncertainties comparable to
those using aeroelastic simulations. One important question that needs to be clarified
is what is the value of the meta model compared to the many load surrogate models
that are available in the literature. After all the main time saving is coming from the
meta load model which is essentially another load surrogate model.

I- when comparing the time saving, how would the authors account the time and
efforts needed to produce the data needed to train the meta model. since this would be
necessary each time the turbine model or turbine properties have been changes, which
is often the case in the design iteration phase. Normally the 50 years return value for
extreme load is a design value based on generic wind class or site specific value for
certain class of sites, for example typhoon or hurricane affected area. It is usually not
needed to perform load extrapolation for each of the wind turbine in a wind farm.
Once it has been identified which turbine in the wind farm has the highest extreme
loads, one needs only to perform the load extrapolation for the worst case. It is rather
unlikely that optimization for extreme loads will be performed for every single turbine.
Moreover, it is not clear from the beginning of the design, whether fatigue or extreme
load will be the design driver. Therefore, the usefulness and time saving should be
considered with these points in mind.

2- In page three, line 84, the word inflow angle is mentioned. In this case, it is




referred to the yaw angle between the rotor plane with the incoming wind, that is, the
yaw misalignment angle, if the reviewer understands it correctly. Inflow angle is used
in the aerodynamics mainly for the angle of the velocity triangle at the airfoil,
between the tangential velocity caused by the rotation of the rotor and the incoming
wind velocity. The use of the word inflow angle can cause some confusion as this is
not used normally in this context.

3- Page 4. which is the shear model used and how is the shear value defined, please
elaborate.

4- Figurel, the distribution of the air density looks bi-modal, when sampling the
distribution, did the authors take the empirical distribution or the fitted bi-modal
distribution

5- Table 1 why is the inflow angle changes from -0.78 to 13.464 degrees (there is no
need to go beyond the first digit for this angle, the turbine yaw controller is not that
precise) , what about the variation in the negative angle. the loading on the wind
turbine is not symmetrical around the yaw angle, negative and positive yaw angles
can produce very different loads.

6- Table 2 change RMP to RPM

7- page 7 what is the definition of In plane and out of plane bending moment here. It
looks like the authors is using the flapwise bending moment and not the out of plane
bending moment of the blade. Once the blade starts pitching after reaching the rated
wind speed, the the OOP bending moment and flapwise bending moment are no
longer the same.

8- Equation 6, this equation assumes that the 10 minutes wind speeds are independent,
which is clearly not the case.

9- page 9, line 171, the authors divided the data into three categories, high wind speed
range above 10 m/s , low wind speed range below 10 m/s and full wind speed range,
which wind speed would be full wind speed range have?

10- Figure 6 why are the log-normal performed so poorly in QQ plot

11- Table 3, there is not need to have numbers with 9 digits after the decimal point,

there are a lot of uncertainties



12- Figure 10, how ar ehte importance of the hyperparameters determined?

13- page 9 line 176, so if the low wind speeds contribute so little to the tail of the
distribution, then why simulate them at all.

14- instead of local distribution, maybe it is better to refer them as local maxima, or
local peaks distribution.

15- Table 5, the simulation time is 600seconds, what about the transient at the

beginning of the simulation, are they removed ?

We would like to express our sincere gratitude to Reviewer #RC1 for the valuable
comments, and the time devoted to review our work. The reviewer brings forward
constructive questions, as well as the important guiding significance to our researches.
We have studied comments carefully and responded to them which are described in

detail below.

2.1 Reviewer #RC1, Comment No.1:

For the question that needs to be clarified is what is the value of the meta model
compared to the many load surrogate models that are available in the literature, our

specific explanation is below.

Response 2.1: Thank you for your comment.

1. In this paper, a Meta-model is established for the parameters of the local load
distribution at each wind speed, whereas existing load surrogate models primarily
focus on single load values.

2. The Meta mode mentioned in this paper is constructed based on MLP (Multi-layer
Perceptron), which essentially focuses on its ability to capture complex nonlinear
relationships, provide reliable results, and reduce the number of training samples.
Compared to the traditional load surrogate models (Linear Regression, Polynomial
Regression, Gaussian Process and Response Surface Regression), it performs better
when dealing with complex systems, especially when data and computational
resources are limited. In fact, we have also used the above method to try to compare
and selected MLP based on the accuracy of the results, but we have not expressed it in

the paper due to space limitation.




However, the optimal approach must be determined based on the specific application
scenario, data characteristics, and available computational resources[1]. Future
research should further investigate the potential of multi-fidelity data fusion and deep

learning techniques to improve model accuracy and robustness.

