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Abstract. In the context of the wind industry, there is an increasing need for a more comprehensive understanding of at-
mospheric wind conditions. A particular emphasis is required concerning wind structures, which have not been thoroughly
investigated in the prevailing standard guidelines. This necessity arises in light of the current trends toward larger, higher,
and more flexible wind turbine designs. Of particular importance are the correlations between the yet-to-be-characterized at-
mospheric turbulent structures and the specific responses of the turbines. These correlations may be crucial in assessing load
events relevant to new designs that were negligible for the earlier, smaller, and stiffer turbines. The Center of Wind Pres-
sure (CoWP) [Schubert et al., 2025] was recently introduced as a feature of a wind field that characterizes large-scale wind
structures and, at the same time, correlates with the large-scale or low-frequency content of the bending moments at the main
shaft of the wind turbines. In this paper, we comprehensively compare the CoWP and the bending moments in terms of their
statistical properties and fatigue estimates, quantified by Damage Equivalent Loads (DEL). Furthermore, a stochastic method
for the reconstruction of synthetic CoWP signals is proposed. The strong correlation with the bending moments enables the
proposed stochastic CoWP model to serve as a relatively simple surrogate and estimator of the large-scale dynamics of these
loads, which is based solely on the properties of the inflow wind field. A notable advantage of the stochastic approach is its
capability to reconstruct very long time series, required for evaluating loads over the operational lifetime of the turbine. For
such lifetime estimations on wind turbines, it is necessary to combine the proposed model for large-scale dynamics with a
corresponding model for small-scale features, site-specific wind conditions, and turbine-specific characteristics. The proposed
stochastic model of the CoWP can be used not only for load assessment, but also for characterizing large-scale wind structures.
The model offers an advanced description of the wind phenomena, with the potential to be integrated as an extension of the

prevailing wind turbulence models.
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1 Introduction

As part of the design and validation phase, numerical simulations are used to predict the loads on an operational wind turbine
(WT). The objective of these simulations is to reproduce the interaction between the WT and the atmospheric turbulent wind.
Given the inherently complex meso-to-micro scale nature of atmospheric phenomena, it is extremely difficult to attempt to
incorporate the governing physical models into a unified description of the wind flow. Consequently, stochastic wind models,
which involve numerous simplifications and assumptions of the atmosphere, are commonly employed for numerical simula-
tions of WTs. Common examples are the Kaimal (Kaimal et al., 1972), von-Karman (Von Kdrman, 1948), and Mann (Mann,
1998) wind models. The International Electrotechnical Commission (IEC) (IEC, 2019) has proposed these models as standard
atmospheric turbulence representations for numerical WTs simulations. It should be noted that these models are based on low-
order statistical features of the wind fields, such as power spectra and correlations. However, they do not yet explicitly resolve
the turbulent eddies, i.e., the spatial characteristics of the turbulent flow structures. For the spatial coherence of turbulence,
an exponential decay with distance is assumed. The IEC standard also considers some extreme operating conditions (EOC),
encompassing peak wind speeds, gusts, and sudden changes in wind direction. These non-realistic extreme wind structures are

conceived as homogeneous in space (i.e., uniform over the entire rotor area), with a return period of 50 years.

Recent advancements in WT design show a persistent trend towards increasing dimensions, including higher heights and larger
rotor diameters. Accordingly, certain structural properties are significantly modified within the designs of the larger WTs.
Specifically, a higher degree of flexibility is characteristic of the larger and slimmer rotor blades. This may raise concerns
about the validity of the assumptions or the omission of specific turbulent structures within the aforementioned standard wind
models currently used by the WT industry. The increased scale of WTs suggests that certain wind characteristics, which were
previously negligible or unimportant for smaller and more rigid WTs, may be significant considerations within the aerodynamic
interactions of state-of-the-art WT designs. Of particular interest are the spatial properties of the atmospheric wind structures.

Rotor diameters that exceed 200m may exhibit sensitivity to the spatial characteristics of wind phenomena, such as wind gusts.

The necessity for an extended characterization of the atmospheric turbulent wind beyond the parameters currently outlined in
the IEC standard guidelines is supported by the repeated measurement of unexpected loads in operational WTs. According
to manufacturers and operators of WTs, numerical simulations of the specific WTs and the standard IEC wind modeling
assumptions do not adequately reflect certain load events that may be important for the structural integrity of the machines in
operation. Consequently, it is imperative to establish a correlation between the extended features of the atmospheric wind and
the measured unexpected effects on the operating WTs. Examples of such extended characteristics of atmospheric turbulence
include the small-scale intermittency (Boettcher et al., 2003; Morales et al., 2012), low-level jets (Gutierrez et al., 2016),
particular coherent vortices (Abraham and Hong, 2022), fractal turbulent-non-turbulent interfaces (Neuhaus et al., 2024), wind

ramp events (Gallego-Castillo et al., 2015), and periods of constant wind speed (Moreno et al., 2025).

A general requirement within the wind industry is to simplify the complexity of WT representations in turbulent wind envi-

ronments to allow practical implementation and minimize computational costs. As stipulated in the standard guidelines (IEC,
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2019), numerical simulations of a wide range of operational scenarios are required for the validation of WT designs. Conse-
quently, optimizing the computational time and power is imperative while ensuring satisfactory accuracy of the estimations of
the responses of the WT. Some approaches have been proposed to reduce the complexity of the interaction between the wind
and the WT. Examples of methods based on a given wind field include a modified actuator sector model for WT simulations
(Mohammadi et al., 2024), and the calculation of extended equivalent wind speeds over the rotor area (Choukulkar et al., 2016).
Conversely, techniques are employed to extract characteristics of the incoming flow field from load measurements at the WT,
such as blade-load-based estimators (Coquelet et al., 2024). Furthermore, due to the limitations in computational power, the
loads on the WT are typically estimated over short intervals, e.g., 10 minutes. Consequently, numerical techniques have been
proposed for extrapolating the loads estimated from such short time scales to lifetime loadscenarios containing fatigue damage

and extreme load events (Zhang and Dimitrov, 2023; Qingshan et al., 2022).

The virtual Center of Wind Pressure (CoWP) has recently been introduced as a feature of a given wind field that is either
measured or modeled (Schubert et al., 2025). The CoWP characterizes large-scale wind structures occurring over the plane
perpendicular to the main direction of the wind, i.e., the rotor plane, when considering a WT. Most interestingly, the CoWP
is directly correlated to the low-frequency content of the bending moments at the main shaft of the WT. Consequently, the
CoWP not only facilitates the characterization of extended wind structures, i.e., beyond the IEC standard, but also proposes a

simplified and expeditious method for assessing particular characteristics of the WT loads.

In this article, we aim first to perform a comprehensive comparison between the CoWP, calculated from the wind fields,
and the bending moments at the shaft of the WT, calculated using blade element momentum (BEM) numerical simulations.
The statistical characteristics of the signals and their damage equivalent loads (DEL) are investigated. Second, based on the
correlation between the large-scale structures of both the CoWP and the bending moments, we propose a stochastic method to
derive the dynamics of the former, which are subsequently the basis for generating surrogate signals of the latter. The statistics
of the surrogate data demonstrate a high degree of comparability to those of the original CoWP from the wind fields, as well
as to the low-frequency content of the BEM-simulated bending moments. A notable advantage of the stochastic reconstruction
is its capacity to generate very long time series. The availability of such extensive data is essential for assessing lifetime load

events without the necessity of numerical extrapolation techniques.

