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Abstract. A two-dimensional advection/diffusion model for the near sea surface wind speed deficit downstream of offshore

windparks is fitted to satellite synthetic aperture radar (SAR) data. The Wake2Sea model enables the inclusion of offshore

wind farm (OWF) wake effects in existing atmospheric model data at low computational costs and employs the standard Fitch

parameterisation to describe the momentum sink associated with wind turbines. Model wind fields from the German weather

centre are used as prior information about the unperturbed atmosphere without OWFs. Using 30 Sentinel-1A/B satellites SAR5

scenes acquired over the German Bight representing different stability and wind speed regimes, a 4DVAR scheme is applied

to optimize the agreement between simulated and observed radar cross sections. The method adjusts 8 parameters in the

wake model and also applies corrections to the background wind field on a spatial scale of 40 km. An L-curve analysis is

applied to choose the weighting of prior knowledge and observations in the cost function. The method improves the match

between observations and simulations significantly, if uncorrected model wind fields are used as a baseline. Furthermore, the10

inclusion of the empirical wake model leads to improvements when the background corrected wind field is used as a reference.

Comparisons with data measured at the fixed platform FINO-1 adjacent to the first German offshore wind park Alpha Ventus,

showed that the proposed inclusion of wakes in the atmospheric model data leads to a significantly improved match.

1 Introduction

The global installed offshore wind energy power has increased about tenfold over the last decade reaching 64 GW in 202315

(WFO, 2023). With a share of about 47% China is currently the largest offshore wind farm (OWF) operator worldwide. Some

studies suggest that over 380 GW of new offshore wind capacity will be added over the next decade globally (Williams and

Zhao, 2023). In Europe the United Kingdom is the country with most installations followed by Germany with 14 GW and

8 GW installed power by 2023 respectively. According to the European Union (EU) Strategy on Offshore Renewable Energy,

the installed offshore wind power in Europe will grow from about 28 GW in 2022 to about 60 GW by 2030 (EU, 2021). In20

Germany the goal to achieve 70 GW offshore wind energy by 2045 is written in law (Deutscher Bundestag, 2024).

It is obvious that these rapid developments come with a large spectrum of challenges in the economic, political and research

sector. A large number of studies already exists, which analyze the impact of offshore wind farms on the atmosphere, often with

a focus on wakes in the atmospheric boundary layer (ABL) (Siedersleben et al., 2020; Akhtar et al., 2021; von Brandis et al.,
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2023; Platis et al., 2018). One reason for this interest is the direct implications of these wakes for the optimisation of power25

yields considering shadowing effects, as well as the role of turbulent wakes for the fatigue loading on downstream turbines.

The respective processes in the ABL have been studied with different types of numerical models including mesoscale models

(Siedersleben et al., 2020), Large Eddy Simulation (LES) models (Vollmer et al., 2017) and industry models (Cañadillas et al.,

2020). Furthermore, different types of observation techniques were applied, e.g. Light Detection and Ranging (LIDAR) systems

(Schneemann et al., 2020) and spaceborne synthetic aperture radar (SAR) sensors (Djath and Schulz-Stellenfleth, 2019). The30

existing studies show that OWF wakes can extend well above 100 km downstream in cases where the ABL is very stable.

Typical wind speed deficits are in the range 10%-20% (Djath et al., 2018). There is ongoing research about atmospheric wakes,

e.g. concerning the interaction of wakes, or the coupling with coastal effects (Djath et al., 2022; Schulz-Stellenfleth et al.,

2022). Furthermore, there is still debate about optimal parameterisations of OWFs in numerical models (Fischereit et al., 2022;

Ali et al., 2023).35

In addition to the OWF effects in the ABL, potential impacts in the ocean have gained growing attention (Christensen et al.,

2013; Broström, 2008; Christiansen et al., 2022; Daewel et al., 2022). There are basically two types of processes discussed in

literature so far:

– Effects caused by the modified wind forcing at the sea surface (Christiansen et al., 2022; Daewel et al., 2022).

– Effects related to the interaction of the water with the OWF foundation structures (Christensen et al., 2013; Grashorn40

and Stanev, 2016; Carpenter et al., 2016; Carpenter and Guha, 2024).

The present study is connected to the modelling of the first type of processes, where accurate estimates of near surface wind

speeds in the surroundings of OWFs are required. As mentioned above, most studies concerned with OWF wakes in the ABL

have a focus on the impacts around the hub height, which are most relevant for power yields. Near surface wind speeds around

OWFs modelled with mesoscale models have been used to drive ocean models (Christensen et al., 2013), but very little has45

been done concerning the validation of these data. On the other hand, there is a large amount of satellite SAR data available,

which provide two-dimensional (2D) information on near ocean surface wind speeds with high spatial resolution (Lehner et al.,

1998), but the condensation of respective information on OWF wakes in parameterised form is still at a very basic level (Djath

et al., 2018). Against this backdrop, the main objectives of the present study are as follows:

– Condense the OWF wake information contained in SAR data in a 2D semi-empirical model, which captures the main50

characteristics, but has small computational demands compared to a 3D atmospheric model

– Design this model as a tool for ocean modellers, to generate wind forcing for OWF impact studies, allowing the consid-

eration of a multitude of OWF scenarios not feasible with 3D atmospheric models.

The proposed semi-empirical model can be used to add OWF wakes to existing atmospheric model data sets. Many of these

data sets, like ERA5 (Hersbach et al., 2020), are intensely used as references by the scientific community and the proposed55

tool can massively enhance the applicability of these data in the OWF context.
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a) b)

c) d)

Figure 1. Number of OWF turbines per square kilometer (a) and average rotor diameter (b) for OWFs in the German Bight in January 2023.

The black triangle indicates the position of the research measurement platform FINO-1. c) Smoothed version of the turbine thrust Ct-curve

introduced in Siedersleben et al. (2018). d) Lower and upper rotor tip height as well as turbine power for German Bight turbines in January

2023.

