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Abstract. The Scotian Shelf is one of the top wind regimes in the world. In order to assess the wind energy of the potential wind

farms over the shelf, in this study, we first assessed the uncertainties of four commonly used wind datasets: ERA5, CFSv2,

NARR, and HRDPS, by comparing them against observational wind data distributed at both nearshore and offshore sites. The

assessment indicates that the root-mean-square error of the datasets varies between 1.6 m/s and 2.4 m/s in wind speed and

between 24.6° and 36.4° in wind direction. HRDPS performs better at the near-shore sites, while ERA5 is more accurate at5

the offshore sites. We then estimated the wind energy potential of six wind farms on the shelf using ERA5 and HRDPS. The

estimation shows that wind energy varies seasonally, the energy in summer 55% lower than that in winter. The uncertainties

in wind datasets enhance the variation of the wind energy production, up to 28% in winter and 55% in summer. The energy

output is sensitive to turbine spacing due to wind wakes, which reduce energy by 17% to 26% in winter and by 40% to 55%

in summer, depending on the relationships between wind speeds, wind directions, and the specific layout of the wind farms.10

This strong variation in wind energy output suggests that a more feasible operational method should be used to balance energy

production and usage.

1 Introduction

1.1 Background

Offshore wind farms have rapidly developed globally over the past decade (World Forum Offshore Wind, 2024), driven in part15

by greater consistency and abundance of wind resources compared to onshore. By the end of 2023, the capacity in operation

of global offshore wind farms had reached 67.4 GW, and is projected to reach 414 GW by 2032, which is a significant increase

from 7.9 GW in 2014 (World Forum Offshore Wind, 2024). Although no wind turbines have been installed in Canadian offshore

waters to date, offshore wind is expected to play a key role in Canada’s electricity portfolio in support of the country’s net-zero

emissions goal by 2050 (Canada Energy Regulator, 2023). Nova Scotia’s offshore waters rank among the world’s best wind20

resources, with average wind speeds of 9–11 m/s at 100 metres above the ocean surface (Aegir Insights ApS, 2023; Nicholson,
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2023). The federal and provincial governments plan to offer leases for 5 GW of offshore wind development on the Scotian

Shelf by 2030 (Government of Nova Scotia, 2023).

As planning for offshore wind development on the Scotian Shelf progresses, there remains a lack of comprehensive assess-

ments of wind datasets and, particularly, estimates of wind energy potential that accounts for wake effects associated with25

varying wind turbine spacing. To address this gap, this study evaluated available wind datasets, comparing their accuracy

against regional wind observations to better inform the region’s offshore wind potential. These datasets were then used to

simulate wind farm performance across potential future development areas (PFDAs), incorporating turbine spacing and wake

effects to assess their influence on energy production. While the PFDAs analyzed in this study generally align with proposed

offshore wind energy areas for the Scotian Shelf, their exact location, shape, and size may differ from final areas that are30

approved for development.

This research aimed to provide a more accurate estimate of wind energy potential on the Scotian Shelf, as well as offer

insight into future wind farm planning, design, and development in the region. The manuscript is structured as follows: Section

2 introduces the wind datasets, regional wind observations, and metrics used for evaluation, along with the PyWake model

configuration; Section 3 presents the wind dataset assessment results for wind speed and wind direction; Section 4 presents35

PFDAs power production simulation results; and finally, Sections 5 and 6 present discussions and conclusions, respectively.

1.2 Wind Datasets

Offshore wind development on the Scotian Shelf requires reliable wind resource assessments to guide investment and planning,

particularly as this industry is new to the region. Previous studies evaluating potential power generation for the PFDAs on the

Scotian Shelf have relied on climatological wind speeds and idealized conditions (i.e., Aegir Insights ApS (2023); Kilpatrick40

et al. (2023)). However, these studies did not account for turbine wake effects, which can significantly influence overall energy

potential and lead to inaccurate energy estimates. A more robust approach involves simulating offshore wind farms using

numerical models that incorporate time-varying wind speed and wind direction data from wind datasets, providing a more

accurate foundation for decision-making.

There are several reanalysis and forecast wind datasets that cover the Scotian Shelf region, including: 1) the fifth-generation45

European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis (ERA5); 2) Climate Forecast Sys-

tem Version 2 (CFSv2); 3) North American Regional Reanalysis (NARR); and 4) High-Resolution Deterministic Prediction

System (HRDPS). Assessments of wind speed from these datasets have been carried out for other regions (e.g., Fan et al.,

2021; Gualtieri, 2021; Kardakaris et al., 2021; Wang et al., 2019). Although these assessments have had varied objectives,

such as dataset evaluation (Milbrandt et al., 2016), inter-dataset comparison (Wang et al., 2019; Fan et al., 2021), and wind50

energy estimations (Li et al., 2010; Murcia et al., 2022), they all strengthened our understanding of global different datasets

and provided guidance in selecting the most suitable dataset for specific applications.

To assess the ability of available wind datasets to reflect conditions on the Scotian Shelf, this study compared the wind speed

against observational wind measurements using statistical metrics including Root Mean Square Error (RMSE), bias, Mean

Absolute Error (MAE), and the correlation coefficient or coefficient of determination (R2) (Gualtieri, 2021; Fan et al., 2021;55
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Kardakaris et al., 2021; Wang et al., 2019; Milbrandt et al., 2016; Murcia et al., 2022). To align gridded wind datasets with the

more limited observational data, horizontal interpolation using a 2-D linear or cubic methods, and vertical extrapolations using

a power law relationship, assuming atmospheric neutral stability (Wang et al., 2019; Kardakaris et al., 2021; Murcia et al.,

2022), can be used.

Among the four wind datasets, ERA5 has been the most widely assessed and often deemed to be one of the most accurate.60

Fan et al. (2021) evaluated five wind datasets (i.e., ERA5, ERA-Interim, JRA-55, MERRA-2, and CFSv2) by comparing 10-m

wind speed data to wind observations from over 1000 meteorological stations worldwide. The authors found that ERA5 demon-

strated the best overall performance among the five reanalysis wind dataset products, with ERA5 exhibiting a mean percent bias

for all stations of -4.54%, while the mean percent bias ranged from -54.22% for JRA-55 and 42% for MERRA-2. Similarly, in

a recent dataset validation study, Murcia et al. (2022) compared multiple wind datasets with wind observations from various65

sites across Europe and found that after calibration, ERA5 outperformed all other datasets, including the European-level atmo-

spheric reanalysis (EIWR). In general, the ERA5 dataset exhibited the lowest MAE, smallest RMSE, and highest correlation

coefficient.

Gualtieri (2021) compared ERA5 wind speeds against wind measurements taken from six tall towers spread across a diverse

range of global locations. This comparison noted that the normalized bias of wind speed ranged from -0.18 to 0.53, while the70

correlation coefficient between ERA5 and wind observations varied from 0.38 to 0.96, depending on location. Similar findings

were reported by Fan et al. (2021), whose results indicated notable regional differences, with the percent bias for ERA5 ranging

from -11.55% in Australia to 16.13% in Central Asia.

Even within a relatively small region, wind dataset reanalysis products can exhibit considerable spatial variability. For

example, Kardakaris et al. (2021) assessed ERA5 wind speed using measurements from six buoys in the Greek seas and found75

that the relative difference between ERA5 and observed wind speeds ranged from 6.5% to 34.7%. Similarly, Fernandes et al.

(2021) compared ERA5 wind speed data at the height of 100 m above sea surface with wind observations from both coastal

and offshore sites in Brazil. The findings showed that in the coastal region the bias was less than 0.5 m/s (with a mean wind

speed of approximately 6 m/s), whereas in the offshore region the bias was nearly zero (with a mean wind speed of 7.19 m/s).

Li et al. (2010) compared 80-m-height wind speed observations from rawinsondes in the Great Lakes region of the United80

States to the NARR wind dataset. Their analysis showed that the bias ranged from -0.64 m/s to 0.59 m/s, exhibiting a charac-

teristic wind speed of 6 m/s and a correlation coefficient close to 0.8, suggesting that NARR provided an accurate simulation

of wind speed for the study region. Further, Wang et al. (2019) assessed the 10-m wind speed and wind direction from various

datasets, including NARR, against wind observations from three ocean buoys along the Central California Coast. The authors

found that the NARR dataset generally underestimated wind speed compared to observations from all three buoys, with the85

bias ranging from -2.78 m/s to -0.15 m/s and RMSE from 1.90 m/s to 4.00 m/s for mean wind speeds between 4 m/s and 11 m/s.

There are limited studies that have evaluated the HRDPS dataset to observed wind speeds (e.g., Milbrandt et al., 2016;

Moore-Maley and Allen, 2022). Notably, in a nearshore area, Moore-Maley and Allen (2022) examined 5-year hourly surface

wind speed records against wind observations from four stations (meteorological stations and ocean buoys) in the Salish Sea.
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The authors observed an overall qualitative consistency between HRDPS and the observations in terms of wind speed and wind90

direction.

In general, most wind dataset assessment studies have focused on the evaluation of wind speed, with fewer studies assessing

wind direction (Moore-Maley and Allen, 2022). Assessing wind direction, however, is important for the purpose of conducting

wind farm simulations, as wind direction and turbine layout can influence wind farm efficiency due to wake effects (Gaumond

et al., 2014; Stieren et al., 2021).95

1.3 Wake Effects

In general, studies that have estimated offshore wind farm energy potential from wind datasets (e.g., Wang et al., 2022;

Gualtieri, 2021; Kardakaris et al., 2021; Fernandes et al., 2021) typically estimate wind power using simple formulas or

interpolate using wind turbine power curves. However, these approaches can overlook a key aspect of real-world conditions;

primarily, wind turbines can generate wake effects that reduce wind speeds available to downstream turbines, leading to lower100

overall energy production from a wind farm. Wake effects have been estimated to result in energy losses on order of 10%

to 25% in medium-sized offshore wind farms, such as the Horns Rev, Lillgrund, and Nysted wind farms (Barthelmie et al.,

2009, 2010; Niayifar and Porté-Agel, 2015; Simisiroglou et al., 2019; Wu and Porté-Agel, 2015). For large-sized offshore wind

farms, Pryor et al. (2021) estimated, through simulation, an overall 35.3% energy loss associated with wake effects.

