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Abstract. The development of offshore wind farms (OWFs) is critical to meeting renewable energy targets, but
predicting scour around offshore wind energy structures (OWES) and the associated potential impacts on marine
ecosystems remains a challenge. Using high-resolution bathymetry data, this study analyses field-measured scour
depths at 460 monopiles at nine British OWFs. The analysis reveals a large spatial variability of relative scour
depth (S/D) between OWF sites, but also within individual wind farms. Principal Component Analysis (PCA) is

used to identify significant drivers of this variability. When the entire data set is considered, results indicate that

the relative water depth (h/D), the relative median grain size (dSO/D), Keulegan-Carpenter number (KCqq), and

the sediment mobility parameter MOB (999/9 ) are the most important influencing factors for the variability of
cr

relative scour depth. Other parameters investigated, such as pile Reynolds number (Req,), flow intensity

(U/U )og, @nd Froude number (Fry9), Were found to have a less clear influence. Further sediment-specific analysis
cr

shows that relative water depth (h/D) is a particularly relevant driver of scour at sites with fine (63 < ds, < 200
um) and medium sands (200 < dg, < 630 um), with larger relative scour depth occurring in shallower relative
water depth.

Findings from this study provide new insights into scour behaviour across a range of spatial and environmental
scales and lay a foundation for the transferability of scour prediction frameworks to new OWFs sites. In the future,
findings and datasets from this study are suggested to be used to estimate scour-induced sediment transport and
thereby to provide a step towards the assessment of potential impacts of OWFs expansion scenarios in the marine
environment. By addressing the broader implications for regional sediment dynamics, this research contributes to

the sustainable development of offshore wind energy.

Keywords: Offshore wind farms (OWFs), relative scour depth, monopile, sediment transport, Principal Component
Analysis (PCA).
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1 Introduction & Motivation

The expansion of renewable energy is crucial for a sustainable and independent energy supply. In order to meet
the European Union's targets for expanding offshore wind energy (EU, 2020), it is necessary to develop areas with
previously unveiled metoceanic and geophysical conditions. To this end, existing knowledge gaps about the
interaction of individual offshore wind energy structures (OWES) or entire offshore wind farms (OWFs) with the
marine environment must be closed. In general, the disturbance of the flow by an offshore structure causes scour,
which might not only affect the structure's stability (Saathoff et al., 2024), but the mobilized sediment may also
contribute to the overall regional sediment transport (Vanhellemont et al., 2014; Baeye and Fettweis, 2015; Rivier
et al., 2016) with potential impacts on the marine environment.

The scour process itself is a multivariate process, which is dependent on a combination of complex hydrodynamic
and geotechnical drivers. Early studies focused on the understanding of the scour process around a pile under
simplified isolated hydraulic conditions, such as steady flow (e.g., Sheppard et al., 2004; Zhao et al., 2012; Sarkar
et al.,, 2014; Baykal et al., 2015), unsteady and bidirectional tidal currents (e.g., Escarameia and May 1999;
McGovern et al., 2014; Yao et al., 2016; Schendel et al., 2018) and waves (e.g., Sumer et al.,1992b; Carreiras et
al., 2001; Stahlmann et al., 2013). With the availability of more sophisticated experimental facilities and numerical
models, research is increasingly shifting toward more complex hydrodynamic loads consisting of a combination
of waves and currents, as in the studies of Sumer and Fredsge (2001), Qi and Gao (2014), Schendel et al. (2020),
Lyu et al. (2021), and Du et al. (2022) and also towards studies addressing complex offshore structures (Welzel,
2021; Welzel et al., 2024; Sarmiento et al., 2024; Chen et al., 2025).

Despite those advances in scour research, uncertainties remain in current scour prediction methods (Chen et al.,
2024). Matutano et al. (2013) demonstrated the challenges of applying empirical formulas for maximum scour
depth by comparing different methods with data from ten European OWFs, revealing overpredictions in all but
two cases. The comparison highlights the fundamental challenge of accounting for complex marine flow
conditions, characterised by the combined effect of multiple influencing factors, such as flow velocity, sediment
coarseness, and wave-current interactions, in the prediction of scour processes using existing models (Gazi et al.,
2020; Harris et al., 2023). Compared to laboratory experiments focusing on scour processes, rather few studies are
based on in-situ data, which represent the actual scour development under complex flow conditions. These studies
assessed the scour at individual structures, such as monopiles (Walker, 1995; Noormets et al., 2003; Harris et al.,
2004; Rudolph et al., 2004; Louwersheimer et al., 2009) and jackets (Bolle et al., 2012; Baelus et al., 2018), or
dealt with larger datasets from entire offshore wind projects (DECC 2008; COWRIE 2010; Whitehouse et al.,
2010; Whitehouse et al., 2011; Melling (2015)), covering both spatial and temporal evolution of scour under
different hydrodynamic regimes and seabed types across the North Sea and British continental shelf. In general,
the amount and variety of field data collected has increased with the gradual installation of OWES. Focusing
specifically on the correlation between scour and on-site conditions, Melling (2015) analysed the relationships
between the variations of scour hole dimension within OWFs and both sedimentological and hydrodynamic
parameters of 281 OWES in the Outer Thames estuary. Melling's (2015) study, although only covering three
OWFs, represents one of the most comprehensive investigations of field-related scour to date, with the highest
number of structures examined so far. By comparing field data with physical modelling experiments and literature,
the study provided valuable insights into the range of observed scour and its controlling structural, hydrodynamic,

and sedimentological parameters.
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In addition to local scour at individual structures, the cumulative effect of multiple structures in an OWF can alter
ocean dynamics (Christiansen et al., 2022), mixing (Schultze et al., 2020), and sediment mobility, resulting in
changes to suspended sediment concentrations and wave-induced turbidity plumes (Vanhellemont & Ruddick,
2014). This can also lead to dynamic interactions with migrating seabed features, such as sand waves (Matthieu &
Raaijmakers, 2012). Increased velocities and turbulence induced by OWFs have also the potential to affect the
marine environment, potentially leading to global erosion around the structures as well as habitat loss or gain for
benthic flora and fauna (Shields et al., 2011; Wilson and Elliott, 2009; Welzel et al., 2019). Concerns over the
potential impacts of OWF installations on local ecosystems further include collision risks, noise pollution,
electromagnetic fields, and the introduction of invasive species (Lloret et al., 2022; Bailey et al., 2014; Teilmann
and Carstensen, 2012; Watson et al., 2024). As the size and scale of OWF increase, the risk of significant
cumulative effects arising is also expected to increase (Brignon et al., 2022; Gusatu et al., 2021). The drivers and
interdependencies of these large-scale processes are not yet well understood, and the precise impact of scour-
induced sediment transport on the marine environment remains uncertain, highlighting the need for
interdisciplinary research utilizing field data.

In order to gain a better understanding of the geophysical changes following the installation of OWFs and potential
impacts on the marine environment arising from it, this study analyses the scour development at OWES as a first
step. This study builds its analysis on field data, including high-resolution bathymetry scans from British OWFs,
which have recently been made publicly available. This provides an opportunity to extend the understanding of
scour evolution and its key drivers using a cross-regional dataset. A total of 460 monopiles were analysed to obtain
local scour depth and their spatial distribution in dependence on selected hydrodynamic and geological drivers.
Understanding scour development is a critical first step in assessing potential environmental impacts. It will help
determine whether OWES and entire OWFs contribute to regional sediment mobilization and provide a foundation
for future research into the long-term morphological footprint of OWF installations and their broader ecological
effects. To contribute to the overarching goal of reducing uncertainty in scour predictions at OWES, this study
analyses field data from 460 monopiles across 9 OWFs, situated in diverse marine regimes with current velocities
from 0.54 m/s to 1.77 m/s (99th percentile), significant wave heights from 1.5 m to 2.7 m (99th percentile), water
depths from 5 to 35 m, and grain sizes ranging from cohesive sediment (51.54 um) to medium gravel (19872 um).
The spatial distribution and variability of relative scour depth across and within these OWFs are determined and
correlated with selected hydrodynamic and sedimentological parameters, using Principal Component Analysis
(PCA). This analysis aims to (1) identify universal drivers of scour across all sites, (2) assess sediment-specific
correlations by grain size (ds,) and (3) evaluate site-specific variability at the level of three selected OWFs (Robin
Rigg, Lynn and Inner Dowsing, and London Array). The site-specific analysis in Section 3.5 assesses the
robustness of the global correlations under local conditions and provides insight into how local conditions
influence scour behaviour. Collectively, these efforts aim to decrease uncertainty in relative scour depth prediction
by assessing the contribution of the main drivers of scour development from multivariable field data.