The proposed model, which will be referred to as Semi-empirical model for atmospheric offshore wind farm wakes near the

sea surface (Wake2Sea) in the following, is based on the momentum conservation law and has a relatively simple functional

form. It contains 8 parameters, which were estimated using 30 SAR scenes covering a variety of different ABL stability and

wind speed situations. It is shown that the model is capable of capturing major characteristics of OWF wakes like deficit60
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intensity and wake length. The Fitch paramerisations is used to include OWF properties, e.g. the CT -curve, in the model and a

dependence on ABL stability is contained in the formulation as well.

We would like to emphasize that the development of this model was guided by the requirements of the ocean community, i.e.

the provision of wind information near the ocean surface. The current version of the model is not designed for the estimation of

wind power at hub height. As expected, the model shows significantly smaller absolute wind speed deficits within wind farms65

for the near surface wind compared to respective deficits at hub height computed with 3D atmospheric models.

The paper is structured as follows: In Section 2 the Wake2Sea model for wind speed deficits is introduced. Section 3 gives

information about the atmospheric model and satellite data used in the study. The model inversion approach is described

in Section 4. Results of the inversion including comparisons with independent data measured at the FINO-1 platform and

applications of Wake2Sea for the derivation of a yearly deficit statistics are presented in Section 5. Some theoretical analysis70

of the inversion results are described in Section 6 and conclusions are drawn in Section 7.

2 2D advection/diffusion model Wake2Sea for wind speed deficits

The semi-empirical wake model used in this study is based on a simplified form of the Navier Stokes momentum conservation

equation for a bottom layer of thickness dZ of the atmosphere above the ocean surface (Frandsen et al., 2006). Neglecting the

Coriolis force and assuming that the 2D divergence of the horizontal wind field U = (u,v) is small, i.e. negligible vertical air75

motion, we have

∂U

∂t
=−U · ∇U + νV

∂2U

∂z2
+ νH

(∂2U

∂x2
+

∂2U

∂y2

)
−∇p , (1)

where the horizontal diffusion coefficient νH is assumed constant, νV is the vertical diffusion coefficient and p is pressure. The

vertical diffusion term can be approximated as

νV
∂2U

∂z2
≈ νV

U−− 2U + U+

dZ2
≈− νV

dZ2
U =:−χ U . (2)80

Here, u− = 0 is the wind speed below the layer and for the layer u+ above we assume u≈ u+.

Lets assume in a first step that the wind is going in the u direction. Adding the Fitch parameterisation (Fitch et al., 2012) to

the momentum equation results in the following expression for the wind including atmospheric wakes

∂Uwake

∂t
=

∂U

∂t
− 0.5 N CT (|uwake|) |uwake|uwake A/dZ , (3)

where ∂U/∂t is defined in Eq. 1, N is the number of turbines per square meter, CT is the thrust curve, and A is the rotor disc85

area. Plots of N and A representing the situation in the German Bight at the start of 2023 are shown in Figure 1a,b.

If we define the wind deficit as

D =
|U | − |Uwake|

|U | , (4)
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a simplified version of an advection/diffusion equation for D is given by

∂D

∂t
≈ −U · ∇D +

1
2

N CT [|U |(1−D)] |U |(1−D) A/dZ −χ D90

+νH (
∂2D

∂x2
+

∂2D

∂y2
) . (5)

This approximation is based on the following simplifications:

– The velocity components vertical to the dominant flow are assumed to be small.

– Changes in the pressure field introduced by OWFs are not considered.

– The advection term for the deficit includes higher order terms, which were omitted to keep the numerical treatment95

simple.

As Eq. 5 is invariant with respect to orthogonal transformation of the underlying grid, it is valid even if the dominant wind is

not in u-direction.

The horizontal 2D wind velocity vector U required for the evaluation of the advection term in Eq. 5 is taken from existing

atmospheric model data. As these wind vectors were computed with a 3D model, the vector U is not necessarily divergence100

free and the inclusion of a vertical advection term

∂D

∂t
≈ . . .−w D/dZ (6)

for D with w computed according to

w =−dZ
(∂u

∂x
+

∂v

∂y

)
(7)

makes sure that non-zero 2D divergence of U does not lead to meaningless production of D in Eq. 5.105

The vertical diffusion parameter is known to depend on the stability of the boundary layer (Djath et al., 2018) and a respective

parameterisation was used in the model

χ = α2
3Φ+[(1 +α4D)(1−α5∆T )] (8)

with the air/sea temperature difference ∆T and a differentiable function Φ+ defined as

Φ+[α] =





α2 if α > 0

0 otherwise .
(9)110

The quadratic formulation was used to ensure a differentiable dependency of the sink term on the control parameters and the

prognostic variable D, which is beneficial for gradient based inversion methods like applied in this study. Eq. 8 contains an

additional dependence on the deficit which allows a wider range of different downstream profiles of D.

The CT -curve required in the Fitch model depends on technical properties of the wind turbines under consideration and

respective information is notoriously hard to obtain. In this study a smoothed version of the C̃T curve introduced in Siedersleben115
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et al. (2018) was used as a baseline, which is shown in Figure 1c. To ensure a smooth dependence of the Ct curve on different

parameters in the control vector, the following differentiable function was fitted to the "default" Ct curve shown in Figure 9 of

Siedersleben et al. (2018).

C̃t(u) =





0.85 for u≤ 6 m/s

a1u
3 + b1u

2 + c1u + d1 for 6m/s < u < 12m/s

a2/(u2 + b2u + c2) for 12m/s≤ u≤ 25m/s

0.05 else.

(10)

The respective coefficients are summarised in Table 1. To account for possible inaccuracies, a scaling of the CT function120

according to

Cα1,α2
T = α1 C̃T (α2 U) (11)

is introduced as part of the inversion process described later on.

The deficit as defined in Eq. 4 refers to the mean flow in the bottom layer of thickness dZ. The deficit near the surface

observed by the satellite can deviate from that and hence an adjustment of the form125

D10m = D Φ+

[
α7 + α8 D

]
(12)

is applied with the function Φ+ defined in Eq. 9. A height of 10 m has become a standard for near surface wind fields both in

numerical modelling and in satellite retrieval schemes and we are therefore following this convention as well. The reasoning to

include D in Eq. 12 is to allow possible dependencies of the ratio D/D10m on the vertical shear and/or downstream distance.

