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Response to the comments made by the Associate Editor and the
Reviewers regarding the manuscript WES-2025-62:

Simulating run-to-failure SCADA time series to enhance wind turbine fault
detection and prognosis
by
Ali Eftekhari Milani, Donatella Zappald, Francesco Castellani and Simon
Watson

Dear Dr. Nikolay Dimitrov,

We appreciate the opportunity to provide a revised version of our manuscript
and appreciate the valuable feedback received. We are grateful to the Re-
viewers for their insightful and constructive comments. In response, we have
made careful revisions to address each point raised and improve the overall
quality of the manuscript.

In this document, we provide our point-by-point replies to the com-
ments/suggestions (highlighted in italics) and outline the specific changes
made to the manuscript. All these changes are highlighted in blue in the
submitted revised version of the manuscript.

Yours sincerely,

Ali Eftekhari Milani, Donatella Zappala, Francesco Castellani, and Simon
Watson

Dr. Nikolay Dimitrov - Associate Editor

The authors have successfully addressed the first of the two editor com-
ments, which was also the more critical one.

I still think further discussion is needed on the second point, because I
believe with its present definition the health index does not directly link the
observations with the physical failure phenomenon. This poses challenges
towards generalizing the approach, as it is not certain that for another turbine



(or even for the replaced component from the same turbine) a new failure
event will occur exactly at health index of 1.

I suggest the paper now proceeds to review, and the authors are welcome
to address this outstanding point together with the reviewer comments.

We are glad that we were able to successfully address your first comment.
The definition of failure in the context of prognostics and RUL prediction
is an important topic. In practice, a component is usually declared failed
when the parameters monitored through sensors exceed predefined thresh-
olds. Therefore, a complete failure is rarely reached, and the indicated failure
times are generally based on the sensor signals rather than on the level of
actual physical degradation.

When using datasets from laboratory scale experiments, failure is usually
clearly defined, and there is consistency among realisations in terms of their
failure time. For example, in [1], the HI model used in this work has been
tested on two bearing testbed datasets, in both of which the failure is defined
based on a threshold on the amplitude of the vibration signals.

However, in the field, a component is usually declared failed when the
parameters monitored by SCADA and/or CMS systems exceed predefined
thresholds, raising alarms and planning maintenance visits to confirm the
presence of significant degradation in the component. In this case, many
factors are involved in deciding the actual time of the maintenance visit,
which is usually declared as the failure time. Therefore, as you correctly
indicated, there is an irreducible inconsistency in the definition of failure,
which can be thought of as a form of labelling noise.

In the proposed HI model, the HI is by definition in the range of 0 to 1,
with 0 indicating the pristine state (0% degradation) and 1 indicating failure
(100% degradation). Therefore, both the limitation in the availability of
failure events for training purposes and the above-mentioned inconsistency
in the definition of failure lead to an error in the prediction of the failure
time, meaning the HI reaches 1 either before or after the true failure time.

The availability of only one failure event definitely limits the generalisa-
tion of any method for fault detection and RUL prediction, which leads to
large errors in the test set. This work proposes a method that synthetically
introduces variability in the training data in terms of the operational and
environmental conditions and the degradation trajectory, and serves as a
feasibility analysis showing it is able to improve the generalisation and lower
the test set errors. To identify the extent of diversity in the failure patterns



that can be simulated using this method and assess its performance in the
presence of various failure modes, further studies and experiments with mul-
tiple failure cases are required. This clarification is added to the conclusions
in line 352.

Reviewer #1

The paper concerns the detection/prediction of faults and remaining use-
ful life (RUL) estimation for wind turbines. It presents a methodology where
synthetic data, produced by a ¢cGAN algorithm, is used to improve the accu-
racy of failure detection and RUL algorithms. The methodology is validated
on data from a wind farm with a single failure and one near failure (main-
tenance).

The problem statement is very relevant. Failure prediction and RUL on
wind turbines is an important research topic. This paper can be an interesting
and valuable contribution. This means that in my opinion the topic is in scope
of the WES journal.

The paper is well written, reads fluent, and is to the point. The 18 pages
of text (excluding the references) describes well the problem statement. The
methodology is relatively well discussed, however, certain parts are unclear or
missing (see remarks part). The results are well presented. The conclusion
15 concise and to the point but in my opinion somewhat too strong in its
assertions (see remarks part). The abstract is concise and to the point and
describes the content of the paper well. The figures that are added to the
paper are useful to understand the text. The figures are also clear.