References:
[1] Angione C, Silverman E, Yaneske E, (2022) Using machine learning as a surrogate model for
agent-based simulations. PLoS ONE, 17(2): €0263150.

2.2 Reviewer #RC1, Comment No.2:

I-when comparing the time saving, how would the authors account the time and
efforts needed to produce the data needed to train the meta model. since this would be
necessary each time the turbine model or turbine properties have been changes, which
is often the case in the design iteration phase. Normally the 50 years return value for
extreme load is a design value based on generic wind class or site specific value for
certain class of sites, for example typhoon or hurricane affected area. It is usually not
needed to perform load extrapolation for each of the wind turbine in a wind farm.
Once it has been identified which turbine in the wind farm has the highest extreme
loads, one needs only to perform the load extrapolation for the worst case. It is rather
unlikely that optimization for extreme loads will be performed for every single turbine.
Moreover, it is not clear from the beginning of the design, whether fatigue or extreme
load will be the design driver. Therefore, the usefulness and time saving should be

considered with these points in mind.

Response 2.2: Thank you for your comment. The load extrapolation methods
mentioned in this paper are mainly used for site suitability assessment and will not be
used for iteration in WTG development and design. Here is a more specific
explanation.

1. The model used for generating the load simulation database is either a finalized
model or a wind turbine model that has obtained DA/TC certification.

2. According to IEC 61400-1:2019 Annex B, for site suitability assessment, the
following ultimate design load cases shall be assessed as minimum: DLC 1.1, DLC

1.3, DLC 6.1, and DLC 6.2. If the design load cases for the standard classes are




adequate, no further evaluations need to be performed. The DLCI1.1 is also required
for site-specific calculations. The “adequate” scenario is only qualitatively described
in the standard, it is often difficult to prove it to an independent third-party
certification body during the SSDA certification process, so it is necessary to perform
the DLC1.1 for site-specific projects.

3. The worst case is a common practice in previous years, but nowadays it has
become a mainstream trend to strike a balance between economy and conservatism,
so wind turbines in wind farms with complex terrain are usually divided into groups
to replace the worst case. With the rapid development of the wind power industry, a
top OEM will do at least a thousand wind farm site suitability assessments per year,
and the amount of computation and time required for the DLCI1.1 is very large. In
addition, it is the probability density of each wind speed bin and the corresponding
turbulence intensity that plays a role in the DLC1.1 case, the worst case is extremely
conservative in some cases, which is a common situation in China. And when doing
SSDA certification, the independent third-party certification bodies usually require
proof of the vague description of the worst case. Using the methodology mentioned in
this paper, each turbine can be quickly evaluated to determine the worst case, and then
using Bladed/FAST/HAWC?2 can be performed, which is a common practice in the
industry.

In summary, the proposed FASTLE method demonstrates significant potential for
site-specific preliminary load assessment, grouping, and worst-case selection.
Moreover, it offers substantial reductions in computational cost and processing time

compared to conventional approaches.

2.3 Reviewer #RC1, Comment No.3:

2-In page three, line 84, the word inflow angle is mentioned. In this case, it is referred
to the yaw angle between the rotor plane with the incoming wind, that is, the yaw
misalignment angle, if the reviewer understands it correctly. Inflow angle is used in
the aerodynamics mainly for the angle of the velocity triangle at the airfoil, between

the tangential velocity caused by the rotation of the rotor and the incoming wind




velocity. The use of the word inflow angle can cause some confusion as this is not

used normally in this context.

Response 2.3: Thank you for your comment. The inflow angle referenced in this
paper is derived from IEC 61400-15-1:2025 (Section 5.4) and illustrated in Fig. 1. It
is critical to note that this parameter does not represent the yaw misalignment angle
but aligns with the definition of flow inclination as specified in IEC 61400-1:2019.
While DNV-ST-0473 also employs inflow angle to describe flow inclination, this
usage may lead to ambiguity with the inflow angle defined in Blade Element
Momentum (BEM) theory. To avoid confusion, we adopted the flow inclination
consistently throughout the paper. The corresponding modifications have been
marked in the manuscript, as shown below:

Aside from wind speed, the primary wind parameters affecting the loads on wind turbines
include air density, turbulence intensity, wind shear, and flow inclination...
The load time series simulation is run for different wind speeds, from cut-in to cut-out wind
speeds, under normal power production conditions. This simulation is based on the site-specific
wind parameters which include air density, turbulence intensity at different wind speeds, wind
shear, flow inclinations, etc.
...For any given wind speed V;, corresponding turbulence intensity TI;, wind shear a;, and flow
inclination I; are used as inputs for the Local Load Distribution Meta Model.