Our model thus offers a twofold approach. On the one hand, it facilitates the characterization and modeling of large-scale wind
structures. The wind energy sector is in urgent need of a comprehensive description of these large-scale structures, as standard
wind models are likely to oversimplify them. Modern large wind turbines are particularly vulnerable to this oversimplification.
On the other hand, our stochastic model allows the estimation and extrapolation of specific characteristics of the bending
moments at the main shaft while bridging such responses of the WT with structures of the inflow wind field. In its current state,
the method is limited to the modeling of the dynamics of the low-frequency components of the bending moments. However,
when combined with a description of the high-frequency components, a validated rescaling procedure, and the characterization
of the site-specific wind conditions, this approach enables a novel method for a fast assessment of the lifetime loads in WTs.

In a preliminary investigation (Moreno et al., 2024), the stochastic method for reconstructing the time series of loads based on
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the dynamics of the CoWP from IEC standard modeled wind fields was introduced. The present paper extends the stochastic

approach to wind data from atmospheric measurements.

The paper is structured as follows: Sect. 2 presents the relevant definitions to be discussed in the paper. Sect. 3 describes the
wind data to be investigated. The analysis of the reconstructed data from IEC standard-modeled wind fields and atmospheric

measured data is presented in Sect. 4. Finally, the conclusions and outlook of our investigation are stated in Sect. 5.

2 Definitions

2.1 Center of Wind Pressure

The virtual Center of Wind Pressure (CoWP) is defined by Schubert et al. (2025) as the two-dimensional position in the plane
of the rotor at which a point-wise thrust force Frr acts and induces the bending moments 7T'. This position is specified with
respect to a reference point, e.g., the main shaft of a WT. The moments are estimated as, T=CoWP x Fr. Fig. 1 illustrates the

concept of the CoWP, introduced as a characteristic of a given wind field u(y, z,t).

u(yi z;, t)

() (d)

Figure 1. Schematic illustration of (a) the wind field u(y, z,t) over the area of a rotor disk and (b) the resulting two-dimensional CoWP

calculated from the wind field.

In the following, a brief derivation of the concept of the CoWP is presented. Let us consider a wind field u(y;, z;,t) defined

over a discretized grid with N\ points on the rotor plane, i.e., the y-z plane, perpendicular to the main direction of the flow.
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Then, the normal thrust force F7p acting over the rotor area A at the y-z plane is calculated as,

N
1
Fr(t) = §Zpair Cr w?(yi, 2i,t) AA; (1)

i=1
where w is the longitudinal component of the wind perpendicular to the y-z plane, p,;.- is the density of air, C'r is the thrust
coefficient of the rotor, and AA; are the discretized sections of the rotor area .A. Now, the bending moments T' due to the

normal thrust force can be calculated as,
T(t)=7(t) x Fr(t) )

where 7 is the distance between the acting location of F to the reference point. Considering the main shaft, i.e., the center of

the rotor disk (o , zo) as the reference point, the yaw T, and tilt T;;;; moments at the main shaft are estimated as,

N N
1 5 1 -
Tyaw(t) = 3 E i Pair C1 U (Y3, 2i,1) AA; Te(t) = 3 E Zi pair O ©?(Yis 2ist) AA; 3)
i=1 i=1

where g and 2 are the horizontal and vertical distances, respectively, of each location ¢ to the reference point, so that g; = y; —yo
and z; = z; — z9. Assuming % Pair CT to be constant, the two CoWP components are defined as the fraction of the moments

(yaw and tilt) and the normal thrust force, resulting in

N~ N -
S Ui v (Yi, i t) AA; CoW Pu(t) = Sy Ziut (Y, 20 t) AA;

CoWP,(t) = = .
W = S o) AA; SN (g t) AA,

“)
The CoWP is calculated solely by wind field data, comprehensively representing specific wind structures, whether modeled or
measured. Furthermore, the area .4 used to compute the CoOWP can be adapted to investigate diverse sizes and domains within
fields, e.g., 1D dynamics when measuring atmospheric data with vertically aligned devices in a met-mast, or different WT rotor

sizes from numerically modeled wind fields.
2.2 Damage Equivalent Load

The Damage Equivalent Load (DEL) is the recommended method by the standard IEC (2019) for performing fatigue as-
sessments and damage calculation analyses of the mechanical elements of the WT. In essence, the DEL represents a fixed
amplitude and fixed-frequency load, calculated from a load signal encompassing a range of frequencies and amplitudes. Based
on the Miner’s rule (Miner, 1945), and the rainflow counting method (Matsuishi and Endo, 1968; Downing and Socie, 1982),
the DEL is calculated over a period T as,

DEL = (Zi—lmsi ) , )
Ny T

where 7n; is the number of cycles with amplitude s;, and Ny is a reference number of cycles. The Wohler exponent m is

characteristic of the material, extracted from the so-called S-N curves (Basquin, 1910). Note that according to Eq. (5), the
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contribution of the amplitudes s;, to the DEL is determined by the exponent m. The larger the value of m, the stronger the
dominance of larger amplitudes s; within the calculation of the DEL. More details about the estimation and assumptions of the
DEL can be found in (Sutherland, 1999). This study uses the DEL to evaluate the effect on the bending moments at the main
shaft induced by the wind structures characterized by the CoWP.

2.3 The Stochastic Langevin Model

The CoWP calculated from a given wind field can be characterized in terms of its statistical properties and dynamical behavior.
Since the CoWP signals are noisy and irregular, we introduce the Langevin model as a stochastic approach to characterize
the dynamics. The range of applications of the Langevin method is extensive, encompassing domains as diverse as medical
signals, e.g., the human balance (Rinn et al., 2016b; Bosek et al., 2004) or brain activity (Costa et al., 2016), financial markets
(Friedrich et al., 2000), and cone penetration signals for stratigraphy (Lin et al., 2022).

Assuming a 1D stochastic process X (¢), the general differential Langevin equation

d
= DW(X,t) + /D@ (X, t)T(t), (6)

describes the temporal derivative % as the sum of two contributions: A deterministic part driven by the drift coefficient
DM and a stochastic component driven by the diffusion coefficient D(®) and weighted by a stochastic force I'(¢) (Lemons
and Gythiel, 1997; Risken, 1996), where I'(¢) is Gaussian noise with zero mean and a J-correlation, i.e., (I'(¢)) =0, and

(D@)T(t—t")) = 25(t —t'). The angular brackets (... ) denote the temporal average.

The Langevin method, introduced by Friedrich and Peinke (1997) and Siegert et al. (1998), proposes an approach to de-
rive the coefficients D(*) from time series X’ (¢). This is achieved by calculating the derivative of the conditional moments

M) (X t,7) for the state X = X’ (t) of the system as,

1
DW(X,t) = lim =M® (X, ¢t,7) 7

T—=0T

for k = [1,2], where 7 is a small enough time step. The conditional moment M (k)(X,t,7) is calculated by averaging the k*"

power of the increments, X'(t 4+ 7) — X, as

1 /
M(’“)(X,M):EHX (t+7) = XT" ooy ) ”

Now, for a 2D process X (t) = { X (t), X2(t)}, the Langevin equation has the form,

d X _ (Vx| PR DEX| () o
dt | X,| DX, [DE(X,t) DE(X,0)| [Ta(t)]

with the diffusion coefficients Dg) and Dg) ,

T—

1.1
DY(X,t)=DP (X t) = 3 Jim —([XT (6 4+7) = Xa ] [Xa(t+7) = Ko |, sy, xamxyo)) (10)
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Once the coefficients D12 are known, the method can be reversed. Then, time series X (¢) can be generated via the stochastic
integration of Eq. (9). The application of the Langevin approach for the stochastic reconstruction of the time series of the
two-dimensional CoWP is discussed in the next section. Further developments and details on the Langevin model are found in
Friedrich et al. (2011); Reinke et al. (2015); Rinn et al. (2016a); Tabar (2019).