The paper shows that when synthetic data is used using a cGAN the num-
ber of misclassified labels (unhealthy, healthy) decreases by 84% on average.
The paper indicates how the synthetic data methodology improves the perfor-
mance in this case.

I do have some remarks/questions that in my opinion need clarification
i the paper:

We thank the reviewer for showing interest in our work and for the time
spent to provide an in-depth and high-quality review. The comments and
suggestions are very relevant, and we hope that we have been able to address
them successfully, improving the quality of the manuscript.



1. On p.4 it is said “the weights of the fr and fsq are experimentally set
to 3 to balance the four terms”. How was this done? Which data was
used for the experiment?

We agree that more information is required in terms of how these
weights were set experimentally. Thank you for pointing this out. The
weights of the training cost function are set to harmonise the optimi-
sation speed of the four terms. For this aim, we have performed a
trial-and-error using the training failure case. A weight of 1 for all four
terms resulted in slow convergence due to the slow minimisation of the
reconstruction error, and the obtained training HI tended to be noisy.
Increasing the weights of the two loss terms corresponding to these fac-
tors, i.e., fr and fgq, resolved this issue. To clarify how these weights
were set, an explanation is added from line 117 in the manuscript.

2. On p.6-8 the methodology is discussed for generating the synthetic SCADA
signals using cGAN. Can you state more clearly what the hyperparam-
eter values were for this algorithm? For example the number of layers
in the networks, the number of neurons, ... On p.12 it is mentioned
that the learning rate of the Adam optimizer is 0.0005. How were the
hyperparameter values selected? Was hyperparameter tuning used? If
so, how was this done? Which data was used for this? If no hyper-
parameter tuning was done, then where do the hyperparameter values
come from? From literature? If so, is it not surprising that those pa-
rameters work well on the case discussed in the paper? Can you please
discuss this?

The reviewer correctly points out that more explanation is required
in terms of the hyperparameters of the cGAN model, and the visual
introduction of the architecture in Figure 4 might not be sufficient.
As mentioned in the introduction, the architecture of the ¢GAN is
inspired by the models proposed in [2] and [3], combining elements from
these works and adapting the architecture to the problem addressed in
this work. The hyperparameters were set through trial-and-error using
the training wind turbine data. The objective was to find a setting
that ensures a stable training process, with the Generator and the
Discriminator being trained in tandem and with consistent speeds. In
line 185, a paragraph is added to explain the model architecture and the
hyperparameters in detail and clarify how they are set. Furthermore,



the selection of the 0.0005 learning rate for the Adam optimiser is
discussed with an additional sentence in line 250.

. On p.7 it is said that the window length w is experimentally set to
10. How was this experimentally done? Which data was used for the
experiment? Which metric was used to decide which window length is
optimal?

The reviewer is correct in pointing out that this parameter needs clar-
ification in the manuscript. The window length introduces a trade-off
between model complexity and performance. A larger window allows
more information to be captured at each time frame from earlier signal
values, at the expense of increased computational burden. According to
the findings in [4], temperature signals, which are the most important
SCADA signals when dealing with mechanical component degradation,
typically exhibit autocorrelation up to a maximum of two to three days
in the past. Our experiments using the training failure case pointed
to a similar result. The HI obtained from the training wind turbine
essentially remained identical for the window lengths larger than 10
(60 hours). This clarification is added in line 178 in the manuscript.

. On p.9itis said “Each turbine has a diameter of 100 m ...”. Although
it 1s clear from the context that “rotor diameter” is meant, it might be
useful to explicitly specify it is the rotor diameter.

This is amended in the manuscript in line 193.

. On p.9 it is said that WT9 is selected as validation dataset. Why was
this wind turbine selected? How was it selected? This dataset is used to
set the detection threshold. It is known that the component temperatures
between different wind turbines can be structurally different even if they
are healthy. It is surprising that this did not have an impact on the
number of false positives in the test dataset. Did you notice differences
between the different turbines? Please discuss this.

The difference in component temperatures across different turbines in a
wind farm is an important point. The varying number of misclassified
labels in different healthy turbines reported in Table 2 and shown in
Figure 7, corroborates the reviewer’s point. The robustness of the fault
detection method to this variability lies in the fact that it has been
trained to associate only the signal patterns close to the failure time



with the label of 1, i.e., faulty state. The difference in signal behaviour
between the healthy and the faulty states in the training wind turbine is
much higher than the variability of the signal behaviour among different
wind turbines in the healthy state. It is important to note that the
seasonal behaviour in the signals outweighs both of these factors, and
the model is able to learn the fault features only when synthetic signals
are introduced, allowing the model to isolate the seasonal features and
learn the fault features.