5.4 Inflow angle

An inflow angle for each wind direction sector (i) based on measured and/or simulated values
from a validated flow model shall be calculated by using the following equation:

g =tan”" [v”;} (1)

If no site measurements or simulations are available, the inflow angle may be estimated based
on terrain slope according to IEC 61400-1:2019, 11.9.2.

To calculate the omni-directional inflow angle either a frequency or energy-weighted mean shall
be performed.

Fig. 1 IEC 61400-15-1:2025 chapter 5.4




The basic site-specific wind parameters which shall be determined as input to the design are listed
below:
— long-term mean wind speed at hub height V,,, and wind speed distribution, see [3.5.5]

— wind direction distribution (wind rose) per wind speed bin and accumulated, see [3.5.6]

— wind shear and veer, see [3.5.7]

— mean ambient turbulence intensity and standard deviation of the turbulence intensity at hub height as a
function of wind speed and wind direction, see [3.5.10]

— reference wind speed V,,ef, which is defined as the 50-year 10-min mean value Vs, and extreme 50-year
gust wind speed V.5, (50-year 3-sec gust)], see [3.5.11].

For onshore projects only:

— inflow angle. If a significant part of the energy comes from a sector with negative inflow angle or with
more than 8° inflow angle, the directional dependency of the inflow angle shall be considered.

Standard — DNV-ST-0437. Edition May 2024 Page 58
Loads and site conditions for wind turbines

Fig. 2 DNV-ST-0473

2.4 Reviewer #RC1, Comment No.4:

3-Page 4. which is the shear model used and how is the shear value defined, please

elaborate.

Response 2.4: Thank you for your comment. The power-law shear profile is used
model in this paper. We added a description to the paper.
V@=VE)()" M

V(z) is the wind speed at height z, z is the height above ground,z, is a reference height above

ground used for fitting the profile, a is the wind shear (or power law) exponent.

2.5 Reviewer #RC1, Comment No.5:
4-Figurel, the distribution of the air density looks bi-modal, when sampling the

distribution, did the authors take the empirical distribution or the fitted bi-modal

distribution?

Response 2.5: Thank you for your comment. The air density distribution is obtained
using the Kernel Smoothing method based on a large amount of test data, the

reference is as follow.

Reference:




[2] M. P. Wand & M. C. Jones Kernel Smoothing Monographs on Statistics and Applied
Probability Chapman & Hall, 1995.

2.6 Reviewer #RC1, Comment No.6:
5-Table 1 why is the inflow angle changes from -0.78 to 13.464 degrees (there is no

need to go beyond the first digit for this angle, the turbine yaw controller is not that
precise) , what about the variation in the negative angle. the loading on the wind
turbine is not symmetrical around the yaw angle, negative and positive yaw angles

can produce very different loads.

Response 2.6: Thank you for your comment. In fact, for yaw misalignment angle
setting, this paper uses equal numbers -8, 0, 8(refer to The table 5). The inflow angle

here refers to the flow inclination.

2.7 Reviewer #RC1, Comment No.7:
6-Table 2 change RMP to RPM.

Response 2.7: Thank you for your comment. We have made changes in the

manuscript.
parameters« unite  values ¢
cut-in'wind-speed. m/sa 25 €
cut-out-wind-speed. m/sd 24, 94
rated-wind-speeds m/se 10.8« ¢

Rotorrated-speed. rpme. 95 ¥
s Rotorspeed-range rpme | 6~9.50 ¢

2.8 Reviewer #RC1, Comment No.8:

7-Page 7 what is the definition of In plane and out of plane bending moment here. It
looks like the authors is using the flapwise bending moment and not the out of plane
bending moment of the blade. Once the blade starts pitching after reaching the rated
wind speed, the the OOP bending moment and flapwise bending moment are no

longer the same.

Response 2.8: Thank you for your comment. In this paper we used the blade

coordinate system from the GL2012, as shown in Fig. 3. The MYB is out of plane




bending moment and MXB is in plane bending moment, which was described in the

paper.
In accordance with wind turbine design standards, the analysis of load extrapolation concerning
the structural integrity must include at least the computation of extreme values for the blade root
in-plane bending moment(IPBM), out-of-plane bending moment(OOPBM), and tip deflection, as
shown in Fig.3. The [IPBM and OOPBM is described using the blade coordinate system from the
IV-Part 1 GL(2012), as shown in Fig. 4. The MYB is out of plane bending moment and MXB is in
plane bending moment. This paper focuses on the methodological exposition, so the out-of-plane
bending moment at the blade root will be analyzed as an example.