This paper is organized as follows: Section 2 describes the study area and methodology, in which the methods
used to obtain the relative scour depth and selected on-site parameters are explained in detail (subsections 2.2 —
2.5). Additionally, the application of the PCA to identify the primary correlation between these parameters and
scour development is explained (subsection 2.6). The results are presented in section 3, followed by discussion

(section 4) and ending with the conclusions (section 5).
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2 Study area and methodology

2.1 Study area

The research area, located in British waters, is illustrated in Figure 1, showing the specific locations of the nine
studied OWFs. Figure 1A provides a general overview, while Figure 1B pinpoints the positions of the OWFs,
labeled 1 to 9. These OWFs correspond to Robin Rigg, Barrow, Teesside, Humber Gateway, Lincs, Lynn and
Inner Dowsing, Greater Gabbard, London Array, and Gunfleet Sands, respectively. Figures 1C and 1D display the
99" percentiles of the significant wave heights (H; o) and current velocity magnitudes (Uyo) at the nine locations,
respectively.

Notably, wind farms such as Robin Rigg and Barrow are situated in the Irish Sea, while the remaining seven are
located in the North Sea at the east coast of the UK (Fig. 1B). Water depths (h) ranging from 5 to 35 m can be
found across the nine OWFs. Depth data (h) were obtained from EMODNET
(https://emodnet.ec.europa.eu/en/bathymetry). The OWF located in the shallowest water depth is Robin Rigg

with h ranging from 1 to 14 m (Fig. 1B). Conversely, the OWF with the deepest water depth is Greater Gabbard
with h ranging from 21 to 35 m (Fig. 1B).

The highest and lowest significant wave heights (99" percentile) can be found at Humber Gateway OWF (H,= 2.7
m) (Fig. 1C-D) and at Gunfleet Sands OWF (H, = 1.5 m), which are located at the mouths of the Humber and
Thames estuaries (Fig. 1C-D), respectively. Regarding current velocities, the highest value is found at Robin Rigg
OWF with 1.8 m/s (Fig. 1C-D), while the lowest value is found at Gunfleet Sands OWF with a value of 0.4 m/s
(Fig. 1C-D).

Depending on the locations of the OWFs, the seabed conditions vary from sandbanks featuring a variety of
bedforms to intertidal mudflats. Accordingly, the sediment also varies from silt to coarse and very coarse gravel,
with the sediment at Teesside OWF consisting of fine and silty sands and that at Humber Gateway consisting of
sandy gravel and boulders. In contrast, OWFs such as London Array and Greater Gabbard are located in the Outer
Thames Estuary with sandbanks and channels, while others such as Barrow and Robin Rigg have distinct

geological features such as megaripples, mudflats, and deposits from different geological eras.
2.2 Data description

Bathymetric datasets from the nine OWFs considered in this study were collected via multibeam echosounder
(MBES) before, during, and after the construction of the OWFs and were afterwards made available by their
operators via the Marine Data Exchange (MDE).

In total, 460 OWES (of 680 available) with monopile foundations were analysed in this study. For the correlation
between scour and hydrodynamic conditions at the nine studied OWFs, metocean hindcast datasets (i.e., significant
wave height (Hg) and velocity magnitude (U)) by the Copernicus Marine Service (CMEMS)
(https://marine.copernicus.eu/) were used (CMEMS, 2023a, 2023b).
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Figure 1: A) Study area. B) Location of the nine studied OWFs. Shown bathymetry data originates
from EMODNET (https://emodnet.ec.europa.eu/en/bathymetry). C) 99th percentile of significant wave

heights (H,) based on data for the year 2012. D) 99th percentile of current velocity magnitudes (U) based
on data for the year 2012.

Table 1 shows the OWFs considered in this study and provides an overview of their structural characteristics as
well as the hydrodynamic and geotechnical site conditions. Pile diameters (D) were obtained from Negro et al.
(2017), water depths (h) are based on EMODNET (2020), ds, represents the median grain diameter of the
sediment. The sediment data shown in Table 1 were obtained in Phi units from each OWEF’s benthic reports, then
converted to dg, values in micrometers (um) according to Bunte et al. (2001). The scour depth S represents the
deepest scour at an individual OWES. The number of OWES varies from 26 OWES installed at Teesside OWF to
174 OWES installed at London Array OWF, indicating the different operational scales. For some OWFs, including
Lynn and Inner Dowsing, extensive bathymetric data spanning over ten years was available. In contrast, others,
such as Humber Gateway, had more limited bathymetric data with a coverage duration of four years. The highest

grid resolutions of the bathymetric datasets found at each OWF varied from 0.2 to 0.5 m, with the highest resolution
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of the bathymetries found at each OWF being used. The earliest bathymetry was collected at Barrow OWF in
2005, and the most recent was collected at Lynn and Inner Dowsing in 2017, highlighting the long-term monitoring
efforts at the wind farms. However, in this study only scour depth obtained from the pre- and the first post-
construction bathymetries were considered. The shortest period between pre- and post- bathymetries was found at
Lincs OWF, with 377 days between August 2010 and August 2011, while the longest period between scans was
detected at Greater Gabbard OWF, with 2902 days (~8 yrs) between June 2005 and May 2013.

Furthermore, environmental and hydrodynamic conditions associated with each OWF are also shown in Table 1,
which are essential for understanding how different variables contribute to scour around monopiles. These
variables include the 99" percentile significant wave height (Hj o0), representing the average height of the highest
third of waves. The wave height has a direct influence on the wave-induced current velocity near the seabed and
thus strongly determines the bed shear stresses and the formation of the vortex system around the OWES (Sumer
& Fredsge, 2002; Schendel et al., 2018). The 99" percentile current velocity magnitude (Uyq) indicates the resultant
of eastward (u,) and northward (v,) tidal flow components; those represent the depth-averaged velocity

magnitude, whereas U, depicts the critical flow velocity for sediment entrainment. Their ratio, the flow intensity

(U/U )og is a key parameter in describing the general sediment mobility and has a large impact (h/D) influences

on the formation of the horseshoe vortex in such a way that the size of the horseshoe vortex is reduced as the flow
depth decreases, resulting in a reduction in the relative scour depth. At greater relative water depth h/D = 5) the
relative scour depth becomes almost independent of relative water depth (Sumer and Fredsge, 2002).

The Froude number (Fry9) and pile Reynolds number (Reqq) are used to characterize the flow conditions around
the pile, and their calculations are shown in Table 2, Equations 2 and 3. The Froude number indicates whether the
flow is dominated by gravitational or inertial forces. With increasing Froude number, stronger inertial forces
produce more pronounced pressure gradients at the upstream face of the monopile. Promoting early boundary layer
separation and enhances the strength of the horseshoe vortex system near the seabed, which increases local bed
shear stress and accelerates sediment erosion. As shown by Hu (2021), these dynamics are key in amplifying scour.
Similarly, Corvaro et al. (2015) found that higher Froude numbers lead to larger vortex structures and increased
bed shear stress, resulting in deeper equilibrium scour depth. On the other hand, the Reynolds number provides
information on whether the flow is laminar or turbulent, and determines the characteristics of the vortex system
around the pile.

Additionally, the Keulegan—Carpenter number (KCyq), Which is used to determine the relative influence of drag

and inertia forces, the formation of vortices, and the potential for sediment transport (Sumer & Fredsge, 2002).
The mobility parameter (699/9 ) is considered a key controlling factor for scour, as it represents the degree to
cr

which the bed shear stress exceeds the critical threshold for sediment motion under given flow conditions (Soulsby,
1997; Whitehouse et al., 2000). The calculations of those two parameters are shown in Table 2, Equations 9 and
20. The datasets were obtained between pre- and post- construction bathymetries. The data was collected over a
one-year period, prior to the post-construction bathymetry.

Dimensionless parameters as given in Table 1 were calculated based on the equations summarized in Table 2.
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OWF N° Pile Scour Water Dg, Wave Current Relative Relative Froude Reynolds Keulegan Mobility Flow
name of diamete depth depth (um) height Velocity scour water number number Carpenter parameter intensity
OWES r S(m) h(m) Hig9 Ugg (M/s) depth  depth  Frgg Regg number 099/9 (U/U )99

D (m) (m) S/D h/D KCyg cr cr

Robin 60 4.3 Min 1.3 5 167 2.36 1.55 0.30 1.03 0.13  5.14x10° 0.99 15.3 351
Rigg Max 10 14 267 2.59 1.77 2.32 3.07 0.23  5.86x10° 1.9 25.4 4.43
Barrow 30 4.75 Min 0.98 15 138 2.43 0.91 0.20 3.67 0.06  3.50x10° 0.34 4.4 1.89
Max 6 23 445 2.52 1.11 1.20 4.71 0.08  4.26x10° 0.48 7.2 2.40

Teesside 26 5 Min 0.65 8 51 2.52 0.54 0.13 2..08 0.04  2.10x10° 1.2 6.1 1.19
Max 1.62 20 166 2.76 0.54 0.32 3.49 0.05 2.10x10° 1.6 9.6 1.29

Humber 72 4.2 Min 0.5 15 5918 2.24 151 0.11 3.65 0.11  4.87x10° 0.92 0.4 0.58
Gateway Max 2.51 20 1900 2.37 1.56 0.59 4.65 0.12 5.06x10° 1.11 1.2 0.99