Eqs. 5,6,8,11,12 represent the semi-empirical wake model Wake2Sea that is used for the fitting procedure with control vector130

αwake= (α1, . . . ,α5,νH ,α7,α8) of dimension eight described in the next chapters.

For the definition of the layer thickness dZ required for the Fitch parameterisation it is important, that the major parts of

all turbine rotor discs are within this layer (Fitch et al., 2012). On the other hand dZ should be small enough, such that the

mean deficit in this layer is still somewhat related to the conditions at the surface. The distribution of the upper tip heights for

offshore wind turbines in the German Bight in January 2023 is depicted in Figure 1d. It can be seen that the layer thickness of135

dZ = 200 m used in this study includes all rotor discs. We are aware however that there is a trend towards larger wind turbines

(Akhtar et al., 2024) and this must be taken into consideration in follow-up studies.

a1 [s3/m3] b1 [s2/m2] c1 [s/m] d1 a2 [m2/s2] b2 [m/s] c2 [m2/s2]

6.13E-04 -2.68E-02 2.56E-01 1.50E-01 2.04E+01 -9.4E+00 1.80E+01
Table 1. Coefficients used in the CT curve Eq. 10 fitted to the "default" curve in Figure 9 of Siedersleben et al. (2018).

The Wake2Sea model was evaluated numerically using an explicit finite difference scheme on a grid with ∆x = ∆y =1 km

bin size in both dimensions, which corresponds to a typical spacing of wind turbines. This means that we are not trying to
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a) b)

Figure 2. a) Overview of the 30 satellite radar scenes used in the study in terms of corresponding wind speed U10 and air sea temperature

differences ∆T averaged over the OWF areas in the German Bight. b) 2D-histogram of U10 and ∆T estimated from DWD model data for

the years 2020-2022 at the FINO-1 location.

resolve wakes of individual turbines with the present setup of the model. As the typical cut-out wind speed is ucut = 25 ms−1140

and higher wind speeds do not need to be considered, the CFL criterion for the time step ∆t gives

∆t≤
(ucut

∆x
+

vcut

∆y

)−1

= 20s . (13)

As the wind speeds of the analysed cases were well below the cut-out wind speed, a time step of 20 s was considered reasonable.

The advection term was discretised using a total variation diminishing (TVD) scheme (Harten, 1997). For the simulation of a

particular SAR image, the model is started with D = 0 ten hours before the satellite acquisition time. This choice is based on145

the knowledge that wakes can extend well up to 100 km and in the extreme case of wind speeds just above the cut-in limit of

3.5 m/s the advection of deficits over such distances requires just below 10 hours.

In the following it will be necessary to have a rough estimate of the ratio between the wind at 10 m height U10 and the mean

wind speed between the sea surface and dZ. We are using a simple functional form for the wind profile

U(z) = U10

( z

10m

)E

(14)150

with an exponent E for this purpose (Jung and Schindler, 2021). A rough estimate of E ≈ 0.1 for coastal environments can be

obtained from the plots in Jung and Schindler (2021). By integration of the profile Eq. 14 we obtain

U =
1

dZ

dZ∫

0

U(z) dz =
U10

E + 1

( dZ

10m

)E

≈ 1.22 U10 (15)

for the layer averaged wind speed U . The wind fields obtained from the operational forecast centre refer to 10 m and are scaled

according to Eq. 15 before being used as input for the Wake2Sea model.155
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Figure 3. Computational domain used for the Wake2Sea wake simulations and inversions. The 40 km resolution grid for the quadratic

Bsplines used for smooth corrections of the background wind field is superimposed. Two members of the basis are shown in color coding as

examples.

3 Satellite observations and model data

3.1 SAR data

Satellite SAR is an active microwave radar, that provides information about sea surface roughness independent of daylight

and weather conditions. Using the Doppler information obtained from the returned signals, SAR systems onboard European

satellites such as Sentinel-1A and Sentinel-1B (Torres et al., 2012) achieve a high spatial resolution of the order of 10 m in160

along and across flight direction. For C-band SAR systems the surface roughness length scale relevant for the radar cross

section is of the order of a few centimeters and has a dependence on incidence angle. As this part of the surface spectrum is

highly influenced by the surface wind, SAR has become an established tool for the derivation of 2D wind speed maps over

the ocean (Lehner et al., 1998). SAR data have as well been used in the context of offshore windfarming in a larger number

of studies (Ahsbahs et al., 2018; Djath et al., 2018; Djath and Schulz-Stellenfleth, 2019; Jacobsen et al., 2015; Li and Lehner,165

2013; Hasager et al., 2011; Christiansen and Hasager, 2005). In this study Sentinel-1A/B data obtained in Interferometric Wide

swath (IW) mode with VV polarisation are used. Sentinel-1A was launched on 3 April 2014 and is still active while Sentinel-

1B launched on 25 April 2016 has become inoperative since December 2021. The two satellites together have an exact repeat

cycle of 6 days, acquiring data with the same imaging geometry. Each acquired scene covers a swath approximately 250 km

8
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Figure 4. Structure of the forward model and the inversion procedure.

wide. For this study, SAR scenes with different imaging geometries, obtained during both ascending and descending passes,170

were used. Sentinel-1A/B satellites operate in a sun-synchronous orbit, with overflights of the German Bight at around 6 AM

UTC during descending passes and around 5 PM UTC during ascending passes, respectively.

The SAR data were radiometrically calibrated to obtain the Normalized Radar Cross Section (NRCS) using the SNAP

(Zuhlke et al., 2015) software made available by the European Space Agency (ESA). The NRCS is a dimensionless quantity,

which describes the intensity of the radar return and it is often expressed in dB values. We have however used linear units175

for NRCS in the inversion and only show dB values for better visualisation in some of the figures. To reduce speckle noise

(Kerbaol, 1997), the SAR images were smoothed down to 200 m grid resolution.