WT9 was randomly selected as the validation set. We agree that the se-
lection of the validation wind turbine will have an effect on the number
of false positives in the remaining wind turbines. However, rather than
demonstrating the performance of the fault detection method, the aim
of this case study is to compare the fault detection with and without
introducing the synthetic signals and demonstrate the effectiveness of
the synthetic signal generation method. And, lowering or raising the
detection threshold affects the performance in these two cases similarly.
To clarify this, a paragraph is added in line 267.

114

. On p.10 you say the following: . the minority (faulty) class is over-
sampled using the SMOTEN method ...”. Should it not be SMOTE?
How was SMOTE applied during the training of the model? On which
data? Please discuss this.

Thank you for bringing this typo to our attention. We have fixed it
and added some explanation in line 230.

. As a baseline a classification model is trained on data from a wind
turbine that experienced a gearboz failure (p.10). No more information
on the failure type is given. 12 months of data preceding the failure are
used for training the model. Data less than 1 month before the failure is
labeled as unhealthy, the remaining 11 months are considered healthy.
It is not explained in the paper how this decision was taken. Why 1
month and not more or less data? It might be good to discuss this in
the paper.

As indicated by the reviewer, more information about the fault is added
to line 195.

The length of the considered training data and its division into the
healthy and faulty sections is done considering a trade-off between sev-



eral factors. Degradation is generally a gradual and monotonically in-
creasing process, and a clean separation between the healthy and faulty
states does not exist. Selecting a smaller portion of data close to the
failure date as the faulty class can reduce false positives. However, it
leads to a higher data imbalance and can reduce model performance.
In this work, to minimise the risk of false positives, the smallest length
possible was selected for the faulty training data that maintains an ac-
ceptable level of data imbalance, allowing a successful training of the
fault detection model. This is clarified in line 219.

. It might also be good to add a bit more information on how this classifi-
cation model was trained. Was a train-validation split used? If so, how
much data was assigned to training and how much to validation? On
p.10 the architecture is described. It is stated that this architecture is
a good trade-off between performance and computational burden. How
was this decided? Was hyperparameter tuning performed? If so, how
was it done, on which data? If no hyperparameter tuning was done, how
were the values for the hyperparameters found? Please discuss this.

These details are indeed missing in the manuscript. Thank you for
bringing it to our attention. The model is trained using the Adam
optimiser with its default parameters and the binary cross-entropy loss
function. During training, a train-validation split is performed, where
20% of the training data is randomly set aside for validation, and
the training is stopped when the validation loss stops decreasing for
20 consecutive epochs. The model architecture is set using trial-and-
error, where the model complexity is gradually increased in terms of
the number of hidden layers and neurons per layer, until a significant
performance improvement is not observed. These details are added in
line 223.

. Furthermore, by using only one failure for training, does this not risk
overly specializing the model to the degradation pattern of this single
failure? My experience is that failures, even if they are of the same type,
show themselves often quite differently in the data. There tends to be
large variance in the degradation patterns. How does this method handle
this? How do you guarantee that the model does not just memorized
this degradation pattern (or certain properties of it)? Have you tested it
on other failure types? The fact that there are no false positives for the



10.

“healthy” turbines is surprising. Gearbox temperatures are most likely
influenced by many environmental conditions, which are not always
easy to measure and use in a model. So I would expect there to be more
noise on the results. Please discuss this.

This is an important point. Using only one failure case for training
does increase the risk of overfitting. This, in fact, is the main problem
statement of this work: Can we alleviate the overfitting when we are
limited to only one failure case for training”? As a solution, a method is
proposed that can use the training failure case to simulate new failure
cases with predefined operational and environmental conditions and
degradation patterns. It is shown that the synthetic variability intro-
duced to the training set using this method can reduce overfitting.

However, the training and test fault cases in this work are quite similar,
both involving a fault in the gearbox that leads to elevated tempera-
tures in the gearbox-related SCADA signals. Therefore, as the reviewer
correctly indicates, the model might not perform well if the test fail-
ure mode is significantly different from the training one. This is now
clarified in the conclusions in line 352.