2.4 Stochastic Model for CoWP and WT Loads

In Fig. 2, we schematically show our proposed stochastic method in the context of load estimation of the low-frequency
contribution of the bending moments at the main shaft of a WT. Starting from either a modeled or measured wind field
u(y, z,t), the CoOWP is calculated according to Eq. (4) (going in the upward direction in Fig. 2). Then, the stochastic Langevin
approach is used to derive the coefficients D(+2) from the CoWP signals. Based on the extracted coefficients D(1+2) the
stochastic reconstruction of signals of the low-frequency bending moments at the main shaft can be achieved. The strength
of this approach lies in its ability, based on the Langevin stochastic differential equation, to generate a time series of any
length while preserving the statistical properties of the original CoWP data from the wind field data. This feature is particularly
advantageous, as lifetime load assessments of a WT require large amounts of computationally expensive data or numerical
extrapolation techniques. However, the implementation of the stochastic method for lifetime load assessment in engineering
applications (i.e., including both the high- and low-frequency components of the loads) is constrained in its application. To
ensure a comprehensive lifetime model, it is necessary to incorporate additional elements. A turbine-specific transfer function
for rescaling the magnitudes of the loads is required. A complementary model for the high-frequency components of the loads
must be integrated. Finally, the occurrence of the loads must be weighted by the distribution of the mean wind speed at the

location of the WT (e.g., annual Weibull distribution).

The current standard procedure for load assessment in the wind industry is shown in the downward direction from the wind
field u(y, z,t) in Fig. 2. In brief, the response of a WT to a specific inflow wind field is investigated via a BEM simulation,
with a typical length of 10 minutes. The time series of the loads are obtained from several 10-minute random realizations that
account for different wind conditions. Thus, the assessment of all required wind situations is computationally very demanding.
After the aggregation of 10-minute BEM simulations, extrapolation methods are applied to account for extreme load events
and damage calculation during the lifetime of the WT (Zhang and Dimitrov, 2023; Qingshan et al., 2022). Compared to the
standard approach, our proposed model is computationally very efficient and thus fast. The lowest path in Fig. 2, depicted by

dashed lines, shows the potential use of operational wind and load measurements for validation and optimization processes.

As a side comment, the description of the dynamics of the CoWP, e.g., via the derivation of D(1»2) provides a comprehensive
characterization of the large-scale structures in the wind field, which can be further investigated. For instance, it can be used to
estimate the accuracy of modeled wind data compared to atmospheric measurements, or it can be included as a parametrization
into extensive descriptions of the turbulent wind, such as the IEC standard models or other surrogate models for wind field

reconstruction (Yassin et al., 2023; Friedrich et al., 2022; Rinker, 2018).
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Figure 2. Diagram of the stochastic surrogate method for the assessment of the low-frequency content of the bending moments at the main
shaft given a wind field u(z,y, z). The proposed method goes upwards from the wind field in the figure. For comparison, the path in the
downward direction shows the standard procedure for load estimations specified by the IEC standard guideline. The solid red box contains
the three data sets to be compared in the following sections. The dashed lines at the lowest part of the figure represent operational measured

data to be potentially included in an extended comparison.
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The solid-line red box in Fig. 2 shows schematically the three data sets to be compared and discussed in the following sections

of this paper. From bottom to top:

a) the bending moments at the main shaft calculated by BEM simulations.

b) the CoWP calculated from the modeled or measured wind fields (see Sect. 3).
c) the time series generated via the stochastic reconstruction.

Again, the dashed line shows a potential use of operational load data to be included in the comparison.

3 Wind Data: IEC Standard Fields and Atmospheric Measurements

We aim to characterize and model the CoWP from two wind data sets:

i) IEC standard Kaimal data: Synthetic wind fields are generated with the Kaimal model (Kaimal et al., 1972) proposed by

the IEC standard(IEC, 2019). The fields are defined in a 130mx 130 m spatial grid with a separation Ay = Az = 10m and
centered at y = 0 and z = 90m. The grid points are schematically shown by the small black dots in Fig. 3. The circular
gray area depicts the scaled rotor of the SMW NREL turbine (Jonkman et al., 2009) with hub height at 90 m and a rotor
diameter of 126m. The mean wind speed % = 7m s~!, and turbulence intensity TI = 7% of the non-shear wind fields
are defined at the location of the hub. The BEM simulations of the SMW NREL turbine are performed in OpenFAST
(Jonkman et al.). 4.7x10*s of simulated time is investigated. The TurbSim Package (Jonkman, 2016) was used to generate
the Kaimal fields. The implementation in TurbSim of the Kaimal spectrum for the longitudinal component u of the wind
follows,

4021, )ty

B = 056/ L fun)o?

1)

where o, is the standard deviation of u, wy is the mean at hub height, and f is the frequency. The integral scale L,, is
defined as L,, = 8.10A,,, with A,, being the turbulence scale. A,, is calculated as A,, = 0.7 (min{30m, Hy }), where Hy is
the hub height. In conjunction with the Kaimal spectra, an exponential coherence model is assumed to describe the spatial
correlation of the longitudinal component u. The coherence scale parameter L. for the coherence model(IEC, 2019) is
assumed as L. = L, = 8.10A,,.
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Figure 3. Schematic representation of the Kaimal spatial grid and the SMW NREL rotor. The black points depict the discrete locations of
the spatial grid with Ay = Az = 10m. The hub of the model WT is located at the center point of the grid at y = Om and z = 90 m.

ii) Atmospheric GROWIAN data: The measurement campaign was conducted in Germany between 1984 and 1987. The hor-
izontal wind speed was measured with a frequency of 2.5Hz by 16 propeller anemometers arranged in two met masts, cov-

210 ering an area of 76 m x 100m. Details of the GROWIAN data are found in (Korber et al., 1988; Giinther and Hennemuth,
1998). The blue circles in Fig. 4 illustrate a schematic representation of the measurement arrangement. The GROWIAN

data have been conditioned by the mean wind speed 8.5 < 4 < 11.5m s~! turbulence intensity 6 < TI < 12%, and shear

exponent 0 < ¢ < 0.06. The characteristics «, T1, and g are calculated over 10-min periods at the location with coordinates

y = —14, z = 100m. To guarantee an undisturbed flow, the wind direction over the 10-min periods remains within a 100°

215 range with respect to the location of the two met masts (i.e., main direction of the flow). After the conditioning, 18 blocks

of 10-min intervals, or 1.08x10%s are considered for the analysis.