A couple of simple quality check were performed to exclude image points, which are likely related to perturbation due

to ships, wind turbines, or shallow water current features (Vachon et al., 1997; Alpers and Hennings, 1984): 1) points with

NRCS>1 are excluded, 2) NRSC values in areas with water depth < 10 m are excluded, 3) NRCS measurements within OWF180

areas are excluded, because of radar signals from turbines. 4) Finally, the total NRCS standard deviation is estimated and points

with NRCS > 2.576 STDV are excluded, which corresponds to the 99% confidence limit in Gaussian distributions.

Information about the 30 SAR scenes used in this study are summarised in Table A1. An overview of the environmental

conditions in terms of the average wind speeds and the air/sea temperature differences in the OWF areas for the SAR acquisition

times is shown in Figure 2a.185
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3.2 Atmospheric model data

Data from the icosahedral non-hydrostatic (ICON) atmosphere model run at the German Weather Service (DWD) were used

as first guess information (Reinert et al., 2020). This model has a grid with about 7 km resolution and is routinely used for nu-

merical weather prediction (NWP) at DWD. The model data contain hourly wind vectors at 10 m height as well as information

about sea surface temperatures (SST) and temperatures at 2 m height (T2m).190

Figure 2b shows a 2D histogram of wind speeds and air/sea temperature differences ∆T = T2m−SST computed inside the

German Bight OWF areas for the years 2020-2022. One can see that there is dominance of unstable situations and that the

selected SAR data provide a reasonable representations of typical conditions.

a) b)

Figure 5. a) L-curve Γ without taking the logarithm (see Eq. 28). b) Curvature of Γ as a function of λ with maximum λmax.

4 Inverse Modelling

The general objective of inverse modelling is to achieve a good agreement between simulations and observations by adjustment195

of uncertain model parameters. We have already described the wake model Wake2Sea that is applied to add wakes to existing

2D horizontal wind fields in Section 2. To simulate the NRCS measured by a SAR from these wind data a so called geophysical

model function (GMF) is used. These empirical functions describe the dependency of NRCS on wind speed, wind direction

and radar incidence angle and are derived by collocating SAR measurements with in-situ wind observations with a typical

reference level of 10 m above the sea surface. In this study the GMF CMOD5.N is used (Portabella et al., 2002; Verhoef et al.,200

2008; Hersbach, 2008), which was tuned to neutral atmospheric conditions. The choice of GMF is not very critical for the

present study, because the inversion is based on relative changes of NRCS due to OWF wakes and the absolute NRCS levels,

which can vary slightly among different CMOD versions, are of less importance.
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a) b)

c) d)

Figure 6. a) Systematic and non-systematic corrections of the background wind field as a function of λ. (b-d) Components of the estimated

control vector αwake as a function of λ. The red asterisk and blue triangle and square symbols correspond to the maximum curvature point

λmax as well as to the smallest and largest considered λ value.

4.1 Implementation of the inverse modelling scheme

As the wind deficits caused by OWFs have an order of magnitude, which can be comparable to errors in the first guess model205

wind field, respective corrections have to be applied in addition to the adjustments of the wake model parameters. Technically,

this was done using a 2D spline basis with two example basis functions shown in Figure 3. The used splines are quadratic

in both dimensions and are defined on a grid with 40 km resolution. One can see that the scale of the splines is larger then
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the OWF dimensions and thus it can be expected that the spline corrections are not able to replicate OWF wakes and thus to

interfere with the wake model.210

The quadratic Bsplines are overlapping and sum up to unity (Schumaker, 2007). Denoting the spline basis as Bj , j =

1, . . . ,Nsp, the correction of the u and v component of the first guess wind field for SAR image number k is computed as

uk
BG(x,y) = uk

DWD(x,y) +
Nsp∑

j=1

βu
j,k Bj(x,y) (16)

vk
BG(x,y) = vk

DWD(x,y) +
Nsp∑

j=1

βv
j,k Bj(x,y) (17)

with coefficients (βu
1,k, . . . ,βu

Nsp,k,βv
1,k, . . . ,βv

Nsp,k). The total control vector α for the optimisation problem is then defined as215

α = (αwake,β
u
:,1, . . . ,β

u
:,Nimages

,βv
:,1, . . . ,β

v
:,Nimages

) ∈ IR8+2NspNimages . (18)

Actually, the control vector dimension is 5728 and thus smaller than 8 +2NspNimages, because Bsplines completely outside

of the area covered by the SAR scene were not considered in the inversion. The number of Bsplines used for each of the

SAR images is given in the last column of Table A1. We denote the wind field obtained by feeding the corrected wind field

UBG = (uBG,vBG) into the empirical wake model by Usim(α). The structure of the complete forward model including the220

dependencies on the control vector is depicted in Figure 4.

The model inversion is then equivalent to the minimisation of the following cost function:

J(α) = χobs(α) +λ χprior(α) (19)

with a scalar weighting factor λ and the two cost function components associated with departures from prior information and

differences between observations and simulations:225

χprior(α) =
8∑

k=1

(αk −αk)2

(σα
k )2

+
Nimages∑

k=1

Nj
sp∑

j=1

(βu,k
j )2 + (βv,k

j )2

(σβ)2
(20)

χobs(α) =
Nimages∑

k=1

∑

x∈SARk

(NRCSsim(Usim(βu,βv,αwake))−NRCSk
obs)

2

(σk
NRCS)2

, (21)

where the squared differences between the observed and simulated NRCS are summed over all SAR image points x, which

fullfill the criteria described in Section 3.1. In total, about 40×106 SAR image pixels from Nimages = 30 images were used in

the inversion. For λ = 1 the parameters σα,σβ ,σNRCS can be interpreted as error standard deviations of the respective control230

and observation vector components. We will however not use this interpretation rigorously because the structure of the cost

function implies some oversimplifying assumptions, particularly concerning the spatial independence of observation errors,

and the σ-parameters are instead used to control the relative weighting of different components in the cost function. To avoid

the dominance of SAR images acquired at high wind speeds and large NRCS values, we chose

(σk
NRCS)2 = VAR(NRCSk)× 105 , (22)235
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i.e., the deviations between simulations and observations are scaled with the standard deviation of each image with index k.