Given the impact wake effects can have on wind farm efficiency, substantial research has been dedicated to predicting turbine105

wakes using analytical models (e.g., Bastankhah and Porté-Agel, 2014; Jensen, 1983; Niayifar and Porté-Agel, 2015), numer-

ical simulations (e.g., Calaf et al., 2010; Pryor et al., 2021; Stevens, 2016; Troldborg et al., 2010), and laboratory experiments

(e.g., Chamorro and Porté-Agel, 2010). In recent studies (e.g., Fischereit et al., 2022; Murcia et al., 2022), wake effects were

incorporated into wind farm energy production estimates using PyWake (Pedersen et al., 2023), which is a Python package

designed to efficiently calculate wake interactions in wind farms.110

In addition to wake effect models, wind farm simulations also require detailed turbine models and turbine layouts. Older

offshore wind farms deployed smaller turbines; for example, the Horns Rev wind farm utilized Vestas V80 2 MW turbines

(Hansen et al., 2012). In contrast, Siemens 2.3 MW turbines were installed at Nysted and Lillgrund (Barthelmie et al., 2010;

Simisiroglou et al., 2019). More recently, there has been a move towards installation of larger turbines. The average rated-

capacity of installed offshore wind turbines globally has been increasing, with an average of 4.0 MW in 2013, 9.7 MW in 2023,115

and a projected increase to 14.8 MW by 2028 (McCoy et al., 2024). In the U.S., several offshore wind farms currently under

construction are now incorporating 15 MW turbines (Tetra Tech Inc., 2022).

Turbine spacing is a critical factor that influences wake effect energy losses in a wind farm. Larger turbine spacing allows

downstream wind more space to regain velocity through turbulent mixing, which draws kinetic energy downward from higher

atmospheric layers (Frandsen, 1992). This larger spacing thus can improve the efficiency of downstream wind turbines, com-120

pared to those spaced closer together. However, increased spacing can also lead to overall reduced energy generation given

fewer turbines being emplaced within a development area. These factors emphasize the importance of understanding the trade-

offs between turbine spacing and wake effects, in an effort to inform overall economics of wind farm planning, design, and
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development (Mulas Hernando et al., 2023; Stevens et al., 2017). Typical turbine spacing ranges from 4 to 11 D, where D is

the turbine rotor diameter (Bosch et al., 2019; Pryor et al., 2021; Stevens et al., 2017). At the Lillgrund offshore wind farm in125

Sweden, turbine spacing ranges 3.3 to 4.3 D (Simisiroglou et al., 2019), while at the Horns Rev offshore wind farm in Denmark

the turbines are spaced at 7 D (Barthelmie et al., 2010).

2 Datasets and Methods

2.1 Regional Wind Observations

Hourly wind data from weather stations within the Scotian Shelf area were obtained from the Government of Canada’s Histor-130

ical Climate Data website (https://climate.weather.gc.ca). Two island-based meteorological stations located at a nearshore site

(Beaver Island) and an offshore site (Sable Island) on the Scotian Shelf were selected for analysis. For the oceanic domain,

wind data were obtained from moored marine buoy sites. Four buoys were selected based on data coverage for the analysis

period and minimal gaps in observed wind data (Figure 1). These data were obtained from the Fisheries and Oceans Canada

(DFO) Marine Environmental Data Section Archive (https://meds-sdmm.dfo-mpo.gc.ca). All sites were summarized in Ta-135

ble 1. The sites were numbered in a sequence based on distance away from the coastline of Nova Scotia and in a northeast to

southwest direction. Due to different regimes of wind dynamics (Cañadillas et al., 2023; Djath et al., 2022), the sites have been

categorized as nearshore (Sites 1 and 2) and offshore (Sites 3–6).

Table 1. Information on the meteorological stations and marine buoy sites used in this study. For meteorological stations, the height cor-

responds to the station’s elevation above sea level, with wind measurements taken by an anemometer mounted on a mast at a height of 10

meters above the ground. For marine buoys, the listed height represents the height of the instrument measuring winds above the sea surface.

Site Longitude (◦W) Latitude (◦N) Height (m) Group Type

1 62.33 44.82 16.0 nearshore meteorological station

2 63.40 44.50 5.0 nearshore marine buoy

3 59.96 43.93 1.2 offshore meteorological station

4 64.02 42.51 5.0 offshore marine buoy

5 57.10 44.24 5.0 offshore marine buoy

6 62.00 42.26 5.0 offshore marine buoy

2.2 Wind Datasets

The ERA5 dataset, developed by ECMWF, is a reanalysis climate product that assimilates historical observational data globally140

(Hersbach et al., 2020). It has global coverage with spatial resolution of 0.25° and spans from January 1940 to the present

with hourly frequency. The 10-m wind velocity components in east-west and north-south directions can be accessed at the

Copernicus Climate Data Store (Hersbach et al., 2023).
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Figure 1. Map of the Scotian Shelf study area located in the offshore of Nova Scotia, Atlantic Canada. The map illustrates locations of

regional wind observation sites, including meteorological stations (+) and marine buoys (•) at both nearshore (red) and offshore (blue)

locations. The potential future development areas (PFDAs) for offshore wind farms used in this study are also named. These PFDAs are

adapted from general areas described by Committee for the Regional Assessment of Offshore Wind Development in Nova Scotia (2024).

Although the PFDAs used in this study generally align with offshore wind energy areas being discussed for the Scotian Shelf, the exact areas

used in this study may differ in location, shape, and size from those areas finalized by regulators for offshore wind development consideration.

Cities are illustrated with yellow stars. Contour lines at 100-m and 200-m isobaths are depicted with thin and thick grey curves, respectively.

NS = Province of Nova Scotia; PEI = Province of Prince Edward Island.

The CFSv2 is a coupled model that contains ocean, land, and atmosphere components (Saha et al., 2014). The National

Centers for Environmental Prediction (NCEP) provides selected hourly time-series products of CFSv2 dataset that span from145

April 1, 2011, to the present. Hourly time series of 10-m wind velocity components in two directions, with a 0.2° horizontal

resolution, can be accessed from the Research Data Archive at the National Center for Atmospheric Research (Saha et al.,

2011).

The NARR dataset produced by NCEP provides a high-resolution reanalysis of atmospheric variables, including wind ve-

locities (Mesinger et al., 2006). The 3-hourly wind velocity at 10 m height can be acquired from the Research Data Archive150
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at the National Center for Atmospheric Research (National Centers for Environmental Prediction, National Weather Service,

NOAA, U.S. Department of Commerce, 2005).

The HRDPS developed by Environment and Climate Change Canada (ECCC) is a high-resolution numerical weather predic-

tion model with assimilation (Milbrandt et al., 2016). It has a spatial resolution of 2.5 km and an hourly temporal frequency. The

dataset spans from April 23, 2015, to the present, covering all of Canada. Information on accessing the HRDPS dataset can be155

found at the Meteorological Service of Canada Open Data portal (https://eccc-msc.github.io/open-data/msc-data/readme_en/).

Table 2 summarizes the basic parameters associated with all four wind datasets.

Table 2. Summary information for the four wind datasets used in this study: ERA5, CFSv2, NARR, and HRDPS.

Name Source Time Range
Horizontal

Resolution

Temporal

Resolution

Spatial

Coverage

ERA5 ECMWF 1940–present 0.25◦ hourly Global

CFSv2 NCEP 2011–present 0.2◦ hourly Global

NARR NCEP 1979–present 0.3◦ 3-hourly North America

HRDPS ECCC 2015–present 2.5 km hourly Canada (mainly)

2.3 Spatial and Temporal Interpolation

Since the wind datasets and regional wind observations do not align in space or time the respective coordinates were stan-

dardized. To do this, a 2-D linear interpolation was applied to the gridded wind datasets to match the wind observation site160

locations. Since the wind datasets provided velocity components along the east-west and north-south directions, separate in-

terpolations for each of the components were performed. The ERA5, CFSv2, and HRDPS wind datasets have identical time

intervals, corresponding to exact hours. In contrast, the NARR dataset is provided at 3-hour intervals (i.e., 00:00, 03:00, 06:00,

..., 21:00).

To align the NARR data with ERA5 time intervals, another 1-D linear interpolation was performed along the time dimension.165

Although the wind observation times were approximately one hour apart, they did not align exactly with the hour marks. To

enable comparison between the two wind datasets, the observation times were interpolated to match the hourly timestamps

of the ERA5 dataset. Since the observation data were in the form of wind speed and wind direction, a straightforward linear

interpolation for wind speed was applied. For wind direction, the interpolation method for angular values described by Berens

(2009) was used.170

2.4 Extrapolating Wind Speed

Wind measurements from marine buoys were taken at a height of 5 metres above sea surface, while data from the four wind

datasets were taken at 10 metres above the sea surface. To compare data at the same height, the power-law relationship in (1)

was applied, assuming a naturally-stable atmospheric condition, to extrapolate wind speed from m to m. The exponent α was
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set to 1/7, which is a common value used in other studies (Fan et al., 2021; Holt and Wang, 2012; Tian et al., 2019; Wang et al.,175

2016).

U2

U1
=

(
z2

z1

)α

. (1)

This approach was also used to convert wind speeds from the ERA5 and HRDPS datasets from 10 metres to an assumed

turbine hub height at 150 metres (parameters of the turbine model used in this study was introduced in subsection 2.6 below).

2.5 Assessment Metrics180

Four metrics to compare wind speed and wind direction observations (denoted as ‘O’ in the following equations) with the wind

datasets (denoted as ‘M’ in the following equations) were selected: 1) Root Mean Square Error (RMSE); 2) bias; 3) Mean

Absolute Error (MAE); and 4) the coefficient of determination (R2). The metrics were defined as follows.

RMSE is a measure of the magnitude of error between a wind dataset and the observed wind values (2). It provides an

indication of how well wind dataset values align with observed wind data, with lower RMSE values indicating better dataset185

performance. RMSE is calculated as:

RMSE =

√√√√ 1
N

N∑

i=1

(Mi−Oi)2, (2)

where N is the total number of data points.

Bias is a measure of the overall deviation between a wind dataset and the observed wind values (3). A positive or negative

bias indicates that the dataset overestimates or underestimates the wind observations, respectively. Bias is calculated as:190

Bias =
1
N

N∑

i=1

(Mi−Oi). (3)

MAE is a measure of the average absolute error between a wind dataset and the observed wind values (4). Given each error

influences MAE linearly, this metric is straightforward to interpret. MAE is calculated as:

MAE =
1
N

N∑

i=1

|Mi−Oi|. (4)

R2 is a measure of the degree to which the wind dataset matches the observed wind values (5). Its value ranges from 0,195

representing the worst prediction, to 1, representing a perfect match. R2 is calculated as:

R2 = 1−
∑N

i=1(Mi−Oi)2∑N
i=1(Oi− Ō)2

. (5)

Metrics were calculated using wind speeds and wind directions measured at 10-m height above the island surface or sea

surface depending on the observation site. Because the study focused on evaluating a wind dataset for wind speed within a

turbine’s operating range, which is 3 m/s to 25 m/s at the hub height of a 150 m high turbine (Figure 2), the corresponding200

wind speed range at 10-m height is approximate 2 m/s to 17 m/s based on (1). Therefore, all metrics were only calculated using

wind data during periods of wind speed that fell within a range of 2 m/s to 17 m/s.
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2.6 Configuration of Power Production Model For Wind Farm Development Areas

Figure 2. Power curve and thrust coefficient (Ct) versus wind speed used in this study. The turbine model adopted was an IEA 15 MW

turbine (Gaertner et al., 2020).