Figure 7 and the explanation on p.12 indicates that an anomaly zone
was identified for WT6, and that this was most likely associated with a
maintenance. An analysis of the pattern shows that there was an initial
gump of the fault index, then it decreased sharply and then it stayed at
a lower but elevated level. If it identified damage to the gearbox, why
do we not see an increasing trend in the fault index over time? What
causes the initial jump, and subsequent sharp decrease? It might be
useful to add some discussion of this to the paper.

This is an interesting observation. The fault index measures the density
of the detected faulty time stamps in a weekly rolling time window,
i.e., the ratio of the faulty time stamps to total time stamps in a week.
While it is expected that a more severe fault should generally lead to
more frequent alarms raised by the fault detection model, other factors
play a role as well. For example, the operational mode and the ambient
conditions. Therefore, this index can be noisy, and it is not expected
to always reflect the actual level of degradation in the component. For
this reason, the proposed HI construction method is used in the second
case study. This method decomposes the signals and isolates the factor



11.

12.

corresponding to the degradation in the component. Therefore, the HI
built corresponds to the severity of degradation through time.

Upon comparing the fault index and the HI built for the test case, it
can be seen that a jump is also visible in the test HI around the time
when the jump in the fault index is observed. This might be due to
a sudden fault, such as a crack. However, this hypothesis cannot be
asserted with confidence, since no in-depth details are available about
this fault. A sentence is added to line 322 to discuss this.

On p.14-15, it is explained how 4 trends are used for the synthetic HIs.
These are all based on characteristics of the failure for WTS. Does this
method not risk overly specializing the model to this single failure? Does
this mot mean that the good results achieved are limited to this single
failure? What can be expected in conditions with multiple failures, how
would the methodology be applied? What will be the impact of this? It
might be useful to discuss this.

This is a valid concern, and links with comment 9. The availability
of only one failure case is a hard limit in this work, and it is shown
that the proposed synthetic signal generation method can reduce the
overfitting resulting from this limitation. However, it is not guaranteed
that in all cases the results can be as good as the case study presented
in this work. This work serves as a feasibility analysis that proves the
proposed approach can generate entire sets of time series simulating
new failure events that are able to mitigate the overfitting problem.
To identify the extent of diversity in the failure patterns that can be
simulated using this method and assess its performance in the presence
of various failure modes, further studies and experiments with multiple
failure cases are required. These points are clarified in the conclusions
in line 354.

Considering the application with multiple failure events available for
training, a similar approach can be taken, generating several synthetic
failure cases based on each of the training failure cases.

On p.16 the results of the RUL estimation are discussed. A second
order polynomial is fit on the HI to predict the RUL up to the detection
point. How was the decision taken to use a second order polynomial?
What was the procedure? Was the decision taken by looking at the



13.

14.

15.

shape of the HIs? If this is the case don’t you run the risk of overfitting
this specific case? Is using a second order polynomial still valid when
testing on other failures (degradation patterns)? Again the variance in
the degradation patterns plays a role here. Please discuss this.

The method used was to fit a second-order polynomial to the HI, con-
straining the quadratic coefficient to be non-negative. This approach
can model both linear and curved trends, using the fewest parameters
possible, minimising the risk of overfitting. This explanation is added
to line 331.

This function is fitted to an initial section of the test HI and is extrap-
olated to predict the RUL. Therefore, it is adapted to each failure case,
and can be expected to perform similarly in other failure cases with
reasonably consistent HI trends. However, it will not perform well if
the trend is less consistent during the component’s lifetime. This clar-
ification is added to line 360.

Accurately forecasting the future trajectory of an HI for RUL prediction
is an important topic which is out of the scope of this work. The
simple method used in this work only serves as a tool to compare the
performance of the Hls built with and without synthetic data.

In my opinion the paper results can be seen as a proof of concept of a
methodology. Quite some assumptions (a.o. how a degradation signal
looks like, ...) are made during the construction of the pipeline. To
know how well it would perform in general, a larger analysis is required
on more failures (of different types). It might be useful to add this point
more clearly to the conclusion of the paper.

This is a correct remark, and is added to the conclusions in line 354.
It maght also be useful to add a schematic overview of which data was
used by which part of the pipeline.

A flowchart can indeed help in better explaining the pipeline and the
data used in each step. Figures 7 and 10 are added to address this,
showing the flowchart of the methodology with and without synthetic
datasets and the data used.

Conclusion: This paper is in scope of WES. It contains relevant re-
search, and is in my opinion after addition of the discussions good for

10



publication.

