
Rolling contact fatigue calculation of a three-row roller pitch
bearing in a wind turbine
Oliver Menck1, Florian Schleich1, and Matthias Stammler1

1Fraunhofer Institute for Wind Energy Systems IWES, 21029 Hamburg, Germany

Correspondence: Oliver Menck (oliver.menck(at)iwes.fraunhofer.de)

Abstract. Rolling contact fatigue calculations of wind turbine pitch bearings have to consider the oscillating operation and the

complex, dynamic load distribution in the bearing. The present work proposes a methodology to calculate the life of a pitch

bearing that is a roller bearing, specifically a three-row roller bearing. Previous publications in this field have discussed the life

calculation of ball pitch bearings. Methodologies applicable to any pitch rolling bearing are partly improved upon in the present

work. Several aspects not applicable to roller bearings are re-thought. In comparison to ball bearings, the calculation of roller5

bearings adds another level of complexity, since they have a long contact which is typically discretized if strong deformation is

present, leading to significantly more degrees of freedom. Exemplary calculations are carried out using an extensively validated

FE model of a three-row roller bearing of a wind turbine. For this paper, the bearing is modified slightly. The results of the life

calculation are put in relation to an accelerated fatigue test on a pitch bearing test rig. Since some of the results can nonetheless

not be shown for reasons of confidentiality, the focus of this paper is on the methodology used.10

1 Introduction

Modern wind turbines contain a pitch bearing (also called rotor blade bearing) at the root of each rotor blade which is used

to rotate the blade along its longitudinal axis. This is used to start and stop the turbine and to control the loads acting on

it (Burton et al., 2011). While pitch bearings in older turbines mostly performed relatively little movement, newer turbines

increasingly use control mechanisms that are intended to reduce fatigue loading on various components of the turbine by15

dynamically adapting the pitch angle during operation (Bossanyi, 2003). This increases movement of the pitch bearing and

therefore decreases its rolling contact fatigue (RCF) life.

RCF is a fatigue damage type that is caused by rolling elements in a rolling bearing repeatedly moving over the raceway.

Movement of the rolling element, even without any friction, causes changes in sub surface shear stress. This shear stress,

particularly the orthogonal shear stress, is thought to be the initiating stress that causes RCF (Lundberg and Palmgren, 1947),20

though other stresses have been proposed to be the origin of RCF as well (Sadeghi et al., 2009). Cyclic changes in sub surface

stress cause inclusions or material defects to grow into larger, macroscopic spalls. These can cause failure of a bearing. Fatigue

is a stochastic phenomenon; the life of the bearing until a spall occurs can therefore only be determined for a given probability.

Industry-typical is the use of L10, which denotes the life for 90 % reliability, i.e., the operational time until which 90 % of

bearings do not have any visible spall damage on their raceways.25

1

https://doi.org/10.5194/wes-2025-53
Preprint. Discussion started: 24 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Pitch bearings can experience a number of failure mechanisms (Stammler et al., 2020). Some of these are relatively untypical

failure modes that specifically affect pitch bearings due to their unusual operational behavior, such as ring fracture, which

occurs due to the variation in external bending moment loading (Becker et al., 2022), or wear damages on the raceway, which

can be caused by the oscillatory movement patterns of the bearing (Schwack, 2020; Stammler, 2020). Rolling contact fatigue

on the other hand is a more common type of damage that can, in principle, affect any bearing in any operational scenario if the30

loads are sufficiently high and the bearing moves (rotates or oscillates) sufficiently. The calculation methods for rolling contact

fatigue are thus standardized in ISO (see ISO 281, ISO/TR 1281-1, ISO/TR 1281-2, ISO/TS 16281), although a number of other

approaches also exist in the literature. Nonetheless, for the application in wind turbine pitch bearings, a number of additional

questions arise, particularly due to the flexibility of the bearing rings, which necessitate finite element (FE) simulations, and

due to the stochastic variation in loads and movement due to the wind.35

Although there are a number of pitch bearing types that are used by different manufacturers, the most common type is

probably the double-row four-point bearing. Publications on pitch bearings reflect this fact as the vast majority of them cover

double-row four-point bearings, see for instance (Schwack et al., 2016b, a; Stammler et al., 2018; Lopez et al., 2019; Menck

et al., 2020; Leupold et al., 2021; Menck et al., 2022; Keller, Jonathan and Guo, Yi; Graßmann et al., 2023; Menck, 2023;

Rezaei et al., 2023; Escalero et al., 2024; Rezaei et al., 2024; Schleich et al., 2024). Far fewer publications have been written40

on the subject of roller bearings as pitch bearings, see (Stammler et al., 2018) for a load calculation of a roller pitch bearing

and (Stammler, 2023) for a wear test program on roller pitch bearings. While still less common than double-row four-point

bearings, anecdotally, roller bearings seem to become more common types of pitch bearings for increasingly larger turbines.

While many of the aforementioned publications on double-row four-point bearings present or apply life calculation ap-

proaches (Schwack et al., 2016b; Lopez et al., 2019; Menck et al., 2020; Leupold et al., 2021; Keller, Jonathan and Guo, Yi;45

Menck, 2023; Rezaei et al., 2023; Escalero et al., 2024), there are almost no publications on the life calculation of roller bear-

ings aside from the NREL DG03 (Stammler et al.), which is a guideline for pitch bearing calculation, and industry presentations

that give limited detail on the calculation approach (Becker, 2024). Roller bearing life calculations include an additional degree

of complexity compared to ball bearing life calculations, because rollers are profiled in order to prevent edge stresses (Harris

and Kotzalas, 2007). Profiles are manufacturer-dependent and their use necessitates numerical contact models, since simple50

Hertzian equations cannot accurately determine the stresses that occur in a roller-raceway contact; they may only approximate

it for ideal contact conditions (Lundberg, 1939).

The given paper aims to show a comprehensive approach for the life calculation in a three-row roller type pitch bearing in

a modern wind turbine. A three-row roller bearing contains two axial rows, one for positive axial loads and one for negative

ones, and a radial row for radial loads. It is depicted schematically in Fig. 1 with the raceway nomenclature used in this paper.55

The turbine used for the calculation is multi-MW product. Several information as bearing dimension, roller profile, calculation

results cannot be shared for confidentiality reasons. Instead normalized results are shown and roller profiles are defined using

ISO profiles according to ISO/TS 16281.

The calculation approach shown herein follows closely the abovementioned NREL DG03, the rolling contact fatigue calcu-

lation approach of which is based closely on ISO/TS 16281. Some previous papers have criticised ISO standards for supposedly60
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Figure 1. Example three-row roller bearing with raceway nomenclature and hub and blade locations. Hub either attaches to either inner or

outer ring, blade attaches to the other ring.

being unreliable for large scale pitch bearings, see (Lopez et al., 2019; Potočnik et al., 2010), but no evidence of this has been

given in the literature known to the authors. Results from previous life calculations (Schwack et al., 2016b; Menck et al., 2020)

of double-row four-point bearings were so absurdly low that they could not possibly be accurate. At the time of writing, the

authors assume that this discrepancy can be done away with by modifying smaller aspects of the presented life calculation

method, like for instance by applying different life modification factors. There is no evidence known to the authors that the life65

calculation based on ISO is qualitatively unreliable for pitch bearings.

In the following, the life calculation approach for three-row roller bearings is discussed. Section 2 discusses the FE simu-

lation model used for this paper, and the ways in which it has been validated. Using this model, a grid of FE simulations was

calculated for interpolation of all load cases of the turbine. The choice of this grid is discussed in Sect. 3. Section 4 then dis-

cusses how rolling contact fatigue life for individual load cases is calculated here and calculates it for the FE grid points from70

the previous section. Section 5 then finally covers how these results are processed to obtain a pitch bearing life representative

of the entire turbine operational time. Section 6 briefly discusses how this result can be put in relation to a fatigue test on a

pitch bearing test rig. Finally, Section 7 concludes the paper.