0

Lincs 75 5.2 Min 0.54 12 505 2.47 1.07 0.10 2.41 0.08  4.29x10° 0.64 2.6 1.31
Max 1.92 21 1982 2.71 1.67 0.38 3.88 0.13  6.71x10° 1.01 11.1 3.12

Lynn and 60 474 Min 0.5 9 684 211 1.30 0.10 2.10 0.11  4.76x10° 0.84 3.2 1.63
Inner Max 2.35 17 1950 2.36 1.45 0.49 3.47 0.13  5.29x10° 1.3 7.3 2.53

Dowsing

Greater 139 6 Min 0.5 23 394 2.41 1.02 0.08 3.50 0.05 4.72x10°% 0.18 1.3 1.14
Gabbard Max 4.54 35 2296  2.67 1.22 0.75 5.83 0.07 5.64x10° 0.33 6.1 2.25
London 174 7 Min 1.2 1 120 1.89 0.71 0.21 0.31 0.04 2.56x10° 0.1 1.5 1.14
Array Max 9.5 27 930 2.36 0.81 2.02 4.67 0.19 3.56x10° 2.3 32.6 2.33
Gunfleet 49 4.7 Min 0.88 2 146 1.52 0.48 0.18 0.54 0.03 1.74x108 0.45 2.1 1.05
Sands Max 7.73 16 253 1.72 0.86 1.64 3.34 0.09 3.12x10° 1.68 17.6 2.07

Table 1. Overview of studied OWFs with hydrodynamic and sedimentological site conditions.



203 Table 2. Calculation of the variables included in the analysis

Variable Equation
Velocity magnitude Uso = (Juto + v5)oo 1)
U
Froude number Fryg = Joh )
99
Pile Reynolds number o — (Q) @)
99 v /g9
pg 3
3
Dimensionless grain size D. = (?) dso “)
Critical Shield = = - )
ritical Shields bor = 17 gp + 0-55(1 — exp(~0.02D.)
1
h 7 0.5
U, Uer =7 * <_) (g(s — Dds508,)™ (6)
cr dsg
U O
Flow intensity (U_Cr)"g
Zero crossing period (T,) Ty (8a)
1.28
h 8
Natural period (T,) Tn = g (80)
A Tp\° (8¢)
t A, = (6500+ (0.56 +15.54 T—") )Ye
RMS velocity (Uppms) 0 — o (8d)
rms . 2
T,(1+ (At% ))3
(8e)
Wave-induced velocity Up, = V2 Uppps
(Unm)
U,.T,
e (5
Keulegan-Carpenter D oo ©)
number (KC)
Roughness related to ds ks = 2.5ds, (10)
(ks)
Amplitude of wave orbital _UnTy (1)
motion at the bed (4) T 2n
shear velocity (Uy) U = U (12)
=
6.0 +25 In (ki)
S
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wave friction factor (f;,) AN\T08 A (13)
0.32 (—) ) —< 292
ks ks
—-0.52 A
=4 0.237 —) ,292 < —< 727
fu <ks kg
A -0.25 A
0.04(— —>727
® - &
Angle between the a = atan2(uy, vy) — D,, (14)

direction of the wave and
the current (a)
current induced bed shear T = pyUf (15)
stress ()
Tw = O-SpwaU%l (16)
wave induced bed shear
stress (t,,)
cycle-mean shear stress _ [ Ty 3-2] a7
(,,,) due to a combined Tm = Te[1+1.2 (Tc+Tw)
wave-current load

maximum shear stress Tmax = [(Tm + Ty cos @)? + (T, sin @)? °° (18)
value under combined
wave-current load (t3)
Shields parameter (6) 0o = ( Tmax ) (19)
? " \(ps — pw)gdso/ o
Mobility parameter B99 /9 (20)
cr

The values assumed for all OWFs sites are: p, = 2650 kg/m3 (sediment density, based on Soulsby, 1997), p,, =
1027 kg/m3 (water density), v = 1.3x10"°m?/s (kinematic viscosity), g= 9.8 m/s? (gravitational
acceleration). Equation 4 was calculated based on van Rijn (1984), where D, is the non-dimensional grain diameter
that is used to calculate the critical Shields parameter (8.,.), which represents the threshold for initiation of motion

at the bed, as proposed by Soulsby (1997). Equation 5 is taken from Soulsby and Whitehouse (1997), where s
(s = /Js/pw) represents the specific gravity of sediment grains. The d, represents the median sediment grain size.

In equation 18, the maximum bed shear stress value (t,,x) Was calculated following Roulund et al. (2016), which
builds upon Soulsby (1997) by combining current- and wave-induced shear stress through a directional correction.
Shields parameter (649) is derived using equation 19, based on the maximum bed shear stress (T,,q,) under
combined wave and current conditions. The Keulegan—Carpenter number is defined in equation 10, where T, is
the peak wave period and D the monopile diameter.

Equation 20 provides the calculation of the mobility parameter to assess sediment mobility, providing a
dimensionless indicator of whether the hydrodynamic forcing was sufficient to initiate sediment motion. All

relevant equations are summarized in Table 2.
2.3 Pre-processing of bathymetric data

Figure 2 shows the workflow used in this study, starting with the acquisition of bathymetric datasets, originally
obtained from the Marine Data Exchange, and their conversion to Ordnance Datum Newlyn (ODN). This was
followed by the generation of 100 m x 100 m tiles for each available bathymetric dataset, centered on each turbine
location. If bathymetric scans with different spatial resolutions were available for the same date, only the one with
the highest resolution was used. In addition, some turbine locations could not be further analysed due to missing
pre-construction scans or poor data quality. Tiles with more than 50% empty cells were discarded because a high

percentage of missing data increases the likelihood that important areas, such as the scour region, are poorly

9
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captured. Tests were conducted with lower missing cell thresholds (10% and 25%), but even with 50% missing
data, valuable information for scour analysis was retained. Using a stricter 25% threshold, too many tiles were
lost, including those that still contained useful data. As a result, 460 OWES across the nine OWFs were analysed
in this study.

The difference in bed elevation at turbine sites between the pre-construction (Fig 2.A) and post-construction
surveys (Fig 2.B), was used for extracting scour information. The deepest scour at each turbine site was then
extracted from the difference plot (Figure 2.C). A detailed description of this part of the workflow is provided in

section 2.4.

10
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Figure 2: General workflow and methodology used to assess the scour distribution and evolution as well as

the correlation between scour parameters and site conditions. A) Pre-installation scan. B) Post-installation

scan. C) Difference plot after subtraction of B from —A. D) Map of spatial distribution of relative scour

depth. E) Principal Component Analysis (PCA). F) Site conditions of wave heights and current velocities.

2.4 Calculation of scour parameters

First, to eliminate outliers, a threshold based on the 99™ percentile was used to filter out extreme values, ensuring

that outliers did not skew subsequent analyses or visualizations. Subsequently, to address potential offsets between
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pre- and post-construction, a median filter was applied to both datasets. The difference in medians, excluding the
presumed scour area, was considered the offset. This offset was then applied while calculating the difference plot
between the pre- and post-construction bathymetries (Fig. 2A-C). To remove additional outliers close to the
turbine, an area equivalent to 110% of the pile’s footprint area was excluded from the center of the difference plot.
The deepest scour depth (see green dot in Fig. 2C) was then extracted from the difference plot (Fig. 2C). The
calculated relative scour depth were then visualized to show the spatial distribution across the nine OWFs (Fig.
2D).

2.5 Principal component analysis (PCA)

In the case of field data, the correlation of the scour process with hydrodynamic and geotechnical variables is
complicated by the simultaneous change of several of these variables. In order to reduce the complexity and
simplify this multivariate problem, PCA was used in a next step (Fig. 2.E). PCA works by transforming the data
into a set of new variables called principal components, which are linear combinations of the original variables
(Jolliffe & Cadima, 2016). These components are ordered based on how much variance they explain, with the first
principal component (PC1) explaining the maximum variance in the data, followed by the second principal
component (PC2). Each component also has an eigenvalue, which shows the amount of variation it captures.
Generally, the PCA is able to handle lots of independent variables and helps to simplify the data without losing
important information (Harasti, 2022).

In this study, the PCA was applied to a dataset of 692 OWES, including 460 from our analysis and an additional
232 OWES from London Array and Thanet OWF, based on Melling’s (2015) data. The PCA was then performed
using eight independent variables that contributed to the principal components. Those dimensionless variables

were the relative water depth (h/D), Keulegan-Carpenter number (K Coq), mobility parameter (849/6.,), Reynolds
number (Reqq), Froude number (Fryg), relative sediment size (dSU/D), flow intensity ((U/U )og), and the relative
cr

scour depth (S/D). Following this, the data was organized into a matrix, with each row representing a specific
OWES and each column representing a selected dimensionless variable. All the variables were extracted as
representative values specific to the OWES, with the focus on the 99th percentile to capture extreme hydrodynamic
conditions. Scour processes are more likely to occur in these extreme conditions because maximum scour depth
usually develops during storm-induced events, rather than under mean or median values. Subsequently, the
variables were standardised to ensure the comparability of the results.

