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Abstract. Wind turbine Supervisory Control and Data Acquisition (SCADA) datasets available for research usually contain a
limited number of failure events. This limitation hinders the successful application of Deep Learning (DL) methods for fault
detection and prognosis, as they require large datasets for robust training and generalisation. This work proposes a method
using Conditional Generative Adversarial Networks (cGANs) to generate synthetic SCADA time series that replicate wind
turbine behaviour under controllable operational, environmental, and degradation conditions. Given a set of SCADA time
series representing these conditions, the cGAN generates temperature and pressure time series simulating gearbox operation.
Results show that augmenting the training set of an Artificial Neural Network (ANN) fault detection model with synthetic
time series reduces false positives in the detected gearbox faults by 84% on average, enabling the model to blindly detect a
fault in a test wind turbine without prior knowledge of the event. Furthermore, training a Convolutional Autoencoder-based
unsupervised health indicator (HI) model with both real and synthetic SCADA time series leads to an HI that more accurately
captures the expected degradation trend. Using this HI, the gearbox’s remaining useful life (RUL) can be predicted within the
defined error bounds from around 4.5 months before the detection of the fault, while the HI obtained without the synthetic data

fails to produce reliable RUL estimations.

1 Introduction

State-of-the-art Deep Learning (DL) methods for wind turbine fault detection and prognosis rely on large datasets for robust
training and generalisation. However, component failures in wind turbines are rare events (Spinato et al. (2009)), and wind
farm operators are often reluctant to disclose detailed information about them due to privacy concerns (Chatterjee and Dethlefs
(2021)). Therefore, Supervisory Control and Data Acquisition (SCADA) datasets available for research usually include very
few failure events, limiting the successful implementation of DL methods. A viable solution to this challenge is to simulate new
failure events within SCADA datasets. This involves generating time series data that mimic sensor signals reflecting turbine
component behaviour as degradation progresses over a specific time window leading to failure. Rather than merely replicating
existing failure event signals, these synthetically generated run-to-failure time series should instead capture diverse degradation
scenarios under varying operational and environmental conditions. This diversity is crucial for enhancing the training data of

DL fault detection and prognosis models, improving their robustness and practicality.
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Existing approaches for generating synthetic signals have mostly used physics-based and hybrid physics-data-driven mod-
els of wind turbines. They often simulate damage by methods such as inserting additional mass or reducing local structural
stiffness. For example, synthetic vibrational signals generated using the OpenFAST software (Jonkman et al. (2009)) have
been used to validate condition monitoring methods in (Tatsis et al. (2017, 2021); Song et al. (2024)). However, they are un-
suitable for training DL methods to be applied to real wind turbines with different configurations. In (Pujana et al. (2023)), a
hybrid digital twin of a wind turbine drivetrain is developed to generate synthetic stator winding temperature signals, with the
temperature increase due to a generator failure modelled as a heat exchanger. These synthetic signals are used to train a fault
detection model. While useful, these methods oversimplify the actual component behaviour and cannot model gradual degra-
dation. Therefore, they fail to generate realistic run-to-failure sequences across multiple SCADA signals, which are critical for
prognostic applications.

Data-driven approaches for generating synthetic SCADA time series are rare in the literature. An Artificial Neural Network
(ANN)-based framework for generating synthetic SCADA signals, given operational, environmental, and degradation condi-
tions, is proposed in (Eftekhari Milani et al. (2024a)). While the generated synthetic signals are in good agreement with the
corresponding field data, this approach assumes that sensor signals at each timestamp are deterministic functions of the cur-
rent conditions. This assumption overlooks the inertia and temporal dependencies present in SCADA signals. These signals,
especially temperature data, often exhibit significant inertia, with measurements strongly dependent on their previous values
(Mello et al. (2021)). Furthermore, this approach does not address the inherent stochasticity of SCADA signals and does not
demonstrate whether it can simulate new failure events.