2 FE simulation

Accurate FE simulations are critical to a realistic life calculation. This section therefore covers the three-row roller bearing75

FE model including a short insight into the bearing validation process and the rotor FE model that was used to simulate the

resulting load distribution for a variety of turbine load situations.

2.1 FE bearing model and validation

The three-row roller bearings implemented in the rotor model are created using the commercial ANSYS extension Rolling

Bearing inside ANSYS (RBiA). The RBiA extension implements the rolling elements between the predefined raceway surfaces80
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Figure 2. BEAT6.1 test bench ©Fraunhofer IWES/Marcus Heine

by COMBIN39 nonlinear spring elements that connect to the raceways by surface-based constraints. 21 springs are used to

represent one singe roller. The force deflection curves of the nonlinear spring elements are calculated according to the defined

curvatures of the contact partners roller and raceway according to ISO/TS 16281. A crowning of the axial and radial rollers is

considered according to the same standard. Furthermore, the bearing model considers clearance or preload of rows by means

of PRETS179 elements. Negligible geometric details like small holes or lubrication channels are removed in order to enable85

a smoother mesh generation. High order tetrahedral elements with quadratic shape functions and mid nodes are used for the

meshes of the bearing rings. As it is typical for three row roller bearings, one of the inner or outer rings splits up into two rings

as it is necessary for the assembly process. This split of the ring is considered in the model and the surfaces are connected to

each other by an internal frictional contact. The blade bearing model was validated with measured strain data obtained from

a real scale test on the BEAT6.1 test bench of the Fraunhofer IWES. This test bench tests two bearings simultaneously and90

applies the loads with six hydraulic actuators in hexapod configuration. Adapter components emulate the bearing’s surrounding

stiffnesses. Figure 2 shows the BEAT6.1 with an exemplary test setup for 5 m blade bearings. More information about the test

environment can be taken from Stammler (2020). Strain gauges are attached equidistantly to the blade bearing’s inner and outer

ring as depicted in Fig. 3.
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Figure 3. Strain gauges on the roller bearing’s outer ring.

For the validation process, static tests were performed with pure bending moments. As the strain gauge signal fluctuates95

over time, the data is averaged over the time the applied load of the test bench is kept constant. Furthermore, according to

the recommendation in Graßmann et al. (2023) for a blade bearing validation, in some tests the applied bending moment was

kept constant while the blade bearing was pitched. The measured data of the different strain gauges is plotted against the

simulated data for the maximum of the ramped loads. Whereas the measured data is only available at certain circumferential

positions, the FE simulated data is postprocessed along the entire circumference via path operations considering a high number100

of sample points. Either the axial or the tangential strains are postprocessed depending on the path’s position. Figure 4 shows the

comparison of axial strain values for inner and outer ring at a high Mx bending moment whereas Fig. 5 shows the comparison

for the tangential strain values.

Even if there are slight discrepancies at certain positions, the overall characteristics of the deformation behaviour match well

between simulation and test. Figure 6 shows results for a constant My bending moment for the outer rings of both test bearings.105

The scatter bars in the plots indicate the fluctuation in the measured signals which is caused by the pitch movements of the

bearing. This finding was already described in Graßmann et al. (2023) in a more pronounced way for scaled blade bearings.

It can be seen that the scatter bars due to the pitch movements can be differently pronounced between both test bearings.

However, the deviations between simulation and test are in the same range as the scatter caused by the pitch movements. One

possible explanation for the slight deviations between simulation and test could be, that only the bearing bolted connections110
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Figure 4. Axial strain for Mx bending moment for inner (left) and outer ring (right)

Figure 5. Tangential strain for Mx bending moment for inner (left) and outer ring (right)

Figure 6. Outer ring tangential strain for My bending moment with pitch movement. Lower test bearing (left) and upper test bearing (right).

are considered in this stage of the BEAT6.1 FE model in order to save computational time. Later on, some investigations with

different test assemblies have shown that test rig internal bolted connections can also affect the bearing strain results up to this

extent. However, as the focus was on the validation of the bearing model and there is a good agreement between simulation and

test results for the global deformation behaviour, it is assumed that with this bearing FE model realistic raceway deformation

and tilting is simulated as well, which is crucial for the subsequent bearing lifetime calculations.115
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Figure 7. Exemplary FE rotor model of the IWT7.5 reference turbine.

2.2 FE rotor model

Like the bearing FE model, the global FE rotor model is built up in the ANSYS workbench environment. The focus is put on

accuracy and on efficiency of the model in order to be able to perform a high number of simulations in a reasonable time. The

high number of simulations is required in order to evaluate the resulting bearing load distributions for a variety of different

load situations required for the advanced subsequent lifetime calculations. The rotor model contains the rotor hub, three blade120

dummies, one blade bearing at the primary flange (1), two blade bearing dummies at the secondary flanges (2, 3) and bearing

stiffening components at all three flanges. Figure 7 shows an exemplary FE rotor model which is built up in a comparable

manner.

Only the blade dummies used for the present investigation are cylindrical and shorter as the blade structures depicted in

Figure 7. The three blade dummies are meshed with a hex-dominant method to reduce the number of nodes and elements125

for these components. Bolted connections are considered only at the primary flange. They are implemented with BEAM

elements that connect to washers which are modeled with 3D solid elements. The desired preload of both bolted connections

is implemented with PRETS179 elements in the first load step. Only at the primary flange frictional contacts are considered

between the component flange surfaces and for the contacts between component flange surface and washer surface. Different

frictional coefficients are used depending on the flange surface individual coating. A general joint with the connection type130

“Body-Ground” is applied to the hub’s rotor flange to fix the entire model and implement a certain stiffness to account for

the rotor shaft. A so called “pitch lock” condition is implemented at the primary flange by means of a remote displacement.

This boundary condition fixes only the nodal degrees of freedom in rotational z-direction and in turn prevents any rotatory

displacements of the inner ring against the outer ring. As only the primary flange 1 is equipped with a full roller bearing model

with spring elements no pitch lock boundary condition is necessary for the secondary flanges 2 and 3. The coordinate systems135

for the load application are shown in Figure 7. Forces and moments are applied to pilot nodes located in the centre of the

blade dummy cutting plane at each flange. This lever arm between blade bearing flange and pilot node position is considered
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accordingly. Probe functions were used to verify the force and moment reaction at the blade bearing flange nodes. In addition,

plausibility checks of the resulting load distributions were done for a variety of different load scenarios.

3 FE simulation grid140

Loads of the turbine have been calculated with aero-elastic simulations according to IEC 61400-1. Thus, there is a significant

amount of time series simulation covering all power production (DLC 1.2), Fault (DLC 2.4), Start and Stops (DLC 3.1 and

4.1) and Parked conditions (DLC 6.4).

All time series were simulated using time steps of 50 ms. Taken together, these time series result in multiple millions of

time steps. Post-processing these time steps into bins is a common approach to reduce the number of simulation points, used,145

for instance, in Schwack et al. (2016b); Menck et al. (2020); Keller, Jonathan and Guo, Yi. However, using these time steps

individually is more accurate than post-processing them into a smaller number of bins (Menck and Stammler, 2024). It is

however practically impossible to calculate millions of FE simulations for the life calculation of a pitch bearing.

In order to be able to use individual time step data rather than using bins, a regression or interpolation akin to that shown

in Menck et al. (2020) can be used. It is based on a reduced number of simulation points (hereafter referred to as “grid”) that150

are simulated in FE. Contact forces or pressures of the bearing for aeroelastic loads in between these FE grid points are then

determined via a regression or an interpolation.

There are 15 degrees of freedom (DOF) for the external loads in the FE model described in 2 (Note that the FE model

obviously has far more internal DOF). They are Fx, Fy , Fz , Mx, and My for each of the three blades, respectively. Because

the above described FE simulations need hours to run, this high number of DOF needs to be reduced down to a lower amount155

of DOF for the FE simulation grid.