XB in direction of the rotor axis
ZB radially
YB so that XB, YB, ZB rotate clockwise

Fig. 4 Coordinate system of wind turbine blade
Germanischer Lloyd Industrial Services GmbH: IV-Part 1 GL: Guideline for the Certification of Wind Turbines,
2012.

2.9 Reviewer #RC1, Comment No.9:

8-Equation 6, this equation assumes that the 10 minutes wind speeds are independent,

which is clearly not the case.

Response 2.9: Thank you for your comment. The equation 6 is the calculation of the
exceedance probability of the 50-year extreme load. The probability of the 50-year
load is approximately 3.8x1077, is consistent with the definition in IEC 61400-1:2019.

2.10 Reviewer #RC1, Comment No.10:
9-Page 9, line 171, the authors divided the data into three categories, high wind speed

range above 10 m/s , low wind speed range below 10 m/s and full wind speed range,

which wind speed would be full wind speed range have?

Response 2.10: Thank you for your comment. The full wind speed means Cut-in

wind speed to cut-out wind speed, which includes 2.5m/s~24m/s.




2.11 Reviewer #RC1, Comment No.11:
10-Figure 6 why are the log-normal performed so poorly in QQ plot?

Response 2.11: Thank you for your comment. The distribution of the extracted peak
loads at a certain wind speed does not obey the log-normal distribution, which is
confirmed by wusing the Chi-Squared test and the Kolmogorov -Smirnov
goodness-offit test to test the log-normal. Therefore, when QQ-plot was used to
visualize the presentation, the log-normal performance was not good as shown in
Figure 6. In fact, at that time, when we used openturns (python package) to do
distribution fitting work and got very poor log-normal distribution fitting results, we
used the same data and switched to scipy (python package) to do log-normal fitting

and Chi-Squared test, and found that the results did not change.

2.12 Reviewer #RC1, Comment No.12:

11-Table 3, there is not need to have numbers with 9 digits after the decimal point,

there are a lot of uncertainties.

Response 2.12: Thank you for your comment. We have made changes in the

manuscript. All relevant numbers are retained to 4 digits.

low* wind- speed high- wind* speed:

Thepass-rate'of:55800 samples« All'samples« il >10ms).
. TRUE-« 99.958:%. 99.900%. 100.000%.
Weibull« i
T p-value(1-%level). 0.6739« 0.6570« 0.6859«
e TRUE« 99.903 %« 99.767 %« 100.000-%«
Chi-Squared- ' p-value(1-%level). 0.6528+ 0.6333+ 0.6668+«
tests TRUE« 99.944 %« 99.867 %« 100.000-%«
Gumbel«
p-value(1-%level)e 0.5824. 0.5232. 0.6247.
TRUE« 0.028%-« 0.067 %+ 0.000-%-«

Log-Normal _ ] ]
OFTROMAL  value(1%level). 1.2156x10%  2.8656x10% 3.7033x107

2.13 Reviewer #RC1, Comment No.13:

12-Figure 10, how are the importance of the hyperparameters determined?

Response 2.13: Thank you for your comment. Based on the Optuna (python package)
using Fanova Importance Evaluator to implement it, see reference for a description of

the methodology.

Reference:

[3] Frank H, Holger H, Kevin L. An Efficient Approach for Assessing Hyperparameter




Importance, Proceedings of the 31st International Conference on Machine Learning, PMLR 32(1):
754-762,2014.

2.14 Reviewer #RC1, Comment No.14:
13-Page 9 line 176, so if the low wind speeds contribute so little to the tail of the

distribution, then why simulate them at all.

Response 2.14: Thank you for your comment. According to the practical experience,
the low wind speed contributes extremely little to the 50-year extreme load
extrapolation, but it does not mean that there is none at all. and the IEC 61400-1:2019
(Section 7.6.2.2) has made a requirement for the simulation of low wind speeds, as
shown in fig. 4, so this paper also carries out the simulation analysis of low wind
speeds.