Generative Adversarial Networks (GANs) (Goodfellow et al. (2020)) have been proven successful in generating diverse and
realistic synthetic data across many domains, including images (Shorten and Khoshgoftaar (2019)), text (Li et al. (2018)),
audio (Liu et al. (2022)), and video (Chu et al. (2020)). These models consist of two neural networks trained in a competitive
framework: a Generator generating realistic-looking synthetic samples and a Discriminator evaluating whether the data are
real or synthetic. In the wind turbine SCADA data domain, the application of GANs has been mostly limited to addressing
class imbalances in fault detection tasks by augmenting faulty data instances. For example, faulty data instances are generated
in (Liu et al. (2019)) to enhance fault detection performance. In (Wang et al. (2022)), a variant of GAN called the Least
Squares GAN, is used to generate synthetic data instances and improve the performance of an Autoencoder-based condition
monitoring framework. Similarly, in (Liu et al. (2023)), a GAN is used to overcome the limitation of scarce faulty data by
generating synthetic faulty instances, which are then used to enhance the performance of an Autoencoder-based anomaly
detection method. These methods outperform more traditional over-sampling approaches (Antoniou et al. (2017)), such as
those based on Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al. (2002)), which have been extensively
used to address the problem of class imbalance in SCADA datasets (Peng et al. (2020); Yang et al. (2021); Li et al. (2023); Tao
et al. (2024)). However, they are limited to generating individual signal instances rather than run-to-failure time series. Another
limitation of these methods is that they cannot simulate entirely new failure events and are limited to oversampling faulty data
instances corresponding to existing failure events in SCADA datasets (Chesterman et al. (2023)). Extending these approaches

to generate entire time series is challenging, as a generative model must learn not only the feature distributions but also their



60

65

70

75

80

85

90

temporal dynamics. Furthermore, it must generate a diverse set of time series under predefined operational, environmental, and
degradation conditions to be useful for wind turbine fault detection and prognosis.

This work addresses these limitations by developing a method based on a conditional GAN (cGAN) (Mirza and Osindero
(2014)). Unlike the standard vanilla GAN, the proposed model allows conditioning each generated signal instance to a vector
of predefined conditions, including component degradation levels and SCADA measurements related to environmental con-
ditions and the operational states of the wind turbine. To capture temporal dynamics of the signal instances, Gated Recurrent
Unit (GRU)-based recurrent neural networks (Cho et al. (2014)) are used for both the Generator and Discriminator networks,
enabling the model to retain a memory of condition vectors from previous timestamps. Furthermore, as suggested by (Yoon
etal. (2019)), a supervised loss term is added to the Generator’s training loss function to enhance the cGAN’s ability to generate
realistic SCADA time series. The effectiveness of this approach for fault detection and remaining useful life (RUL) prediction
is demonstrated using field SCADA data. The results show that augmenting field data with synthetic time series generated
by the cGAN significantly reduces false positives caused by the scarcity of failure events in training data. This enables the
model to blindly detect a fault in one of the test wind turbines without prior knowledge of the event. Furthermore, including
synthetic time series enhances the performance of a health indicator (HI) construction model. The resulting HIs better capture
the degradation trend than those generated without the synthetic data, leading to more accurate RUL predictions. The rest of
this paper is organised as follows: Section 2 describes the method developed for synthetic SCADA time series generation.
Section 3 introduces the SCADA dataset used, data preprocessing, selected signals, and the healthy and faulty wind turbines.
Sections 4 and 5 present the application of the proposed method in fault detection and RUL prediction, respectively. Finally,

conclusions are drawn, and future work is discussed in Section 6.

2 Generation of synthetic SCADA signals

A set of SCADA signals representing the operation of a wind turbine component, such as gearbox temperature and pressure
signals, is a discrete multivariate time series S = {s, ; } with distribution ps wheret =1,...,T,i=1,..., Ny, N, is the number
of component signals, ¢ is the time instance, and T is the length of the dataset. Similarly, O = {0, ; }, where i =1,..., N,, and
E ={e;;} where i =1,..., N, are sets of SCADA signals representing operational and environmental conditions over the
same time interval ¢ =1,..., T, such as rotor speed and ambient temperature, with N, and NN, being the number of signals
representing these condition respectively. D is an HI representing the degradation of the component at each point in time,
which can be extracted from the SCADA signals. The set of {O, E, D} is called the condition time series C' = {¢; ;} where
1=1,...,N., and N, = N, + N, + 1 is the number of condition signals.