The following sections describe the choice of FE grid points that will be used for interpolation in the following chapters,

starting with the DOF for blade 1, which are most relevant for the load distribution in that bearing, and then continuing with

the loads of blades 2 and 3.

3.1 Degrees of freedom for blade 1160

Pitch bearings experience significant loads in five degrees of freedom (DOF) according to the coordinate system in Fig. 8: Fx,

Fy , Fz , Mx, and My . Since the sixth DOF (Mz) would be the rotational DOF of the bearing, it is comparatively small and can

be neglected for the purposes of this paper. Aside from these DOF, the blade can also be rotated, which also influences the load

distribution and can be considered as an additional DOF.

Previous publications by the authors have used the resulting bending moment M (also called Mres), the load angle β, and the165

pitch angle of the blade θ in order to define a grid of FE simulation points, see Menck et al. (2020). Further in-house analyses

have shown that the influence of the pitch angle is relatively small in many turbines.

For these reasons, deviating from previous publications by the authors, the pitch angle was not used as a DOF in this paper.

The resulting bending moment M and the load angle β (representing Mx and My) have continued to be included since they

8

https://doi.org/10.5194/wes-2025-53
Preprint. Discussion started: 24 June 2025
c© Author(s) 2025. CC BY 4.0 License.



M My

Mx

β
θ

x
y

z

Figure 8. Coordinate system used for this paper, taken from Menck et al. (2020).

appear to be the most significant influence on the load distribution. This leaves the forces Fx, Fy and Fz to be somehow170

included in the FE simulations.

The following Sect. 3.1.1 will show that Fx and Fy are closely correlated with My and Mx and can thus be approximated

based on them. Fz will be shown to correlate poorly with the bending moments and is thus included as additional DOF for the

FE simulation grid. The Sect. 3.1.2 will then show that a very small number of Fz variations are required for the FE simulation

grid.175

3.1.1 Approximation of Fx and Fy for blade 1

Forces Fx and Fy are the resultants of weight and aerodynamic loads distributed over the entire blade length. They are a

necessary input of the FE simulations. As the theoretical center point of the resultants changes with the distribution of the

acting loads, they are not ideally correlated with the bending moments My and Mx at the blade root.

Despite this, there is still a close correlation between the blade root radial loads and bending moments. A linear approx-180

imation will be used here to approximate the radial loads based on the bending moment components chosen later in the FE

simulation grid. To this end, all data points from the simulation were used to minimize the root mean square error (RMSE) of

F = a + M/b. (1)

In order to be able to show detailed results, the authors also carried out this task using publicly available IWT7.5 aeroelastic

data (Popko). Doing so resulted in185

Fx = 63.06 kN + My/56.61 m, and (2)

Fy = 27.86 kN−Mx/20.89 m. (3)

Over all simulation points of the IWT7.5 data, this resulted in an RMSE of 27.53 kN for the approximation of Fx via Eq. 2

and an RMSE of 51.08 kN for the approximation of Fy via Eq. 3. Figure 9 shows a sample section of a 12 m/s wind speed
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Figure 9. Approximations of Fx and Fy based on the bending moment, exemplary for IWT7.5

time series with the real aeroelastic Fx and Fy being compared to their approximations based on Eqs. 2 and 3. Qualitatively,190

the result can be seen to work well, and the RMSE of these methods is quite low compared to loads in operation, particularly

for the more significant load component Fx which causes the flapwise bending moment My .

The same analysis was carried out using the aeroelastic data of the studied wind turbine and will be used for the FE simula-

tions shown later. Attempts to correlate Fz with the bending moments ended poorly, with errors of a linear fit to the resulting

bending moment being above 300 kN for the example IWT7.5 data shown above. For this reason, the axial load Fz was used195

as a third degree of freedom next to M and β.

3.1.2 Choice of grid simulation points for Fz for blade 1

The axial load is often considered as a linear factor for the approximation of rolling element loads, see Stammler et al.. The

authors of the present work hypothesized that two FE simulations at the upper and lower end of Fz might be sufficient to

determine any other Fz load in between these extremes.200

To verify this hypothesis, ten FE simulations were carried out using the models shown in Sect. 2: Five with varying levels

of Fz for a relatively low bending moment in the lower 10 to 20 % of DLC 1.2 bending moments, and one in the upper 90 to

100 % thereof. The five levels of Fz are normalized to -0.33, 0, 0.33, 0.67, and 1 in this paper. Upper and lower end of Fz (i.e.,

Fz =−0.33 and 1) were close to actual upper and lower end seen in DLC 1.2. This resulted in load distributions for two axial

rows and one radial row, all of which contained rollers that were discretized into 21 laminae for the FE simulation.205

Roller lamina loads q of levels Fz = 0,0.33, and 0.67 were then interpolated only using the FE load data from the extremes

at Fz =−0.33 and 1. A linear interpolation was used. An excerpt of the result is shown in Fig. 10 for a lamina at the center

of the roller and for an exemplary roller on Axial row 2. The lamina load q can be seen to be represented well using the
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Figure 10. Interpolation of simulations with varying Fz . Center lamina load on Axial row 2. Lamina loads q normalized to maximum load

in the figure. Fz normalized to maximum load for the present study.

interpolation, particularly at the top of the load distribution. Merely at the lower end, discrepancies are visible; these are,

however, of exponentially smaller influence to the final rolling contact fatigue life.210

Qualitatively, the result appeared the same for Axial row 1 and the radial row: Higher forces were interpolated very well,

only at the lower end of the load distribution, the interpolation underestimated forces. Since high forces are those that affect

the life the most, this result is adequate for the life calculation.

From examining these and more results of the simulations for various rollers and laminae, the authors conclude that it is

valid to interpolate two extreme load levels of Fz and to interpolate in between them. This works particularly well for high215

lamina loads, which are the most relevant for rolling contact fatigue life.

3.2 FE simulation grid for blade 1

Concluding from the above discussed results, three degrees of freedom are sufficient for the FE simulation grid. These include

bending moment M , load angle β, and axial load Fz . The loads Fx and Fy are strongly correlated with My and Mx and thus

do not need to be considered separately. The pitch angle has a low influence, particularly for the given study, and is therefore220

negligible.

The bending moment’s influence on roller lamina loads q is by far the biggest out of DOFs. However, it is also relatively

linear in behavior. The load angle’s influence is not as significant, but highly nonlinear. Therefore, a similar number of FE grid
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Figure 11. Grid of FE simulations vs. aeroelastic time steps, exemplary for IWT7.5

points were used for M and β. Based on previous experience, the authors opted for 6 points for M and 7 points for β, as well

as two points for Fz due to the reasons discussed above. This results in 6 ·7 ·2 = 84 FE simulations that will form the basis for225

all calculations in this paper. For illustrative purposes, the grid has been recreated using IWT7.5 data, shown in Fig. 11.

It can be seen that no FE simulations were carried out in the range of β = 0...− 180◦. This is because this range represents

very rare operating points which have little significance on life. The studied wind turbine data included even fewer points

than the IWT7.5 shown in Fig. 11, making this choice even more appropriate. The grid shown in Fig. 11 also contains 14 FE

simulation points at a bending moment of M = 0, in which case the load angle is irrelevant; thus, only two of these simulations230

have been carried out for the high and low Fz load each. Therefore, only 72 FE simulations were actually carried out. Tables A1

and A2 contain the grid data points that were simulated, where moments have been given depending on the maximum bending

moment Mmax that was simulated here, and only the sign (positive or negative) is given for Fz .

3.3 Loads at blades 2 and 3

The FE model used in this paper is a full rotor model and thus also requires loads at blades 2 and 3. These influence the load235

distribution in the bearing, especially at circumferential positions close to other bearings, and therefore need to be determined

for the simulation grid used here (Schleich et al., 2024).