For the weighting of the prior terms we chose

σβ = 1m/s (23)

σα
1 = σα

2 = 144 (24)

1/(σα
k )2 = 0 for k = 3, . . . ,8 , (25)240

i.e. the errors in the background wind field are assumed to be of the order 1 m/s. The error variance for the Fitch correction

parameters is chosen such that a 50% correction leads to about the same increase of the cost function as a 2 m/s background

wind field correction over a mesoscale patch, i.e. about 100 km. As a prior we are using α1 = 1 and α2 = 1. Technically, α1,α2

were rescaled in the forward model, such that the cost function has the standard form commonly used for the L-curve analysis

(Hansen and O’Leary, 1993). Very little is known about the remaining control vector components and they are not regularised245

at all. We will come back to the choice of the weighting factor λ later on in the section.

For each choice of λ the cost function Eq. 19 defines a nonlinear least-squares minimisation problem, which was solved

numerically using a Gauss-Newton method (Press et al., 1992), which would probably be called incremental 4DVAR method

in the context of data assimilation. In this iterative technique a linearised version of the problem is solved in each iteration step.

The equivalent linear system to be solved in each step for the correction ∆α of the control vector has the form250

0 =
∂J

∂∆α
= [MADHT G−1(HM(αi)− y)]T + MADHADG−1HTLMTL∆α . (26)

Here, MAD and MTL denote the adjoint and tangent linear models of the advection diffusion model described in Section

2 respectively. The observation operator H and the respective tangent linear and adjoint operators HTL, HAD refer to the

CMOD backscattering model. The tangent linear and adjoint models were hand-coded and tested using the dot-product test (Ji,

2009). Both the advection/diffusion and the CMOD imaging model are differentiable with the exception of the TVD advection255

scheme, which contains switches. The challenges with respect to adjoints of advection schemes have been discussed in previous

studies (Liu and Sandu, 2008). The challenge of the linear problem Eq. 26 is that the matrices are not available in explicit form,

but only as operators in the form of program subroutines, i.e. direct solvers are not practical. The standard approach in such

situations is to use a conjugate gradient (CG) method, which is an iterative solver for symmetric systems (Press et al., 1992).

With a solution ∆α of the system Eq. 26 the next iteration of the control vector α is given by260

αi+1 = αi + ρ∆α , (27)

where ρ = 1 usually leads to a cost function reduction. If that is not the case smaller step sizes ρ = 0.5,0.25, ... are tested until

a decrease is observed.

All model components and the inversion scheme were implemented in FORTRAN90 and parallelized on a linux cluster

computer. A 2D domain decomposition with 4 by 4 domains is used for the advection/diffusion model and the respective265

adjoint and tangent linear models. All 30 SAR images are inverted in parallel, i.e. the program requires 480 processors. The

model trajectory required in the adjoint model is stored in memory with full temporal resolution, i.e. at 20 second time steps.

13

https://doi.org/10.5194/wes-2025-59
Preprint. Discussion started: 17 April 2025
c© Author(s) 2025. CC BY 4.0 License.



a) b)

c) d)

Figure 7. Example of an inversion for the SAR SENTINEL-1A SAR scene acquired on 15 April 2020 at 05:49 UTC (Copernicus Sentinel

data [2020]) with measured NRCS (a), best simulated NRCS (b), sea surface temperature difference (c), and NRCS simulation based on the

original DWD atmospheric model data without OWF parameterisation (d).

4.2 L-curve analysis

We now come back to the choice of the parameter λ in Eq. 19, which controls the weighting of the prior and the observation

terms. A classical method to determine a reasonable value for λ is the L-curve analysis (Hansen and O’Leary, 1993), where270

the so called L-curve defined as

Γ(λ) =
(
log

(
χobs(α(λ))

)
, log

(
(χprior(α(λ))

))
=: (ρ̂(λ), η̂(λ)) (28)
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a) b)

c) d)

Figure 8. a) Number of images in the used Sentinel-1 data set of 30 images that cover different locations in the German Bight. b) Relative

improvement of the agreement between observed and simulated radar cross section achieved by the fitting, if the original DWD wind data

are used as reference. c) The same as b), but here the improvement due to the empirical wake model is shown using the large-scale corrected

DWD wind data as a reference. d) Standard deviation of wind corrections applied on a scale of 40 km and above.

is considered, with α(λ) denoting the solution of the minimisation problem for a given λ and χobs,χprior are defined in

Eqs. 20,21. The L-shaped curve obtained for the inversion problem described in the previous section is shown in Figure 5a

omitting the logarithm in Eq. 28. The triangle and square symbols correspond to the smallest and largest considered λ values275

respectively. The general idea is that it does not make sense to look at solutions which are very far on the left or very far on the

right, because they are either replicating noisy observations or simply reproducing the prior knowledge. It can be justified that
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a) b)

c) d)

Figure 9. Mean relative (a) and absolute (b) wind speed deficits computed with the empirical model Wake2Sea for 2020. (c,d): Respective

standard deviation (c) and 90%percentile of deficit.

a choice of λ that maximises the curvature

κ(λ) =
ρ̂′η̂′′− ρ̂′′η̂′

((ρ̂′)2 + (η̂′)2)3/2
(29)

of Γ is a reasonable compromise between these two extremes (Hansen and O’Leary, 1993). The computed curvature for our280

case is shown in Figure 5b indicating a pronounced maximum at around λmax = 0.004791. The wake model parameters
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a) b)

c) d)

Figure 10. Comparison of FINO-1 measurements with DWD model 10 m wind speeds without wakes (a,c) and with Wake2Sea simulated

wakes (b,d). Neutral conditions were assumed in the extrapolation from 34 m to 10 m in (a,b). Turbulence due to wakes was considered in

the extrapolation in (c,d).

estimated for different choices of λ are summarised in Figure 6b–d. The relatively smooth dependence of the solution vector

on λ indicates a stable performance of the inversion procedure. The red asterisks indicate the solutions corresponding to the

maximum curvature of Γ. A plot for α1,α2 is not shown because the departures from the first guess were negligible. Our

general interpretation of the curves in Figure 6b–d is that the inversion scheme uses the wake model to compensate errors in285
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the background wind field if the prior is weighted more strongly. As these background errors typically have a larger spatial scale

than the OWF wakes, the inversion tends to diffuse the simulated wakes, e.g. by increasing the horizontal diffusion coefficient

νH or by making the wakes longer by decrease of α3. Figure 6a shows the standard deviation for the magnitude of the wind

speed corrections as well as the mean systematic correction of the u and v components as a function of λ. One can see that

the magnitude of the systematic corrections is below 5 cm/s and that the non-systematic corrections start to grow quite rapidly290

below λmax.