It is assumed that S is a function of C' (Eftekhari Milani et al. (2024a)) with some stochasticity inherent in the SCADA
signals. At each instance ¢, s; is a function of not only c; but also all the previous instances due to the inertia inherent in the
SCADA signals. However, in practice, this dependence becomes negligible beyond a certain time window. This relationship

can be expressed through a stochastic generative function F:

Stz]:(clmzt) (D
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where z; is a vector of random noise with distribution p,. The objective of this work is to model F through a GAN-based

framework and use it to generate a set of synthetic SCADA signals S°® given any C.
2.1 HI construction

As mentioned in the previous section, D is an HI extracted from the SCADA dataset and, together with O and E, forms
the condition time series C' In this work, D is obtained using the unsupervised method developed in (Eftekhari Milani et al.
(2024b)), where it is demonstrated that it can construct Hls that track the true component degradation trend more accurately
than other methods proposed in the literature. This approach adopts a Convolutional Autoencoder (CAE), which is trained using
a hybrid of Particle Swarm Optimisation (PSO) and backpropagation to simultaneously maximise the HI monotonicity built
in the middle layer and minimise the reconstruction error. Due to the generally irreversible nature of component degradation,
an HI is expected to demonstrate a monotonic trend, and monotonicity has been widely used as one of the main criteria to
build HIs (She and Jia (2019); Yang et al. (2022)). Therefore, maximising monotonicity leads to an HI that better represents

the component degradation, leading to a more accurate RUL prediction. The training fitness function to be maximised is:
f=h—fr—fo—f1 (2)

where fy; is the monotonicity of the HI built in the middle layer of the CAE, measured using the Mann-Kendall (MK) metric
(Pohlert (2015)), fr is the CAE reconstruction loss, i.e., the Mean Squared Error (MSE) of the difference between the CAE
, where HI(end) is

the HI value at its final timestamp. Maximising f corresponds to minimising both f, and f; and training the CAE to associate

input and output, fo = |HI(0)] is the absolute HI value at its initial timestamp, and f; = |1 — HI(end)

the healthy state at the initial timestamp with an HI value of 0, and the failed state at the final timestamp with an HI value of
1. In this work, fj is removed from f because the component is not necessarily in a pristine state at the initial timestamp of a
run-to-failure SCADA time series.

SCADA measurements are characterised by high noise levels and varying operational and environmental conditions. These
factors make it more challenging for the CAE to effectively reconstruct and denoise the signals compared to more controlled
vibration signals obtained from bearing test beds used in Eftekhari Milani et al. (2024b). Therefore, in this work, an additional
term fyiq is considered, which measures the average weekly rolling standard deviation of the HI and minimising this term
leads to a less noisy HI. An equal weight of one for the four terms fyr, fr, f1, and fsq results in slow convergence during the
training process due to the slow minimisation of the reconstruction error, and the obtained training HI tends to be noisy. For
this reason, the weights of the fr and fstq terms are set to 3 using trial-and-error to balance the four terms and resolve these
issues.

The CAE training fitness function thus used in this work is:

f=/—=3fR—fi—3fsa 3)

The CAE architecture and the training algorithm hyperparameters are set according to those proposed in (Eftekhari Milani

et al. (2024b)).
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Figure 1. Example of HI post-processing on a hypothetical HI: (a—c) raw HI, its first 200s, and its first 300s; (d—f) post-processed HI, its first

200s, and its first 300s
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Since wind turbines operate under highly variable operational and environmental conditions, the constructed HIs usually ex-

hibit local variations, which can reduce the RUL prediction accuracy. To mitigate these variations, a post-processing algorithm

is developed, leveraging the usual irreversible nature of component degradation. As shown in Algorithm 1, a curve is fitted

to the HI using the non-parametric Locally Weighted Scatterplot Smoothing (LOWESS) regression approach (Cleveland and

Devlin (1988)). This curve is then subtracted from the HI, and subsequently, the camulative maximum of the curve is re-added

130 to the HI.

Algorithm 1 HI post-processing algorithm

1. Fit a curve to the HI using LOESS;

2. Compute residue:

3. Compute curveem:

4. Compute the post-processed HI:

residue = HI — curve;

curveem (t) = mazfcurve(l : t)];

HI,, =residue + curvecm.

Figure 1 provides a visual explanation of this algorithm and its impact on RUL prediction. Figure 1(a) shows a hypothetical

HI and a curve fitted using LOWESS. In Figures 1(b) and (c), which show the HI at ¢ = 200s and ¢ = 300s, respectively, it

is evident that the slope of the regression line oscillates between negative and positive values. This undesirable behaviour is

resolved after post-processing the HI with Algorithm 1, as shown in Figures 1(d-f).
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2.2 Vanilla GAN

GANSs consist of two neural networks: A Generator (G), which takes an input vector of unit Gaussian random noise and gen-
erates a synthetic sample, and a Discriminator (D), which, given any sample, outputs the probability of it being real (not
synthesised). These neural networks are trained in an adversarial framework where the Generator is trained to generate increas-
ingly realistic-looking synthetic samples to deceive the Discriminator and the Discriminator is trained to detect these synthetic
samples with higher accuracy (Goodfellow et al. (2020)). In the context of SCADA signals, the Generator receives a noise
vector z; as input and is trained to generate synthetic signals s; that match the distribution of the real signals s; used to train
the GAN. The Discriminator is trained to output a probability of 1 when the data is real and 0 when it is synthetic, minimising

the loss function:

D = —Eas,~p, [10gD(81)] — Ez,~p. [log(1 — D(G(24)))] “)

where E denotes the expected value. The Generator is trained to deceive the Discriminator by generating synthetic samples

that it classifies as real, assigning a label of 1. It minimises the loss function:

LG =—Ez,~p.[logD(G(21))] (5)
The overall objective is a minimax game between the Generator and the Discriminator:

mginmgx V(D,G) =Eg,wp,[logD(s)] + Ez,np. [log(1 — D(G(24)))] (6)

where the Discriminator tries to maximise the value function V', and the Generator tries to minimise it.
2.3 Proposed method for generating synthetic SCADA signals

A vanilla GAN treats S as a group of independent samples s; and models only the signal distribution p(s;), neglecting the
temporal dependencies (Yoon et al. (2019)). Furthermore, signals are generated based only on a random noise vector. Therefore,

the objective of this work is to develop a GAN-based framework that effectively models F in Equation 1 by:
1. Conditioning the signal generation on both the condition vector C' and a random noise vector;
2. Modelling the temporal dynamics of SCADA signals by conditioning the signal generation at each timestamp on infor-
mation from previous timestamps, in addition to the current one.

In other words, rather than modelling the marginal distribution of the signals p(s;), the framework should model the conditional
distribution p(s¢|cy.¢).

The first task above is achieved by adopting a cGAN framework (Mirza and Osindero (2014)), which allows the input of a
condition vector at each timestamp ¢ to the Generator and the Discriminator, based on which the samples are generated. The

loss functions of the Discriminator and Generator then become:

Lp = —Eq,np. [10gD(81]¢))] — Ezpmp. log(1 — D(G(2¢]er)))] 7
Lg = _E2t~pz [lOgD(g(zt|Ct))] ®)
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Figure 2. Flowchart of the cGAN-based synthetic SCADA signal generation framework

The second task is achieved by using a Recurrent Neural Network (RNN) for both the Generator and the Discriminator,
allowing them to retain information from previous timestamps at each ¢. Additionally, as suggested in (Yoon et al. (2019)), a

supervised loss term Lg is incorporated into the GAN Generator loss function to further enhance temporal consistency.

st — G(z¢|ce)|]3) )

Ls=Esi~p.|
Zt~Pz

This loss term minimises the Euclidean distance between the true and generated signals during the training phase. The modified

Generator loss function then becomes:
Elg =Lg+Ls (10)

The flowchart of the cGAN-based synthetic SCADA signal generation framework is shown in Figure 2. In this work, Gated
Recurrent Unit (GRU)-based RNNs have been used, as GRU cells achieve performance comparable to LSTM cells while
having fewer parameters. This makes them more efficient, faster to train, and less prone to overfitting (Chung et al. (2014)).
The flowchart of the cGAN model is shown in Figure 3 where y = p(x = s¢|c;), with  being the input to the Discriminator.

The architectures of the Generator and the Discriminator are shown in Figure 4, where:

1. w is the length of a rolling time window applied to C' before being fed into the GRU layer in both networks. This
transforms the shape of C' from (T, N..) to (T'—w+1,w, N..) and is shown in Figure 5. The window length w introduces
a trade-off between model complexity and performance. A larger window allows more information to be captured at each
time frame from earlier signal values, at the expense of increased computational burden. In this study, this parameter
is set to 10, since the HI obtained from the training wind turbine remained mostly unchanged for larger window length

values.

2. A denotes the Leaky ReLU activation function defined below with o« = 0.2.
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Figure 4. Architecture of the Generator (left) and the Discriminator (right)

x ifx>0
A(z) = (1
ar ifzx <0
In both the Generator and the Discriminator, the condition signals C' pass through two recurrent layers with 64 GRU cells.
The output vector is concatenated with the random vector in the Generator and with the real or synthetic component signals, S
or S°, in the Discriminator. The result is then input to a Dense layer with 64 neurons, followed by the output layer, which in the
Generator outputs the S* signals and in the Discriminator the probability of its input signal being real. The hyperparameters
are set through trial-and-error using the training wind turbine data to find a setting that ensures a stable training process, with

the Generator and the Discriminator being trained in tandem and with consistent speeds.
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Table 1. Selected SCADA signals