PyWake is a Python package used to simulate wind farm flow fields. It integrates multiple wake models caused by wind

turbines and wake interaction models (Pedersen et al., 2023). Validations of PyWake have demonstrated that its results agree205

well with those from Computational Fluid Dynamic models and observational data (PyWake development team, n.d.; Quick

et al., 2024). The turbine model used for simulation in this study was the IEA 15 MW wind turbine (Gaertner et al., 2020). The

IEA 15 MW wind turbine features a hub height of 150 metres and the rotor diameter is 240 metres.

The thrust coefficient (Ct) represents the portion of wind energy extracted by the rotor. At lower wind speeds, Ct is high,

meaning a larger portion of the wind’s energy is extracted for producing electricity, resulting in more pronounced wake effects210

(Figure 2). As wind speed increases beyond 10.6 m/s (equivalent to 7.2 m/s at 10-m height above surface), Ct decreases,

reducing the portion of energy extracted, while the turbine reaches its rated power output of 15 MW. Consequently, wake

effects become less pronounced.

In wind farms, turbines located in the interior experience lower wind speeds due to wake effects from upstream turbines. This

reduction in wind speed leads to a decrease in power production compared to an ideal scenario with no wake interference. To215

assess the impact of wakes on turbine performance, the wake efficiency metric was employed in this study, which quantifies how

effectively a turbine generates power under wake-influenced conditions. Wake efficiency, η, defined as the ratio of a turbine’s

actual power output in the presence of wakes, denoted as Pwake, to its theoretical power output in an idealized scenario without

wake effects, Pideal, is expressed as:

η =
Pwake

Pideal
. (6)220
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The wake effect was simulated using the wake deficit model of a Gaussian profile type described by Bastankhah and Porté-

Agel (2014). The Gaussian-based model is known for its accuracy in describing wake expansion and velocity deficits, especially

for modern large-scale turbines. The simulations used hourly wind speed and wind direction sourced from the wind datasets

of ERA5 and HRDPS. Since winds on the Scotian Shelf are relatively consistent in space, a spatially-averaged wind speed and

wind direction were used in the simulation of each PFDA. This approach simplified simulation setup while also maintaining225

focus on temporal variability. At a given location, wind speed deficits were often influenced by wake effects from multiple

upstream turbines. To account for combined wake effects in this study, the linear superposition sub-model in PyWake was

used.

3 Wind Dataset Assessments

3.1 Assessment of Wind Speed230

Figure 3. Time series of wind speed (upper panel) and wind direction (lower panel) at Site 3 at a 10-m height above surface for observation

and the four wind datasets ERA5, CFSv2, NARR, and HRDPS. The comparison was for the month of January 2019.).

Performance of the wind datasets ERA5, CFSv2, NARR, and HRDPS was assessed by comparing the dataset data with

observed wind data using the four metrics described above (Section 2.5). Time series of wind speed and wind direction at a

height of 10-m above surface at Site 3, demonstrated general agreement between wind datasets and regional wind observations

at the site (Figure 3). All datasets generally captured the variability and magnitude of the observed wind speed at Site 3.

However, there were notable discrepancies between the datasets and observations during periods of higher observed wind235

speeds (e.g., January 6–8, 2019, and January 20–21, 2019), which illustrate that performance of the datasets does vary in time.

In terms of wind direction, the datasets exhibited good agreement with wind observations at Site 3 during most periods of

moderate to high wind speeds. In contrast there were larger discrepancies in wind direction during periods of low wind speeds
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(e.g., January 16–17, 2019). In general, the datasets performed well in capturing variations over longer timescales (days to

weeks), although they did not consistently capture short-term fluctuations (on a daily scale).240

Figure 4. Pseudocolor plots displaying monthly (a) RMSE, (b) bias, (c) MAE, and (d) R2 for wind speed for each dataset per wind obser-

vation site from January 1, 2019, to December 31, 2023. Sites 1 and 2 are representative of the nearshore (left of bold black line in each

subplot) and Sites 3 - 6 are representative of the offshore (right of bold black line in each subplot) on the Scotian Shelf. The wind dataset

is indicated at the top of each subplot. Blank areas (white pixels) indicate months and sites that had insufficient, valid observation records

(considered to be less than 120 observation records in a month). These were considered to be non-valid for purposes of this study.
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To quantitatively evaluate the wind datasets against the wind observations, the four metrics were used, as defined in equations

(2)–(5) described above. The four evaluation metrics (RMSE, bias, MAE, and R2) were calculated on a monthly basis over

a five-year period from January 1, 2019 to December 31, 2023, using hourly data pairs of each wind dataset and the wind

observations (Figure 4).

At nearshore sites, HRDPS consistently exhibited the lowest RMSE values across most of the months in 2019 – 2023 among245

the four wind datasets (Figure 4 a). The five-year averaged RMSE values obtained from HRDPS was 1.72 ± 0.15 m/s (mean

± standard deviation calculated from RMSE for all months per observation site) at Site 1 and 1.70 ± 0.13 m/s at Site 2.

Following HRDPS, ERA5 displayed higher five-year averaged RMSE values of 1.76 ± 0.20 m/s and 2.08 ± 0.37 m/s at the

two corresponding nearshore sites. The CFSv2 dataset exhibited slightly higher five-year averaged RMSE values compared

to ERA5, showing values of 1.91 ± 0.17 m/s and 1.92 ± 0.19 m/s at the respective sites. Last, NARR exhibited the highest250

five-year averaged RMSE values of 2.27 ± 0.21 m/s and 2.69 ± 0.38 m/s at the two respective sites.

At offshore sites, ERA5 exhibited the lowest five-year averaged RMSE values at most sites (i.e., Sites 4, 5 and 6), with the

values being 1.54 ± 0.18 m/s, 1.45 ± 0.18 m/s, and 1.58 ± 0.23 m/s, respectively. At Site 3, ERA5 exhibited the second lowest

five-year averaged RMSE values across all datasets of 1.72± 0.24 m/s, and was only slightly higher than the HRDPS five-year

averaged RMSE value of 1.61 ± 0.19 m/s. In contrast, CFSv2 exhibited higher five-year averaged RMSE values compared255

to ERA5 and HRDPS at all sites. Last, NARR exhibited the highest five-year averaged RMSE values among all datasets;

particularly, at Sites 4, 5 and 6 where the NARR monthly RMSE values typically exceeded ERA5 by more than 0.6 m/s.

Seasonal variation in the monthly RMSE values was observed (Figure 4 a), where the RMSE values tended to increase during

winter months when wind speeds were higher and decrease in summer months when wind speeds were lower. This seasonal

pattern was evident at both nearshore and offshore sites across all four datasets.260

For bias at the two nearshore sites (Figure 4 b), HRDPS generally exhibited the smallest deviation from zero among the four

datasets. The 5th to 95th percentile range of monthly bias for HRDPS ranged from -0.85 m/s to 0.15 m/s at Site 1 and -0.92 m/s

to 0.17 m/s at Site 2. This was followed by CFSv2, which exhibited monthly bias values that ranged from -0.96 m/s to 0.04 m/s

at Site 1, and -1.29 m/s to 0.21 m/s at Site 2. ERA5 exhibited a slightly wider range of monthly bias values compared to CFSv2

at both sites; particularly at Site 2 where the monthly bias values for ERA5 were predominantly negative (underestimation).265

Last, NARR exhibited the widest range of monthly bias among all datasets. Similar to ERA5 at Site 2, the monthly bias for

NARR was consistently negative.

For bias at the offshore sites, there was a clear difference between Site 3 (the meteorological station located on Sable Island)

and the offshore buoy sites (Sites 4, 5 and 6). At Site 3, the monthly bias was predominantly positive (overestimation) across

all four datasets for almost all months. This was likely due to the small size of Sable Island (the island’s size approximately270

33.5 km east-west and less than 1.5 km north-south), which was believed to be too small to be resolved by the datasets, and

consequently, the surface roughness in the numerical models was believed to underestimated. In turn, this would result in

overestimated wind speeds within the models.

At the marine buoy Sites 4, 5 and 6, the percentages of monthly bias values from CFSv2 that fell within a range of -0.5 m/s

to 0.5 m/s, were 75%, 27%, and 55%, respectively. These values suggested that CFSv2 over-performed the other wind datasets.275
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The ERA5 followed with corresponding site percentages of 40%, 23%, and 47% respectively. The HRDPS was the third best

performing dataset, with NARR performing the worst, exibiting only 12%, 12%, and 37% of bias values at Sites 4, 5, and

6, respectively, within the -0.5 m/s to 0.5 m/s range. Similar to RMSE, seasonal fluctuations were also evident in bias. At the

nearshore sites, bias tended to be more positive during fall months and more negative during spring months. In contrast, bias

generally became more negative during fall months and more positive during spring months at the offshore sites.280

The monthly MAE over the five-year period was also estimated (Figure 4 c). Similar to the RMSE and bias metrics described

above, HRDPS stood out as the best-performing dataset at the two nearshore sites, which exhibited five-year averaged MAE

values of 1.33 ± 0.11 m/s and 1.34 ± 0.11 m/s at Sites 1 and 2, respectively. This was followed by ERA5 and CFSv2, which

exhibited comparable performance, while NARR exhibited the highest five-year averaged MAE values among all four datasets

at both nearshore sites. Offshore, ERA5 exhibited the lowest five-year averaged MAE values of 1.20 ± 0.14 m/s, 1.13 ±285

0.14 m/s, and 1.22± 0.17 m/s at Sites 4, 5, and 6, respectively. At Site 3, ERA5 exhibited the second lowest five-year averaged

MAE of 1.36 ± 0.19 m/s (this followed the lowest five-year averaged MAE value of 1.24 ± 0.14 m/s at Site 3 for HRDPS).

Seasonal variation in MAE was similar to those observed for RMSE at the nearshore and offshore sites.

Monthly R2 (Figure 4 d) exhibited different patterns between the nearshore and offshore sites (Figure 4 d). The R2 values at

nearshore sites were generally lower than those at offshore sites among the four datasets. At nearshore sites, HRDPS exhibited290

the highest five-year averaged R2 values of 0.70± 0.10, 0.72± 0.11 at Sites 1 and 2, respectively. This was followed by ERA5

and then CFSv2, which exhibited lower five-year averaged R2 values. Last, NARR exhibited the lowest R2 values among the

four datasets at nearshore sites. For offshore sites, ERA5 exhibited the largest R2 values across the four datasets, with similar

values of 0.80 at Sites 3, 4, 5, and 6. This was followed by HRDPS, CFSv2, and NARR exhibiting R2 values of 0.77, 0.74,

0.60, respectively. Seasonal variations observed in R2 were more pronounced at nearshore sites compared to offshore sites,295

where the R2 values tended to decrease during the spring and summer months and increase during the fall and winter months.