In order to perform BEM simulations of a realistic WT, a rescaling of the GROWIAN data is needed. The rescaled
GROWTIAN fields are defined on a stretched grid of 152mx 150 m. The stretching is performed by increasing the distance
between neighboring points of the original grid by a factor of 1.5 in the vertical direction, and a factor of 2 in the horizontal
220 direction. The green circles in Fig. 4 illustrate the rescaled GROWIAN spatial arrangement, centered at y = Om and
z =125m. The wind speed measurements at the 16 original locations have not been modified. The four grid points at
the corners of the stretched grid are filled with the data from the next neighboring grid point at the same height. For
example, the wind speed at the corner point (-76m, 5S0m) is assumed identical to the point at (-76m, 25m). The gray
area in Fig. 4 depicts the WT model to be simulated. The hub of the WT is located at 125m, and the rotor diameter is
225 149m. The BEM simulations are performed with the alaska/Wind aero-elastic-servo simulator(ICM, 2023; Zierath et al.,

10



2016), developed at the Institute of Mechatronics in Chemnitz, Germany. The multi-body model alaska/Wind incorporates
several coupled sub-models: the foundation, the tower, the nacelle, the yaw drive, the pitch drive, the rotor, the drive
train, the generator, and the controller. A Beddoes-Leishman-type dynamic model and a flexible wake model, respectively,
consider the unsteady airfoil aerodynamics and the wake effects. Among the specified degrees of freedom are the radial

degree in the drive train for torsional effects of the gearbox; the nodding degree in the yaw drive; and the side-to-side,

230
fore-aft, and torsional motions of the tower. These considerations on the modeling assumptions of the simulations follow
the simulations in Schubert et al. (2025).
200m i i
— @b @ st L o)
163m
125m P
”””” 500
z : : :
y = [N} ~N =
Figure 4. Schematic representation of the GROWIAN spatial grid. The blue circles show the original GROWIAN arrangement. The green
circles show the locations of the stretched grid used for BEM simulations of a WT. The gray area depicts the WT model to be simulated with
hub height at 125m and rotor diameter of 149 m.
It is important to note that the simplified wind field rescaling in this study results in some degree of distortion to the spatial
correlations of the original GROWIAN data. The introduced distortion, under the assumption of self-similarity of turbulence,
235 is of minor significance, as our primary utilization of the GROWIAN data is to develop realistic, large-scale structures of the

turbulent atmospheric boundary layer. Large-scale wind structures (e.g., of the size of the rotor diameter) are not present in

other standard numerical wind fields. They will become important for the CoWP and the loads, as demonstrated subsequently.

4 Results and Discussion

This section presents the results of the two objectives of our investigation: The comparisons between the CoWP and the bending

240 moments at the main shaft of the WT, and the stochastic modeling of the CoWP. In Sect. 4.1, the results from the standard
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modeled Kaimal data are shown. Respectively, in Sect. 4.2, the investigation of the atmospheric GROWIAN measurements is
presented. The analysis of the two data sets is performed as follows: The two components of the CoWP= {CoWP,,CoWP. }
are calculated from the wind fields according to Eq.(4), with the hub location, i.e., equivalent to the location of the main shaft,
as the reference point (yg, zg9). The Langevin stochastic approach described in Sect. 2.3 is then applied for modeling random
signals of the CoWP. The characteristics of the original CoWP, the modeled CoWP, and the BEM simulated bending moments
T= {Tyaw, Tui} at the main shaft of the WT are compared. For the comparison, the statistics over time, as well as the DEL,

are analyzed.

In Schubert et al. (2025) it has been shown that the CoWP can be used as a description of wind structures with temporal scales
larger than 10s. Accordingly, the correlation to the bending moments is limited to the low-frequency component. Therefore, to
discard the high-frequency content, the signals are low-pass filtered. This applies to both the bending moments and the CoWP.
The filter is a finite impulse response (FIR) filter with the cutoff or pass-band frequency fcutoff. The value of feytofy should
be lower than the rotational frequency P of the WT. In this way, the effect of gravitational loads from the rotating blades (i.e.,
P and 3P) is averaged out. Here, a 0.1 Hz cutoff frequency is applied. For comparability, the signals have also been normalized
to have a zero mean and a standard deviation equal to 1. The comparisons presented in the following sections are made using

the signals of the CoWP and the bending moments after frequency filtering and normalization.
4.1 The CoWP from standard Kaimal wind fields
The CoWP and the bending moments at the main shaft

We start by comparing the CoWP calculated from the Kaimal wind fields and the bending moments 7" from the BEM sim-
ulations. Fig. 5 shows 20-min excerpts of the time series of the CoWP and the bending moments. In (a) CoWP, and Ty.y,
and in (b) CoWP,, and Ty are shown. The observed correlation between the time series of the CoWP and the bending mo-
ments is quantified in Fig. 6. Each time step in the time series is represented by a point (CoWP(t), T'(t)). In (a) Tyaw and
CoWP,, and (b) T and CoWP,. The observed linear behavior with a slope of approximately 0.93 quantifies the strong cor-
relation between the normalized CoWP, which characterizes particular structures within the wind field, and the normalized
bending moments experienced by the WT interacting with such a wind field. These correlations obtained from the standard
Kaimal wind field corroborate the findings presented in (Schubert et al., 2025), where the CoWP calculated from atmospheric
measured data demonstrated correlation coefficients up to 0.9 with the corresponding BEM-simulated yaw and tilt bending
moments at the main shaft. A turbine-specific transfer function for rescaling the normalized values of the CoWP to magni-
tudes of the low-frequency component of operational bending moments would be necessary for the assessment of the loads in
engineering applications. Such a transfer function will therefore depend on the structural properties of the WT and particular

control mechanisms.
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Figure 5. 20-min excerpts of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWP,, and (b) Ty and CoWP..

The signals are normalized and low-pass filtered.
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Figure 6. CoWP against the bending moments plotted as (CoW P(t), T'(t)) for each time step ¢ of the time series. In (a) Tyaw and CoWP,,
and (b) Tt and CoWP,. The gray lines depict linear fittings T = a (CoW P) + b. The values of the Root Mean Square Error (RMSE) are

shown in the legends. The signals are normalized and low-pass filtered.
As a further statistical comparison Fig. 7 shows the probability density functions (PDF) of the CoWP and of the bending

moments taking into account all the simulated data. It should be noted that the rare large events, depicted by the tails of the

PDFs are in good agreement.
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Figure 7. PDF of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWP,, and (b) Ty and CoWP... The signals

are normalized and low-pass filtered.

Now that we have proven the strong correlation between the dynamics of the low-frequency content of the CoWP and the
bending moments, we continue by introducing the DELcowp. The DELcowp follows from Eq. (5) as

-1
" (g sm "
DELeywp — (Em( 173:;;,1) Tcowp) 12

where the number of cycles n; cowp, and the amplitudes s; cowp are derived from the CoWP signals.

T

In Schubert et al. (2025), it was demonstrated that high values of the DEL are driven by significantly large amplitude events in
the low-passed filtered time series of the loads. Additional proof for this correspondence is given in Appendix A. Accordingly,

large amplitude events in the signals of the CoWP will result in high values of a DELcowp.