In some studies, the PCA is used for reducing the number of dimensions (Harasti, 2022), or to help develop
predictive models grouped by soil classes (Annad, 2023). However, the aim of this study was to keep all the
principal components. This approach enabled the full exploration of the interdependence between physical drivers
and scour response across sites. To interpret the relationships among the variables, a principal component analysis
biplot was generated (Gabriel etal., 1971). In the biplot, variables are represented as vectors, and the angle between
vectors indicates the degree of correlation. The strength of the correlation was quantified using the cosine of the
angle (Jolliffe & Cadima, 2016), enabling us to assess the strength of association between each variable and scour
variability across different OWFs sites. Similar to previous studies that applied PCA for parameter selection in
bridge pier or scour formula development (Harasti, 2022; Annad, 2023), this multivariate analysis provides a

clearer understanding of which parameters dominate the scour process under real offshore conditions
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An additional approach to reducing the complexity of multivariate datasets is to initially group the data based on
a selected key variable. Accordingly, the PCA was also applied to the dataset after it had been grouped by grain
size (dg, diameter) classes (Annad et al., 2021), given that the sediment characteristics of the seabed play a
significant role in local scour (Qi et al., 2016). This approach facilitated a more precise estimation of local scour,

thereby reducing uncertainties related to sediment.

3 Results

3.1 Spatial distribution of relative scour depth

To illustrate the variability in relative scour depth between the nine studied OWFs and within single OWFs, Figure
3 shows the spatial distribution of relative scour depth. There are clear differences between OWFs in both the
magnitude and variability of relative scour depth. For example, at OWF Robin Rigg (Figure 3.A), the highest
relative scour depth were identified, the values range from S/D=0.29 to S/D=2.49. This OWF is characterised by
fine and medium sands. In contrast, the smallest relative scour depth occurred at the OWF of Lynn and Inner
Dowsing (Figure 3.F), with values from S/D=0.12 to §/D=0.92, which is possibly linked to coarse sands presented
at this site. Furthermore, the highest variability (c = 0.44) in relative scour depth were detected at OWF London
Array (Figure 3.H) and Barrow (Figure 3.B), likely influenced by the complex seabed morphologies and sediment
compositions in these areas. On the other hand, the significant variability at London Array may be explained by
the presence of the Long Sand and Kentish Knock sandbank. This illustrates how different site characteristics can
result in various scour distributions, even within a single OWF.

The remaining OWFs showed relatively low relative scour depth and little spatial variability, even though site
conditions were significantly different, as indicated by their seabed conditions from very fine sand for Teesside

(Figure 3.C) to coarse and very coarse gravel for Humber Gateway (Figure 3. D).
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Figure 3: Spatial distribution of relative scour depth at the nine studied OWFs. Letters (A-1) denote the

locations of Robin Rigg, Barrow, Teesside, Humber Gateway, Lincs, Lynn and Inner Dowsing, Greater

Gabbard, London Array, and Gunfleet Sands OWFs, respectively. The upper colourmap represents water

depth, with darker shades indicating deeper water. The lower colourmap indicates relative scour depth,

with darker blue colour indicating the largest scour. Black filled squares represent OWES with scour

protection, while empty circles denote missing data. Shown bathymetry data originates from EMODNET

3.2 Principal Component Analysis (PCA)
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The analysis of Figure 3 reveals notable variations in relative scour depth across individual OWFs. This variance
underscores the need for a more detailed examination of specific wind farm characteristics to identify the drivers
of scour. To this end, a PCA was conducted to correlate relative scour depth and selected parameters by identifying
and quantifying their relationships. The PCA biplot presented in Figure 4 illustrates these correlations between
relative scour depth and the studied variables and provides a comprehensive view of how different factors interact

and influence relative scour depth.

a) b)
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Figure 4: a) PCA biplot, illustrating the correlation between variables and relative scour depth. b) The table
detailing the angles between the relative scour depth and the other variables (in degrees), along with the
magnitude cosine-based correlation (values from 0 to 1), where values closer to 1 indicates stronger
correlation. Boldface highlights the variables with the strongest correlation with relative scour depth.

As shown in the biplot, PC1 and PC2 account for 73.29% of the variation in the data set. This high percentage
indicates that these two components capture most of the significant patterns in the data, allowing for a meaningful
interpretation of the relationships among the variables. In the biplot, each vector stands for a variable, with the
direction and magnitude of the vector reflecting its contribution to the principal components. The variables that
contribute the most to the variance in PC1 are the mobility parameter, the Froude number, and Keulegan Carpenter
number, with shares of 0.49, 0.43, and 0.39, respectively. In contrast, the variance in PC2 is primarily explained
by the pile Reynolds number, the relative water depth and the Froude number, with shares of 0.68, -0.34, and 0.33,
respectively. This significant contribution of the mobility parameter, the Froude number, and the Keulegan
Carpenter number to PC1 suggests that variations in these hydrodynamic parameters are critical in shaping the
principal dynamics of the dataset. The table (Fig. 4b) next to the biplot provides further insight by showing the
angular distances between the S/D vector and each of the other variables, as well as their respective correlation
coefficients. One of the key observations is that the relative scour depth has the strongest negative correlation of
0.99 with the relative grain size. This highlights the critical influence of sediment size on scouring processes, even
though it does not account for much of the variance captured by the first two principal components. This
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observation can be explained by the underlying physical processes that affect scour depths. As noted by
Whitehouse (2010) for non-cohesive sediments, larger sediment sizes are more resistant to erosion, resulting in
reduced scour depths. Therefore, while relative grain size is strongly correlated with scour depths, it does not
explain the broader variability in the data that is influenced by other factors. The next strongest correlation is with
the relative water depth with a correlation factor of 0.97, which underscores the critical role of water depth in
governing scour intensity. Shallower relative depths concentrate flow energy at the bed, intensifying near-bed
velocities and shear stresses that promote deeper scour holes (Smith & McLean, 1977; Whitehouse, 2010).
Furthermore, a significant positive correlation was found with the Keulegan-Carpenter number with a correlation
factor of 0.72, indicating the importance of oscillatory flow conditions in scour development. Higher Keulegan
Carpenter number directly leads to higher relative scour depth (Sumer and Fredsoe, 2002). This is driven by the
onset of the horseshoe vortex and lee-wake eddy shedding (Sumer et al., 1992b; Zanke et al., 2011), with increased
permanence of the horseshoe vortex and amplification of bed shear stresses at higher KC values (Sumer et al.,
1997). In addition, the mobility parameter exhibits a strong positive correlation (0.70) with the relative scour depth.
The mobility parameter quantifies the instantaneous capacity of the flow to exceed the entrainment threshold,
driving rapid sediment entrainment when significantly above unity (Soulsby, 1997; van Rijn, 1993). Variables
such as the pile Reynolds number, the flow intensity, and the Froude number, although less correlated with relative
scour depth, contribute more to the total variance. This suggests that these flow-related variables influence relative
scour depth through more complex or non-linear interactions with other hydrodynamic conditions and sediment
characteristics.

Given that the initial PCA analysis indicates the strongest negative correlation between the relative grain size and
relative scour depth, and since seabed sediment characteristics play a significant role to local scour (Qi et al.,
2016), the PCA was applied again to the same dataset but pre-clustered into different soil classes (Annad et al.
2021). By reducing the uncertainties related to grain size (ds,), this analysis should provide a better estimation of
the local scour. This classification also facilitates the identification of parameters that are more influential in
estimating scour for specific soil classes, rather than uniformly across different types. After the clustering, six soil
classes were obtained: cohesive sediment (ds, <63 um) with 5 data points, fine sand (63 < dg, < 200 um) with
203 data points, medium sand (200 < ds, < 630 um) with 249 data points, coarse sand (630 < ds, < 2000 um)
with 170 data points, fine gravel (2000 < ds, < 6300 um) with 18 data points, and medium gravel (ds, = 6300
um) with 49 data points.

3.3 Principal Component Analysis (PCA) by clustered soil classes
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Figure 5: PCA correlation by clustered soil classes based in the grain size (ds,), remaining parameters that
are shown in the biplots are explained in data description (section 2.2). a) Cohesive sediment (dgo <63 um).
b) Fine sand (63 < d5y < 200 um). ¢) Medium sand (200 < dj, < 630 um). d) Coarse sand (630 < dgy <
2000 um). e) Fine gravel (2000 < d5q < 6300 um). f) Medium gravel (ds, = 6300 um). Clustering of the
grain size (dso) was based on Annad et al. (2021).