Although the metrics vary by Site and season, several common characteristics do exist by groupings of Sites. At nearshore

sites, HRDPS consistently demonstrated the best performance among the four datasets for all metrics. In contrast, results

slightly varied across the different metrics at offshore sites. For RMSE, MAE, and R2, ERA5 outperformed all other datasets in

having the most number of months where the metrics exhibited the best values representative of dataset performance. Although300

CFSv2 emerged as the best overall performer for bias at most sites, ERA5 also exhibited strong performance, ranking as the

second-best dataset performer for this metric.

To further assess nearshore versus offshore Site groups, all observed wind speed data over the 5-year period was aggregated

per group (i.e., inshore and offshore). Each metric was subsequently calculated using the aggregated data to yield a five-year

averaged value per dataset.305

Performance was found to be higher for wind speed in the offshore site group, as indicated by lower median absolute values

of RMSE, bias, and MAE, and higher R2, compared to the nearshore site group (Figure 5). The lower performance of the

datasets at nearshore sites was likely due to a more complex dynamic environment, where land-sea interactions introduce

additional challenges for modeling. However, the wider spread of RMSE, bias, and MAE for offshore sites, with the exception

of MAE for ERA5, suggested that dataset performance exhibited greater variability offshore (Figure 5 a–c). In contrast, R2310
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Figure 5. Box charts summarizing the monthly values of four wind speed evaluation metrics, as shown in Figure 4, of (a) RMSE, (b) bias,

(c) MAE, and (d) R2 for the four wind datasets of ERA5, CFSv2, NARR, and HRDPS. Sites are categorized into (red) nearshore and (blue)

offshore groups. Each box spans the first and the third quartiles of the data, with the horizontal line inside each box indicating the median

value. The whiskers extending from the box represent the minimum and maximum values that are within the 1.5 times the interquartile range

(IQR). The individual markers represent the outliers, defined as values exceeding 1.5 times the IQR.

showed a narrower interquartile range (IQR) offshore than nearshore, indicating more consistent correlations between observed

and modeled wind speeds in offshore environments (Figure 5 d).

Among the four datasets, HRDPS and ERA5 consistently ranked as the top two performers, each achieving either the best

or second-best values across most metrics for both nearshore and offshore site groups. For the nearshore site group, HRDPS

emerged as the top-performing dataset, achieving the best mean values for all metrics (Table 3) and the best median values for315

RMSE, bias, and MAE (Figure 5). While ERA5 held the highest median R2, HRDPS closely followed with the second-best

median value (Figure 5 d). Additionally, HRDPS exhibited the narrowest IQRs for all four metrics, which suggested greater

consistency in performance compared to the other datasets (Figure 5). ERA5 ranked second, with the second-best median and
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mean values for RMSE and MAE (Figure 5 a and c; Table 3), as well as the highest median and second-highest mean value for

R2 (Figure 5 d; Table 3).320

Table 3. Mean values of the monthly metrics for wind speed over the 5-year period from January, 2019 to December, 2023. Sites were

grouped into nearshore and offshore groups. Only wind speed data within the range of 2–17 m/s were considered. The best-performing

dataset metric is highlighted in bold. (-) = no units, as a dimensionless metric.

Metric ERA5 CFSv2 NARR HRDPS

Nearshore

RMSE (m/s) 1.89 1.92 2.43 1.72

Bias (m/s) -0.81 -0.49 -1.06 -0.38

MAE (m/s) 1.49 1.51 1.92 1.33

R2 (-) 0.73 0.69 0.58 0.75

Offshore

RMSE (m/s) 1.62 1.98 2.15 1.64

Bias (m/s) 0.15 0.50 -0.27 -0.13

MAE (m/s) 1.26 1.52 1.65 1.26

R2 (-) 0.80 0.74 0.66 0.79

For the offshore site group, ERA5 and HRDPS exhibited similarly strong performance, with closely matched median and

mean values across all metrics. ERA5 achieved the best median values for all four metrics, while HRDPS ranked second

for RMSE, MAE, and R2 (Figure 5). In terms of mean values, ERA5 achieved the best values for RMSE, MAE, and R2,

and second-best value for bias, while HRDPS achieved the best mean bias and second-best values for the other three metrics

(Table 3). Additionally, both ERA5 and HRDPS showed narrower IQRs for RMSE, MAE, and R2 compared to CFSv2 and325

NARR, which suggested greater consistency in their offshore performance (Figure 5 a, c and d).

Domestic electricity consumption often fluctuates throughout the day and varies by season. Therefore, wind dataset evalu-

ations should align with these timescales to accurately capture variability and to better inform wind energy development. To

achieve this, this study aggregated local hourly wind speed data over the five-year period (January 1, 2019 to December 31,

2023) (Figure 6). Data recorded at the same local hour on different days within the same calendar month, across all five years330

and all six sites, were grouped together for analysis. This approach provided insight into both diurnal and seasonal variations.

Based on RMSE, it was found that wind speed estimation error varied by hour of the day and by month (Figure 6 a). The

RMSE exhibited clear seasonal variations for all four datasets, with lower values observed in the spring and summer months

(i.e., April to September) and higher values observed in the fall and winter months (i.e., October to March). In contrast, diurnal

variation in RMSE appeared to differ between datasets. For ERA5, CFSv2, and NARR, RMSE values tended to peak between335

15:00 and 18:00 in all months (except January for CFSv2 and February for NARR), relative to the dataset’s mean RMSE for

the corresponding month. Additionally, RMSE values for ERA5 and CFSv2 were generally lower between 20:00 and 22:00,
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Figure 6. Pseudocolour plots displaying diurnal (local hour) and seasonal (monthly) wind speed variations in (a) RMSE, (b) bias, (c) MAE,

and (d) R2 for each dataset and grouped observation sites from January 1, 2019, to December 31, 2023. The x-axis represents local hours

and the y-axis represents months aggregated over the 5 years. Each wind dataset is indicated at the top of each subplot. The wind dataset is

indicated at the top of each subplot.
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except in September. In contrast, HRDPS displayed low RMSE values between 12:00 and 15:00 for all months except July.

These results highlight the dataset-dependent nature of wind speed estimation errors and emphasize the influence of seasonal

and diurnal cycles on dataset performance.340

The HRDPS generally had the lowest RMSE values across most months, indicating better wind speed estimation for this

metric. ERA5 showed lower RMSE than HRDPS in July and August, but had slightly higher RMSE from November to April.

In other months, the RMSE values for ER5 and HRDPS were comparable. CFSv2 performed within a mid-range, while NARR

consistently exhibited the highest RMSE values; exhibiting a poorer performance compared to HRDPS and ERA5 for this

metric. Overall, winter months displayed the most significant errors in wind speed estimation; particularly, during certain local345

hours (e.g., between 15:00 and 18:00).

Seasonality in the NARR and HRDPS datasets was evident in the bias metric, which exhibited a higher negative bias during

the spring and summer months for NARR and during fall months for HRDPS (Figure 6 b). These negative biases were indicative

of significant underestimations of observed wind speeds during these seasons. The bias for ERA5 was generally low, but did

exhibit positive values in June and July and negative values during other months. The CFSv2 exhibited an overall positive bias,350

but lacked a clear seasonal trend. Diurnal variations were notable in some months across all four datasets. For ERA5, the bias

during summer months was negative in the morning and positive throughout the remainder of the day. For CFSv2, the bias

shifted toward negative values at different times across the months: from 14:00 to 18:00 in March and April, 9:00 to 12:00 in

May to July, and 9:00 to 17:00 in August to October. Similarly, NARR and HRDPS exhibited a more pronounced negative bias

during midday hours in spring and summer months.355

In general, NARR bias was consistently negative across all months and hours of the day, suggesting a systematic underes-

timation of wind speeds. This underestimation was particularly significant during the spring and summer months and midday

(10:00 to 14:00). In contrast, ERA5 exhibited a modest bias overall, with slight overestimations observed in June and July and

underestimations observed during the fall and winter months. Diurnal variations were also evident, with higher negative values

observed during mid-day and lower negative (or even slightly positive values) observed in the early-morning and late-evening.360

HRDPS exhibited minimal bias across most months and hours, with relatively larger underestimations observed from August

to October; particularly, during mid-day hours. Last, CFSv2 generally exhibited positive bias, but lacked significant seasonal

or diurnal variation, suggesting relatively-stable deviations from observations across all time periods.

The MAE exhibited similar seasonal and diurnal patterns as those for RMSE, due to an inherent similarity between these

two metrics (Figure 6 c). For R2, ERA5 and HPDPS generally exhibited higher values compared to the other two datasets365

(Figure 6 d). Additionally, R2 values were observed to be lower in the months from June to August.

3.2 Assessment of Wind Direction

While wind speed is the primary factor influencing electricity production in wind farms, wind direction also plays an important

role due to its impact on turbine wakes (Gaumond et al., 2014; Stieren et al., 2021). Variation in wind direction for the same

turbine layout can lead to differing wake interactions, which can affect downstream turbines and significantly influence total370

power output. In order to better understand the performance of the four datasets, this study compared the ability of the wind
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model datasets to replicate observed patterns in wind direction. The analysis was similar to that for wind speed described

above, with the same performance evaluation metrics being used.

Figure 7. Pseudocolour plots displaying monthly (a) RMSE (b) bias (c) MAE and (d) R2 for wind direction for each dataset per wind

observation site from January 1, 2019, to December 31, 2023. Sites 1 and 2 are representative of the nearshore (left of bold black line in

each subplot) and Sites 3-6 are representative of the offshore (right of bold black line in each subplot) on the Scotian Shelf. The wind dataset

is indicated at the top of each subplot. Blank areas (white pixels) indicate months and sites that had insufficient, valid observation records

(considered to be less than 120 observation records in a month). These were considered to be non-valid for purposes of this study.
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The RMSE for wind direction exhibited clear seasonal patterns, with its value consistently being lower during the winter

months (i.e., December to February) compared to summer months (i.e., June to August) across all datasets (Figure 7 a). For375

nearshore sites, ERA5 exhibited five-year averaged RMSE values of 23.38° ± 4.41° at Site 1 and 25.30° ± 5.04° at Site 2.