A good agreement between the DEL and the DELc,wp implies that estimations of the low-frequency events of the bending
moments at the main shaft of a WT can be accomplished purely from the estimation of the CoWP from the incoming wind field.
Fig. 8 (a) and (b) show the correlation plots of the resulting time-resolved DEL and DELc,wp obtained through an averaging of
time T = 60s and a coefficient m = 10. Their statistics are summarized in the box plots in (c) and (d). The DEL and DEL¢owp
are calculated in (a) and (c) from CoWP, and T},y, and in (b) from CoWP, and Tj;. A lower correlation is obtained for
the DEL and DELc,wp in the vertical direction in panel (b) compared to the horizontal component shown in (a). The lower
correlation is explained by the more scattered results within the correlation of the time series of the Ty, and the CoW P, shown
in Fig. 6. There, a value of RSME = 0.40 indicates a higher degree of scattering for Ty, compared to a RSME = 0.34 for
Tyaw. Overall, the data in Fig. 8 reveal a very good agreement between the DEL and DELc,wp in a statistical sense. Although
a spread of the data is observed, the statistics and correlation are consistent. In an aggregate sense, these results indicate an

equivalence between the CoWP and the bending moments. The validity of the method has been proven for the rated power

regime of the WT.
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Figure 8. Comparison between the DEL and DELcowp. Correlation plots and box plots for CoWP,, and Ty., in (a) and (c), and CoWP, and
Tii in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the RMSE are shown in the legends. In the box plots
in (c) and (d), the horizontal line inside each box shows the median, and the bottom and top edges indicate the 25th (FP25) and 75th (Prs)
percentiles. The whiskers indicate the most extreme data points. They are calculates as Pas — (1.5 X IQR) and Pr5 + (1.5 x IQR), where IQR
is the interquantile range IQR = P75 — P»s5. The markers show outliers. The DEL and DELcowp are calculated with m = 10 over periods

T = 60s with 30s overlapping between two consecutive periods. The signals are normalized and low-pass filtered.

It is essential to acknowledge that the discussion on the DELSs presented in our work is exclusively focused on the DELs from
the low-frequency component of the signals. This choice is based on a particular interest of our research partners. In order to
assess the complete DELs (e.g., from both the low- and high-frequency load events), it is necessary to establish an additional
model for incorporating the contribution from the high-frequency signal. In this direction, a simple surrogate stochastic model
has shown satisfactory results. The characteristics of the original high-frequency load signal are well reproduced. The proposed
stochastic model for the high-frequency signals, and calculations on the differences between the DELs from the low- and high-

frequency load components, and total DELs are shown in Appendix B.
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Stochastic reconstruction of the CoWP

We now apply the stochastic Langevin approach introduced in Sect. 2.3 as a method for characterizing the low-frequency
dynamics of the CoWP from the Kaimal wind fields. The 2D stochastic differential equations (see Eq. (9)) are thus applied for
CoWP(t) = {CoW Py, (t),CoW P,(t)}. Since the two components CoW P, (t) and CoW P, (t) proved to be uncorrelated, i.e.,
Dg) = Dg) = 0, the coefficients D**?) are independently estimated from the time series of CoWP,, and CoWP,, according to
Egs. (7) and (8). The results on the calculation of the correlation function (CoW P;(t) CoW P;(t + 7)) for ¢ = 1,2 are shown
in Appendix C).

(1,2

The results of the coefficients D™ are shown in Fig. 9. The linear dependence of the drift coefficients DW in (a) is clear for

the two components CoWP,, and CoWP,. An almost constant diffusion term D@ is observed in (b) for the two components.

0.1 0.1
—3—CoWP, = —3—CoWP,
= 0.05 —3—CoWP, Sy —3—CoWP,
= ~N
= IS
5 O = 0.05
= : M
o _ 5
£ 005 &
a
0.1 0
4 2 0 2 4 4 2 0 2 4

Figure 9. Langevin approach of the CoWP from Kaimal wind fields. (a) Drift coefficient DM and (b) Diffusion coefficient D@ In black

for the vertical component CoWP,, and in red for the horizontal component CoWP...

The estimated D) and D® are used for the reconstruction of synthetic time series (CoWPp) via the stochastic integration

of Eq. (9). A signal CoOWPg, with a length of 4.7x10%s is reconstructed.

For a first visual comparison between the original and the reconstructed signal, the filtered but non-normalized trajectories
of the CoWP and CoWPp, in the y-z plane are shown in Fig. 10. Symmetric paths, i.e., comparable magnitudes in the two

directions y and z, are observed for CoWP and CoWPx.
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Figure 10. Trajectories on the y-z plane of (a) the original CoWP calculated from the Kaimal data, and (b) the stochastically reconstructed

signal CoWPp. Intentionally, the data of both CoOWP and CoWPr, for plotting the trajectories in (a) and (b) are not normalized.

Note that due to the stochastic reconstruction, temporal correlation is not expected between the two signals. However, a sta-
tistical similarity should be present. This is shown in Fig. 11, which compares the PDF of the signals. After filtering and
normalization, the results of the BEM-simulated bending moments at the main shaft are also included. In (a), the components

in the horizontal y direction. In (b), the components in the vertical z direction.

10° : 10°

Probability [-]
2
Probability [-]
2

—§— CoW Pg, —3— CoW Py,
+ Tyaw + T‘tilt
—§—CoWP, —§—CoWP,
101 104
-5 0 5) -5 0 5
Norm. Signal [-] Norm. Signal [-]
(@) (b)

Figure 11. PDF of the CoWP, CoWPg and bending moments T'. (a) CoOWPg ,, CoWP,, and T)j4.. (b) CoWPRr, ., COWP,, and T3;;:. The

signals are normalized and low-pass filtered.

To characterize in more detail the similarity of the signals, we also investigate the statistics of their increments or their variations
for a given time scale 7. The increments are defined as Ax.-(t) = 2(t+7) — x(t), for a given signal z(¢) and include two-time

correlations like the autocorrelation or the power spectrum (Morales et al., 2012). Fig. 12 shows the excellent accordance of
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the increments statistics of ACoWP,, ACoWPg , and AT} for values of 7 = [5, 10,20, 30]s. In the upper row, the components

in the horizontal y direction and in the lower row, the components in the vertical z direction are shown.
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Figure 12. PDF of the increments with 7 = [5,10,20, 30]s. (a) upper row, horizontal component: ACoWP,, ., ACoWPg ,, - and ATyquw, -

(b) lower row vertical component: ACoWP,, ., ACoWPg . - and ATy . The time series are normalized and low-pass filtered.

Finally, we show in Fig. 13 the accordance of the resulting DEL, DELcowp and DELcowp,, by box plots. A subindex g refers
to the reconstructed signal ((a) the components in the horizontal y direction; (b) the components in the vertical z direction). As
325 observed from the box plots, the distributions of the DEL¢owp,, from the stochastically reconstructed signal CoWP  reproduce

quite accurately the distributions of both the DELcowp from the original CoWP and the DEL from the BEM simulated signals.
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Figure 13. Box plots of the DELcowp, DEL, and DELcowp, from normalized and filtered signals of (a) CoWPy, Ty.w, and CoWPg,y, and
(b) CoWP,, and Ty, and CoWPg_ .. The DELs are calculated over periods T = 60s with 30s of overlapping and with a coefficient m = 10.
The lines defining each box show the median, and the bottom and top edges indicate the 25th (Pa5) and 75th(Pr5) percentiles. The whiskers

indicate the most extreme data points. They are calculates as Pas — (1.5 X IQR) and P75 + (1.5 x IQR). The markers show outliers.