Building on the initial PCA analysis, which emphasized the significant influence of grain size on relative scour
depth, a more detailed investigation was conducted by categorizing the dataset into six soil classes: cohesive
sediment (ds, < 63 um) with 5 data points, fine sand (63 < ds, < 200 um) with 203 data points, medium sand
(200 < dgo < 630 pwm) with 249 data points, coarse sand (630 < ds, < 2000 um) with 170 data points, fine gravel
(2000 < dg, < 6300 pm) with 18 data points, and medium gravel (ds, = 6300 um) with 49 data points.

Figure 5 shows PCA biplots for each soil class illustrating the relationships between relative scour depth the
relative water depth, the Keulegan-Carpenter number, the mobility parameter, the pile Reynolds number, the flow
intensity and the Froude number. The first two principal components (PC1 and PC2) explain between 82 % and
99% of the variance within each class, thus describing more of the variance in comparison to when the PCA was
applied to all data. Data complexity seems to be greatly reduced by just removing the effect of sediment. In the
cohesive sediment soil class (Figure 5a), relative scour depth is positively correlated with the mobility parameter.
However, the calculation of the mobility parameter might contain larger uncertainties for cohesive soils (Soulsby,
1997), so the results should be treated with caution.

In contrast, relative water depth has a strong negative correlation with relative scour depth in fine sand (Figure 5b)

and medium sand (Figure 5c). This indicates that as relative water depth increases, relative scour depth tends to
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decrease in these finer soil classes. From a physical view, Melling (2015) found out that in similar substrates,
relative scour depth agree well between different geographic locations and showed that OWES located in sandy
sediments exhibit a strong influence of relative water depth on scour, suggesting geotechnical factors are less
influential in coarser sediments. Although the observation that relative scour depth decreases as relative water
depth increases might initially seem counterintuitive. This behaviour is best explained through the transition
between shallow-water and deep-water flow regimes. As flow approaches a pile, stagnation pressure develops on
its upstream face, causing the flow to separate into an up-flow and a down-flow component. The down-flow is
directed toward the bed and promotes the formation of a horseshoe vortex. Flow separation occurs at the stagnation
point, defined as the location of maximum energy from the approaching flow at the pile face. The energy of the
approach flow consists of hydrostatic and kinetic components, whose vertical distribution is governed by the
boundary layer. In shallow water, the kinetic component dominates over hydrostatic pressure, resulting in a
stagnation point located higher up the pile, near the water surface. This enhances down-flow and vortex activity,
intensifying scour processes (Melville, 2008). Additionally, shallower water often features thinner boundary layers
with higher velocity gradients near the seabed, potentially leading to greater bed shear stresses and increased
sediment mobility. In contrast, in deeper water, hydrostatic pressure becomes more influential, leading to a more
uniform pressure field across the pile face and shifting the stagnation point closer to the bed. This results in weaker
down-flow and reduced vortex strength, thereby diminishing the scour depth (FHWA, 2012; Harris & Whitehouse,
2014). Furthermore, Link and Zanke (2004) observed that maximum relative scour depth tends to develop more
slowly and reach lower values in deeper water depth, even under constant average flow velocity, due to reduced
shear velocity over the undisturbed bed. This highlights that the relationship between relative water depth and
scour is not necessarily linear.

The dynamics observed in coarse sand (Figure 5d) and fine gravel (Figure 5e) are different from the finer
sediments. In these classes, the flow intensity and the Froude number show significant negative correlations with
relative scour depth, indicating that higher values of these parameters correspond to reduced relative scour depth.
However, these soil classes are also characterised by comparatively small relative scour depth, which makes the
relationship less prominent.

For medium gravel (Figure 5f), relative water depth has a positive correlation with relative scour depth, meaning
that greater relative water depth is associated with greater relative scour depth in coarser sediments. The data points
in the cluster can be attributed to the Humber Gateway OWF, which is the only OWF that features clear-water
conditions. Given the large grain sizes, a smaller influence of flow parameters on the variability of relative scour

depth should be expected.
3.4 Correlation of scour depth with main drivers

Following the PCA (Figure 5), which identified the primary variables influencing relative scour depth across soil
classes, a Pearson correlation analysis was performed to quantify the strength and direction of these relationships.
Figure 6 shows the Pearson correlation results for each cluster and the variable with the strongest correlation, with
the red lines representing the linear regression fit and the correlation coefficients shown in red text. The Pearson
correlation was calculated by the following equation:
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Considering the small number of data points in this sediment cluster, relative scour depth at locations with cohesive
sediments (Fig. 6a) shows a moderate correlation between scour with the mobility parameter. For the fine and
medium sand clusters, the PCA revealed a similarly strong dependence of relative scour depth on relative water
depth. Plotting relative scour depth against relative water depth now shows a clearer correlation and hence
dependence for the medium sand sites (Fig. 6c) than for the fine sand sites (Fig. 6b). The Pearson coefficients of -
0.57 and -0.86 confirm this difference in the dependence of relative scour depth on relative water depth. The
correlations of the fine and medium sand clusters are supported by a larger number of data points, increasing the

reliability of the findings.
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Figure 6: Pearson correlation of representative variables obtained by PCA analysis with relative scour
depth across different soil classes. a) Cohesive sediment (ds, < 63 um). b) Fine sand (63 < d5¢ < 200 um).
¢) Medium sand (200 < dg < 630 um). d) Coarse sand (630 < dgo < 2000 um). e) Fine gravel (2000 <
dso < 6300 um). f) Medium gravel (dg, = 6300 um).

For the coarse sand (Figure 6d), the PCA analysis revealed a negative correlation between relative scour depth and
flow intensity. This result directly aligns with the established understanding of live-bed scour behaviour in coarse-
grained sediments. Once flow intensity surpasses the critical threshold ((U/Ucr)99 >1), the sediment mobilizes,
establishing live-bed conditions. In such scenarios, the development of large, well-defined scour holes is
consistently observed to be suppressed. This suppression occurs because the continuous transport and
replenishment of sediment into the scour region actively works against deep erosion. This dynamic equilibrium of

the seabed results in shallower, or inherently more unstable, scour holes when compared to clear-water conditions.
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In clear-water, where sediment remains immobile, scouring is driven purely by flow-induced vortex action around
the structure (Sumer & Fredsge, 2002; Whitehouse et al., 2011). Consequently, the negative correlation observed
in this soil class accurately reflects the inherent limitation of scour growth under the highly mobile conditions
characteristic of coarse sandy beds.

For fine gravel (Figure 6e), the PCA suggests a correlation between relative scour depth and the Froude number,
but this is difficult to confirm visually due to the small sample size and narrow Froude number range. Since relative
scour depth is comparatively small in this class, relationships are less clear, and parameters like Froude number
come to the foreground that were not as prominent in finer sediments. A broader distribution of Froude
number values would be necessary to confirm this more conclusively.

Finally, medium gravel (Figure 6f) displays a positive correlation between relative scour depth and relative water
depth, with a Pearson coefficient of 0.36. This indicates that larger relative water depth correspond to increased
scour depth, although the range of this increment remains small (between S/D = 0.1 and S/= 0.4). This variation
in scour depth is small compared to the correlations observed in fine and medium sands, where changes in relative
water depth yield more pronounced differences in relative scour depth. The smaller impact in medium gravel may
be attributed to the generally greater resistance of larger sediments to scour, even with increasing relative water
depth.

The most significant correlations emerge from the fine sand (Figure 6b) and medium sand (Figure 6c), where
strong negative correlations between relative scour depth and relative water depth are observed. This suggests that
significant scour occurs in shallower waters with finer sediments. Such findings highlight the importance of
relative water depth as a key factor influencing scour processes in specific sediment types, emphasizing that scour
management and predictions for offshore structures should take sediment characteristics and relative water depth
into account. These results are consistent with the studies from Melling (2015) and Harris and Whitehouse (2014),
which also show a decrease in relative scour depth in finer sediments as relative water depth increase. This negative
correlation can be explained by the reduction in bed shear stress with increasing relative water depth, which limits
sediment mobilization, particularly in fine and medium sands (Sumer & Fredsge, 2002; Fredsge & Sumer, 2014).
However, those results disagree with experimental work where scour around a monopile weakens with reducing
relative water depth (e.g. May and Willoughby, 1990; Whitehouse, 1998). Consequently, relative water depth is
included as a parameter in many empirical formulas, especially in for scour around bridge piles with limited water
depth (eg., Laursen, 1963; Hancu, 1971; Breusers et al., 1977; May and Willoughby, 1990; Richardson et al.,
2001). Besides that, these insights from field data are critical for the accurate assessment and planning of offshore

infrastructure installations, particularly in regions with varying sediment characteristics.
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Figure 7: Relative scour depth vs relative water depth, and soil classes. The solid red curve represents a
rational polynomial fit to the 99th percentile of relative scour depth. Data points for London Array and
Thanet OWFs are included from Melling (2015).