5 Inversion Results

The exact values for the wake model control vector components at the maximum curvature point are summarised in Table 2.

The positive value for α5 indicates that, as expected, the vertical diffusion is higher in unstable situations. The negative value

for α4 suggests that the sink term for the deficit is smaller for high deficits, which are found closer to the OWFs. This seems to295

be slightly counter-intuitive because higher deficits are associated with stronger vertical shear and turbulence production. We

can only speculate that this might have to do with the time the turbulence requires to penetrate the layers above the rotor discs

eventually increasing the downward momentum flux.

The value of roughly νH=990 m2/s for the horizontal diffusion emphasizes the importance of using higher order advection

schemes in the simulation. The use of a first order upwind scheme in this study would have resulted in a numerical diffusion300

of the order of 0.5 U10∆x≈ 5000 m2/s, i.e. significantly larger than the estimated physical diffusion.

As an example Figure 7 shows one of the 30 inversions for a SAR scene acquired on 15 April 2020 at 05:49 UTC. This

was a slightly unstable situation with wind speeds around 9 m/s from westerly directions. The air/sea temperature map used

in the inversion is shown in Figure 7c exhibiting a typical increase towards the land caused by stronger warming of water in

the shallow near coastal areas. Comparing the observed NRCS in Figure 7a with the best simulation in Figure 7b shows good305

agreement of the multiple wake structures in terms of intensity and size. The NRCS simulation without the wake model and

background corrections of the wind field can be found in Figure 7d. It can be seen that the original DWD wind field is already

quite consistent with the SAR measurements. Smaller corrections are mainly applied in the near coastal areas with stronger

NRCS gradients.

A statistical overview of the inversions is presented in Figure 8. A map indicating the number of SAR acquisitions used at310

each location in the German Bight is shown in Figure 8a. One can see that for most of the central part close to 30 images are

available. Only in the northern, western and near coastal margins the coverage drops to 25 images or below. Figure 8b shows

the relative improvement of the RMSE comparing the NRCS simulations based on DWD data without wakes and background

corrections with the best inversion results. One can see a relatively homogeneous improvement between 80% and 100%. The

standard deviation of the respective background wind speed corrections is given in Figure 8d. For the most part the standard315

deviations are between 0.6 m/s and 0.8 m/s, which is consistent with the model error levels reported in previous studies (Rieger

et al., 2021). Higher correction values are found in some areas with lower data availability in particular at the western margin

and these are likely dominated by some individual cases, which required stronger corrections. The overall biases for the zonal
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a) b)

c) d)

Figure 11. a) Theoretical deficit profiles computed using the linear approximation Eq. 31 (black curve), the quadratic approximation Eq. 33

(red dashed dotted) as well as numerical integration (dashed blue) assuming neutral conditions. b) Half-decay distance D1/2 in the quadratic

model as a function of the initial deficit D0 and the air/sea temperature difference for a wind speed of 8 m/s. (c,d): Theoretical across wake

profiles for u = 8 m/s at downstream distances of x = 0 km and x = 50 km using the lateral diffusion coefficient νH estimated based on SAR

data. The initial wake width is 10 km (c) and 30 km (d).

and meridional wind components are -0.04 m/s and -0.01 m/s respectively, i.e. the systematic inconsistencies between DWD

data and SAR measurements are small.320

In Figure 8c RMSE improvements are shown again, but this time the reference is the simulations including the background

wind corrections, i.e. the plot isolates the improvements achieved by the empirical wake model alone. For that reason the main
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a) b)

Figure 12. a) Maximum deficit D∞10m at 10 m as a function of wind speed and relative normalised rotor area NA in big wind parks. b) The

same as a) for the half distance x1/2 required to reach D∞10m.

relative improvements between 40% and 80% are found in the neighborhood of the offshore wind farms with a particular focus

on the eastern side corresponding to the dominant westerly wind directions.

α1 α2 α3 [s−1/2] α4 [s−1/2] α5 [K−1] α6 [m2/s] α7 α8

9.9998e-01 1.0000e+00 7.7409e-03 -4.8939e-01 3.5345e-01 9.8929e+02 6.0113e-01 7.9671e-02
Table 2. Estimates for the control vector αwake used in the Wake2Sea model, which were obtained with the 4DVAR inversion procedure.

5.1 Simulations with Wake2Sea for a complete year325

As a first application of the empirical model Wake2Sea OWF wakes were added to a complete year of DWD atmospheric model

data. Figure 9 shows respective maps of estimated deficits at 10 m height for the year 2020. The wake model was applied the

same way as in the inversion, i.e. hourly model data were used as input and a time step of 20 seconds was used in the explicit

scheme. The only adjustment that was necessary is related to very high wind speeds above 30 m/s that occurred during some

short periods in that year. Although we used a cut-out wind speed of 25 m/s above which the deficit production is switched off,330

spurious deficits generated at previous time steps can still exist and lead to instabilities. For this reason model wind vectors

were scaled down to 30 m/s in those situation.

Figure 9a shows the mean percentage deficits averaged over the entire year. It can be seen that the maximum average densities

with values around 8% are concentrated in a small area around the OWFs. Averages of the absolute wind speed reductions are

shown in Figure 9b. One can see that the wind farm cluster in the south westerly part causes reduction of at least 0.2 m/s within335

an area of almost 100 km x 100 km. The deficit standard deviation displayed in Figure 9c illustrates that the area where wakes
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can occur from time to time is significantly larger than suggested by the mean deficit in Figure 9a. To get an impression about

stronger shadowing effects Figure 9d shows the 90% deficit percentile, i.e. deficit values, which are exceeded in 10% of the

cases. One can see that there are larger areas in particular between and inside the OWFs with deficit values of 15% and above.