4.2 The CoWP from atmospheric GROWIAN measurements

Next, we use the atmospheric GROWIAN wind fields described in Sect. 3 to calculate the CoWP, to simulate the BEM bending
moments at the main shaft, and to apply the stochastic Langevin model for the reconstruction of random data. The results are

presented in the same sequence as done for the Kaimal data in the previous section.
The CoWP and the bending moments at the main shaft

Fig. 14 shows the correlation plots between the CoWP and the bending moments T'. In (a) Tya,, and CoWP,, and (b) T3 and
CoWP.,. The coefficients of the linear fittings agree with the correlation coefficients of around 0.9 reported in Schubert et al.
(2025), where all the available GROWIAN wind fields are investigated. Differently, in this paper, we only investigate a subset
of the atmospheric data, conditioned by the mean wind speed, turbulence intensity, and shear exponent, as described in Sect. 3.
The correlation between the CoWP and the bending moments is slightly decreased compared to the standard modeled wind
data shown in Fig. 6. In particular, loops are observed in Fig. 14 for the two components, (a) and (b). Such loops correspond to

intervals where more extremesevere wind conditions affect the WT than we find in the Kaimal wind data. Over these intervals,

significant differences of the wind speed are observed in the spatial domain (i.e., over the rotor plane. As a result, divergences

in calculating the CoWP and the bending moments are obtained. Examples of such extremesevere wind conditions within the

atmospheric rescaled GROWIAN fields are shown in Appendix D.
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Figure 14. CoWP against the bending moments 7" at the main shaft of a WT plotted as (CoWP(¢), T'(t)) for each time step ¢ of the time
series. In (a) Tyaw and CoWP,, and (b) Ty and CoWP... The gray lines depict linear fittings. The values of the RMSE are shown in the

legends. The time series are normalized and low-pass filtered.

Reconstructing the CoWP from atmospheric wind data

The results of the coefficients D2 from the stochastic Langevin method applied to the CoWP from the GROWIAN mea-
surements are shown in Fig. 15. Interestingly, the diffusion coefficients D(®) in (b) are clearly not constant. This behavior is
called multiplicative noise and is significantly stronger for the vertical component CoW P,. In contrast, pure additive noise
was obtained for the modeled Kaimal fields in Fig. 9. Moreover, the diffusion coefficient D@ of the CoWP, from Kaimal data
with shear, showed pure additive noise (see Appendix E). This effect in D(?) is a consequence of the different wind fields and

shows that the Kaimal data lead to simpler noise. In contrast, atmospheric wind data have more complicated deterministic and

noise contributions.
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Figure 15. Langevin approach of the CoWP from GROWIAN wind fields. (a) Drift coefficient D, and (b) Diffusion coefficient D®_ In

green for the vertical component CoWP,, and red for the horizontal component CoWP,.

Fig. 16 shows the trajectories of the CoWP and the CoWPg, in the y-z plane. For this representation, the time series are not
normalized. Due to the shear, the movement of the CoWP in the vertical direction z is larger than in the horizontal direction

y. This differs from Fig. 10, where symmetric trajectories in the two directions y-z are obtained for non-shear Kaimal wind

fields.
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Figure 16. Trajectories on the y-z plane of (a) the CoWP from the original GROWIAN measurements, and (b) the stochastically reconstructed

signal CoWPRr. The data are not normalized.
Fig. 17 shows the PDF of the signals. The time series of the BEM simulated bending moments 7T, and T};;; are also included.
In (a) for the horizontal y component, and in (b) for the vertical z component. We see that the stochastic model reproduces the

statistics of the CoWP and bending moment very well. The PDFs of Fig. 17 show additional structures like skewness and small
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bumps. These structures are the consequence of the nonlinearities of D(12) in Fig. 9, (see also the stationary solution of the

Fokker-Planck equation which corresponds to the Langevin equation (Risken, 1996)).
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Figure 17. PDF of the the CoWP, CoWPr and bending moments T'. In (a) CoWP,, T}.,, and CoWPg . In (b) CoWP. and Tiy, and

CoWPg,.. The signals are normalized and low-pass filtered.

As higher order statistical feature in Fig. 18 the PDFs of the increments ACoWP,., ACoWPp . and AT for values of 7 =

360 [5,10,20,30]s are shown ((a) the components in the horizontal y direction; (b) the components in the vertical z direction).
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Figure 18. PDF of the increments with 7 = [5, 10,20, 30]s. (a) Horizontal component: ACoWP,, ., ACoWPg - and ATyquw,-. (b) Vertical

component: ACoWP,, ., ACOWPg . - and AT, . The time series are normalized and low-pass filtered.

Finally, Fig. 19 (a) and (b) show the correlation plots of the DEL and DELc,wp. In (c) and (d) the box plots describing their
statistics are shown. The box plots of the DELcowp,, in the two components are also included. The DEL and DELc,wp are

calculated in (a) and (c) from CoWP,, and Ty, and in (b) from CoWP, and T;;. All time series are normalized and filtered.
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Figure 19. Comparison between the DELcowp, DEL, and DELcowp . Correlation plots and box plots for CoWP,, and Ty, in (a) and (c), and
CoWP, and Ty in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the RMSE are shown in the legends. In the
box plots in (c¢) and (d), the horizontal line inside each box shows the median, and the bottom and top edges indicate the 25th (P»5) and 75th
(Pr5) percentiles. The whiskers indicate the most extreme data points. They are calculates as Pas — (1.5 X IQR) and Prs + (1.5 x IQR). The
markers show outliers. The DELSs are calculated with m = 10 over periods T = 60s with 30s overlapping between two consecutive periods.

The signals are normalized and low-pass filtered.

The correlations between the low-passed and normalized signals of the CoWP and the bending moments shown in Fig. 14,
and between the DELc,wp and DEL shown in Fig. 19 for the atmospheric GROWIAN data are slightly lower compared to the
modeled Kaimal data in Figs. 6 and 8. The higher complexity of real wind fields included seme-small-extreme wind events
characterized by stronger differences of the wind speed over the y-z plane within the stretched wind fields, which are likely to
explain such particular discrepancies. However, Figs. 17, 18 and 19 show a good agreement between the statistical properties
and the DEL estimations between the original and the reconstructed signals of the CoWP, and the simulated bending moments

from the atmospheric measured GROWIAN data. These findings are in agreement with the results shown in Sect. 4.1 for the
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modeled standard Kaimal data. Therefore, it was demonstrated that the description of the dynamics provided by the coefficients
D™? from the CoWP can be used as parameters for modeling the low-frequency signals of the tilt and yaw bending moments

at the main shaft of a WT.

5 Conclusions and Outlook

The comparison between the low-frequency content of the center of wind pressure (CoWP) as a feature of a turbulent wind field
and the low-frequency content of the BEM-simulated bending moments at the main shaft of a wind turbine, e.g., yaw and tilt,
is performed. A strong correlation between these large-scale structures of the CoWP and bending moments has been quantified
in terms of statistical properties, correlation factors, and damage equivalent load (DEL). This correlation is consistent with
the results reported in the studies by Schubert et al. (2025) and Moreno et al. (2024), and it has been shown to be valid for
wind fields from both atmospheric measurements and standard models. As a consequence of this correlation, a comprehensive
description of the CoWP from a particular wind field (e.g., site-specific) might serve as a surrogate estimator of the low-

frequency load events of the tilt and yaw bending moments at the main shaft of an operating wind turbine.

A step further is the utilization of a comprehensive understanding of the dynamics of the CoWP from wind data, with the
objective of modeling loads. The stochastic Langevin approach has been proposed as a method for characterizing the dynamics
of the CoWP. More interestingly, the method has been reverse-applied for the stochastic reconstruction of synthetic signals.
The resulting statistics from the reconstructed signals and their estimated DEL have been shown to be comparable to those of
the original CoWP and, more significantly, to those from the BEM-simulated bending moments. Consequently, the stochastic
Langevin approach applied to the CoWP has been proven as a surrogate method for estimating the low-frequency content of
the moments at the main shaft. In particular, the Langevin approach significantly reduces the computational cost by solving
only a one- or two-dimensional stochastic equation instead of calculating a wind field at many different spatial points and its
interaction with the turbine model. This has the potential for the reconstruction of very long modeled load data. This feature
is essential for the assessment of the tilt and yaw bending moments when particularly large amounts of simulatedrandom
data er-extrapelation—techniques are required, e.g., for 25-year lifetime predictions under multiple wind conditions, and the

computational costs associated with costly BEM simulations would thus be significantly reduced.