Figure 7 summarizes the findings from the PCA analysis (Figure 4) by plotting the relationship between the relative
scour depth and the relative water depth. Relative water depth has shown to be the one of the parameters with the
largest correlation influencing relative scour depth. However, it should be noted that relative water depth has a
direct effect on other hydrodynamic parameters. For example, not only is the Froude number formed with the
water depth, but relative water depth also significantly determines the potential influence of waves on the
development of scour, which in this study has also been considered by the Keulegan—Carpenter number. Therefore,
it remains unclear whether the influence of relative water depth on relative scour depth is a direct causal factor or
an indicator of broader changes in hydrodynamic conditions. Nevertheless, Figure 7 illustrates the comprehensive
correlation between the relative scour depth and the relative water depth with different markers (colour and shape)
representing the studied soils classes. The solid red curve shows a correlation between relative scour depths across
all relative water depths, independent of sediment class. This curve was systematically developed by fitting a
rational polynomial function to the 99th percentile values of relative scour depth, computed within uniform relative
water depth intervals (e.g., 0.1).

The correlation observed in Figures 6b and 6c¢ is reaffirmed in Figure 7. A distinct relationship exists between the
relative scour depth and relative water depth in these two sediment types, i.e. both fine sand (63 < ds, < 200 um)
and medium sand (200 < ds, < 630 um) show that the relative scour depth decreases with increasing relative

water depth. This correlation appearing throughout the bigger dataset emphasizes a strong negative correlation

21



494
495
496
497
498
499
500
501
502
503
504
505
506
507

508
509

510
511
512
513
514

between relative water depth and relative scour depth for those soil classes. This behaviour is consistent with
findings from previous analyses that identified relative water depth as a critical factor in shaping scour dynamics
(Whitehouse et al., 2010 and Melling, 2015).

In contrast, for sediments with median grain diameters above coarse sands (ds, > 630 um) the relative scour depth
remains relatively constant and shows little variability. Figure 7 suggests a generally stable relationship between
relative scour depth and relative water depth for these soil classes, where changes in relative water depth do not
significantly alter relative scour depth. However, there are a few exceptions. For example, some locations with
coarse sand located in deeper water exhibit unexpectedly large relative scour depth. These outliers might stem
from site-specific conditions such as dynamic sandbanks and highly variable bathymetry, as seen at the London
Array OWF (Sturt et al., 2009). These unique environments, characterised by flow recirculation and sediment
mobility, can lead to deviations from expected scour behaviour (Melling, 2015). The results for fine and medium
sands suggest a potential influence of relative water depth in reducing relative scour depth. Although these results
are preliminary, they provide a first step in understanding how offshore wind OWES could affect sediment

redistribution in regions dominated by these sediment types and small relative water depth.
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Figure 8: Relative scour depth against (a) the relative grain size, and (b) grain size. The solid red curves
represent the rational polynomial line fits to the 99th percentile of relative scour depth, for various relative
grain size and grain size .Data points for London Array and Thanet OWFs are included from Melling
(2015).

Figure 8a summarizes the findings from the PCA analysis (Figure 4) by plotting the relationship between the

relative scour depth and relative grain size across all the sampled locations. Figure 8b is also shown here to support
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figure 8a by representing the data in terms of the grain size, allowing the comparison of dimensional and non-
dimensional relative grain size. Figures 8a and 8b illustrate a discernible correlation where the largest relative
scour depth occurs predominantly in fine to medium sands, as indicated by the rational polynomial line which
approximates the upper limit of relative scour depth for various relative grain size (Figure 8a) and grain size (Figure
8b). Similar to the correlation presented in Figure 7, this curve approximate upper limit of S/D and it was derived
by fitting a rational polynomial function to the 99th percentile values of relative scour depth, computed within
uniform interval of relative grain size (e.g., 0.00001) and grain size (e.g., 25 um). The correlation shown in figures
8a and 8b are well explained. In general, the mobility potential of the sediments decreases with increasing grain
size, which leads to lower relative scour depth for coarser sediments. Very fine sediments, on the other hand, are
subject to the influence of cohesion forces that reduce their erodibility, which also leads to lower relative scour
depth. Therefore, fine and medium sandy sediments have the largest scour potential, which is reflected in the data
of Fig. 8b. The different symbols represent the OWF, highlighting the geographic spread and variability within the
dataset. However, it is important to note that most of the data points fall within the range of fine to medium sands,

potentially skewing the interpretation.

a)

“]“

S/D

S/D

a0 /0
e Cohesive sediment < 63 pm v Fine gravel 2000 < d-y < 6300 um
« Fine sand 63 < d;y < 200 ym Medinm gravel dsy = 6300 pn
¢ Medinm sand 200 < dyy < 630 gm —— Power fit line
+  Coarse sand 630 < dyg < 2000 pm

Figure 9: Relative scour depth against the a) Keulegan-Carpenter number and b) the mobility parameter.
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The red line gives the power fit line based on the 99th percentile of the data of relative scour depth for

various grain size. Data points for London Array and Thanet OWFs are included from Melling (2015).

The third and fourth parameters, that correlate with the relative scour depth, are the Keulegan-Carpenter number
and the mobility parameter as identified by the PCA. Figure 9a shows the correlation between the relative scour
depth and the Keulegan-Carpenter number, revealing a distinct increase of relative scour depth with increasing
Keulegan-Carpenter number up to KCqq = 0.5. Above this value, relative scour depth shows little variation with
further increase of the Keulegan-Carpenter number, which reaches a maximum value of 2.5 in this field dataset.
Those results are generally consistent with findings from previous studies (e.g., Qu et al., 2024; Sumer & Fredsge,
2002), which indicate that scour development is strongly dependent on KCyq at lower values, but becomes less
sensitive as KCqq increases. However, experimental studies often focus on wave regimes with KC numbers greater
than 6, since it has been established that this is the threshold for generating a horseshoe vortex. Despite considering
the 99th percentile of KC numbers over the time period in question, the KC numbers are much smaller for the field
conditions presented herein. This strengthens the argument for further scour research to focus on boundary
conditions with low KC values.

Figure 9b shows the correlation between relative scour depth and mobility parameter, comparing the Shields
parameter with its critical threshold for sediment motion, and revealing a distinct increase of relative scour depth
with increasing mobility parameter up to approximately 644/6.,.= 5. At higher mobility values (typically above 5—
10), the increase in scour depth tends to stabilize. This correlation aligns with experimental observations from
Sumer et al. (2013), Chiew (1984), and others, which describe similar stabilization of scour depth under fully
mobile conditions. Notably, the response also varies with sediment type: coarser sediments exhibit low relative
scour depth values even at high mobility ratios, likely due to their higher resistance to entrainment and potential
armoring effects. In contrast, finer sediments (e.g., ds, < 200 um) show a steeper increase in scour depth,
reflecting their greater susceptibility to hydrodynamic conditions.

Overall, Figure 9a and 9b emphasize the nonlinear and sediment-dependent nature of scour formation. The
separation of correlations by soil class supports the need for sediment-specific scour prediction models, as also
suggested in previous studies (e.g., Whitehouse et al., 2011; Sumer & Fredsge, 2002). The results provide empirical
evidence of this dependency using field-scale data, bridging a critical gap between controlled experiments and

real-world conditions.
3.5 Detailed analysis of scour patterns for selected OWFs

Following the observed overall correlation shown in Figure 7, this section moves on to examine scour patterns
within individual OWFs, such as Robin Rigg, Lynn and Inner Dowsing, and London Array. This specific analysis
will assess whether the global relationship between relative scour depth ds,, and relative water depth holds under
the unique environmental conditions of each site. This section aims to further our understanding of the dynamics
between sediment characteristics and scour processes by a detailed analysis of the variation within each wind farm
to determine if these global correlations are consistent at the local scale or if there are deviations due to site-specific

factors.

3.5.1 Robin Rigg OWF

Robin Rigg is presented and discussed in this section, as this OWF has the largest overall relative scour depth of
all the OWFs. This detailed analysis will help to investigate whether the negative correlation between relative
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scour depth and relative water depth observed globally in Figure 7 holds true under variable geotechnical
conditions, taking into account that sediment grain sizes range from fine to medium sands.

Figure 10 shows the distribution of relative scour depth at Robin Rigg in relation to the variable geotechnical and
hydrodynamic site conditions. This sequence begins with Figure 9A, showing the spatial distribution of scours
measured one year after turbine installation. A significant variation in relative scour depth in different areas of the
OWEF can be observed, with the deeper relative scour depth mainly located in the north-eastern part, particularly
around OWES D7, C6, B5 and B4, which are located in the shallowest waters. Figure 10B shows the spatial
distribution of the median grain diameter dg, in the uppermost sediment layer in 2005, with sediment sizes
predominantly in the range of fine to middle sand (182 um to 268 um). OWES in areas with finer sands, such as
D4, D5, and D6, are observed to generally experience the large scour, consistent with previous observations by
Whitehouse (2006) that finer sand substrates are more susceptible to scour.

Figure 10C shows the correlation of relative scour depth and relative water depth, classified by coloured points
which represent sediment grain size from figure 9B. Contrary to the clear negative correlation between relative
scour depth and relative water depth observed globally in Figure 8, Figure 10C shows a wide distribution of data
points with no clear correlation, suggesting that local factors in addition to relative water depth and sediment type
have an influence on scour at this site.