7.6.2.2 Partial safety factors for loads

For DLC 1.1, a characteristic value of load shall be determined by a statistical analysis of the
extreme loading that occurs for normal design situations and shall correspond to one of the
following alternatives.

a) The characteristic value is obtained as the largest (or smallest) among the average values
of the 10 min extremes determined for each wind speed in the given range, multiplied by
1,35. This method can only be applied for the calculation of the blade root in-plane
moment and out-of-plane moment and tip deflection.

b} The characteristic value is obtained as the largest (or smallest) among the 99th percentile
(or 1st percentile in the case of minima) values of the 10 min extremes determined for
each wind speed in the given range, multiplied by 1,2.

c) The characteristic value is obtained as the value corresponding to a 50 year return period,
based on load extrapolation methods, considering the wind speed distribution given in
6.3.2.1 and the normal turbulence model in 6.3.2.3. Guidance about load extrapolation is
given in Annex G.

The design load will be then obtained by multiplying the characteristic loads according to any
of these alternatives by the partial safety factor for DLC 1.1 defined in Table 3.

For all three alternatives above, data used in the statistical analysis shall be extracted from
time series of turbine simulations of at least 10 minutes in length over the operating range of
the turbine for DLC 1.1. A minimum of 15 simulations is required for each wind speed from
(Vi—2m/s) to cut-out, and six simulations are required for each wind speed below
(¥, — 2 m/s). When extracting data, the designer shall consider the effect of independence
between peaks on the statistical analysis and minimize dependence when possible. For
guidance on dependency checks, see Annex G.

For load cases with specified deterministic wind field events, the characteristic value of the
load shall be the worst case computed transient value. If more simulations are performed at a
given wind speed, representing the rotor azimuth, the characteristic value for the load case is
taken as the average value of the worst case computed transient values at each azimuth.
Guidance for the derivation of the contemporaneous load can be found in Annex |. When
turbulent inflow is used, the mean value among the worst case computed loads for different

Fig. 4 IEC 61400-1:2019 (Section 7.6.2.2)




2.15 Reviewer #RC1, Comment No.15:

14-instead of local distribution, maybe it is better to refer them as local maxima, or

local peaks distribution.

Response 2.15: Thank you for your comment. We will be changed to local peaks
distribution.

...and the local peaks distribution is fitted to the peaks at each wind speed.

The local peaks distribution function of the extracted peak loads is fitted using the maximum
likelihood method.

The local peaks distribution function of extracted peak loads is typically modeled using a Weibull
distribution!>7],

During the selection process for the optimal local peaks distribution, the Kolmogorov-Smirnov
goodness-of-fit test was employed for ranking the options.

...local peaks distributions at various wind speeds can be represented using a Gaussian mixture
model,

...the training of local peaks distribution parameters within the meta-model.

Research into the optimal fitting method for local peaks distributions is essential.

2.16 Reviewer #RC1, Comment No.16:

15-Table 5, the simulation time is 600seconds, what about the transient at the

beginning of the simulation, are they removed?

Response 2.16: Thank you for your comment. In fact, when bladed was used for the
simulation, the simulation duration was set to 650 seconds, and the latter 600 seconds

was used for the data output, which will be supplemented in the paper.

§ y : The simulation duration® was: set to' 6530 s, and- the latter 600 s was* used: for the data
Simulation-times

output.«

3. Response to the comments of Reviewer #RC2

The manuscript presents FastLE, a meta-model-based method for rapid extrapolation
of extreme wind turbine loads, aiming to reduce the computational burden of IEC
61400-1 site-specific load analysis. The work addresses a relevant and underexplored
problem, and the results indicate high agreement with the IEC reference method for
simulated cases.

However, the following issues should be addressed before this work can be
considered for publication:

Scientific comments




The authors mention they use “site-specific” wind parameters, but the wind speed is
obtained from the turbine specification, and air density and turbulence intensity are
from the literature. In this case, the statistical characteristics of the selected
probability distribution fortunately match the measurement. But what if you choose
another site? Why not to use the measured statistics directly, e.g. sampling from
probabilities in discrete intervals, instead of fitting to a distribution and resampling?
Figure 5b is not explained. “P-value” is defined neither in the text nor the caption.
Does it represent the polulation parameter? Why increasing the block size gives larger
P-values if population parameter=0 for independence?

While the Weibull distribution emerges as the most common optimal fit (52%), the
fact that Normal (34%) and Gumbel (14%) distributions perform better for a
substantial proportion of wind speeds suggests that a wind-speed-dependent or mixed
fitting approach could improve accuracy. Including a sensitivity study of distribution
choice on extrapolated loads would be helpful.

Please clarify how the hyperparameter importance is obtained.