HRDPS performed similarly to ERA5, which exhibited only slightly higher five-year averaged RMSE values of 0.3° at both

sites compared to ERA5. CFSv2 followed ERA5 and HRDPS, which exhibited slightly higher five-year averaged RMSE values

of 3° to 4° when compared to the other two datasets. NARR performed the worst on the basis of the five-year averaged RMSE

values, which exhibited values that exceeded those of ERA5 and HRDPS by 7° to 11°, respectively. For offshore sites, ERA5380

consistently outperformed the other datasets at all four sites, which exhibited five-year averaged RMSE values of 20.35° ±
4.59°, 22.52° ± 4.56°, 40.26° ± 20.36°, and 29.27° ± 11.85° at Sites 3–6, respectively. The HRDPS followed closely, which

exhibited five-year averaged RMSE values approximately 2° to 3° higher than those for ERA5. Last, CFSv2 ranked third,

which exhibited five-year averaged RMSE values that were 2° to 6° higher than ERA5, with NARR which again exhibited the

largest five-year averaged RMSE values for the offshore that were approximately 7° to 11° greater than those for ERA5.385

All datasets exhibited similar wind direction performance for the bias metric. Bias values were generally lower at nearshore

sites compared to offshore sites for all datasets (Figure 7 b). For the nearshore, the bias values generally ranged between -7°

to 8° at Site 1 and -13° to 12° at Site 2. For the offshore, all datasets tended to overestimate wind direction at Site 3 (the

meteorological site on Sable Island), which exhibited bias values ranging from 3° to 15°. For the three offshore sites observed

using buoys, there were significant biases during periods, for example from April to December in 2022, which was likely due390

to systematic observational errors. Aside from certain periods, bias in the offshore was similar among all four datasets.

The MAE values at the nearshore sites for HRDPS and ERA5 were very similar and significantly lower than those for the

other two datasets (Figure 7 c). For offshore sites, ERA5 performed the best among the four datasets, with HRDPS closely

following. The MAE values for CFSv2 were approximately 2°–4° higher than those for ERA5 at all four offshore sites, while

the MAE values for NARR were approximately 3°–8° higher compared to ERA5 at these sites.395

The monthly R2 values (Figure 7 d) were similar between the nearshore and offshore sites, which exhibited a typical value

of 0.8. At the nearshore sites, HRDPS exhibited the highest five-year averaged R2 values of 0.81 ± 0.08, 0.77 ± 0.13 at Sites

1 and 2, respectively. ERA5 followed, which exhibited five-year averaged R2 values of approximately 0.01 lower compared

to HRDPS. CFSv2 subsequently performed worse than ERA5, while NARR exhibited the lowest R2 values among the four

datasets at both sites nearshore. At the four offshore sites, ERA5 exhibited the highest five-year averaged R2 values among400

the four datasets that ranged from 0.81 ± 0.16 to 0.89 ± 0.08. This was followed by HRDPS, which exhibited five-year

averaged R2 values approximately 0.01–0.03 lower compared to ERA5. CFSv2 subsequently followed, which exhibited five-

year averaged R2 values 0.04-0.09 lower than those for ERA5, while NARR exhibited the lowest five-year averaged R2 values

that were 0.12–0.18 lower than those for ERA5. Seasonal variations observed in R2 were similar to those observed from wind

speed, with the R2 values tending to decrease during the spring and summer months and increase during the fall and winter405

months.

Metric results obtained using aggregated data for each site group for wind direction were presented in Figure 8 and Table 4.

The median RMSE and MAE values were similar between the nearshore and offshore groups across all four datasets (Figure 8 a,
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Figure 8. Box charts summarizing the monthly values of four wind direction evaluation metrics, as shown in Figure 7, of (a) RMSE, (b) bias,

(c) MAE, and (d) R2 for the four wind datasets of ERA5, CFSv2, NARR, and HRDPS. Sites are categorized into (red) nearshore and (blue)

offshore groups. Each box spans the first and the third quartiles of the data, with the horizontal line inside each box indicating the median

value. The whiskers extending from the box represent the minimum and maximum values that are within the 1.5 times the interquartile range

(IQR). The individual markers represent the outliers, defined as values exceeding 1.5 times the IQR.
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Table 4. Mean values of the monthly metrics for wind direction over the 5-year period from January, 2019, to December, 2023. Sites were

grouped into nearshore and offshore groups. Only wind direction data recorded during periods with wind speed in the range of 2–17 m/s

were considered. The best-performing dataset metric is highlighted in bold. (-) = no units, as a dimensionless metric.

Metric ERA5 CFSv2 NARR HRDPS

Nearshore

RMSE (◦) 24.58 28.59 34.30 24.98

Bias (◦) 1.07 2.70 -0.81 -0.51

MAE (◦) 15.49 18.19 22.33 15.45

R2 (-) 0.81 0.77 0.69 0.82

Offshore

RMSE (◦) 27.47 31.40 36.36 29.41

Bias (◦) 5.54 8.07 4.00 5.18

MAE (◦) 19.09 22.11 25.02 20.43

R2 (-) 0.79 0.75 0.66 0.77

c), while median bias values were smaller in the nearshore group (Figure 8 b) and median R2 values were higher offshore

(Figure 8 d). The IQRs for bias and MAE were narrower in the nearshore group. In contrast, the IQRs for RMSE and R2 were410

comparable between the two groups. Across different datasets, the IQRs were generally similar within each site group.

Similar to the wind speed evaluation, HRDPS and ERA5 ranked as the top two performers for wind direction for both

nearshore and offshore site groups. For the nearshore site group, HRDPS and ERA5 exhibited nearly identical best median

values across all metrics (Figure 8). In terms of mean values, HRDPS outperformed the other datasets in bias, MAE, and R2,

and achieved the second-best value for RMSE. ERA5 achieved the lowest RMSE and ranked second for MAE and R2. The415

only exception was bias, where NARR achieved the second-best mean value instead of ERA5 (Table 4).

For the offshore site group, ERA5 achieved the best median and mean values for RMSE, MAE, and R2, while HRDPS

ranked second for these three metrics in both median and mean values (Figure 8 a, c and d; Table 4). For bias, NARR achieved

the best median and mean values, while ERA5 and HRDPS shared the second-best median value, and HRDPS achieved the

second-best mean value (Figure 8 b; Table 4).420

4 Power Production Simulations for Wind Farm Development Areas

The preceding analysis identified ERA5 and HRDPS as the best performing wind datasets on the Scotian Shelf when compared

to regional wind observations. Building upon these findings, this section explored power production simulations within the six

PFDAs, using these two datasets.
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4.1 Impact of Turbine Spacing on Wind Farm Performance425

Optimizing offshore wind farm layout is a complex process influenced by seabed conditions, environmental impacts, construc-

tion feasibility, and wind resource distribution (Hou et al., 2019; Rezaei et al., 2023). The development of offshore wind energy

on the Scotian Shelf requires careful consideration of site selection and turbine layout, which currently remain undefined as

they depend in part on continued site assessments. To support this process, an idealized scenario was applied in which tur-

bines were uniformly placed within the PFDAs, providing a simplified framework for evaluating potential energy production.430

Wake effects, caused by turbulence behind turbines, reduces wind speed at downstream turbines and therefore decreases their

efficiency. As such, the trade-off between maximizing turbine density and minimizing wake effect wind speed losses is a key

consideration in wind farm design.

Table 5. Seasonal mean wind speed (WS) and direction (WD) across six offshore potential future development areas (PFDAs) during winter

(December–February) and summer (June–August). The parameters xm and xt represent the values of L/D, obtained from the piecewise

function, corresponding to the maximum function value and the transition point between the two segments of the piecewise function, respec-

tively. Refer to Figure 1 for location of PDFAs on the Scotian Shelf.

PFDA
Winter Summer

WS (m/s) WD (◦) xm xt WS (m/s) WD (◦) xm xt

Sydney Bight 10.3 305.0 3.2 3.9 7.4 205.0 3.7 7.8

Canso Bank 9.7 300.0 2.9 4.0 7.3 230.0 3.6 7.5

Eastern Shore 9.3 271.0 3.9 10.0 7.1 231.0 3.6 7.1

Middle Bank 9.7 286.0 3.3 4.3 7.1 235.0 4.3 7.1

Sable Island Bank 9.8 289.0 3.8 4.9 6.8 236.0 5.1 7.7

Emerald Bank 10.0 290.0 3.7 4.7 6.7 237.0 5.0 7.6

To explore how turbine spacing affects the potential total electricity production within the PFDAs, simulations were carried

out using PyWake for two seasonal scenarios: winter (December to February) and summer (June to August). To focus on435

the relationship between total power production and turbine spacing, while reducing computational costs, spatially constant

wind speed and wind direction from the ERA5 dataset were used for each seasonal scenario. These values were determined

as the spatial and seasonal mean for each PFDA. Winds over the Scotian Shelf are relatively consistent in space, with distinct

seasonal patterns. In winter, the seasonal mean wind speed at 10 m height above surface ranged from 9.3 m/s to 10.3 m/s, with

wind directions ranging from 271° to 305° across the six PFDAs. In summer, wind speeds ranged from 6.7 m/s to 7.4 m/s, with440

wind directions ranging between 205° and 237° (Table 5).

The spacing between neighboring turbines was normalized by the rotor diameter as L/D, where L was the distance between

two adjacent turbines and D was the rotor diameter. In simulations, L/D was varied incrementally from 2 to 12 in steps of

0.2 to comprehensively assess any impact on energy production. For each spacing configuration, total power output (Ptotal) and

power generated per turbine (Punit) were calculated (Figure 9).445
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For most of the PFDAs simulated in this study, total electricity production was greatest in winter compared to summer (Fig-

ure 9), attributed to the stronger seasonal mean wind speeds observed in winter. However, the Eastern Shore PFDA exhibited a

distinct behavior (Figure 9 c), generating higher power in summer regardless of lower wind speeds associated with that season.

This was attributed to the PFDA’s irregular shape (Figures A2 c and A3 c; note different speed scales in these figures). During

summer, the prevailing wind direction in the Eastern Shore PFDA was from southwest (231°), aligning with its narrow span.450

This configuration reduced wake effects, as fewer turbines were positioned directly downstream of others. In winter, the wind

direction shifted to be from the west (271°), flowing more broadly across the PFDA’s span. This resulted in increased wake

interactions, as more turbines were aligned in the downstream path, thus leading to a greater reduction in power generation. It

was noted that this special case of power production being higher in summer than in winter for the Eastern Shore PFDA was

specific to simulations with constant wind speed and direction.455

The curves of Punit revealed the average turbine efficiencies for the six PFDAs during winter and summer. The results

indicated that turbine efficiency improved as L/D increased due to reduced wake effects. In winter, turbines reached their rated

capacity of 15 MW when L/D exceeded approximately 4 in most PFDAs, except for the Eastern Shore PFDA given its irregular

shape that caused more pronounced wake interactions in winter. In summer, Punit increased more gradually with turbine spacing,

following an asymptotic trend. A larger L/D value was required for turbines to achieve a higher wake efficiency. Specifically,460

to reach a wake efficiency of 0.8, as defined in (6), the minimum values of L/D ranged from 6.4 to 9.0 across the six PFDAs.