We are grateful for the time and effort put into this review. A lot of
valuable comments are provided, and addressing them has contributed
significantly to the quality of the manuscript.

Reviewer #2

This work addresses the failure detection and prognosis in the context of
wind turbine operation. The paper introduces a synthetic data generation
methodology for the training of failure detection and remaining useful life
(RUL) prediction algorithms by using cGAN to generate SCADA data abiding
to predefined conditions. The methodology aims to improve the prediction
accuracies of the algorithms by providing more data samples that can better
represent degradation trends of the wind turbine. SCADA dataset from a
wind farm was used to validate the methodology.

In my opinion, the manuscript addresses an important research topic that
1s very relevant and within the scope of WES journal. The manuscript pro-
vided a sound methodology, and the content is a valuable contribution to the
research area discussed.

QOwverall, the language of the paper is well written tonally, and the figures
were clear and helped in presenting the findings. The manuscript provided
a very good overview of the problem statement, while also providing relevant
literature review to address the limitations of past works. The methodology is
mostly well discussed and presented, but the structure of the result sections
can be improved to provide more clarity for the steps taken to reach the con-
clusion. The conclusion is concise and summarised the findings well, but the
limitations of the work can be elaborated.

My comments and questions will be listed below, points that in my opinion
need clarification will be listed in Remarks and editorial suggestions will be
listed in minor comments.

We thank the reviewer for taking the time to read the manuscript and
provide valuable comments, and we are happy that he/she has found our
contribution relevant and valuable for the field.

Remarks:

1. pg.4 - “the weights of the fR and fstd terms are experimentally set to 3
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to balance the four terms”, what do you mean by “experimentally set”?
Was it by iterations with a sample data-point?

We agree that more information is required in terms of how these
weights were set experimentally. Thank you for pointing this out. The
weights of the training cost function are set to harmonise the optimi-
sation speed of the four terms. For this aim, we have performed a
trial-and-error using the training failure case. A weight of 1 for all four
terms resulted in slow convergence due to the slow minimisation of the
reconstruction error, and the obtained training HI tended to be noisy.
Increasing the weights of the two loss terms corresponding to these fac-
tors, i.e., fr and fqq, resolved this issue. To clarify how these weights
were set, an explanation is added from line 117 in the manuscript.

. Pg.9 — Section 3: Dataset, what is the test-train split strategy adopted?
Why is only WT9 data used as validation set instead of sampling from
all the wind turbines?

This is an interesting point. Sampling from all wind turbines to obtain
a validation set would have been a better approach if signal continuity
and temporal ordering were not a requirement for the proposed method.
In the fault detection method, the fault index measures the density of
the misclassified labels in a rolling weekly window. Therefore, the vali-
dation set used to set the detection threshold for this fault index must
maintain the continuity and temporal order between data instances.
For this reason, the division is done based on turbines. One of the two
wind turbines with a gearbox fault is used for training. One of the
healthy wind turbines is selected as the validation wind turbine used
to set the fault detection threshold, and the remaining wind turbines
are used for testing.

It is important to note that the temporal ordering of data instances
is relevant to building the fault index using the raw 0/1 labels, and
not to the ANN generating these labels, since this model gets as input
individual data instances and for each one predicts a label. Therefore,
during its training using the WT8 data, a random 80%-20% train-
validation split of the data instances is performed, and the training is
stopped when the validation loss stops decreasing for 20 consecutive
epochs. This validation set is also used for setting the ANN’s archi-
tecture. These details were initially missing in the manuscript and are
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now added in line 225.

. pg.10 — “SMOTEN method”, I believe this is a typo. Which dataset
was resampled? What value was resampled and why?

Thank you for bringing this typo to our attention. We have fixed it
and added some explanation in line 230. In the training dataset, i.e.,
WTS8 data during the year leading to the gearbox failure, SMOTE was
used to oversample the faulty class and resolve the class imbalance.

. Pg.12 — “The Adam optimiser ....”, it appears that hyperparameter
fine-tuning was performed to optimise the algorithm, it will be good to
include the fine-tuning strategy adopted to reach this conclusion.

The reviewer correctly points out that more explanation is required
in terms of the hyperparameters of the cGAN model and the strategy
used to set them. The hyperparameters were set through trial-and-
error using the training wind turbine data. The objective was to find a
setting that ensures a stable training process, with the Generator and
the Discriminator being trained in tandem and with consistent speeds.
In line 185, a paragraph is added to explain the model architecture and
the hyperparameters in detail and clarify how they are set. Further-
more, the selection of the 0.0005 learning rate for the Adam optimiser
is discussed with an additional sentence in line 250.