Gearbox-related signals (.S)

Environmental condition signals (E)

Operational condition signals (O)

Gearbox bearing A temperature
Gearbox bearing B temperature
Gearbox bearing C temperature
Gearbox oil temperature
Gearbox oil temperature at the inlet

Gearbox oil pressure before filter

Gearbox oil pressure after filter

Ambient wind speed

Ambient temperature

Rotor speed

3 Dataset

The field dataset used in this work consists of 10-minute SCADA signals collected from 2017-01-01 to 2022-08-01 from nine
2 MW wind turbines (WT1-9) in a wind farm operated by Lucky Wind S.p.a. company'. Each turbine has a rotor diameter of
100m, a hub height of 80 m, and a three-stage gearbox with one planetary and two parallel stages. Maintenance logs report
that one of the wind turbines, WT8, experienced a gearbox failure on 2022-02-23. Inspection logs report widespread debris
indentation and circumferential marks in multiple gearbox bearings and abrasion in several gears. A total of ten signals are
selected for analysis: seven related to gearbox operation, two to environmental conditions, and one to operational conditions.
These signals are reported in Table 1. The SCADA signals from WT8 during the year leading to the gearbox failure are used

for training purposes. In addition, WT9 data is used as the validation set, and the remaining seven wind turbines are used as

the test set.

Uhttps://www.luckywind.it/
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3.1 Data preprocessing

Data preprocessing in this study is limited to omitting non-physical signal values and those corresponding to non-operational
turbine conditions. Non-physical signal values refer to instances where gearbox-related temperatures are lower than the am-
bient temperature, gearbox oil pressure is equal to zero, and rotor speed is negative. These outliers, likely caused by sensor
malfunctions, constitute around 5% of the total data. Non-operational values occur when the turbine is idling and the produced
power is negative. They constitute around 20% of the total data. As a result, around 25% of the original data points are excluded
from the analysis during the data preprocessing step.

After eliminating these outliers, the signals are resampled into six-hour time intervals. Increasing the sampling period reduces
the number of data points, leading to a lower computational burden. It also contributes to a higher signal continuity by reducing
the percentage of missing data. However, this comes at the cost of decreased fault detection and RUL prediction accuracy. A
six-hour resampling period has been identified as a good trade-off between these factors. As a result, the number of data points
in a year drops from around 52000 to around 1400, and the percentage of missing data decreases from around 25% to around
3%.

4 Fault detection case study

In this section, an experiment is performed to assess the effectiveness of the developed synthetic data generation method in
fault detection by comparing the detection performance with and without synthetic data. A classifier is trained with the training
(WTS) signals spanning from 2021-02-23 to 2022-02-23 (the gearbox failure time), to identify faulty gearbox operation. The
timestamps during the last month before failure are labelled as faulty (1), while the remaining 11 months are labelled as healthy
(0). Selecting a smaller portion of data as the faulty class can reduce false positives. However, it leads to a higher data imbalance
and can reduce model performance. In this work, the length of one month constitutes the minimum length of the faulty training
data that maintains an acceptable level of data imbalance, allowing a successful training of the fault detection model.

The classifier used is an Artificial Neural Network (ANN) with three hidden layers consisting of 16, 8, and 4 neurons,
respectively, each with a ReLU activation function. The output layer uses a Sigmoid activation function. The model is trained
using the Adam optimiser (Kingma and Ba (2014)) with its default parameters and the binary cross-entropy loss function
Goodfellow et al. (2016). During training, a train-validation split is performed, where 20% of the training data is randomly
set aside for validation, and the training is stopped when the validation loss stops decreasing for 20 consecutive epochs. The
model architecture is set using trial-and-error, where the model complexity is gradually increased in terms of the number of
hidden layers and neurons per layer, until a significant performance improvement is not observed in the validation set. Because
of the highly imbalanced nature of the number of healthy and faulty data points in the training set with the minority (faulty)
class encompassing only 8.3% of the data points, the SMOTE method (Chawla et al. (2002)) has been used to oversample the
faulty data points and balance the two classes. The shape of the training data before and after SMOTE oversampling is shown

in Figure 6.

10
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Figure 7. Flowchart of the fault detection without synthetic datasets. Red blocks represent faulty and green blocks represent healthy wind

turbine data.