In principle, this adds another 3 DOF for each of the other two blades; however, while they have a minor influence on RCF

calculation results, it does not justify such a huge increase in computational expense for the scope of the present work (Note

this influence of blade 2 and 3 is more significant for other damage modes such as ring cracks). For pragmatical purposes and240

because previous analyses determined that there is some influence of the other two blades, but it is less critical than that of the

first blade, mean values of blades 2 and 3 were determined for the grid shown in Fig. 11. In Stammler and Schleich (2024),

similar mean values are determined. While the present work uses Fz , Stammler and Schleich (2024) use the rotor azimuth

angle Φr,B. Standard deviations for the approach used in the present work have not been determined as the influences of blade

2 and 3 on blade 1 are less critical than in the case of a structural fatigue calculation as in Stammler and Schleich (2024).245
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Figure 12. Mx of blades 2 and 3 depending on Mres and Fz of blade 1 for studied turbine. Axes normalized to maximum Mres and Fz .

Figure 13. My of blades 2 and 3 depending on Mres and Fz of blade 1 for studied turbine. Axes normalized to maximum Mres and Fz .

An excerpt of these results is shown in Fig. 12, where some average values for Mx of blades 2 and 3 are shown based on the

blade 1 loads in the FE simulation grid, and in Fig. 13, where the values of My of blades 2 and 3 are shown.

My of blades 2 and 3 can be seen to be correlated well with blade 1, which is plausible, since all of them are loaded similarly

by the wind. The correlation between Mx of blades 2 and 3 with the blade 1 loads is more complex, but still plausible: At

negative values of Fz , blade 1 points upward. This means blade 2 is generally experiencing a positive Mx, since it is located250

120 degrees further in rotational position of the hub, where gravity is acting in its positive Mx direction, and blade 3 is

experiencing a negative Mx since it is located yet another 120 degrees further, where gravity is acting in the negative Mx

direction. For cases of high postive Fz values, the situation is opposite, and blade 1 pointing downwards means that blade 2 is

experiencing a negative Mx due to gravity whereas blade 3 a positive one.

13

https://doi.org/10.5194/wes-2025-53
Preprint. Discussion started: 24 June 2025
c© Author(s) 2025. CC BY 4.0 License.



4 Rolling contact fatigue life for individual load cases255

The rolling contact fatigue life calculation adheres closely to NREL DG03 (Stammler et al.) and, in turn, ISO/TS 16281.

These documents far exceed the requirements of a more simple life calculation according to ISO 281. They require a detailed

pressure distribution coming from a detailed simulation of the bearing that includes rollers divided into several laminae. As

described above, this aim is achieved here by usage of FE simulations. The result of this calculation is then, according to the

abovementioned documents, processed with a non-Hertzian contact calculation. The non-Hertzian pressure distribution is then260

used to calculate the life of each raceway which are then combined to obtain a total life.

This section covers the calculation for individual load cases obtained from FE in order to carry out various analyses and

checks prior to the calculation of the operational fatigue life of the bearing. The calculation procedure for bearing life L10 is

given in Sect. 4.1. This calculation requires contact pressures, the calculation of which is discussed in Sect. 4.2. Finally, the

life of the grid of FE simulations from Sect. 3 is calculated in Sect. 4.3.265

4.1 Calculation of L10

The L10 life for calculations in this section were calculated according to the NREL DG03 (Stammler et al.) which closely

adheres to ISO/TS 16281. According to NREL DG03, the bearing is separated into two axial rows and a radial row.

The axial row calculation starts with the determination of their load rating Ca, which is identical for both axial rows, as

Ca = bm fc L7/9
we Z3/4 D29/27

we (4)270

where bm = 1, Lwe is the effective roller length (i.e., roller length minus chamfer), Z is the number of rollers per axial row,

and Dwe is the roller diameter. The variable fc is calculated according to ISO/TR 1281-1.

For the radial roller row, the load rating Cr is calculated as

Cr = bm fc (Lwe cosα)7/9 Z3/4 D29/27
we (5)

where α is the nominal contact angle of 0◦ for the radial row, and bm = 1.1 for the radial roller row.275

Using these load ratings, the variables Qci and Qce for the inner and outer ring are determined. For the axial rows, these are

identical due to the 90◦ contact angle, giving

Qci = Qce =
1
λν

Ca

Z
22/9 (6)

where λν = 0.73 for the axial row.

For the radial row, they are given by280

Qci =
1
λν

Cr

0.378 · Z (cosα) i7/9



1 +

[
1.038

(
1− γ

1 + γ

)143/108
]9/2





2/9

(7)

Qce =
1
λν

Cr

0.364 · Z (cosα) i7/9



1 +

[
1.038

(
1− γ

1 + γ

)143/108
]−9/2





2/9

(8)
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where λν = 0.83 for the radial row and γ = Dw cosα/Dpw.

From now on, the equations are identical for axial and radial row, though results will differ due to the different dimensions

of the rows and their rollers.285

The basic dynamic load ratings qci and qce of a lamina for inner and outer ring are given by

qci/e = Qci/e

(
1
ns

)7/9

(9)

where ns is the number of laminae (sometimes also called slices) into which the roller is divided for the calculation. Equation 9

assumes laminae of even length. In Sect. 4.2.1, a convergence analysis is carried out in order to determine the amount of laminae

used for the remainder of this paper.290

Potentially occurring edge stresses are accounted for by use of a non-Hertzian model that is described in Sect. 4.2. For each

roller j and lamina k, the stress riser functions fi[j,k] and fe[j,k] for the inner and outer rings are given by

fi/e[j,k] =
[(pHi/e,j,k

271

)2

Dwe (1∓ γ)
Lwe

ns

]
/qj,k (10)

where pHi,j,k and pHe,j,k are the pressures on lamina k of roller j, determined using the non-Hertzian model described in

Sect. 4.2, for inner and outer ring, respectively.295

The dynamic equivalent load for each lamina k can now be calculated. Following NREL DG03 and Menck and Stammler

(2024), the equivalent load for a stationary ring is used for both inner and outer ring, since pitch bearings oscillate by relatively

small amplitudes. Thus, for all raceways,

qkei/e =


 1

Z

Z∑

j=1

(
fi/e[j,k] qj,k

)4.5




1/4.5

(11)

Note that when Eq. 10 is put into Eq. 11, the lamina load qj,k cancels out and is therefore not actually required for the life300

calculation.

The life of each inner-outer raceway pair m, i.e. of the first axial row (m = 1), the second axial row (m = 2), and the radial

row (m = 3), is then given by

L10r,m =

{
ns∑

k=1

[(
qkci

qkei

)−4.5

+
(

qkce

qkee

)−4.5
]}−8/9

(12)

Finally the life of the entire bearing is calculated using305

L10 =

(
3∑

m=1

L
−9/8
10r,m

)−8/9

(13)

Up until this point, the life is measured in millions of revolutions. Consideration of the oscillatory behavior of pitch bearings

will follow in Sect. 5.2.
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4.2 Contact pressure calculations

The FE simulations are carried out using 21 laminae, resulting in 21 lamina loads qFE,k for each roller j. The resulting load310

and moment from these laminae are then determined for each roller j according to

Qj =
21∑

k

qFE,j,k, (14)

Mj =
21∑

k

tk · qFE,j,k, (15)

where tk is the distance of the center of lamina k from the roller center. Since Mj is the moment around the roller center, tk

assumes negative values in negative direction and positive ones in positive direction. The force and moment are then used as an315

input to an adapted non-Hertzian contact calculation based on Reusner (1977). This returns a more accurate load distribution

than the FE simulation and is capable of accurately detecting edge stresses that may occur in a roller and that would go

unnoticed by FE simulations using the approach described in Sect. 2. Reusner proposed an approach that determines contact

properties such as roller force, moment, pressure, and contact width based on the displacement and misalignment of the roller.