However, the development of lifetime predictions in engineering applications necessitates the incorporation of additional ele-
ments in conjunction with the proposed stochastic method for modeling the low-frequency component of the loads. Initially,
a turbine-specific transfer function for rescaling the CoWP to the magnitudes of the low-frequency component of the bend-
ing moments should be derived. Secondly, a numerical model of the high-frequency component of the loads is required. A
stochastic Gaussian model has been demonstrated to be a viable approach. Thirdly, site-specific wind characteristics should
be considered. These characteristics should include the long-term standard wind conditions, such as the annual Weibull dis-
tribution of the wind speed. Additionally, spatial descriptions (i.e., perpendicular to the main flow) of the wind structures are

necessary to describe the dynamics of the CoWP at the given location. These spatial descriptions may be derived either from
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measured data over a two-dimensional area (e.g., using LiDAR techniques), or from accurately modeled wind data, which in-
cludes realistic information about the wind structures in the spatial domain. Once the three complementary elements have been
resolved, the complete prediction of the yaw and tilt bending moments at the main shaft of a turbine can be applied as follows:
site-specific wind data over relatively short intervals (e.g., 10 minutes), which are used for the calculation of the CoWP. Subse-
quently, the dynamics of the large-scale wind structures described by the CoWP are derived by using the Langevin stochastic
approach. The parameters of the Langevin model for the specific wind conditions (i.e., drift and diffusion coefficients) are then
estimated. Next, stochastic realizations of the low-frequency component of the loads are generated by combining the dynamics
of the CoWP and the previously determined turbine-specific transfer function. Afterwards, the high-frequency component is
modeled. Subsequently, the high- and low-frequency load signals, which have been modeled independently, are combined.
Finally, the long-term distribution of the mean wind speed p(@) at the specific location is used to assess the entire lifetime
damage of the bending moments (i.e., by applying the standard IEC procedure for load assessment based on mean wind speed

binning and design load cases).

In the context of improved descriptions of the atmospheric turbulent wind, including the statistical and dynamical properties
of the CoWP from atmospheric measured data into the standard wind models, could prove to be of significant value. Since
the wind industry currently uses standard wind models for design and certification processes, the incorporation of atmospheric
information would enhance the understanding of the aerodynamic interactions and more accurate load assessment of the tur-
bines. For instance, wind structures such as gusts are assumed by the standard wind models to be homogeneous in space.
The CoWP has the capacity to grasp localized wind structures over the rotor plane. A parametrization of the dynamics of the
CoWP from atmospheric wind would thus describe the realistic, likely non-homogeneous, spatial characteristics of the gusts.
A comparison of the drift and diffusion coefficients derived from standard wind model data and measured data reveals that
different characteristics of the wind fields are mapped into the Langevin equations. Consequently, the availability of local wind

data enables the estimation of site-specific wind characteristics and the subsequent development of the stochastic load model.

This paper shows that the CoWP and its stochastic modeling represent a promising new tool for estimating the large-scale

dynamics of specific loads at the wind turbine. The validity of this load estimation has been demonstrated in the context of the
DELs. The dynamic response of modern wind turbines with increased size gives additional relevance to wind structures over

the rotor plane. Larger areas covered by the increased rotors likely include inhomogeneities (e.g., severe differences in wind

speed) over the rotor. In this direction, the CoWP and the stochastic approach delineated in our paper have the potential to serve

as a tool for describing and modeling IEC extreme scenarios (i.e., with 50-year or 1-year return period). Up to now, calibrating
the magnitude of the CoWP to the loads requires BEM simulations, at least on a finite time window. Anetherchallenging

point-will-be-extending-the The validity of the CoWP approach to other loads at different turbine components remains to be
investigated. For a single blade, a rotational frame of reference could be helpful for the calculation of the CoWP. Based on

the results presented in this paper, it is recommended that a comparable procedure be considered for any other load in the
WT. The initial step involves normalizing the signals and validating the correlation. Following this, a stochastic model is to be

configured to analyze and reconstruct the dynamic load response.
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Code availability.

Data availability. The GROWIAN measurements, as well as the generated Kaimal wind fields can be obtained upon request.

Appendix A: Correlation between DEL and DEL¢,wp

The DEL¢owp introduced in Eq. (12) is based on the conclusion stated by Schubert et al. (2025) that large amplitude load
events, lasting longer than 10s, e.g., bumps structures, drive large values of the DEL when using the Wohler exponent m = 10.

Now we present a different proof of this finding.

The aim is to compare the DEL between time series, with and without, particularly large amplitude load events. Fig. Al(a)
shows an excerpt of 15x10%s containing the results of the DEL from the time series of the yaw moment Tyaw- The horizontal
red bars depict the period T = 10min over which the DEL is calculated. The largest DEL are identified and visually separated
above the horizontal gray line. The respective time series Ty, from which the DEL are calculated are shown in (b). The darker
highlighted load events at 3300, 3700, 3850, and 9800s correspond to the largest DEL (over the gray line) in (a). The zoom
plot in the lower part of (b) illustrates the load event at ¢ = 9800s.
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Figure A1. Damage Equivalent Loads (DEL ) of the yaw moment signal Ty, from BEM simulations. (a) DELs of the 7y.w. The horizontal
gray line at DEL = 1.1 visually separates the few largest DELs. The DELSs are calculated with m =10 over periods T = 10 min. An overlap-
ping period of 5min is considered between two consecutive intervals. The length of the horizontal red bars depicts the periods T. (b) Time
series Tyaw with highlighted large events, which are inducing the largest DEL in (a). The length of such identified load events within the time
series Ty, is considered as 20s over which the peak amplitude is included. The event at ¢ = 9800s is detailed in the zoomed plot. The time
series Ty.w are calculated by BEM simulations of the SMW NREL turbine (see Sect. 3). The time series Ty.w are low-pass filtered with cutoff

f =0.1 and normalized to zero mean and standard deviation equal to 1.
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Fig. A2(a) shows a modified time series ‘Ty,w-Mod’ from which the large load events highlighted in Fig. A1(b) have been
removed. The resulting DEL from Ty,,-Mod are shown in (b). The comparison between the DELs in Fig. A2(b) and Fig. Al(a),
i.e., from the two versions of the time series Ty,y,, confirms that large amplitude events in the signal induce large values of the
DEL. Therefore, an accurate fatigue assessment of the moments 7" based on the DEL, as the standard procedure within the
wind industry, requires an accurate description of such large amplitude loading events. The DELc,wp is proposed in Sect. 4.1

as an approach for predicting those events on the loads from the wind field.
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Figure A2. Damage Equivalent Loads (DEL ) of a modified signal of the yaw moment “Iy,w-Mod’ from BEM simulations. (a) Time series
“Iyaw-Mod’ from which the highlighted intervals in Fig. A1(b) have been removed (b) DELs of the Ty.w-Mod. The horizontal blue line at
DEL =1.1 is kept as a reference. The DELs are calculated with m =10 over T = 10min. An overlapping period of 5min is considered

between two consecutive intervals. The length of the horizontal red bars depicts the length of T.