For additional insight, Figures 10D and 10E show the distribution of the directions of significant wave heights, as
well as the directions of current velocity magnitudes one-year period, prior the post scan. The highest wave heights
came predominantly from the southwest, which should influence sediment mobility and thus scour structures along
this direction and especially in shallow relative water depth where wave-induced shear stresses should be higher.
Similarly, the tidal current, with its main directions of south-west and north-east, should result in a change in
relative scour depth along this main axis. However, a clear correlation of relative scour depth changing in this

direction is not given for Robin Rigg.
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Figure 10: A) Spatial distribution of relative scour depth from 2008-2009 at Robin Rigg OWF. B) Grain-
size distribution. C) Relative scour depth vs relative water depth, and grain size classification. D) Significant
wave heights and E) Current velocities.

This comprehensive analysis using Figures 10A to 10E shows that while correlations obtained from global findings
provide a useful baseline for understanding scour, the actual scour observed at Robin Rigg does not necessarily
follow those correlations. While the distribution of relative scour depth appears to be strongly influenced by local
environmental conditions such as sediment type, waves and currents, the dominant influence among these cannot
be clearly identified, rather the distribution of relative scour depth appears to be due to the interaction of all
influences.
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The discrepancies between the local scour behaviour at Robin Rigg and the broader correlations observed in Figure
7 underscore the need for site-specific assessments. Such detailed analyses are critical to the development of

effective scour management and mitigation strategies tailored to the unique conditions of each offshore wind farm.
3.5.2 Lynn and Inner Dowsing OWF

Lynn and Inner Dowsing was chosen as a further example as this OWF had the lowest relative scour depth of all
the OWFs investigated and is also characterised by coarse to very coarse sands. Figure 11 provides the same
analysis as Figure 10 by providing insight into how local conditions compare to the global correlation seen in
Figure 7. Figure 10A shows the spatial distribution of relative scour depth measured from 2007 to 2010. Figure
11A shows that the largest relative scour depth are mainly concentrated in the Inner Dowsing area, especially
around OWES ID1, ID2, ID8, ID9, 1D12, ID24, and 1D30. Except for turbine L21, which has the deepest relative
scour depth in the entire wind farm and which is located at the south-eastern end. The significant relative scour
depth observed at certain locations (e.g., D30, L21) are related to cable exposure (EGS Ltd, 2012; EGS Ltd, 2013),
while smaller relative scour depth are more common in the southern region. Overall, the spatial distribution shows
a slight correlation of increasing relative scour depth from south to north.

27



617

618
619
620
621
622
623

327500 330000 332500
e
r =Y
®e
e®
2.5 3
h/D
| . - ".. ’.__-
apse0 (West o @ East poim)
\ \ 2 ¢ . W3.00-3.75
£:2-390
30%  @0.75-1.50
J0.00-0.75

East Velocrty [mi/s]

m1.60-2.00
% /. miZ0-1e0
45%  @0.40 - 0.80
[J0.00 - 0.40
Easting
Water depth Scour depth Grain size
|m below MSL| (S/D) dgy (um)
High: 30 High: 1.0 @ 1437-1951
: :3(:2 l‘;g; I Scour protection
236-1
® 102.1236 O Nedaa
@ 1138-1202
1087 - 1138
1046 - 1087
Low:0 Low:0.1 0695 - 1046

Figure 11: A) Spatial distribution of relative scour depth at Lynn and Inner Dowsing OWF from 2007-2010.

B) Grain-size distribution. C) Relative scour depth vs relative water depth, and grain size classification. D)

Significant wave heights and E) Current velocities.

Continuing with the spatial overview, Figure 11B introduces the spatial distribution of dg, median grain sizes,

which shows a range from coarse to very coarse sands (695 to 1951 um). The correlation between relative scour

depth and relative water depth is examined in Figure 11C. Similar to Robin Rigg, this OWF does not display the
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negative correlation as seen globally in Figure 7, suggesting that additional local factors may significantly
influence relative scour depth.

Consequently, the significant wave heights and current velocities from hindcast data are shown in Figure 10D and
10E. The highest wave heights, observed from the northeast, and strong tidal currents flowing from southwest to
northeast, highlight the dynamic environmental forces at play. The presence of the largest relative scour depth in
the Inner Dowsing area align with the direction of the highest tidal current velocities (Fig. 11E) recorded in the
northeast part, as well the main direction of waves. Therefore, the direction of both tidal current and waves likely
play a significant role for the scour development in this wind farms, as the seabed conditions and relative water

depth locally do not exhibit a distinct correlation.

3.5.3 London Array OWF

Following the previous results, the analysis for London Array OWF shows a wide range of relative scour depth
fromS/D = 0.2 to S/D = 2.1. This variability differs markedly from the consistently larger relative scour depth
observed at Robin Rigg and the limited maximum depth of up to S/D = 1.0 at Lynn and Inner Dowsing. "The
area of London Array OWF is characterised by an alternating pattern of deep channels (Black Deep, Knock Deep)
and sandbanks (Long Sands, Kentish Knock). These topographic features significantly contribute to the local scour
patterns. Water depth at this site range from 0 to 30 m, with Long Sands known for its significant variations in bed
elevation but general stability of position. Meanwhile, Knock Deep is notable for its eastward shift over time,

which has widened the channel and maintained a constant bed level.
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In Figure 12A, the distribution of relative scour depth shows that the variation in scour is strongly influenced by
the underlying topography, with significantly greater relative scour depth on the sand banks compared to the
channel. Additionally, a correlation of increasing relative scour depth is observed from northeast to southwest,
which is particularly notable in the channel area. The smallest scour is observed in the northern part of Knock
Deep with a ratio of S/D = 0.2 and the largest in the southern part of Long Sands with S/D = 2.1. The differences
in relative scour depth can be derived directly from the seabed topography, with greatest average relative scour
depth found in the Long Sands with S/D = 1.53, followed by Kentish Knock (S/D = 1.37), and then Knock Deep
(S/D =0.77) with the smallest average. The sediment distribution across this OWF, shown in Figures 12B, ranges
from very fine to coarse sands. Coarse sands can be found in Knock Deep, where generally the smallest relative
scour depth are seen (e.g., L11, J10 and J11). Furthermore, the largest relative scour depth are noticed in the
southern part of Long Sands (e.g. A13-A15, D15-D19, J18 and L18), where the sediment varies from very fine to
fine medium sands. There is therefore a reasonable correlation between grain size and relative scour depth, which
is consistent with the previously observed global correlation. Additionally, Figures 12C shows a negative
correlation between relative scour depth and relative water depth aligning with the global correlation observed in
Figure 7, i.e. that shallower relative water depth can be associated with deeper scour, while deeper waters tend to
have reduced relative scour depth. This correlation may be explained by the findings of Hjort (1975), who
demonstrated that bed shear stress decreases with increasing relative water depth for the same flow and structure
diameter, potentially leading to reduced scour at greater depth. However, as the relative water depth in the London
Array OWF changes simultaneously with the sediments, i.e. coarser grained sediments are present in the deeper
water depth of Knock Deep, the cause of the different relative scour depth cannot be clearly attributed to either the
sediments or the water depth. Other hydrodynamic, environmental, and topographic factors also play a critical role
in shaping these patterns at this OWF, underscoring the complexity of the influences involved.

Significant wave heights and current velocities, as shown in figures 12D and 12E, provide important insights into
the scour dynamics at the London Array. These figures show that, in addition to relative water depth and sediment
grain sizes, wave and current dynamics might be critical factors at this wind farm. The predominant direction of
both waves and currents is northeast to southwest, consistent with the estuarine influence of the area, where river
discharge also significantly affects hydrodynamic conditions. This influence is particularly evident at the Long
Sands and Kentish Knock sandbanks, which are shaped by the combined action of waves and currents (London
Array Ltd, 2005).

Figures 12D shows that the highest wave heights are observed coming from the northeast, with values exceeding
3.0 m, and lower wave heights propagating from the southwest. This gradient in wave height suggests a correlation
with increased relative scour depth in regions exposed to higher wave energy, suggesting a strong link between
wave dynamics and seabed modification. However, estimated KCqq numbers remained relatively low across most
sites, indicating limited wave-induced orbital motion near the seabed. This suggests that wave action plays a
secondary role in scour development compared to currents. Similarly, Figure 12E highlights a larger number of
strong currents coming from the southeast. These higher velocities correspond to areas with more pronounced
relative scour depth, highlighting the role of strong currents in influencing sediment transport and depositional
patterns.

In addition, the local tidal dynamics vary significantly across the wind farm, with the flood tide dominating the
southern banks and the ebb tide more influential on the northern banks (Kenyon and Cooper, 2005). This variation

is due to the sheltering effect of the sandbanks, which are slightly offset from the orientation of the ebb tide, and
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is particularly pronounced at Long Sands (London Array Ltd, 2005). The interplay of river discharge, wind stress,
tidal surge and density driven currents follow the pathways created by the existing topography, further
complicating the hydrodynamic environment and its effect on scour at the London Array OWF.