The calculation by Reusner has been chosen because it is one of three methods that are explicitly suggested for this task by320

ISO/TS 16281 and NREL DG03. It has been adapted for this paper in order to use forces and moments as input rather than as

outputs, referred to as “inverted Reusner calculation” (or just “Reusner” for short) in the following.

4.2.1 Contact convergence analysis

For the non-Hertzian contact calculation according to Reusner (1977), the roller is evenly discretized along its length into

ns laminae. The number of laminae for the FE simulation and the inverted Reusner model are unrelated and can be chosen325

completely independently. The amount of laminae to perform an accurate life calculation depends on the specifics of the

loading that the rolling bodies are experiencing, and on the roller design, including its profile. Particularly the occurrence of

edge loading or strong misalignment necessitates a higher number of laminae.

In order to determine the required amount of laminae per roller for the following life calculation, convergence analyses were

carried out with the inverted Reusner calculation. To this end, the rollers were divided into ns laminae of even length. The330

variable ns was varied from ten to 100 in steps of ten, and then additionally once set to 150. Life of the raceways and the entire

bearing were determined according to Sect. 4.1 for each of the different values of ns. The roller life at ns = 150 was used as a

reference for the lives at lower lamina numbers.

The convergence analysis showed that the axial raceway 1 (near the blade flange) and the radial raceway both converged

well. With 30 laminae, these raceways already converged within 3 % error of the final reference result at 150 laminae, with the335

exception of a single simulation for the first axial raceway. The second axial raceway (near the hub) converged more poorly.

8 of the 72 simulations did not yet reach less than 3 % of difference compared to the reference result at 150 laminae using 30

laminae. These are, however, mostly unrealistic load situations that are used for interpolation purposes at rare operating points

only.
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Figure 14. convergence analysis of L10r for selected FE simulations (see tables A1 and A2). Result for ns = 30 laminae marked red.

However, only the life of the entire bearing and its convergence really counts for the further calculations. For the life of the340

entire bearing and using 30 laminae, only 5 of the 72 simulations (Nr. 10, 20, 62, 71, 72) did not reach a life within 3 % of

the reference result at 150 laminae. All of these five load situations represent unrealistically high cases of mostly edgewise

bending moments that do not occur in reality and are only used for interpolation of rare operating points. All other simulations

were within 3 % difference of the reference when using 30 laminae. Figure 14 shows results of the convergence analysis for

simulation nr. 36, 38, 40, and 42. These correspond to pure flapwise bending moments with a positive Fz and 40 %, 60 %, 80 %,345

and 100 % of Mmax, respectively, see tables A1 and A2. The convergence behavior can be seen to deviate from the reference

for higher lamina numbers (for instance n = 70 for sim. nr. 42) and then to converge towards the reference. This is due to edge

stresses that occur in some contacts of the Reusner calculation for the particular calculations done in this paper with a medium

amount of laminae, and it shows why a convergence analysis is necessary.

Pressure distributions for sim. nr. 42 (maximum Mres load case, pure flapwise direction, positive Fz) are given in Fig. 15.350

All rollers of each raceway are shown and plotted on top of each other. For the axial raceways, inner and outer ring pressures

are identical due to the contact angle of α = 90◦. For the radial rollers, inner ring pressures are displayed. While there is some

misalignment present on all raceways, its effect is most significant on the axial raceway 2. Maximum loads all occur at the

highest bending moment Mmax that has been simulated, but for different load angles thereof. As shown above in Fig. 11, Mmax

represents a very rare load situation during operation, and the overall highest pressures occur at load angles that do not occur355

in operation for such high loads. These simulations and are only used for interpolation of rare operating points.

The pressures that have been obtained via the inverted Reusner algorithm can be compared to those directly obtained from

FE using a lamina approach as described in Sect. 2. A comparison of both pressure results is given in Fig. 16. The center of

the roller can be seen to have slightly higher results than the results directly obtained via FE (0.9 % higher for both axial rows
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Figure 15. Pressure distributions of all rollers on axial raceway 1, 2, and radial raceway. Obtained via inverted Reusner algorithm. Simulation

nr. 42 (Mmax, +Fz , and β = 90). Pressures normalized to maximum pressure within the three figures.

Figure 16. Pressure distribution of all rollers on axial raceway 1, 2, and radial raceway, directly obtained from FE as well as post-processed via

inverted Reusner algorithm. Simulation nr. 42 (Mmax, +Fz , and β = 90). Pressures normalized to maximum pressure of Reusner processed

results within the three figures.

and 0.5% for the radial row). Conversely, towards the edges of the roller, the FE results have much higher pressures, since the360

Reusner processed results decrease strongly at the outer ends (see Fig. 15) whereas the FE results barely decrease at all at the

edges.

In any case, both results are very similar. This is due to the identical profiles used both in FE as well as the inverted Reusner

algorithm, as well as because of the fact that no edge pressures occur. A non-Hertzian analysis for the roller pressures is

particularly necessary because edge pressure spikes can occur with an unsuitable choice of profile or if there is a lot of roller365

misalignment. In the present case, there are no edge pressure spikes present. Therefore, the results are similar to the FE results.

Had the profile been less adequate, or if there had been more misalignment, there would be more deviations between the two

approaches.

4.3 Bearing life of FE simulated cases

The lives L10r of all 72 simulations have been calculated according to the above equations. They are shown in Fig. 17. While370

all further calculations will use L10r with inverted Reusner post-processing, L10r without it, using the Hertzian pressure from
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Figure 17. L10r of all 72 FE simulations, normalized. Results shown for FE results with and without inverted Reusner post-processing.

FE, has also been calculated for reference. Life L10r has been normalized to the maximum L10r obtained with the inverted

Reusner post-processing approach.

The results of both approaches can be seen to be very similar, which is due to the fact that both approaches lead to similar

pressure distributions in this study, see Fig. 16 and the corresponding discussion. The lowest L10r lives in Fig. 17 correspond375

to the highest bending moments, see Tables A1 and A2. An increase in Fz appears to have a positive effect on L10r for some

simulations and a negative one on others. Further, the load angle β appears to have a small but noticeable effect, with the

simulations at β = 90◦ deviating the most from the other load angles that were simulated. Because pre-tension in the bearing

was considered, the rollers were loaded even at Mres = 0 Nm (Simulation Nr. 21 and 32) and thus a finite life L10r is obtained

even for these simulations.380

Fig. 18 shows the lives L10r of all three raceways separately, normalized to the highest L10r among the axial rows, i.e., the

life of Axial 1 in simulation 32. The radial row has the highest life L10r out of all three raceways, with few exceptions for some

simulations. Both Axial row 1 and the radial row appear to benefit from an increase in axial force Fz , while L10r of Axial row

2 decreases with an increase in Fz . The whole bearing life is most affected by those raceways with a low L10r, see Eq. 13.

Especially at the high bending moment load cases in which the total life is lowest, the whole bearing life can thus be seen to385

be dominated by the axial rows whose life is much smaller than that of the radial row.

5 Rolling contact fatigue life for the entire operating time

In this section, the life of the bearing under all operating conditions that it experiences is calculated. To this end, the contact

pressures in each time step of the simulation are determined. The procedure to determine contact pressures for any time step

is described and tested with sample simulations in Sect. 5.1. Section 5.2 then discusses how the lives of all time steps are390

combined into one total operating life. Finally, Sect. 5.3 proposes a simplified method for the life calculation of a three-row

roller bearing based on the previously achieved results.

19

https://doi.org/10.5194/wes-2025-53
Preprint. Discussion started: 24 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 18. L10r of all raceways of all 72 FE simulations, normalized.

5.1 Interpolation of pressures

The grid chosen in Sect. 3 was based on a previous publication by the authors (Menck et al., 2020) in which contact forces

were determined using a regression for a double-row four-point bearing. For the present roller bearings, pressures are required395

rather than forces (loads). This is because the lamina load qj,k cancels out when Eq. 10 is put into Eq. 11, but the pressure

pHi/e,j,k does not cancel out.