5.2 Comparisons with FINO-1 measurements340

As an independent validation of the inversion results comparisons were performed with measurements taken at the research

platform FINO-1. The location of the platform is indicated by a black triangle in Figure 1a. There are two main challenges in

this comparison: 1) The lowest FINO-1 measurement is at 34 m height, i.e. significantly above the 10 m reference level used in

this study. 2) The FINO-1 platform is located in the centre of a large wind park cluster, i.e. the wakes measured by the platform

are more inner park wakes rather than external wakes in nature. In this context it is important to remember that the interior of345

wind parks was excluded in the inversion because of radar reflections from the turbine structures, i.e. the empirical model is

not optimised for inner wind park wakes.

The 34 m FINO-1 measurements were extrapolated down to 10 m assuming a neutral wind profile U(z) = u∗ log(z/z0)/κ

in combination with the Charnock equation

z0 = 0.015(u∗)2/g (30)350

with gravitational acceleration g, roughness length z0, friction velocity u∗ and Karman constant κ.

The empirical model Wake2Sea was used to add OWF wakes to a complete year of DWD model data, resulting in a data set

for wind speeds U10 with hourly sampling. The comparison of the original DWD data for the year 2020 with the extrapolated

FINO-1 measurements is shown in Figure 10a. One can see a significant bias of about 1 m/s, which is consistent with the

missing OWF wakes in the model data. The corresponding comparison with the model data including wakes can be found355

in Figure 10b. In this case the bias is reduced by a factor of two and the standard deviations and the RMSE are reduced

significantly as well. Considering the remaining bias of 0.54 m/s one can now argue that the assumption of a neutral boundary

layer is not realistic, particularly inside a wind park cluster. Inside the wakes the turbulence and vertical mixing is increased

and one can expect that the wind speeds at 10 m and at 34 m are in closer agreement than suggested by the theoretical log

profile. Following this argument a second comparison was performed in which the 10 m wind was assumed to be equal to the360

34 m FINO-1 measurement for those cases where the wake model indicated a wind deficit of at least 3%. These estimates were

then compared to model data with and without wakes as before. The results shown in Figures 10c,d indicate that the bias is

now reduced by a factor of ten with a remaining value of 0.05 m/s and also the standard deviation is slightly improved.

In any case, the wake model improves the agreement of the model data with the FINO-1 observations, despite the fact that

the model was never tuned to these interior wind cluster conditions. The order of magnitude of the respective deviations is now365

close to error levels associated with assumptions about the vertical profiles and this calls for more dedicated insitu measurement

in offshore wind farm areas.
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6 Theoretical considerations about Wake2Sea

6.1 Analytical downstream deficit profiles

A rough idea about the shape of the wakes produced with the Wake2Sea model can be obtained by assuming that the back-370

ground wind field u is constant, neglecting lateral diffusion and considering the stationary case with ∂D
∂t = 0. If we further

assume α4 = 0, the solution for D is given by

D(x)≈D0 exp(−α2
3x/u) . (31)

where D0 is the initial deficit and x is the distance from the windfarm. If the deficit dependence in the sink term (see Eq. 8) is

expanded to quadratic order, i.e.375

∂D

∂t
≈ . . .−D α2

3 (1 +2α4 D)(1−α5 ∆T )2 + . . . , (32)

the stationary solution is given as

D(x)≈ ξ1

exp(α3x/u)− 2α4ξ1
(33)

with

α3 = α3(1−α5∆T ) (34)380

and

ξ1 =
D0

1 +2α4D0
. (35)

Figure 11a shows a comparison of the linear and quadratic approximation of the stationary deficit profiles as well the solution

obtained by numeric integration of the complete sink expression for neutral conditions, i.e. ∆T = 0. One can see that the

quadratic approximation is in very good agreement with the full nonlinear solution and that the non-linearity leads to a slightly385

slower decay of the wake near the wind farm compared to the linear solution.

The distance at which the deficit has dropped to half of the initial value is then given by

D1/2 =
u

α2
3

log
(
2ξ1(D−1

0 + α4)
)

. (36)

Figure 11b shows this parameter as a function of air/sea temperature difference and initial deficit D0 for a wind speed of 8 m/s.

According to Eq. 36 a simple linear scaling can be applied to obtain D1/2 for other wind speeds. One can see that there is a390

pronounced stability dependency and a relatively weak impact of the initial deficit D0.

6.2 Horizontal Diffusion of wake

The estimated lateral diffusion νH leads to an across wake expansion that can be analysed analytically based on some simplify-

ing assumptions. If we assume that the across wake profile has a Gaussian shape at distance x = 0 km from the wind farm and
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furthermore the deficit is advected by a constant velocity u, then the evolution of the across track deficit profile as a function395

of x can be described as

D(y) = D(x) exp
(
−1

4
y2

νHx/u

)
, (37)

where y denotes the across track coordinate with y = 0 corresponding to the centre and D(x) is the along wake deficit profile.

To separate the deficit decay due to the lateral diffusion from the effects caused by vertical diffusion, we simply assume

D(x) = const. Figures 11c,d show examples of across wake profiles at x=0 km (solid black line) and at x=50 km (red dashed400

line) for u=8 m/s. The initial wake width is 10 km in Figure 11c and 30 km in Figure 11d. One can see that the lateral diffusion

has less effect on the maximum deficit if the wake is wider, because it takes more time for the diffusive lateral fluxes to change

the shape of the profile.