Once trained, the ANN is used to predict fault state labels (0 or 1) for each timestamp in the SCADA signals of WT1-7 and
WTO. State change from healthy to faulty is generally gradual rather than an instantaneous process. Therefore, an individual
time stamp predicted as faulty might be due to noise rather than an actual fault (Zhao et al. (2017)). For this reason, in (Zhao
et al. (2017) and Peter et al. (2022)), the ratio of the detected anomalous data points to the total number of data points within
a fixed time window is used as a fault index. In this work, a similar approach is adopted. A fault index is defined as the
weekly moving average (MA) of the predicted labels to improve detection robustness. The flowchart of the fault detection
methodology is shown in Figure 7. The results for the training wind turbine and three test wind turbines are shown in Figure
8(a—d). Numerous misclassified labels, i.e., a predicted label of 1 when the gearbox is healthy, are observed mainly for WT?2 in
Figure 8(b) and WT7 in Figure 8(d), particularly clustered around February each year, which coincides with the failure month
of WTS, used to train the ANN. This suggests that, due to the availability of only one failure event for training, the ANN has
learnt the seasonal features in the signals around the failure time of WT8, associating these features with class 1 (faulty).

To address this problem, the developed cGAN-based framework is used to generate synthetic signals that simulate the

degradation and failure of the WT8 gearbox across various time frames. To create the condition time series C, an HI is built

11
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Figure 9. HI of WTS during the year leading to the gearbox failure.

using the proposed HI construction method, representing the degradation of the WTS8 gearbox during the year leading to its
failure. The obtained HI is shown in Figure 9. This HI and the three environmental and operational condition signals of WT§
form the condition time series (/N. = 4). These, along with the seven gearbox-related signals of WT8 (Ng = 7), are used to
train the cGAN. The Adam optimiser is used with a learning rate of 0.0005 to train both the Generator and the Discriminator.
This learning rate is lower than the default 0.001 value. Due to the complexities arising from coupling two neural networks
within a single training process, this lower learning rate is required to ensure training stability.

Once the cGAN is trained, the environmental (E) and operational (O) condition signals are shifted from the Feb 2021—Feb
2022 time frame to new time frames, Apr 2020—Apr 2021, Jul 2019—1Jul 2020, Sep 2018—Sep 2019, and Dec 2017—Dec
2018, while keeping the degradation signal (D) unchanged. These time frames are selected to simulate the gearbox failure in
a variety of seasonal conditions. This results in four new condition time series C; = {O;, E;, D} where i =1,...,4. These
condition time series are then input to the trained Generator which generates the corresponding synthetic signal time series S?
where i = 1,...,4. Together with their corresponding environmental and operational signals (E and O), these synthetic signal
time series form four synthetic SCADA datasets. Similar to the original dataset, the initial eleven months in the synthetic
datasets are labelled as healthy, while the last month leading to failure is labelled as the faulty class and is oversampled using
SMOTE to balance the two classes. The test set predictions using the ANN trained with both the original and synthetic datasets
are shown in Figure 8(e—h) for the training wind turbine and three test wind turbines. A noticeable decrease in the number
of misclassified labels can be observed when compared to the predictions made using only the original dataset. Across the
wind turbines in the healthy test and validation sets, the number of misclassified labels, reported in Table 2, has decreased
significantly, by around 84% on average. A detection threshold of 0.107 is selected for the fault index based on the maximum
fault index value observed in the validation wind turbine, the crossing of which indicates a fault. False positives, i.e., the time
stamps when the fault index is above the detection threshold while the gearbox is healthy, are reported in Table 3 and have been
almost completely resolved. It is important to note that the number of false positives depends on the detection threshold, which
is set based on the randomly selected validation wind turbine (WT9). The component temperatures in different wind turbines

can have slight differences in the healthy state. This results in a variability in the number of misclassified labels in different
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Figure 10. Flowchart of the fault detection with synthetic datasets. Red blocks represent faulty and green blocks represent healthy wind

turbine data.

Table 2. Number of misclassified labels in the healthy test and validation set wind turbines.

WTI | WT2 | WT3 | WT4 | WT5 | WT7 | WT9
Without synthetic datasets 21 193 319 125 14 281 356
With synthetic datasets 4 33 80 13 2 33 44

healthy wind turbines reported in Table 2. Therefore, selecting a different wind turbine for validation can slightly change the
number of false positives by lowering or raising the detection threshold. However, this affects the number of false positives
similarly in the two cases with and without synthetic datasets. Therefore, this experiment is a valid tool for performance
comparison. The flowchart of the fault detection methodology with the synthetic datasets is shown in Figure 10.