Did you consider normalization of MLP input and output parameters? Due to the
difference in the order of magnitude between the two outputs, the MLP possibly gives
more importance to the paras_1(scale) over paras 0 (shape).

A figure of the proposed framework (similar to Figure 4) would be helpful to
understand the added contribution of this paper compared to the IEC-proposed
method.

Page 14, Line 244, the error is in percentage or true value? Formulate what it meant
by “error’”?

Page 18, Line 276, the time required to generate the training data for FastLE should
be taken into account.

Technical comments

Reference needed for “It is widely recognized that lower wind speeds contribute
minimally to the tails of long-term load distributions.”

Add the references “To effectively speed up the load extrapolation, this study

references certain literature to introduce wind parameters into the Meta model for load



components.”

Some abbreviations are used without defining.

The manuscript still needs to be carefully proofread.

Figures could be made more self-contained by including parameter definitions and

clearer legends.

We would like to express our sincere gratitude to Reviewer #RC2 for the valuable
comments, and the time devoted to review our work. The reviewer brings forward
constructive questions, as well as the important guiding significance to our researches.
We have studied comments carefully and responded to them which are described in

detail below.

Scientific comments
3.1 Reviewer #RC2, Comment No.1:

The authors mention they use “site-specific” wind parameters, but the wind speed is
obtained from the turbine specification, and air density and turbulence intensity are
from the literature. In this case, the statistical characteristics of the selected
probability distribution fortunately match the measurement. But what if you choose
another site? Why not to use the measured statistics directly, e.g. sampling from

probabilities in discrete intervals, instead of fitting to a distribution and resampling?

Response 3.1: Thank you for your comment. The proposed method in this paper is
applicable to specific turbine models, relying on the wind turbine models used during
the generation of the load database. Consequently, the range and values of wind speed
must be determined based on the turbine's parameters, specifically from its cut-in
wind speed to cut-out wind speed. Furthermore, the ranges for wind parameters such
as air density, wind shear, and turbulence intensity are derived from statistical
analysis of 541 measured datasets. To maximize coverage with limited samples, the
wind parameter distributions were fitted, followed by Monte Carlo (M-C) resampling
to densify samples around frequently occurring values, thereby efficiently utilizing
high-fidelity load simulation resources. For load assessment at a specific site, the

turbine model to be employed is known, thus determining the meta-model trained




from the corresponding load database. Given that the value ranges of wind parameters
in the database span from P1 to P99, and the constructed meta-model exhibits certain
generalization capabilities, it theoretically enables rapid evaluation of DLC 1.1 for

any specific site.

3.2 Reviewer #RC2, Comment No.2:

Figure 5b is not explained. “P-value” is defined neither in the text nor the caption.
Does it represent the polulation parameter? Why increasing the block size gives larger

P-values if population parameter=0 for independence?

Response 3.2: Thank you for your comment. The p-value in Figure 6(b) is defined in
the context of independence testing as the probability of observing the data (or more
extreme outcomes) under the assumption that the null hypothesis (i.e., mutual
independence) holds true. In essence, the p-value assesses the plausibility of the null
hypothesis. For the DcorrX independence test employed in this paper, a smaller
p-value provides stronger evidence of an association between the variables, whereas a
larger p-value supports the notion of independence.

In load time series, a larger block size corresponds to greater temporal separation
between peak loads, resulting in weaker correlations and stronger evidence of peak
load independence. Accordingly, in the DcorrX independence test, a p-value
approaching 1 indicates greater support for independence. The relevant description in

the paper is as follow:

Similar to other independence tests, p-values are employed to represent the statistical probability
under the premise that two variables are independent (the population parameter equals zero),

serving as evidence for the mutual independence between the variables.

3.3 Reviewer #RC2, Comment No.3:
While the Weibull distribution emerges as the most common optimal fit (52%), the

fact that Normal (34%) and Gumbel (14%) distributions perform better for a
substantial proportion of wind speeds suggests that a wind-speed-dependent or mixed
fitting approach could improve accuracy. Including a sensitivity study of distribution

choice on extrapolated loads would be helpful.

Response 3.3: Thank you for your comment. As the reviewer pointed out, a single




fitting distribution indeed cannot accommodate all wind speeds. This issue has been
mentioned in the discussion section of Chapter 6.1 in this paper, as illustrated in
Figure 17. We have now begun to explore methods such as adaptive selection of
optimal distributions and Gaussian mixture models. Although these approaches have
shown improvements in fitting local load distributions, the construction of subsequent
meta-models with variable network structures remains a challenging problem that we

are still tackling.