Using a regression or interpolation of forces is a likely feasible approach since contact forces are roughly proportional to

the bending moment M in particular, which has the highest influence on rolling element loads (Stammler et al.). However, for

the present roller bearing calculation, contact forces from FE must be postprocessed into an inverted Reusner algorithm, see400

Sect. 4.2. While the inverted Reusner algorithm is much faster than an FE simulation, it takes some seconds (approximately

30 seconds for one load case in this paper on a standard business laptop) to calculate an entire bearing load case with ns = 30

laminae as used in this paper, because there are hundreds of contacts in the bearing that need to be simulated.

Based on Menck and Stammler (2024), a calculation in which time steps are directly used as input is more accurate than one

where post-processing of the time steps into bins takes place. Therefore, usage of time steps is the preferred choice that will405

be used in this paper. However, with multiple millions of time steps taken from the aeroelastic simulations for this paper (see

Sect. 3), a computation with the inverted Reusner algorithm for every single step becomes too computationally expensive.

While contact force and contact pressure in a rolling bearing are not proportional, they can locally be approximated as

linear. Therefore, a regression or interpolation of the pressures is a more feasible alternative to the computationally heavy and

long-enduring alternative in which roller forces are interpolated (or determined via a regression) and must be processed with a410

non-Hertzian calculation for each time step.

Thus, instead of interpolating (or approximating via a regression) forces, pressures will be interpolated (or approximated via

a regression) in the following. To this end, the grid of FE simulations is processed through the inverted Reusner algorithm to

obtain a pressure distribution for ns = 30 laminae, based on the results in Sect. 4.2.1. The pressure in each of these 30 laminae
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Figure 19. Locations of test simulations in FE simulation grid.

for each roller is then interpolated (or approximated via a regression) for each time step. The approach is tested in the following415

using randomly selected test cases. Different approximation methods - a regression and two interpolations - are compared.

5.1.1 Testing the interpolation

In order to verify the interpolation approach described above, 20 test simulations were carried out. They were actual operating

points from the aeroelastic simulations, randomly sampled from wind speeds between 10 and 14 m/s. The test simulations were

simulated including all 15 DOF, i.e., all 5 DOF of each rotor blade, and no simplification of DOFs akin to Sect. 3 has been420

undertaken for these 20 test simulations.

The life of these test simulations was then calculated by processing the results into the inverted Reusner algorithm and

calculating the life using the above described procedure.

Then, for verification of the interpolation, the interpolation was applied to these test simulations. Their load angle, M , and

Fz values were determined and the load distribution of these simulations was calculated. The location of the test simulations425

within the grid is given in Fig. 19 and Table B1. The life was then determined according to the above described procedure

using the interpolated pressure distributions.

Three different approaches were used: A regression from Menck et al. (2020), a linear interpolation, and a cubic spline

interpolation. The results are shown in Fig. 20. Lives are normalized to the highest life of the whole bearing using the FE

results without interpolation or regression (”FE to Reusner”). Percentage errors (PE) were calculated for all 20 cases according430

to

PE =
L10,r,approx−L10,r,FE

L10,r,FE
· 100% (16)

Further, the mean absolute percentage error (MAPE) of these 20 cases was calculated as

MAPE =
1
20

20∑

i

| PEi | (17)
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Figure 20. Top row: L10r of all 20 test simulations, normalized, FE and interpolated. Bottom row: Percentage error for different approaches.

Table 1. Mean absolute percentage error of different approximation approaches compared to inverted Reusner post-processed FE results

Method Total bearing Axial 1 Axial 2 Radial

regression 18.64 % 19.63 % 12.88 % 371.73 %

linear int. 26.30 % 16.28 % 11.77 % 235.90 %

spline int. 13.71 % 4.91 % 2.93 % 193.56 %

and is shown in Table 1.435

Out of all three approaches, the spline interpolation works best for rows Axial 1 and Axial 2, producing 4.91% error for

Axial 1 and 2.93% for Axial 2 on average. The spline interpolation likely works better than the linear interpolation in particular

because in this paper, pressures were interpolated. As discussed above, pressures and force are, however, not linearly correlated

but slightly nonlinear. This nonlinearity is likely captured better by the spline interpolation. This is also visible by looking at

the percentage error of the linear interpolation, which is almost always positive, because the linear interpolation underestimates440

the actual pressure due to the pressure’s nonlinearity, therefore overestimating the life. Further, the deformation behavior of

the surrounding structures influence the load distribution and cause non-linear behavior w.r.t the moment M , which can be

captured better with the spline interpolation.

The interpolated pressures of Axial rows 1 and 2 are shown in Fig. 21 for test simulation 3. For this case, the errors for

L10r of Axial 1 are 3.2 % and those for Axial 2 are 3.6 %. The interpolated distribution can be seen to match the FE reference445

closely. Slight differences even out in the calculation of L10r.
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Figure 21. Test simulation 4: Interpolated pressure distribution vs. FE to inverted Reusner processed pressure distribution. Pressures normal-

ized to maximum pressure of Reusner processed results of test simulation 4.

For the radial row, accurate results are not achieved with any of the methods. Even using the spline interpolation, deviations

of over 190 % exist on average for the interpolated life of the radial row. However, because the radial row makes up only

a relatively small portion of the total bearing life, the spline approximation of the total bearing life achieves only 13.71 %

deviation on average, even despite the poor performance with respect to radial row life interpolation.450

Analyzing the 20 cases here showed that even small deviations in bending moment M and load angle β away from the grid

points can result in very large qualitative and quantitative changes of the pressure (and force) distribution in the radial row. An

example case is shown in Fig. 22, where a test simulation and two grid simulations are plotted. The test simulation is number 3

from Table B1, whose interpolation results in very poor results, see Fig. 20. The simulation has a load angle of β = 62.5◦ and

a bending moment of M = 0.4376 ·Mmax. Both of these values are very close to the also displayed grid simulations number455

23 and 24, both of which have load angle β = 60◦ and M = 0.4 ·Mmax. The Fz value of test simulation 3 lies in between

the extremes −Fz and +Fz from grid simulation 23 and 24, respectively. Despite this similarity, test simulation 3 can be seen

to have higher pressures than either grid simulation 23 or 24. Aside from these quantitative differences, even the qualitative

behavior is different, with grid simulation 24 carrying load at 0◦ and 90◦ where the other two simulations are carrying none,
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but carrying almost none at 180◦ where the other two are carrying a lot. Since the influence of Fz was checked in Sect. 3.1.2,460

it is unlikely that nonlinear behavior of the pressure in between the extremes of Fz explains this behavior.

This indicates that the reason the radial row cannot be interpolated well may be due to insufficient available data for an

accurate interpolation, that is to say, the radial row may be affected by more DOF than just those three used in this study.

As discussed in Sect. 3, the grid was used based on a previous publication (Menck et al., 2020) that has been performed for

a four-point bearing, which does not contain a radial row. The validity of Fz-based interpolation was explored in Sect. 3.1.2465

and appeared to work well, but for more complex cases in which more than one DOF varies, the deformation may correlate

worse with the three DOF chosen here. Ultimately, the pressure (and force) distribution that occurs in the radial row is very

difficult to predict. To the current knowledge of the authors, it does not simply correlate with few DOFs but rather depends on

the structural deformation of the entire bearing, which is affected by the interplay of all DOFs and the structural stiffness of

the bearing.470

The radial row therefore presents unfortunate properties:

– it makes up only a small portion of the total bearing life

– its calculation is very computationally expensive, because it contains a lot of rollers, and the inner and outer ring pressures

are different and both have to be calculated

– its pressure (force) distribution is very difficult to predict and behaves in a very nonlinear fashion with respect to the475

DOF chosen in this study

– the FE grid used in this paper may not be sufficient to describe it even though it seems very appropriate for the axial

rows.