The results show a clear detection of a potential anomaly and fault in WT6. The fault index increases sharply around the
end of October 2018 and remains at a lower level until around the end of May 2019. Further investigation into the farm
maintenance logs and monthly reports revealed that a moderate gearbox-related fault was discovered and addressed during
a 12-hour maintenance intervention on 2019-05-30. Coincidentally, this anomaly occurred during the seasonal period where
false positives were previously observed in Figure 8(a—d). Therefore, without the synthetic data, detecting this fault with high
certainty would have been challenging.

Considering the detection threshold of 0.107, the fault in WT6 is detected on 2018/10/19 at 06:00:00, more than seven
months before the maintenance. Furthermore, the fault in WT8 is detected on 2021/08/28 at 06:00:00, as shown in Figure 8(e),
while the actual failure occurred on 2022/02/23.
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Table 3. Number of false positives in the healthy test and validation set wind turbines.

WT1 | WT2 | WT3 | WT4 | WT5 | WT7 | WT9
Without synthetic datasets 24 508 928 298 22 802 1045
With synthetic datasets 0 0 0 0 0 18 0
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Figure 11. HI of WTS and the selected thresholds for detection and failure.

5 RUL prediction case study

This section assesses the effectiveness of the developed method in fault prognosis. WT8, used for training, experienced a
gearbox failure, while WT6’s gearbox underwent maintenance while the fault was at a moderate level, and failure did not
occur. As a result, a ground truth failure time is not available for the gearbox of WT6. For this reason, the fault prognosis in
this section aims to predict the time when the degradation reaches a level that can be detected by the fault detection method
discussed in the previous section.

The CAE used for HI construction is trained with WTS signals spanning the year leading to the gearbox failure. A threshold
of 1 is assigned for gearbox failure, as indicated by the f; term in the CAE training fitness function in Equation 3. Additionally,
the mean value of the HI during the week leading to the detection in WT8, which is 0.84, is set as the HI threshold corresponding
to the degradation level associated with the fault detection. Figure 11 shows WT8 HI along with these thresholds. Using the
trained CAE, the WT6 HI is then constructed and is shown in Figure 12(a).

To properly train the CAE to extract the true degradation trend, a training set comprising multiple run-to-failure datasets with
diverse degradation trajectories is needed. To achieve this, synthetic signals are generated by modifying the degradation trend
D in the condition time series C' and shifting the environmental E and operational O signals. The resulting four new condition
time series, then, become C, = {O;, E;,D;} where i = 1,...,4, with D1, ..., D, representing four different degradation tra-
jectories. To derive Dy,..., Dy, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

algorithm (Colominas et al. (2014)) is applied to decompose the training HI in Figure 9 into its trend component Dy, g and
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Figure 12. WT6 HI: (a) with the original signals and (b) with both original and synthetic signals (b).
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Figure 13. Decomposition of the WT8 HI into the (a) trend and (b) noise component

300 several other intrinsic mode functions (IMFs), Dyrr,; which collectively make up the HI noise.

D= Dtrend + Dnoise

Nivr

Dnoz’se = § DIMF,z'

=1

(12)

13)

where Ny is the number of IMFs other than the trend. The decomposed trend and noise components of the training HI are

shown in Figure 13. Then, four synthetic trends are created using the equation below:

t

305 Dtrend,i (t) - min(Dtrend) + [max(Dtrend) - min(Dtrend)](T)pia 1= ]-7 e 34
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Figure 14. Four degradation trends used to obtain the synthetic HIs.

with p;_4 equal to 1, 3, 10, and 50, respectively, and are plotted in Figure 14. This equation models an HI trend starting at
the minimum value of the WT8 HI trend and ending at its maximum value. It is important to note that assigning a fixed HI
value at failure time for all synthetic HIs is valid in the proposed framework, as the model used for HI construction is explicitly
trained to associate failure with an HI value of 1. This enforces consistency by design and minimises variability in the HI at
failure across different realisations. The exponent p; determines the trend regime. A value of 1 produces a linear trend, while
higher values indicate more pronounced non-linearity, representing increasingly abrupt degradation patterns. The p;_4 values
are chosen to represent meaningfully distinct degradation behaviours.

Next, the corresponding synthetic HIs are obtained by adding the WT8 HI noise to the synthetic trends and are shown in
Figure 15. These, combined with the shifted operational and environmental signals, form the four new condition time series

',...,C", which are fed into the trained Generator to obtain their respective synthetic signal time series S fl, ety Sj/. These
synthetic signals, along with the corresponding FE and O signals, create four additional synthetic datasets that are added to the
CAE’s training set. Subsequently, an HI is constructed for WT6, which is shown in Figure 12(b).