After analysing the relative scour depth at 9 wind farms and with different ranges of relative scour depth, the

variation of relative scour depth can also be noticed in individual OWFs, as in the case for London Array OWF.
4. Discussion

4.1 Implications for scour predictions for OWFs

Overall, this study extends the investigation of scour dynamics to a regional scale by analysing correlations
between relative scour depth and site conditions across multiple OWFs to identify consistent scour patterns and
correlations. The PCA analysis highlights a significant negative correlation between relative scour depth with
relative water depth, suggesting that relative water depth plays a critical role in scour processes, confirming the
correlations observed with previous Whitehouse et al. (2010) and Melling (2015) for field data. The decrease of
the relative scour depth with decreasing relative water depth seems unexpected and contradicts common scour
prediction approaches such as Breusers et al. (1977), which however are often derived for flow conditions with
shallow relative water depth. Harris and Whitehouse (2014) argued that in deeper water, a weaker downflow and
hence a weaker horseshoe vortex can be expected, ultimately leading to smaller scour depth. This finding implies
that scour prediction approaches should place greater emphasis on relative water depth, particularly in offshore
environments where deeper flow conditions dominate.

A second notable correlation was identified between the relative scour depth with the relative grain size. This
broad correlation, consistent across different geographic locations and environmental conditions, reinforces the
fundamental role of sediment size in scour processes, as documented in the extensive work of Vanhellemont et al.
(2014) and Rivier et al. (2016).

However, the analysis also indicates that the sediment erodibility alone cannot fully account for the observed
variability in relative scour depth. The PCA analysis further reveals a positive correlation between the relative
scour depth and both the Keulegan Carpenter number and the sediment mobility parameter. The strong positive
correlation with KCqq supports previous studies (Sumer and Fredsoe, 2001; Qu, 2024), highlighting the importance
of flow unsteadiness that is typical in tidal and wave-dominated environments. Similarly, the positive association
with the mobility parameter underscores its relevance as a key indicator of sediment entrainment and a useful
metric for distinguishing between different sediment transport regimes.

These findings underscore a complex dynamic that is frequently oversimplified in existing models. The results
indicate a necessity to incorporate nonlinear hydrodynamic models into scour prediction frameworks. The results
of the PCA reveal the necessity for a diversified approach to the modelling of scour in complex field conditions,
which extends beyond the scope of traditional uniform applications.

This analysis demonstrates that individual OWFs exhibit unique environmental and sediment conditions, which
can either amplify or moderate broader correlations. The London Array OWFs serves as a prime example of the
predictive reliability of observed regional correlations, as local data closely mirrors general correlations.
Conversely, sites such as Robin Rigg and Lynn and Inner Dowsing exhibit deviations from these correlations due
to their distinct sediment compositions and hydrodynamic conditions, underscoring the necessity for site-specific

adjustments to scour prediction models. These findings underscore the intricacy of employing global models on a
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local scale and underscore the significance of site-specific data in validating and refining these models to enhance

their accuracy and applicability.

4.2 Limitations and future research

Although this study provides a detailed analysis of relative scour depth at nine OWFs, certain limitations must be
addressed to improve the interpretation of the findings. Although the dataset spans multiple years, it represents
snapshots in time and may not fully capture the dynamic evolution of scour processes under fluctuating metocean
conditions (Matutano et al., 2013; Carpenter et al., 2016). Hindcast data, while valuable for long-term correlations,
are often based on limited spatial resolution that may underestimate short-term extreme events such as storm surges
or localized current variations (Whitehouse et al., 2010; Sturt et al., 2009).

Using PCA is effective in identifying dominant linear relationships between relative scour depth and key variables;
however, it may miss critical nonlinear interactions that drive scour processes (Schendel et al., 2020; Lyu et al.,
2021). While this study incorporates parameters such as the Keulegan-Carpenter number and the mobility
parameter, the accuracy of these parameters is limited by temporal resolution and data availability. Valuable insight
was provided into the role of hydrodynamic forcing on sediment mobility through their inclusion; however, more
detailed and site-specific input data are needed so that their predictive potential can be fully exploited (Sheppard
et al., 2004; Zhao et al., 2012).

The next step in this research is to develop data-driven models and investigate the broader implications for regional
sediment dynamics. Future studies will focus on OWFs located in fine and medium sands where significant scour
activity is observed. By focusing on these environments, we aim to improve prediction capabilities and better
understand the mechanisms that drive scour, particularly in areas that are susceptible to substantial sediment
mobilization.

Finally, while the present study focused on localized scour processes, the cumulative effects of OWF structures
on regional sediment transport and marine ecosystems remain a significant knowledge gap (Christiansen et al.,
2022; Schultze et al., 2021). Future research must employ interdisciplinary methodologies to rigorously assess the
ecological impacts of sediment mobility and scour on marine habitats. By integrating regional sediment transport
models with comprehensive ecological assessments, we can optimize offshore wind energy development to meet
both sustainability and environmental protection goals, ensuring long-term benefits for infrastructure resilience

and marine ecosystem health.

5 Conclusion

Achieving the European Union’s (EU) offshore wind energy targets requires development of OWFs in regions
with diverse and often poorly understood meteoceanic and geophysical conditions. However, this demand
underscores critical knowledge gaps regarding the interaction of these installations with the marine environment,
particularly with respect to scour processes and sediment mobilization. A comprehensive understanding of scour
dynamics is essential, not only to ensure structural integrity, but also to assess potential impacts on regional
sediment transport and broader ecosystem functions.

In this study, high-resolution bathymetry data were used to analyse field-measured relative scour depth of 460
monopiles across nine British OWFs. The analysis included a PCA in which eight hydrodynamic and geotechnical

variables were considered to identify the dominant driver influencing relative scour depth variability. This analysis
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energy goals.

Universal drivers of scour: Across all nine OWFs, the PCA the relative water depth, the relative
grain size, the Keulegan-Carpenter number and the mobility parameter as the most influential
variables governing scour depth variability. Among these, the relative water showed the strongest
correlation (Fig. 7), where greater relative scour depth occurred in shallower waters, particularly at
location with sediments composed of (63 < dg, < 200 um) and medium sand (200 < ds, < 630
um). In shallow waters the increased kinetic energy promotes stronger down-flow and vortex activity
around the pile, enhancing scour, whereas in deeper water, hydrostatic pressure dominates,
weakening these effects (Melville, 2008; FHWA, 2012), Furthermore, inclusion of the relative grain
size captures the effect of grain-pile scaling, while the Keulegan-Carpenter number and the mobility
parameter reflect the influence of flow unsteadiness and sediment mobility thresholds, reinforcing
their relevance in realistic scour prediction frameworks.

Sediment-specific correlations: In order to explore the variability within soil classes, the data set
was clustered according to dg,, and a PCA was applied to each cluster. For fine sand (63 to 200 um)
and medium sand (200 to 630 um), relative water depth was found to be the dominant driver of
relative scour depth, demonstrating the sensitivity of these sediment types to hydrodynamic forcing
in shallower relative water depth. For coarser sediments, such as coarse sands (630 to 2000 um) and
fine gravels (2000 to 6300 um), the correlations were less pronounced, reflecting a greater resistance
to scour. This sediment-specific analysis highlights the importance of considering sediment type
when assessing scour susceptibility and desighing OWFs, and how different sediment types can
influence sediment transport patterns.

Site-specific variability: Due to local factors such as sediment conditions, hydrodynamic conditions,
and topography, individual OWFs exhibited unique relative scour depth patterns. For example,
London Array (Fig. 12C) showed correlations similar to the global results (Fig. 7), with relative water
depth and site topography as the primary influences on scour, followed by current and wave
conditions. In contrast, OWFs such as Robin Rigg and Lynn and Inner Dowsing showed no
discernible correlations between relative scour depth and the key drivers obtained from the global

PCA, highlighting the need for individual analyses to account for local complexities.

This study also highlights the potential environmental impacts of scour-induced sediment transport. While the
primary focus was on identifying the physical drivers of scour, the findings could provide a first step in assessing
potential impacts of OWF on the marine environment due to a changed regional sediment mobility. The
entrainment of eroded sediment into the water column, with subsequent long-range transport, raises concerns about
sediment deposition and potential impacts on benthic habitats and marine wildlife in far-field regions. Future
research should prioritize the refinement of predictive scour models that incorporate temporal data and expanded
hydrodynamic parameters to improve accuracy in diverse sedimentary environments. In addition, integrated
approaches that combine regional sediment transport modelling with ecological assessments are critical for
evaluating the cumulative impacts of OWF facilities on marine ecosystems. These efforts will facilitate the

development of sustainable OWF designs that minimize environmental disturbance while advancing renewable
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Data availability: The data set used in this study is available in the Marine Data Exchange (MDE)
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