Due to the low influence on total bearing life, the results produced here are deemed acceptable, though further work on the

characterization of the radial row’s life may be appropriate.480

Based on the results in this section, the interpolation appears to work well in particular with the spline approach. The spline

interpolation was thus used for the further calculations in the following sections.

5.2 Combined operating life

The lamina pressure interpolations that are explored above for 20 test cases are then performed for every single time step

i = 1,2, ..., I in the aeroelastic simulations. The life of the bearing is then calculated according to Sect. 4.1 for each of these485

time steps, using the interpolated pressures.

Now the individual time steps are combined into a total operating life of the turbine. This process takes into account the

multipliers xi according to the Weibull distribution of the wind turbine class for DLC 1.2, and according to other, manufacturer-

specific factors for the other DLCs. It also takes into account the movement that is performed in each time step, measured in

degrees.490
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Figure 22. Radial pressures for grid simulation nr. 23 (β = 60◦, M = 0.4 ·Mmax, −Fz), test simulation nr. 3 (β = 62.5◦, M = 0.4376 ·
Mmax, +Fz · 0.4294), grid simulation nr. 24 (β = 60◦, M = 0.4 ·Mmax, +Fz). These three cases highlight the difficulties in interpolating

the radial row pressures, since test sim. 3 is close to grid simulations 23 and 24 w.r.t M and β and in between them w.r.t Fz , yet exceeds their

pressures in many locations. Pressures normalized to maximum pressure of radial row in test simulation 3.

The proportion of operating movement ϕi is determined via

ϕi =
si

s1 + s2 + . . . + sI
(18)

where si = xi | θi+1− θi |, with θi being the pitch angle at time step i. The sum s1 + s2 + . . . + sI then gives the amount of

movement a pitch bearing performs during the desired life of the turbine, typically 20 to 30 years.

The variables ϕi are then used to weigh the lives Li of each time step i to obtain the final combined life L10495

L10 =
1

ϕ1
L1

+ ϕ2
L2

+ . . . + ϕI

LI

(19)

Eq. 19 gives the life in millions of revolutions. This can be converted to life in years by multiplying

L10,y =
1

nrev/y
L10 (20)

with nrev/y giving the rotations performed per year, obtained by nrev/y =
∑I

i si/(360◦ ·Tfield), where Tfield is the planned

turbine life, typically 20 to 30 years.500

Further factors may be multiplied with the life based on experience of the manufacturer, as well as on properties of the

bearing like its hardening depth, raceway hardness, or desired reliabilities other than 90 % used for L10, see Stammler et al..

5.3 Simplified life calculation

For double-row four-point bearings, the authors proposed in Menck et al. (2020) an adjustment of the simplified life calculation

in the original NREL DG03 version of Harris et al.. This adjustment occurred by changing the variable kM in the following505
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equation

Pa = 0.75 ·Fr + Fa +
kM M

Dpw
(21)

where kM is modified based on the FE results of the particular bearing in question. The life is then calculated as L10 =

(Ca/Pa)3 for ball bearings.

In the newer version of NREL DG03 (Stammler et al.), the authors attempt to modify this equation for three-row roller510

bearings. They suggest to calculate the life of the radial row and that of the axial rows separately. For the radial rows, they

propose to use L10,r = (Cr/Pr)
10/3, where Pr = Fr, and for the axial rows, they propose L10,a = (Ca/Pa)10/3 with Pa =

Fa + kM M
Dpw

.

The results of this paper suggest that this is not necessary. The radial load Fr is very small compared to the load rating Cr

of the radial row. Following the above described procedure, the life of the radial row is over 200 times as large as that of the515

axial row. This is incorrect: the actual life of the radial row is only about 10-15 times as high as that of the axial rows, see

Fig. 18. The bending moment and the resulting structural deformation of the bearing therefore appears to play a larger role in

the loading of the radial row than the radial load Fr itself.

We therefore deviate from our recommendations in Stammler et al. and propose to keep a simple formula akin to Eq. 21 for

three-row roller bearings due to the following reasons:520

– The procedure described in Stammler et al. significantly overestimates the life of the radial row;

– Nonetheless, the influence of the radial row on total bearing life is much smaller than that of the axial rows;

– Even if the influence of the radial row were bigger, this would not be picked up by the procedure given in Stammler

et al., because it would be due to structural deformation, not due to the radial load Fr;

– The procedure described in Stammler et al. is unnecessarily complicated for a simplified approach and yields no benefits525

to Eq. 21 due to the abovementioned reasons.

Thus, the life of the bearing can be determined using a simplified approach as given in Eq. 21 if the factor kM is adjusted.

This simplification could be used for further quick iteration on loads or to estimate effects of a different controller.

It is possible for kM for a roller bearing to be bigger than for the double-row four-point bearing in Menck et al. (2020). One

has to consider that a roller bearing has a considerably higher dynamic capacity Ca than a double-row four-point (ball) bearing530

of comparable size. Due to this, the net effect of using a roller bearing may still yield an increase in life compared to the use of

a double-row four-point bearing, even if kM is bigger.

6 Equivalent time for an accelerated fatigue life test on a pitch bearing test rig

For the test duration on a test rig, the fatigue damage of the bearing in the field can be put in relation to the fatigue damage of

the bearing on the test rig. Both of these values are calculated by setting the time on the test rig Ttest and in the field Tfield in535
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relation to the life on the test rig L10,test and the field L10,field, respectively. Thus, the following must hold at the very least for

a test to be representative for field behavior

Ttest

L10,test
≥ Tfield

L10,field
(22)

The required minimum time on a test rig can then be calculated via

Ttest ≥ Tfield ·
L10,test

L10,field
(23)540

This formula does not take statistical uncertainty into account. Depending on the number of bearings tested, it is recommended

to consider statistical uncertainty into the equation, thereby increasing the test time.

Note that because the lives L10 are divided by each other, any corrective factors that may be applied to the life obtained in

Eq. 20 cancel out. Therefore, it does not matter whether the L10 life obtained in Eq. 20 is an accurate measure of the actual

L10 life of the bearing for the testing discussed here; so long as the formulae in this paper are proportional to the actual life,545

and the L10 lives for test and field have been determined in the same manner, the test represents the life on the turbine (with

the statistical uncertainty of testing fewer bearings in mind).

7 Conclusions

The paper presented an approach to calculate the life of a three-row roller bearing that is used as a pitch bearing in a wind

turbine. An FE model was presented and validated against experimental data from a real-scale pitch bearing test rig. The used550

FE modelling approach with 21 nonlinear spring elements per roller is a proper method for the simulation of realistic roller

bearing deformation behaviour. Furthermore, this high number of spring elements allows an advanced implementation of the

roller crowning and in turn leads to very similar pressure distributions compared to the Reusner model.

In order to narrow down the millions of aeroelastic time steps to a few FE simulations that can be calculated in reasonable

time, a grid of FE simulations was determined for which the degrees of freedom of the bearing were reduced as much as555

possible. The three degrees of freedom that were retained are the resulting bending moment M , its load angle β, and the axial

force Fz . For the axial force Fz , two extreme ends were simulated only for each grid case because analyses showed that the

bearing behaved very linearly in between two extremes. The radial loads Fx and Fy where shown to correlate very closely

with the bending moment components My and Mx and were therefore approximated with a linear fit. Blade 2 and 3 loads were

averaged for each discrete load of blade 1.560

This resulted in a grid of 72 FE simulations which envelop almost all load combinations of the entire aeroelastic data.

For these 72 simulations, the contact pressures of all rollers were determined using a non-Hertzian contact algorithm based

on Reusner (1977). Unlike the Hertzian rolling elements used in FE, the non-Hertzian algorithm allows for detection of edge

stresses and is more accurate in general. A convergence analysis was carried out to determine the required amount of laminae

for the non-Hertzian algorithm, which was determined to be 30 laminae, with an allowed error of 3 % compared to a reference565

simulation with 150 laminae. Since there were no severe cases of high edge stresses present in the bearing for all load cases
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that have been simulated, the life calculated with the non-Hertzian post-processing was simular to that calculated with Hertzian

pressures from the FE results.