6.3 Wake growth in large wind parks

Another interesting question is the maximum deficit that can be reached in very large wind parks. As the wind speed reduction405

caused by the wake is included in the source term in Eq. 5 the deficit cannot grow above 100% and there is a well defined

saturation limit. If the linear approximation is used for the vertical diffusion, i.e. α4 = 0 and furthermore a constant CT value

is assumed, the following solution is obtained inside the wind park

D(x) = D∞
(
1− exp(−x(α2

3/u + c1))
)

, (38)

where x = 0 defines the upstream boundary of the park and410

c1 = 0.5NCT A/dZ (39)

D∞ =
c1u

α2
3 + c1u

. (40)

The distance after which half of the saturation deficit D∞ is reached is then given by

x1/2 =
log(2)

α2
3/u + c1

. (41)

Figures 12a,b show x1/2 and D∞10m ≈ α2
7 D∞ as a function of wind speed U10 and the normalised rotor area N ·A for CT = 0.8.415

One can see that the internal wakes require longer distances to built up in high wind speed conditions and in OWFs with

smaller turbine density. The model predicts that for slightly higher wind speeds the deficit can grow well beyond 30% in

very dense wind parks. We have to emphasize again that the model was not tuned to internal wake measurements and it is

implicitly assumed that the vertical deficit diffusion can be described with the same parameterisation inside and outside OWFs.

Furthermore, this analysis does not include the horizontal diffusion discussed in the previous subsection 6.2, i.e. conceptually420

it refers to an infinitely wide wake. The comparison of the Wake2Sea model results with FINO-1 data in Section 5.2 suggest at

least that there is no obvious overestimation of deficits inside of wind park clusters.
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7 Conclusions and Outlook

A 2D semi-empirical model for wind speed deficits near the sea surface downstream of offshore wind parks was fitted to

satellite SAR data. The Wake2Sea model enables the inclusion of OWF wakes into existing atmospheric model data sets at425

significantly lower computational costs compared to complete re-runs of full blown 3D atmospheric models. The optimisation

of the method for near surface wind deficits makes Wake2Sea an attractive tool for oceanographers, who need to include

OWFs in the atmospheric forcing for ocean model simulations. The application of the method to wind fields obtained from

the operational German Weather forecast system lead to a significantly improved agreement with the satellite observations.

Comparisons with independent measurements taken at the FINO-1 measurements confirmed that the empirical model is able430

to reduce biases in meteo model data sets not including OWF wake effects. Consideration of turbulence associated with OWF

wakes in the extrapolation from 34 m to 10 m height, lead to further improvements in the agreement between wake model

results and in-situ observations.

The parameterisation of the empirical model allowed adjustments of the standard Fitch OWF parameterisation in terms of

the momentum sink scaling as well as the dependence of the thrust curve on wind speed, however it turned out that the results435

of the inversion procedure only deviate marginally from the standard formulations found in literature.

The sink term for the wind deficit, which is related to vertical momentum diffusion, was found to exhibit a clear dependency

on the air/sea temperature difference with lower deficit diffusion in stable conditions of the ABL. The sink term also showed

a slight dependency on the deficit itself with lower diffusion at higher deficits. Further studies have to clarify whether this

reflects an actual physical process or if this is an effect associated with the simplified representation of the 3D dynamics in the440

2D empirical model.

The inversion results indicated that the wind speed deficit at 10 m height is about 36% of the deficit averaged over the first

200 m of the ABL. The inversions did not show a significant dependency of this ratio on the deficit itself. It is important

to emphasize that the inversion scheme can potentially compensate possible deficiencies in the Fitch parameterisation by

adjustment of the velocity ratio. A thorough optimisation of the OWF parameterisation would require additional information445

about vertical wind speed profiles inside and outside of wake regions.

To our knowledge this study represents the first attempt to achieve and demonstrate a quantitative consistency between a

physical-based OWF wake model with SAR observations considering a larger variety of wind speed and stability conditions.

Despite its simplicity the model is able to capture major characteristics of the observed wakes. The approach has natural

limitations because of the 2D treatment of wakes and the missing simulation of turbulence. It will be the subject of follow450

up studies to remedy some of these deficits with an acceptable growth of computational costs. In this context we think that

dedicated insitu measurements in the ABL between the sea surface and hub height would be of great value for the further

optimisation of OWF wake models for oceanographic applications.
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Appendix A: List of used Sentinel-1 SAR data

No. Sensor Acquisition Time [UTC] ∆T [deg] U10 [m/s] Nsp

1 S1B 20170222 17:16 1.4 14.3 64
2 S1A 20170314 05:48 1.2 7.5 73
3 S1A 20170407 05:48 1.2 8.4 94
4 S1A 20170604 17:16 0.1 7.2 106
5 S1A 20180108 05:48 -4.0 8.6 124
6 S1A 20180130 17:16 0.1 8.9 65
7 S1A 20180223 17:16 -3.0 7.8 122
8 S1A 20180321 05:48 0.5 4.8 65
9 S1A 20180331 17:16 -0.6 7.8 65
10 S1A 20180625 05:49 -1.6 9.6 65
11 S1A 20190122 05:40 -3.9 10.9 130
12 S1B 20190401 17:16 0.1 7.1 118
13 S1A 20190409 05:48 -1.8 8.8 118
14 S1A 20190527 05:48 0.2 9.3 119
15 S1A 20190630 17:16 0.2 7.3 130
16 S1B 20190730 17:16 0.2 5.3 119
17 S1A 20200120 17:17 -0.5 8.7 121
18 S1A 20200203 05:49 0.1 10.0 121
19 S1A 20200401 17:17 -0.2 8.6 119
20 S1A 20200415 05:49 -0.7 8.9 121
21 S1B 20200515 05:48 -0.7 8.7 98
22 S1A 20200516 05:40 0.2 7.9 81
23 S1B 20200630 17:16 -2.0 12.0 81
24 S1B 20201004 17:16 -2.9 12.9 104
25 S1A 20210911 17:17 -0.3 7.9 70
26 S1A 20240401 05:41 0.4 4.9 64
27 S1A 20240416 17:17 -1.0 10.0 64
28 S1A 20240512 05:49 0.3 7.1 64
29 S1A 20240603 17:17 -0.7 5.9 70
30 S1A 20240605 05:49 -2.2 10.7 106

Table A1. Sentinel-1A and Sentinel-1B SAR scenes acquired over the German Bight, which were used in the presented analysis. The last

column gives the number of Bspline basis functions used in the correction of the background wind field (compare Eqs. 16,17).
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