Simulated flow maps from the Middle Bank PFDA illustrated wind speed and wake effects during the winter and summer

months (Figure 10). In this example, seasonal mean wind speed and wind direction at 10 m height above surface were 9.3 m/s

and 271°, respectively, in winter, and 7.1 m/s and 231°, respectively, in summer. Wind speeds were extrapolated to a hub height

of 150 m above surface using (1) and turbine spacing set to 3.8 D. Winds within the PFDA were stronger and hence produced465

higher energy in the winter (Figure 10 b) than in the summer (Figure 10 a).

The flow maps revealed some key features, such as areas of significant wind speed reduction directly behind turbines (rep-

resented by the dark shaded regions) and areas where wakes began to dissipate and recover (represented by the lighter tails

extending downstream) (Figure 10 a and b). The interaction of wakes from multiple turbines were notable in the interior of

the Middle Bank PFDA, where overlapping wake regions created more complex wind speed deficits. This clustering of wake470

effects appeared to cause downstream turbines to experience more pronounced reductions in wind speed due to the cumulative

impact of upstream wakes. When turbine spacing was set to 9.6 D, and wind parameters for winter were assumed, impact of

wakes caused by upstream turbines on downstream turbines appeared negligible (Figure 10 c and d).

Wake-turbine interactions caused reduced power production for turbines differently depending on turbine locations and wind

directions. Figure 11 (a) presented the spatial distribution of seasonally-averaged power production of individual wind turbines475

for the six PFDAs.

Simulations were conducted using hourly wind data from the ERA5 dataset. The hourly power output of each turbine

was averaged over the respective 5-year winter and summer periods from 2019 to 2023. Two turbine spacing scenarios were

considered. The first was a dense layout with normalized spacings, L/D, ranged from 3.3 to 4.5 across the six PFDAs (Table 6).

The corresponding spacing in each PFDA represented the average where power production peaked in two seasons under a480
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Figure 9. Relationships between total power production, Ptotal (Y-axis on the left), and normalized turbine spacings (L/D) for the six

potential future development areas (PFDAs) of (a) Sydney Bight, (b) Canso Bank, (c) Eastern Shore, (d) Middle Bank, (e) Sable Island

Bank, and (f) Emerald Bank. Rectangular markers (□) and triangular markers (△) represent simulation results for winter and summer,

respectively. The black solid and dashed curves are fitted piecewise functions for winter and summer, respectively. The Y-axis on the right

shows power production per turbine, Punit, from simulations for winter (solid red lines) and summer (dashed red lines). Last, the blue curves

show extrapolation of the inverse square part of the piecewise function for L/D < xt, which is described further in Section 4.2 below. Refer

to Figure 1 for location of PFDAs on the Scotian Shelf.
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Figure 10. Flow maps of wind speed and wake effects simulated using PyWake for the Middle Bank potential future development area

(PFDA) during (a, c) summer and (b, d) winter. The assumed turbine spacings were (a, b) 3.8 and (c, d) 9.6 times the rotor diameter,

approximately 0.9 km and 2.3 km, respectively. Wind data used in the simulation corresponded to the seasonal mean wind speed and wind

direction at 10 m height above surface using the ERA5 dataset. These were 9.3 m/s and 271°, respectively, for winter and 7.1 m/s and 231°,

respectively, for summer. The input wind data was extrapolated to an assumed turbine hub height of 150 m above surface, with results

presented in the figure being at hub height. Refer to Figure 1 for location of the Middle Bank PFDA on the Scotian Shelf.
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simplified model with constant wind speed and direction. The second scenario used a uniform spacing of L/D = 9.6 for all

PFDAs. This spacing represented a scenario where the wake effects were minimal and allowed for approximately 1000 turbines

in Sable Island Bank PFDA (Table 7), aligning with estimates from Nicholson (2023). Diagrams illustrating turbine layouts for

six PFDAs on the Scotian Shelf were provided in Figure A1.

Wind conditions in the two seasons on the Scotian Shelf were illustrated with the wind rose diagrams using the examples of485

the Sydney Bight and Middle Bank PFDAs (Figure 11 b). In winter, wind speeds were generally higher, predominantly blowing

from the northwest, with frequent occurrences of speeds exceeding 12 m/s. In summer, the winds were weaker, primarily

blowing from the southwest, with most speeds falling below 12 m/s.

The turbine spacing and seasonal wind variations significantly influenced the power production of individual turbines at

different locations. Under the large spacing scenario (L/D = 9.6), wake effects were minimal in both seasons, as evidenced by490

the relatively uniform power production among turbines within each PFDA (bottom panels in Figure 11 a). In contrast, in the

smaller spacing scenario, wake effects became more pronounced and reduced the efficiency of individual turbines (top panels

in Figure 11 a).

Power production of individual turbines varied within each PFDA, depending on turbine placement and dominant wind

direction. Reviewing the Middle Bank PFDA as an example, in winter, when the prevailing winds were from the northwest,495

turbines located near the northern and western edges exhibited the highest power production (top-left panel in Figure 11 a).

These turbines experienced less wake interference as they were positioned upstream relative to the dominant wind direction.

In contrast, during summer, when winds predominantly came from the southwest, the highest power production was observed

for turbines situated along the western and southern edges of the PFDA (top-right panel in Figure 11 a). For turbines located

further downstream in the interior or at the leeward edges of the PFDA, power production was significantly reduced due to500

wake effects.

4.2 Simulation Results and Fitting

The simulated total power production, Ptotal, for the six PFDAs during two seasons exhibited a characteristic pattern consisting

of two distinct regimes (Figure 9).

In the first regime, where turbine spacing was large and wake losses were negligible, the per-turbine power production505

approached its theoretical limit depending on the background wind speed (see: Figure 2). Under these conditions, Ptotal for a

given PFDA, using the same turbine model, scaled proportionally with the total number of installed turbines. Since the area of

each PFDA was fixed, the total number of turbines followed an inverse square relationship with turbine spacing. Consequently,

Ptotal exhibited an inverse square relationship with L/D.

In the second regime, where turbine spacing was smaller and wake effects became significant, the simulation results exhibited510

a non-monotonic trend in Ptotal. Initially, as L/D decreased, Ptotal increased due to the increased number of turbines. However,

beyond a critical threshold, further reduction in L/D led to a sharp decline in Ptotal due to intensified wake effects. This

bell-shaped pattern was similar to the Weibull-like function.
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Figure 11. (a) Spatial distribution of wind turbine power production for two turbine layouts and two seasons for all potential future devel-

opment areas (PFDAs) on the Scotian Shelf. Color shading shows the mean power production for each PFDA, averaged across (left panels)

winter and (right panel) summers from 2019 to 2023. Normalized turbine spacing, L/D, ranged from (top panels) 3.3 to 4.5 across the six

PFDAs as listed in Table 6, and (bottom panels) L/D = 9.6. (b) Wind rose diagrams for (top panels) the Sydney Bight PFDA and (bottom

panels) Middle Bank PFDA, based on spatially-averaged ERA5 data from 2019 to 2023. Refer to Figure 1 for location of PFDAs on the

Scotian Shelf.

Building on the two-regime behaviours, the simulation results were modeled using an empirical piecewise function for Ptotal

as a function of L/D. This function captured the inverse square relationship at large L/D and the Weibull-like behavior at515

small L/D. This piecewise function was formulated as follows:

f(x) =





a · k
λ

(
x
λ

)k−1
e−( x

λ )k

, for x < xt,

c
x2 , for x≥ xt.

(7)

Here, a, k, and λ were parameters of the Weibull-like function; xt was the critical transition point where the behavior transitions

from the Weibull-like regime to the inverse square regime; and c was the coefficient ensuring continuity at x = xt.

To ensure a smooth transition between these two regimes at x = xt, the following continuity conditions were applied:520
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– Value Continuity:

a · e−( xt
k )b

=
c

x2
t
. (8)

– Derivative Continuity:

−a · b

k

(xt

k

)b−1

e−( xt
k )b

=− 2c

x3
t
. (9)

From these conditions, the transition point xt and the coefficient c were determined analytically as:525

xt = λ

(
k + 1

k

)1/k

, (10)

and

c = a · k
λ

(xt

λ

)k−1

e−( xt
λ )k

·x2
t . (11)

The maximum value of the function was located at:

xm = λ

(
k− 1

k

)1/k

. (12)530

Substituting this value of xm into the first part of the piecewise function yields the maximum value:

fm = a · k
λ

(
k− 1

k

)(k−1)/k

e−( k−1
k ). (13)

This value represents the maximum total power production predicted by the Weibull-like part of the piecewise function.

Parameters of a, λ, and k were unknown, but were obtained through non-linear fitting. In this fitting process, the independent

variable, x, represents the normalized turbine spacing, L/D.535

The simulation results for six PFDAs in two seasons (Figure 9) were fitted using the piecewise function. The fitted functions

were overlaid on the simulation data for comparison. From the fitted functions, the parameters a, λ, and k were determined,

allowing for the calculation of xt and xm, which were presented in Table 5. The parameter xm represents the normalized turbine

spacing (L/D), at which total power production reaches its maximum for a given PFDA. This value ranged from 2.9 to 3.9 in

winter and 3.6 to 5.1 in summer for the six PFDAs.540

The parameter xt defines the transition point at which wake effects become negligible for L/D > xt, with wake effects

becoming significant for L/D < xt. In winter, xt ranged from 3.9 to 4.9 for most PFDAs, except for the Eastern Shore PFDA

where a different wake interaction pattern was observed. In summer, xt was notably larger, ranging from 7.1 to 7.8.

The fitted piecewise function was closely aligned with the simulation results. The extrapolated curve for L/D < xt, based

on the inverse square relationship, was shown in blue (Figure 9). The difference between the extrapolated curves and the fitted545

piecewise function illustrated power production losses due to wake effects. These losses were more pronounced in summer

than in winter for most PFDAs, except for the Eastern Shore PFDA.
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4.3 Temporal Variations in Simulated Electricity Production

Ttotal electricity production for the PFDAs on the Scotian Shelf were more accurately estimated by using time-dependent

wind speeds and wind directions. After reviewing earlier assessments of wind datasets, the ERA5 and HRDPS datasets were550

selected for use in this study. Because spatial variation in wind within each PFDA domain was minimal, wind speeds and wind

directions were averaged across each area. Before running simulations, wind speed at 10 m above surface was converted to a

wind speed at turbine hub height of 150 m above surface. Two scenarios for turbine spacings (L/D) were then tested: 1) values

ranging from 3.3 to 4.5 L/D across the six PFDAs (see Table 6), which were obtained as the mean values of xm in winter and

summer (Table 5); and 2) a fixed turbine spacing of L/D = 9.6.555

Uncertainty in power estimation associated with the RMSE between wind datasets and wind observations was also accounted

for. For each dataset, two synthetic wind speed time series were generated by adding or subtracting the RMSE from the 10 m

wind speeds, then separate simulations were run using the data. The resulting power values represented the upper and lower

bounds of the uncertainty range. For total power without wake effects, a single-turbine power curve was used (Figure 2), which

was then multiplied by the number of turbines. Hourly time series of total power for the six PFDAs were obtained from the560

simulations, which were then time-averaged to create a monthly time series (Figure 12). Seasonal mean results in winter and

summer were summarized in Table 6. Since the results obtained with ERA5 and HRDPS were very similar, the following

description only refers to that obtained using the ERA5 dataset.