3.4 Reviewer #RC2, Comment No.4:

Please clarify how the hyperparameter importance is obtained.

Response 3.4: Thank you for your comment. Thank you for your comment. For the
analysis of hyperparameter importance, this paper employs the PED-ANOVA
method, as detailed in the literature: https://arxiv.org/abs/2304.10255. This is
implemented using the Python class
optuna.importance.PedAnovalmportanceEvaluator(), with further details available at:
https://optuna.readthedocs.io/en/latest/ _modules/optuna/importance/ ped anova/eval

uator.html#PedAnovalmportanceEvaluator.

3.5 Reviewer #RC2, Comment No.5:

Did you consider normalization of MLP input and output parameters? Due to the
difference in the order of magnitude between the two outputs, the MLP possibly gives

more importance to the paras_1(scale) over paras_0 (shape).

Response 3.5: Thank you for your comment. In this paper, both inputs and outputs
have been normalized using the method: z = (x-p)/c, where p is the mean of the
training samples, and ¢ is the standard deviation of the training samples. This is
implemented via  sklearn.preprocessing.StandardScaler(), as detailed at:

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler

html. The following has been incorporated into the paper:

The input of the Local Peaks Distribution Meta-Model includes wind speed, its corresponding
turbulence intensity, wind shear, air density, inflow angle, and yaw misalignment (configured
according to the IEC standard with values of -8, 0, and 8 degrees). The output comprises the shape

parameter and scale parameter of the Weibull distribution (with the location parameter set to 0).



https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

Additionally, normalization is applied based on the training samples, using the method shown in
the following equation:

=t (12)

where b is the mean of the training samples, and o is the standard deviation of the training
samples.

3.6 Reviewer #RC2, Comment No.6:
A figure of the proposed framework (similar to Figure 4) would be helpful to

understand the added contribution of this paper compared to the IEC-proposed

method.

Response 3.6: Thank you for your positive feedback on the figures. The flowchart of

the FastLE method described in this paper is shown below, and it was presented in the
paper.
4.5 The framework of FastLE

Integrating the content from all sections in this chapter forms a load extrapolation method based
on the load distribution Meta-model, whose overall framework is shown in the figure 14 below.
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Figure 14: the framework of FastLE .The black solid lines denote pre-processing, the red dashed lines represent

post-processing, and the blue solid lines indicate the site-specific application.

3.7 Reviewer #RC2, Comment No.7:

Page 14, Line 244, the error is in percentage or true value? Formulate what it meant

by “error”?

Response 3.7: Thank you for your comment. In this paper, the error is defined as

error=(predicted value—actual value)/actual value, which was added to the paper.

For the shape parameter (denoted as w_para0 in the figure), the R? between the true and
predicted values is 0.885, with a 90 % confidence interval for the error (the error is defined as
error=(predicted value—actual value)/actual value) ranging from -0.22 to 0.23.

3.8 Reviewer #RC2, Comment No.8:
Page 18, Line 276, the time required to generate the training data for FastLE should

be taken into account.

Response 3.8: Thank you for your comment. This time required to generate the

training data for FastLE was included in the Chapter 5 of the paper.

Of course, the simulation time required to generate the database for FastLE is approximately 2000
hours (on a 32-core CPU). However, this essentially accomplishes a compression of the timeline

via FastLE, thereby facilitating rapid iteration of design solutions for specific sites.

Technical comments
3.9 Reviewer #RC2, Comment No.9:

Reference needed for “It is widely recognized that lower wind speeds contribute

minimally to the tails of long-term load distributions.”

Response 3.9: Thank you for your comment. We added the following references to

the paper.

[1]Fogle, J., Agarwal, P. and Manuel, L.: Towards an improved understanding of statistical
extrapolation for wind turbine extreme loads, Wind Energy, 11, 613-635,
https://doi.org/10.1002/we.303, 2008.

...It is widely recognized that lower wind speeds contribute minimally to the tails of
long-term load distributions(Fogle et al., 2008).

3.10 Reviewer #RC2, Comment No.10:
Add the references “To effectively speed up the load extrapolation, this study

references certain literature to introduce wind parameters into the Meta model for load




components.”

Response 3.10: Thank you for your comment. We added the following references to

the paper.
[1] Dimitrov, N., Kelly, M., Vignaroli, A. and Berg, J.: From wind to loads: wind turbine

site-specific load estimation with surrogate models trained on high-fidelity load databases, Wind
Energ. Sci., 3, 767-790, https://doi.org/10.5194/wes-3-767-2018, 2018.