Instead of interpolating (or approximating via a regression) the forces in between the grid points, pressures were interpolated

(or approximated via a regression) instead, because the non-Hertzian algorithm would take too much time to compute each570

single time step. The interpolation approach was validated using 20 randomly sampled test cases around nominal turbine wind

speed. A cubic spline interpolation approach proved to be the best method to determine pressures in between the grid points,

resulting in very low errors of 4.9 % and 2.9 % for the axial rows, and 193.6 % for the radial row, and a corresponding error

of 13.7 % for the whole bearing life. The radial row life was very difficult to determine with all approaches, leading to the

supposition that the grid may not be apt for the radial row because radial row pressures may mostly be affected by structural575

deformation. The radial row life therefore represents by far the biggest uncertainty in the final life, which was nonetheless

accepted for this calculation because its life is comparatively high even considering the uncertainty. Axial rows, which are at

much higher risk of failure according to the calculation, were calculated with low uncertainty.

The present paper further discussed how to calculate the life of the bearing including all operating conditions. No final life

was given due to confidentiality constraints. An approximation for the equivalent load of the adapted three-row roller bearing580

used in this paper was proposed. While the resulting equivalent load may be substantially higher than in a double-row four-

point bearing from a previous publication, this result must be interpreted considering the fact that roller bearings have a higher

dynamic capacity to begin with for comparable dimensions, therefore resulting in a higher life nonetheless. Finally, the paper

discussed how to calculate the required test time of a three-row roller bearing on a pitch bearing test rig in order to determine

whether it is appropriate for use in a given wind turbine.585
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Appendix A: Grid of FE simulations

The grid of FE simulations is given in Tables A1 and A2. Bending moments are given depending on the maximum bending

moment Mmax that was simulated in this paper. Only the sign (positive or negative) is given for Fz . Note that the upper and

lower end of Fz (+Fz and −Fz , respectively) are different in absolute magnitude, i.e., the simulations were not symmetrical

around 0.590

Appendix B: Test simulations

The test simulations carried out are given here in a simplified manner. Actual test simulations were simulated including all 15

DOF. This includes 5 DOF of each rotor blade bearing of the turbine. These 15 DOF are summarized into 3 here for simpler

presentation, given in Table B1.
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Table A1. Grid of FE simulations, part 1.

Simulation Nr. Load angle β Moment M Axial load Fz

1 0◦ 20 % of Mmax −Fz

2 0◦ 20 % of Mmax +Fz

3 0◦ 40 % of Mmax −Fz

4 0◦ 40 % of Mmax +Fz

5 0◦ 60 % of Mmax −Fz

6 0◦ 60 % of Mmax +Fz

7 0◦ 80 % of Mmax −Fz

8 0◦ 80 % of Mmax +Fz

9 0◦ 100 % of Mmax −Fz

10 0◦ 100 % of Mmax +Fz

11 30◦ 20 % of Mmax −Fz

12 30◦ 20 % of Mmax +Fz

13 30◦ 40 % of Mmax −Fz

14 30◦ 40 % of Mmax +Fz

15 30◦ 60 % of Mmax −Fz

16 30◦ 60 % of Mmax +Fz

17 30◦ 80 % of Mmax −Fz

18 30◦ 80 % of Mmax +Fz

19 30◦ 100 % of Mmax −Fz

20 30◦ 100 % of Mmax +Fz

21 60◦ 20 % of Mmax −Fz

22 60◦ 20 % of Mmax +Fz

23 60◦ 40 % of Mmax −Fz

24 60◦ 40 % of Mmax +Fz

25 60◦ 60 % of Mmax −Fz

26 60◦ 60 % of Mmax +Fz

27 60◦ 80 % of Mmax −Fz

28 60◦ 80 % of Mmax +Fz

29 60◦ 100 % of Mmax −Fz

30 60◦ 100 % of Mmax +Fz

31 90◦ 0 % of Mmax −Fz

32 90◦ 0 % of Mmax +Fz

33 90◦ 20 % of Mmax −Fz

34 90◦ 20 % of Mmax +Fz

35 90◦ 40 % of Mmax −Fz

36 90◦ 40 % of Mmax +Fz
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Table A2. Grid of FE simulations, part 2.

Simulation Nr. Load angle β Moment M Axial load Fz

37 90◦ 60 % of Mmax −Fz

38 90◦ 60 % of Mmax +Fz

39 90◦ 80 % of Mmax −Fz

40 90◦ 80 % of Mmax +Fz

41 90◦ 100 % of Mmax −Fz

42 90◦ 100 % of Mmax +Fz

43 120◦ 20 % of Mmax −Fz

44 120◦ 20 % of Mmax +Fz

45 120◦ 40 % of Mmax −Fz

46 120◦ 40 % of Mmax +Fz

47 120◦ 60 % of Mmax −Fz

48 120◦ 60 % of Mmax +Fz

49 120◦ 80 % of Mmax −Fz

50 120◦ 80 % of Mmax +Fz

51 120◦ 100 % of Mmax −Fz

52 120◦ 100 % of Mmax +Fz

53 150◦ 20 % of Mmax −Fz

54 150◦ 20 % of Mmax +Fz

55 150◦ 40 % of Mmax −Fz

56 150◦ 40 % of Mmax +Fz

57 150◦ 60 % of Mmax −Fz

58 150◦ 60 % of Mmax +Fz

59 150◦ 80 % of Mmax −Fz

60 150◦ 80 % of Mmax +Fz

61 150◦ 100 % of Mmax −Fz

62 150◦ 100 % of Mmax +Fz

63 180◦ 20 % of Mmax −Fz

64 180◦ 20 % of Mmax +Fz

65 180◦ 40 % of Mmax −Fz

66 180◦ 40 % of Mmax +Fz

67 180◦ 60 % of Mmax −Fz

68 180◦ 60 % of Mmax +Fz

69 180◦ 80 % of Mmax −Fz

70 180◦ 80 % of Mmax +Fz

71 180◦ 100 % of Mmax −Fz

72 180◦ 100 % of Mmax +Fz
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Table B1. FE test simulations.

Simulation Nr. Load angle β Moment M Axial load Fz

1 52.68◦ 56.61 % of Mmax 53.66 % of +Fz

2 55.49◦ 55.29 % of Mmax 62.19 % of +Fz

3 62.50◦ 43.76 % of Mmax 42.94 % of +Fz

4 64.70◦ 89.37 % of Mmax 41.87 % of +Fz

5 66.40◦ 76.45 % of Mmax 62.52 % of +Fz

6 69.09◦ 88.16 % of Mmax 66.34 % of +Fz

7 74.63◦ 58.10 % of Mmax 68.52 % of +Fz

8 75.01◦ 53.47 % of Mmax 69.52 % of +Fz

9 75.42◦ 76.98 % of Mmax 39.13 % of +Fz

10 93.64◦ 77.04 % of Mmax 35.54 % of +Fz

11 93.65◦ 61.31 % of Mmax 70.74 % of +Fz

12 100.71◦ 61.73 % of Mmax 45.85 % of +Fz

13 100.82◦ 69.80 % of Mmax 66.12 % of +Fz

14 101.19◦ 65.07 % of Mmax 72.68 % of +Fz

15 101.85◦ 50.80 % of Mmax 69.06 % of +Fz

16 104.19◦ 76.23 % of Mmax 57.73 % of +Fz

17 106.25◦ 71.77 % of Mmax 51.29 % of +Fz

18 107.37◦ 71.10 % of Mmax 54.42 % of +Fz

19 110.58◦ 62.86 % of Mmax 55.65 % of +Fz

20 110.81◦ 57.47 % of Mmax 46.81 % of +Fz
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