. Pg.12-13 — Results on misclassified labels and false positives, it is inter-
esting to see that despite having misclassified labels, most of the WTs
had 0 false positives. Would you not consider this to be a sign of over-
fitting?

We agree that more discussion regarding these results is required in the
manuscript. Since the state change from healthy to faulty is generally
gradual, an individual time stamp predicted as faulty might be due to
noise rather than an actual fault. For this reason, the fault detection in
this work is based on a robust fault index which measures the density of
the predicted faulty instances in a rolling weekly time window. A fault
is detected when this fault index crosses a detection threshold set using
the validation wind turbine. Hence, false positives are the time stamps
at which the fault index is above the detection threshold while the
turbine is healthy. In other words, although misclassified labels exist
due to the noisy nature of the raw labels, a fault is only detected when

13



the density of the 1 labels in a weekly time window increases past a
threshold value. It is important to note that this threshold is set based
on the randomly selected validation wind turbine (WT9). Therefore,
selecting a different wind turbine for validation can slightly change the
number of false positives by lowering or raising the detection threshold.
However, since this affects the number of false positives similarly in the
two cases with and without synthetic datasets, it can act as a valid tool
for performance comparison. These points are added in line 267.

. Section 5. RUL prediction case study, what is the baseline and structure
of your performance measurement for the proposed method? Discussion
on why the monotonicity value from the MK metric is relevant to the
quality of degradation trend and how it can affect the RUL prediction
should be included.

This is an important context that needs to be added to the method-
ology section. Thank you for bringing it to our attention. Due to the
generally irreversible nature of component degradation, an HI is ex-
pected to demonstrate a monotonic trend, and monotonicity has been
widely used as one of the main criteria to build HIs. Therefore, max-
imising monotonicity leads to an HI that better represents the com-
ponent degradation, leading to a more accurate RUL prediction. This
clarification and relevant citations are added in line 101.

. Pg.16 — Justification to why the second-order polynomial function is
used to predict RUL s needed. The method is only tested with WT6
dataset, this makes me wonder if the same method will be applicable
and effective on a different failure case from a different wind turbine.

The method used was to fit a second-order polynomial to the HI, con-
straining the quadratic coefficient to be non-negative. This approach
can model both linear and curved trends, using the fewest parameters
possible, minimising the risk of overfitting. This explanation is added
to line 331.

This function is fitted to an initial section of the test HI and is extrap-
olated to predict the RUL. Therefore, it is adapted to each failure case,
and can be expected to perform similarly in other failure cases with
reasonably consistent HI trends. However, it will not perform well if
the trend is less consistent during the component’s lifetime. This clar-
ification is added to line 360.
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Accurately forecasting the future trajectory of an HI for RUL prediction
is an important topic which is out of the scope of this work. The
simple method used in this work only serves as a tool to compare the
performance of the Hls built with and without synthetic data.

Minor comments (suggestions):

1. In pg.1 line 13, “... to produce reliable RUL estimeates estimations.”

2. Inpg.1line 24, “ .. improving their robustness and practical-applicabilty

practicality.”

3. In pg.10, line 200, “the effectiveness of the developed method in fault
detection.” Can be clearer on which developed method this is referring
to (e. of the developed synthetic data generation method).

The three suggestions above are implemented in the manuscript. Thank
you for pointing them out.

4. For section 4., a short separation sentence can be included to clarify
that the result of the HI produced from (a) SMOTE generated data
and (b) ¢cGAN generated data will be compared and discussed. I also
find that separating [texts addressing model configurations and meth-
ods adopted] from [result presentation] into different paragraphs can
improve the structure of the section.

A sentence is added to line 216 to clarify which two specific cases are
compared in section 4. The explanation of these two cases was con-
fusing in this section in the initial version of the manuscript. We have
now fixed that. The two cases compared are a) with only the original
WT8 dataset, and b) with both the original WTS8 dataset and the syn-
thetic datasets. The faulty class in both the original and the synthetic
datasets are oversampled using SMOTE to balance the classes before
using them to train the ANN. To clarify this, Figure 6 is edited to
only show the oversampling using SMOTE, and Figures 7 and 10 are
added to show the methodology flowchart without and with synthetic
datasets.
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