For the six PFDAs, total electricity production rates ranged from 6.1 to 3.4 GW, for the winter and summer, respectively, at

the smallest PFDA (Eastern Shore) to 44.6 to 20.2 GW, for the winter and summer respectively, at the largest PFDA (Sable565

Island Bank) (Table 6). All six PFDAs exhibited clear seasonal cycles, with higher energy production observed during winter

months (December to February) and lower energy production observed during summer months (June to August). For example,

at the Middle Bank PFDA, the total power production observed in winter (11.2 ± 2.7 GW, Table 6) was approximately double

that observed in summer (5.5 ± 2.8 GW, Table 6).

In considering results of simulations with a ‘No Wake’ scenario, where total energy production depended only on wind570

speed and turbine number, the extent of energy loss due to wake effects was revealing. For all six PFDAs, simulation results

that accounted for wake effects consistently exhibited energy productions that fell below those of the ‘No Wake’ scenario (Fig-

ure 12). Further, wake-induced reductions in electricity production were higher in percentage terms during summer compared

to winter. For example, at the Middle Bank PFDA total energy losses associated with wakes were approximately 17% in winter

(December to February) compared to 48% in summer (June to August) (Table 6).575

Simulations that used the ERA5 and HRDPS datasets generally produced similar total power estimates for larger PFDAs,

such as Sydney Bight, Sable Island Bank, and Emerald Bank. In contrast, for smaller PFDAs, such as Canso Bank, Eastern

Shore, and Middle Bank, the simulated power using ERA5 was slightly higher compared to using HRDPS; particularly, during

periods of low energy production (e.g., May to August 2021). As a result, the combined uncertainty bands were wider in

summer months due to discrepancies between the two datasets observed during low-production periods.580
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Figure 12. Time series of total power estimated from simulations for the six potential future development areas (PFDAs) of (a) Sydney

Bight, (b) Canso Bank, (c) Eastern Shore, (d) Middle Bank, (e) Sable Island Bank, and (f) Emerald Bank using ERA5 and HRDPS wind

datasets. The ‘No Wake’ curves indicate the theoretical maximum energy production without accounting for wake losses. Turbine spacings

(L/D) are listed in Table 5. The shaded areas represent uncertainties due to differences in wind speeds between datasets and offshore wind

observation sites. The uncertainties are quantified using the RMSE between the dataset and observed wind speeds. Refer to Figure 1 for

location of PFDAs on the Scotian Shelf.
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In a scenario where turbine spacing was set to L/D = 9.6, seasonal cycles (Figure 13) were consistent with those observed

in the scenario with small turbine spacings (Figure 12), which further reinforced that in winter months (December to February)

the PFDAs exhibit much higher electricity generation rates compared to summer months (July and August). For example, at

the Middle Bank PFDA the total power production observed in winter (2.3 ± 0.4 GW, Table 7) was approximately 44% higher

compared to summer (1.6 ± 0.5 GW, Table 7).585

Figure 13. Same simulations described in Figure 12 and Table 6, but with a turbine spacing set to 9.6 times the rotor diameter.

The impact of wake effects across all six areas under the L/D = 9.6 turbine spacing scenario (Figure 13, Table 7) was

significantly diminished when compared to the scenario with smaller turbine spacing (Figure 12, Table 6). In winter, the

simulation results were almost identical to the ‘No Wake’ case. Interestingly, however, the ’No Wake’ case showed slightly

lower power outputs than the ‘Wake’ case simulations for some PFDAs. This occurred in high-wind conditions (winds greater

than 25 m/s), where turbines stop operating in the ‘No Wake’ case, which resulted in zero power output (see: Figure 2). Further,590
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in the simulations the wake effects were observed to reduce wind speeds in the interior of PFDAs to less than 25 m/s, which

allowed the turbines in the interior areas to continue producing power. In summer, the ‘Wake’ case simulations generally

produced slightly lower power than the ‘No Wake’ case. For instance, at the Middle Bank, simulated power output (1.6 ±
0.6 GW with ERA5 in Table 7) was only about 6% less than that of the ‘No Wake’ case (1.7 ± 0.5 GW with ERA5 in Table 7).

Figure 14. Same simulations described in Figure 12 and Table 6, except that the uncertainties are estimated to account for the wind direction

estimation errors.

Uncertainties in power estimation arising from wind direction errors between datasets and observations were also accounted595

for in this analysis. To quantify these uncertainties, separate simulations were conducted using wind directions perturbed based

on dataset-specific error characteristics. Unlike wind speed, which has a monotonic relationship with power production, where

an increase or decrease in wind speed directly leads to a corresponding change in power output, wind direction does not
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Table 8. Seasonal mean values of total power production for the six potential future development areas (PFDAs) in winter (December to

February) and summer (June to August) derived from the simulation results shown in Figure 14. Turbine spacings (L/D) varied across the

six PFDAs. Uncertainties are represented by the maximum deviations of the seasonal mean of upper and lower bounds from the mean values.

PFDA L/D
Ptotal (GW), ERA5 Ptotal (GW), HRDPS

Winter, Wake Summer, Wake Winter, Wake Summer, Wake

Sydney Bight 3.5 13.3 ± 3.9 6.2 ± 3.2 12.8 ± 3.8 5.0 ± 2.6

Canso Bank 3.3 6.7 ± 1.9 3.3 ± 1.6 6.7 ± 1.8 3.0 ± 1.6

Eastern Shore 3.7 6.1 ± 1.5 3.4 ± 1.6 6.0 ± 1.4 3.0 ± 1.5

Middle Bank 3.8 11.2 ± 2.8 5.5 ± 2.6 10.7 ± 2.6 4.7 ± 2.4

Sable Island Bank 4.5 44.6 ± 10.4 20.2 ± 9.4 43.4 ± 10.0 17.9 ± 8.8

Emerald Bank 4.3 31.3 ± 7.3 14.3 ± 6.9 30.5 ± 7.2 12.8 ± 6.5

influence power generation in a strictly linear manner. Variations in wind direction can alter wake interactions and turbine

efficiency in complex ways, making the uncertainty estimation less straightforward.600

To estimate the uncertainty of simulated power production caused by the wind direction errors in wind datasets, monthly

RMSE values were used as error bounds. For each month, a range of possible wind directions was defined by adding and

subtracting the monthly RMSE from the original wind direction time series. Within this range, 10 additional time series of

wind directions were generated, where wind directions were evenly distributed between the upper and lower bounds. Simula-

tions were then conducted using these 10 perturbed time series along with the original time series, resulting in a total of 11605

simulations per dataset. At each hour, the uncertainty in power production was defined by the minimum and maximum values

obtained from the 11 simulations.

In the dense layout scenario, uncertainties of power production resulting from wind direction estimation errors (Figure 14

and Table 8) were comparable in magnitude to those caused by wind speed estimation errors (Figure 12 and Table 6). However,

in the L/D = 9.6 scenario, the impact of wind direction errors (Figure 15 and Table 9) was less significant compared to the610

uncertainties introduced by wind speed errors (Figure 13 and Table 7).

5 Discussion

Offshore wind energy holds significant promise in the global transition from fossil fuels to clean energy. The Scotian Shelf is

recognized for its world-class wind resources (Nicholson, 2023; Government of Nova Scotia, 2023), presenting a significant

opportunity for offshore wind farm development that has now been embedded in the federal and provincial energy strategies615

(Government of Nova Scotia, 2023; Canada, n.d.). Motivated by a need to better understand wind energy potential in the

Scotian Shelf offshore area, this study focused on two primary aspects: assessment of wind datasets and estimation of potential

power production in six PFDAs on the Scotian Shelf.
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Figure 15. Same simulations described in Figure 13 and Table 7, except that the uncertainties are estimated to account for the wind direction

estimation errors.
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Table 9. Seasonal mean values of total power production for the six potential future development areas (PFDAs) in winter (December

to February) and summer (June to August) derived from the simulation results shown in Figure 15. Uncertainties are represented by the

maximum deviations of the seasonal mean of the upper and lower bounds from the mean values.

PFDA L/D
Ptotal (GW), ERA5 Ptotal (GW), HRDPS

Winter, Wake Summer, Wake Winter, Wake Summer, Wake

Sydney Bight 9.6 2.4 ± 0.2 1.6 ± 0.3 2.3 ± 0.2 1.5 ± 0.3

Canso Bank 9.6 1.0 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 0.7 ± 0.1

Eastern Shore 9.6 1.2 ± 0.1 0.8 ± 0.1 1.1 ± 0.1 0.8 ± 0.1

Middle Bank 9.6 2.3 ± 0.1 1.6 ± 0.3 2.2 ± 0.2 1.4 ± 0.3

Sable Island Bank 9.6 12.0 ± 0.9 7.7 ± 1.6 11.8 ± 0.9 7.1 ± 1.6

Emerald Bank 9.6 7.8 ± 0.5 5.1 ± 1.1 7.7 ± 0.6 4.8 ± 1.1

5.1 Wind Dataset Assessment

The wind datasets assessed in this study are widely used and have been evaluated in various regions worldwide (Fan et al., 2021;620

Fernandes et al., 2021; Li et al., 2010; Milbrandt et al., 2016). However, their performance can vary spatially, necessitating

region-specific assessments. For wind farm development and design configurations, accuracy of modeled wind data is crucial

for reliable energy potential estimates. On the Scotian Shelf, few studies have evaluated the applicability of various wind

datasets to the region. This study provides a comprehensive assessment of wind speed and direction for the Scotian Shelf,

providing a robust foundation for wind dataset selection in wind energy assessment.625

The strong performance of ERA5 in the regional area of the Scotian Shelf aligned with previous studies for other regions,

both inland and offshore (Fan et al., 2021; Murcia et al., 2022). These studies consistently found that ERA5 exhibited lower

biases and mean absolute errors, along with higher correlations compared to other wind datasets. The overall robust perfor-

mance of ERA5 was likely attributed to its advanced data assimilation techniques (Hersbach et al., 2020). In offshore regions,

in particular, ERA5 has proven to be highly reliable (Gualtieri, 2021). Even when compared to a high-resolution regional630

Weather Research & Forecasting (WRF) Model, which employed nested grids with resolution ranging from 18 km to 2 km,

ERA5 (31 km resolution) had demonstrated superior performance. Gualtieri (2021) reported that ERA5 achieved lower RMSE

and bias, along with a higher correlation coefficient, when validated against observations from an offshore mast in the North

Sea. This advantage can be attributed to the relatively homogeneous wind conditions in offshore regions, where high-resolution

models do not provide a notable improvement over ERA5. However, in nearshore areas, the results of this study revealed that635

HRDPS outperformed ERA5, consistent with the findings of Gualtieri (2021). The reduced performance of ERA5 in coastal

transition areas can be attributed to significant differences in surface roughness and temperature, which introduced more com-

plex flow dynamics (Gualtieri, 2021; Dörenkämper et al., 2015; Cañadillas et al., 2023; Djath et al., 2022). These findings

highlighted the advantages of high-resolution numerical models, such as HRDPS (2.5 km), in improving the accuracy of wind

speed and direction estimates in complex nearshore environments by better resolving small-scale dynamics.640
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Electricity consumption fluctuates over time, exhibiting diurnal, weekly, and seasonal patterns. In Nova Scotia, energy

consumption is typically higher during the colder months of December to February and lower during the warmer months of

May to October (see: Figure A4). These variations underscore the importance of assessing wind datasets at different local

times and across seasons, in order to better align wind energy production with electricity demand cycles. Results of this study

revealed notable seasonal and diurnal variability in performance across the wind datasets. Errors in wind speed estimation645

were generally higher in the fall and winter months, aligning with periods of stronger and more variable winds. In contrast, the

spring and summer months exhibited lower errors.