Regardless of the inclusion of synthetic datasets, the HI built for WT6 crosses the detection threshold around the time the
gearbox fault is detected and briefly overshoots the failure threshold. However, this exceedance is not sustained, and the HI sta-
bilises between the detection and failure thresholds until the fault is identified and addressed through maintenance, preventing
complete failure. These results align well with the behaviour of the fault index in Figure 8(g) and the WT6 maintenance report,
which confirms a moderate gearbox-related fault. The sudden jump observed both in the fault index and the HI might be due
to a sudden fault, such as a crack. However, this hypothesis cannot be asserted with confidence, since no in-depth details are
available about this fault case.

Notably, the HI built using synthetic datasets exhibits a clearer degradation trend, achieving a monotonicity of 0.61 (mea-
sured by the MK metric) up to the detection point, compared to 0.53 when synthetic datasets are not used.

To assess the performance of the two HIs in Figure 12(a) and (b) in predicting the RUL up to the detection point, a second-

order polynomial function at? + bt + c is fitted to the HI up to timestamp ¢ with ¢ = 700, ..., 1470 (detection time) in six—hour
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Figure 15. Synthetic HIs used to generate the synthetic signals: (a—d) refer to HI1-4 built with trends 1-4.

units. The projected crossing point of the fitted function with the detection threshold of 0.84 is then used to calculate the
predicted RUL at each ¢. To ensure convexity and guarantee that the projected trend crosses the threshold, the constraint a > 0
is enforced during curve fitting. This approach can model both linear and curved trends, using the fewest parameters possible,
minimising the risk of overfitting. The true and predicted RULs are shown in Figure 16. At each timestamp, the true RUL
corresponds to the number of six—hour timestamps remaining until the detection time. It can be seen that the HI built with the
synthetic datasets considerably outperforms the one built without them in correctly predicting the RUL. Considering an error
bound of one month, this HI achieves a prognosis horizon of around 4.5 months. This implies that using this HI, along with
the adopted RUL prediction approach, enables consistent fault-time prediction with the assigned accuracy up to 4.5 months in
advance. It is worth noting that a simple RUL prediction approach is used in this work, as developing more complex forecasting
approaches is beyond the scope of this work. Adopting more sophisticated approaches could lead to even better RUL prediction

performance.

6 Conclusions

In this work, a method based on cGANSs is developed to generate synthetic SCADA signals. This approach enables the gen-
eration of sensor time series with controllable degradation trends, as well as operational and environmental conditions. As a

result, it can simulate new failure events or recreate a given failure under different conditions. A fault detection case study
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Figure 16. Comparison between the WT6 true and predicted RULs during the year leading to the fault detection

demonstrates that this method almost completely resolves false positives. This allows for the blind detection of a fault in one of
the test wind turbines more than seven months before it was discovered and maintained by the wind farm operators. The false
positives are due to the availability of only one failure event in the training data, leading the model to associate the seasonal
characteristics of signals at the time of failure with fault features. By augmenting the training data with synthetic signals that
simulate the same failure under different seasonal conditions, this problem is mitigated. Furthermore, the study shows that
training an HI construction method with synthetic signals simulating diverse degradation scenarios leads to a considerably
more accurate RUL prediction. This approach enables the prediction of the RUL up to 4.5 months before fault detection in a
test wind turbine. In contrast, the HI built without synthetic signals fails to provide accurate RUL estimates.

It is important to note that the training and test fault cases in this work are similar, both involving a fault in the gearbox
that had led to elevated temperatures in the gearbox-related SCADA signals. Therefore, the method’s performance might
deteriorate if the test failure mode is significantly different from the training case. This work serves as a feasibility analysis
that proves the proposed approach can generate entire sets of time series simulating new failure events that are able to mitigate
the overfitting problem. To identify the extent of diversity in the failure patterns that can be simulated using this method and
assess its performance in the presence of various failure modes, further studies and experiments with multiple failure cases are

required.
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Accurately forecasting the future trajectory of an HI for RUL prediction remains an important topic that is out of the scope of
this paper. Therefore, a simple prediction approach is employed. This approach can perform well when the degradation trend
remains consistent through the lifetime of the component. However, it can fail in the presence of inconsistent and complex
trends. Future research will focus on developing probabilistic approaches for more precise RUL prediction using component

HIs.
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