[2] Graf, P. A., Stewar,t G., Lackner, M., Dykes, K., and Veers, P.: High-throughput computation
and the applicability of Monte Carlo integration in fatigue load estimation of floating offshore
wind turbines, Wind Energy, 19(5), 921-946, https://doi.org/10.1002/we.1870, 2016.

...To effectively speed up the load extrapolation, this study references certain literature to
introduce wind parameters into the Meta model for load components(Dimitrov et al., 2018; Graf et
al., 2016.).

3.11 Reviewer #RC2, Comment No.11:

Some abbreviations are used without defining.

Response 3.11: Thank you for your comment. We have checked the abbreviations in
the manuscript and added full names for undefined abbreviations. Some examples are
shown below.

..the blade root out-of-plane bending moment (OOPBM) for a 50-year return period was
calculated using both the (International Electrotechnical Commission) IEC method and the FastLE
method introduced in this paper. Through comparative analysis, the mean Absolute Percentage
Error (APE) is only 3.165%, and the computation time for a single calculation has been reduced

from 20 hours to less than 1 second.

3.12 Reviewer #RC2, Comment No.12:

The manuscript still needs to be carefully proofread.

Response 3.12: Thank you for your comment. We have reorganized the manuscript

and made some minor revisions.

3.13 Reviewer #RC2, Comment No.13:

Figures could be made more self-contained by including parameter definitions and

clearer legends.

Response 3.13: Thank you for your comment. We added necessary textual

descriptions to all figures in the manuscript. Some examples are shown below.




Figure 1: Scatter plots, density contour lines, and kernel density estimations for various wind
condition parameters at a specific site.(+ indicates the measured values, the black lines represent
contour lines, while those positioned along the diagonal indicate the kernel density of each wind
parameter.)

Figure 2: Scatter plots, density contour lines, and kernel density estimations for various wind
condition parameters (blue dot indicates measured values, orange dot indicates MC sampled
values, the solid lines represent contour lines, while the plots along the diagonal are scatter plots
of the measured values versus the sampled values for each wind parameter).

Figure 6: the pass rates (a) and P-values (b) for the DcorrX test under different block sizes The
blue color represents the full wind speed range, while orange and green denote the low and high
wind speed.

Figure 7: QQ-plots(Quantile-Quantile plots) of the peak loads under different wind speeds and
different distributions. The orange points denote the Normal distribution, the red points represent
the Gumbel distribution, the brown points indicate the Log-Normal distribution, and the gray
points correspond to the Weibull distribution. The dashed line represents y=x.

Figure 8: Schematic diagram of the three ways to implement a meta model for load extrapolation.
The red, green, and blue dashed boxes represent the scopes of Option A, B, and C, respectively.
The numbers in square brackets indicate the number of samples.

Figure 13: Schematic diagram of the FastLE post-processing.The dashed arrows indicate the
post-processing steps; the solid black line represents the probability density distribution of wind
speed; and the different-colored shaded areas represent the load distributions at different wind
speeds.

Figure 15: Load extrapolation results for test case 102.The blue solid line represents the IEC
method, the red line denotes the FastLE method, the shaded area indicates the 90% confidence
interval, and the red dashed line corresponds to the probability of 3.8x107".

Figure 16: the load extrapolation results using the FastLE and IEC methods for 20 test cases.The
blue bars represent the load extrapolation results from the IEC method, the orange bars denote
those from FastLE, and the green bars indicate the load extrapolation results at the 95th percentile
of FastLE. The red solid line represents the APE of the FastLE results compared to the IEC
results.

Figure 17: Optimal local load distributions under different wind speeds for test case 101. The blue
histogram represents the load statistics at the current wind speed, the orange line denotes the
Normal distribution fit, the green line represents the Gumbel distribution fit, and the red line
indicates the Weibull distribution fit.

Finally, we require a minor correction: Figure 12 in the manuscript represents an
earlier version. In this submission, we have re-uploaded the most recent iteration.
Additionally, as new figures and equations have been incorporated into the

manuscript, we have updated all figure and equation numbers.

Once again, thank you very much for the constructive comments and suggestions




which would help us in depth to improve the quality of the manuscript. We tried our
best to improve the manuscript and made some changes in the manuscript. We
appreciate for reviewers’ warm work earnestly, and hope that the correction will meet
with approval. We hereby resubmit the manuscript and hope that all corrections are
satisfactory. Please feel free to contacts with any questions and we look forward to
your decision.

Kind regards.

Pengfei Zhang
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