At some offshore sites that had wind observations from marine buoys, wind directions from all datasets consistently had

discrepancies during certain periods. Such consistent discrepancies across all datasets were likely caused by an inaccurate

measurement of wind direction measured at the marine buoy at some locations. Unlike wind speed, which is relatively easy to650

measure, measuring wind direction is more difficult. Multiple factors, such as buoy motion due to waves or a misalignment of

buoy orientation relative to true north, can cause error in wind direction measurements from such platforms (Malačič, 2019;

Schlundt et al., 2020).

Beyond wind energy applications, the findings have broader implications for regional ocean modeling, where wind datasets

serve as key surface boundary conditions. For large-scale ocean models of the Scotian Shelf, both ERA5 and HRDPS are655

viable wind datasets to use, while HRDPS is preferable for coastal modeling due to its natively finer resolution and improved

representation of nearshore wind patterns.

5.2 Power Production Simulation

Wind energy estimates from wind speed using theoretical formulas often omit energy losses associated with turbine wakes

(Nicholson, 2023; Wang et al., 2022). In reality, turbine wakes can significantly reduce total wind farm power output, with660

downstream effects extending to turbines located further along the flow field. These wake effects thus are key considerations

when balancing energy production and overall wind farm efficiency, as the spacing between turbines and the positioning within

the wind frame impact the effectiveness of the entire operation.

Simulations in this study emphasized the trade-off between potential energy production and turbine density. In this case,

increased density amplified wake losses, which reduced overall efficiency. In contrast, greater turbine spacing decreased wake665

interactions that enhanced power output per turbine, but reduced the total energy yield due to fewer turbines occupying a given

area.

The empirical piecewise function derived in this study provided valuable insights into the trade-off between energy genera-

tion efficiency and total power production, offering a quantitative framework for optimizing wind farm layouts. This two-regime

function was characterized by a critical transition point, xt, that defined the normalized turbine spacing beyond which wake ef-670

fects became minimal. For smaller turbine spacings (L/D < xt), the function followed a Weibull-like function form, reaching

its maximum at L/D = xm. Below this threshold, total power production declined due to intensified wake interactions. This

suggested that normalized turbine spacings smaller than xm should be avoided, as both total power output and wake efficiency

decreased. For larger turbine spacings (L/D > xt), wake effects were minimal, leading to improved wake efficiency.
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Winter wind conditions with higher wind speeds generally favored smaller turbine spacings. This was because the thrust675

coefficient (Ct) decreased at higher wind speeds, resulting in less significant wakes and faster wake recovery, which allowed

turbines to be placed closer together without substantial efficiency losses. Consequently, the values of xt and xm were typically

smaller in winter than in summer. For most PFDAs, achieving optimal wake efficiency in summer required the normalized

turbine spacings within the range of 7.1 to 7.8. Meanwhile, maximizing total power production can be achieved by selecting a

normalized turbine spacing corresponding to the mean value of xm of both seasons, which ranged from 3.3 to 4.5.680

Wake losses proved to be significant in the simulations, with values ranging from 17% to 26% in winter and 40% to 55%

in summer in the dense turbine layout scenario. Power losses decreased as turbine spacing increased. In the scenario where

turbine spacing was set to 9.6 D, the power losses became negligible in winter and were less than 12% in summer. The wake

losses in the dense turbine layout scenario were generally higher than the 10% to 25% range reported in other studies on

medium-sized offshore wind farms (Barthelmie et al., 2009, 2010; Niayifar and Porté-Agel, 2015; Simisiroglou et al., 2019;685

Wu and Porté-Agel, 2015). This discrepancy can be attributed to multiple factors, such as turbine models, spacings, and wind

farm sizes. In the dense turbine layout scenario presented, turbine spacings that ranged from 3.3 to 4.5 were smaller than those

in the aforementioned studies, which contributed to higher wake losses simulated in this study. Last, the findings presented in

this study were in line with results of simulations for larger offshore wind farms reported by Pryor et al. (2021), who reported

an overall wake loss of 35.3%. This value falls between the results for the dense turbine layout scenario in winter and summer690

within this study.

Uncertainties in total power output were also assessed based on discrepancies in both wind speed and wind direction between

wind datasets and observations. To quantify these uncertainties, wind speed and wind direction time series were perturbed sep-

arately, where the dataset-specific RMSE was used to define the error bounds. This approach provided clear illustration of how

wind speed and wind direction errors propagated into power estimations. Notably, in the dense layout scenario, errors in wind695

direction had an impact on power production that was just as significant as errors in wind speed. This result underscores the

importance of wind direction accuracy in estimating power production, as deviations can alter wind turbine wake interactions

and influence overall energy generation.

Limitations of perturbing wind speed or direction time series should be acknowledged. Perturbing wind speed involved

simply adding or subtracting RMSE, while perturbing wind direction employed 10 evenly spaced values within the positive700

and negative RMSE bounds. Neither method accounted for the probability distribution of their respective errors; particularly,

when the monthly wind speed or direction bias largely deviated from zero. As a result, this method may overestimate or

underestimate the upper and lower bounds of the uncertainties. A more sophisticated approach, that could address this issue,

would involve probabilistic uncertainty modeling, such as Monte Carlo simulations (Singh and Taylor, 2018; Liu et al., 2023)

that provides a more rigorous representation of how wind speed or direction error distributions impact power estimations.705

However, compared to the Monte Carlo method, the approach used in this study was computationally efficient, making it a

more practical choice for large-scale wind farm assessments.

Many studies that have simulated offshore wind farms have focused on annual or long-term mean energy production or

capacity factors (Pryor et al., 2021; Simisiroglou et al., 2019; Wu and Porté-Agel, 2015), where the wind inputs consisted
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of several combinations of constant wind speeds and directions derived from historical wind statistics. However, temporal710

variation of power production has received comparatively less research focus (Wang et al., 2022). This study helps address this

gap by analyzing the monthly time series of power production across PDFAs on the Scotian Shelf. Seasonal variations were

pronounced, with summer production in the dense turbine layout being 44% to 55% lower than in winter. In the less dense 9.6

D layout, reductions in summer power production ranged from 28% to 36% compared to winter. Despite these fluctuations,

seasonal wind power generation patterns closely aligned with seasonal variation in Nova Scotia electricity demand, which715

peaks in the winter and declines in the summer. This alignment suggests that offshore wind has the potential to complement

Nova Scotia’s seasonal electricity demand, reinforcing the importance of incorporating temporal variability into wind energy

assessments.

6 Conclusion

This research study is the first comprehensive assessment of wind speed and direction data from four widely used wind720

datasets—ERA5, CFSv2, NARR and HRDPS—across the Scotian Shelf, which is a region with world-class wind energy

potential. The analyses highlighted spatial and temporal variability in dataset performance, with HRDPS emerged as the most

accurate dataset for nearshore wind conditions, while ERA5 proved the most reliable for broader offshore areas. Seasonal and

diurnal variations further underscored the need for careful dataset selection when modelling wind energy potential.

The PFDA simulations using PyWake demonstrated the significant impact of wake interactions and turbine spacing on725

energy production. The results highlighted trade-offs in maximizing total power output and minimizing wake-induced losses.

For most PFDAs, achieving effective wake efficiency year-round required turbine spacing of 7.1–7.8 D, whereas maximizing

total power production was best achieved with a denser layout of 3.3–4.5 D. Seasonal variations further influenced wake

dynamics, reinforcing the importance of considering temporal wind variability.

Overall, the research findings provided valuable insights for offshore wind development in Nova Scotia, emphasizing the730

need for accurate wind resource assessment and strategic turbine layout. Through integration of high-resolution wind datasets

and accounting for seasonal and wake effects, wind farm design on the Scotian Shelf can be optimized for energy production

and long-term efficiency.

Data availability. The data generated in this study is available upon reasonable request.
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Appendix A: Appendix735

Figure A1. Diagrams of the layouts of wind turbines for the six potential future development areas (PFDAs): (a, g) Sydney Bight, (b, h)

Canso Bank, (c, i) Eastern Shore, (d, j) Middle Bank, (e, k) Sable Island Bank, and (f, l) Emerald Bank. The normalized turbine spacings

(L/D) for the left panels are 3.5, 3.3, 3.7, 3.8, 4.5 and 4.4, respectively, and 9.6 for all right panels. Refer to Figure 1 for location of PFDAs

on the Scotian Shelf.
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Figure A2. Flow maps of wind speed at the hub height of 150 m and wake effects simulated using PyWake for the six potential future

development areas (PFDAs): (a, g) Sydney Bight, (b, h) Canso Bank, (c, i) Eastern Shore, (d, j) Middle Bank, (e, k) Sable Island Bank, and

(f, l) Emerald Bank during winter, with the layouts same as in Figure A1. The wind dataset used was ERA5. Refer to Figure 1 for location of

PDFAs on the Scotian Shelf.
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Figure A3. Flow maps of wind speed at the hub height of 150 m and wake effects simulated using PyWake for the six potential future

development areas (PFDAs): (a, g) Sydney Bight, (b, h) Canso Bank, (c, i) Eastern Shore, (d, j) Middle Bank, (e, k) Sable Island Bank, and

(f, l) Emerald Bank during summer, with the layouts same as in Figure A1. The wind dataset used was ERA5. Refer to Figure 1 for location

of PDFAs on the Scotian Shelf.
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Figure A4. Monthly mean load for Nova Scotia, Canada, in 2019–2023. Data sourced from the website of Nova Scotia Power:

https://www.nspower.ca/oasis/monthly-reports/hourly-total-net-nova-scotia-load.
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