Appendix B: DELs from low- and high-frequency components of the loads

The contribution of the low- and high-frequency components of the load signal to the DELs of the total load is investigated.
Therefore, different components of the load signal are independently investigated. The low-frequency component (‘Low freq.”)
corresponds to the low-pass filtered load described in Sec. 4, with a cutoff frequency of f..:0f s = 0.1Hz. The high-frequency
component (‘High freq.”) corresponds to the load fluctuations with frequency over feuiors. The total load (‘Total’) is the

estimated load from BEM simulations, which aggregates both the high- and the low-frequency components.

Figure B1(a) shows the DELs of the components of the load over an excerpt of 1200s. Each of the horizontal bars represents the
period T = 60s over which the DEL is calculated. A fourth signal, ‘Sum L+H’, is included in the comparison. It corresponds

to the combination of the DELSs (i.e., not the time series) from the low- and high-frequency signals as,
(DELsum L+1) = & (DELjp o) + [ (DELgign), (BD)

calculated for each period T. The parameters «v and  are fitting parameters to achieve DELgyy 1 +1 & DEL7y,;. These param-

eters depends on the Wohler coefficient m and the length T for the calculation of DELy,, and DELyje. In Fig. B1(a), the
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parameters are o = 1.2, and 8 = 0.5. The values of the coefficients « and 3 from the load signals can be taken as weighting

factors, indicating a dominating contribution of the DEL; o, with respect to DELp;g,. For the case shown, the proportion is
approximately 2 : 1.
Fig. B1(b) shows the correlation between the DELs of the Total, and the Sum L+H signals. The correlation is calculated for

the DELs along the entire data set (4.7x10%s). Based on the strong correlation between the DELSs in (b), the DELs of the total

load might be interpreted as a weighted sum of the individual DELSs from the low- and high-frequency components.
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Figure B1. (a) 20-min excerpt of the DELs for the 7}, signals at the main shaft. The length of the individual horizontal bars depicts the
periods T. (b) Correlation plot between the total load and the sum of the DELSs from the low- and high-frequency signals. The DELs are
calculated with m = 10 over periods of T = 60s with an overlap of 30s between periods. The load signals are those calculated from BEM

simulations of the SMW NREL WT with Kaimal fields, with 7 = 7m/s (see Sec. 3).

The results in Figs. B1 show that despite the dominance of the low-frequency contribution, both the low- and high-frequency
components have important contributions to the DEL of the total load signal. Therefore, for a complete calculation of the DELs
on the WT, a second model for the high-frequency contribution is required. The use of Gaussian distributed noise is proposed as
a first approach. Three random Gaussian realizations, ‘R1’, ‘R2’, and ‘R3’, with the statistics from the original high-frequency
load signal, are generated. The considered statistics include not only the mean and standard deviation, but also the correlation
and dominant frequency. Next, the three Gaussian realizations of high-frequency fluctuations are added to the low-frequency

component of the load. Then, the DELSs are calculated.

Fig. B2(a) shows a 20-min excerpt of the DELs. For comparison, the original Total load, which is the sum of the original

high-frequency and low-frequency components, is also compared. Fig. B2(b) shows a box-plot of the DELSs over the entire

time series (4.7x10%s).
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Figure B2. DELs of the total signals (low-frequency and high-frequency signals). (a) 20-min excerpt with individual DELSs. (b) Box-plots
of the DELSs along the entire time series. The four high-frequency signals (‘High freq.”, ‘R1’, ‘R2’, and ‘R3’) have been added to the same

low-frequency signal. The DELs are calculated with m = 10 over periods of T = 60s with an overlap of 30s between periods.

The comparability between the boxplots in Fig. B2 shows that Gaussian noise, with parametrized dominant frequency and
correlation, can be used as a model for the high-frequency component of the load signals. Then, this Gaussian model for high-
frequency fluctuations might be used in combination with our proposed model, based on the CoWP, which reproduced the
low-frequency component of the load signal. Then, an entire description of the load signals could be achieved. The joint use
of these two models must be further validated by comparing them to the total simulated loads. For that, a transfer function is

required for scaling the magnitudes of the loads. The validation is out of the scope of this paper.
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Appendix C: Correlation and structure function of the CoWP

490 Fig. C1 shows the correlation function for the two components of the CoWP (CoW P;(t) CoW P;(t + 1)) for i =y, z. From
top to bottom, the three rows show the correlation for i # j, i = j =y, and i = j = z, respectively. The panels on the left
[(a),(c),(d)] correspond to the modeled Kaimal data. The panels on the right [(b),(d),(e)] show the atmospheric measured
GROWIAN data. The correlation is calculated for time lags 7 = [—200 200].
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Figure C1. correlation function for the two components of the COWP (CoW P;(t) CoW P;(t + 7)) for ¢ =y, z and 7 = [—200 200]. In
(a),(c),(e) for the modeled Kaimal data and in (b),(d),(f) for the atmospheric GROWIAN data.
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Appendix D: ‘Special events’ of the CoWP from GROWIAN data

In Fig. 14, particular loops are observed when correlating the CoOWP and the tilt and yaw bending moments from atmospheric
GROWIAN wind fields. Fig. D1 shows three exemplary temporal sequences corresponding to some of the observed loops in
the correlation plots. Short intervals of 4s are shown. Panels (a) and (b) show sequences observed in the correlation between
CoWP,, and T, in Fig. 14(a). Panel (c) shows a sequence observed in the correlation between CoWP, and T} in Fig. 14(b).
As observed in the three sequences, extreme very strong differences of the wind speed over wind-events-oeeur—at the rotor
plane. The green dot shows the CoWP. The red dot shows a scaled version of the CoWP, which allows for better visualization.
The scaling is done by subtracting a mean wind speed from all the points of the wind field. This subtraction is analogous to
removing the mass of the beam when calculating the center of mass induced by external masses. In that way, larger distances

of the CoWP with respect to the reference point are obtained.
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Figure D1. Temporal evolution of the GROWIAN wind field and the CoWP on the y-z plane. The wind speed u(y, z,t) is color-coded. The
green dot depicts the location of CoWP. For better visualization, the red dot depicts the location of a scaled version of the CoWP. The lines

show the center lines of the grid, i.e., the reference location for calculating CoWP.

The relatively large deviations of the CoWP depicted by the loops in Fig. 14 from the GROWIAN data suggest that the CoWP

505 might be very sensitive to such extreme differences of the wind field over the y-z plane at a given time step.
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Appendix E: Characteristics of the CoWP from standard Kaimal wind fields with shear

The results of the drift and diffusion coefficients D(12) from the stochastic Langevin method applied to the CoWP from

the GROWIAN measurements are shown in Fig. 15. To investigate and compare the effect of the shear in the dynamics of the

CoWP from standard modeled wind fields, we calculated the coefficients D(1'?) from Kaimal wind fields with a shear exponent

510 of 0.2. The results are shown in Fig. E1. Interestingly, the superimposition of shear to the Kaimal wind fields results in additive

noise only shifted towards higher heights.
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Figure E1. Langevin approach of the CoWP from Kaimal wind fields with shear exponent of 0.2. (a) Drift coefficient D), and (b) Diffusion

coefficient D™ In black for the vertical component CoWP,, and in red for the horizontal component CoWP,.

Additionally, the trajectories of the CoWP on the y-z plane are shown in Fig. E2 for the original CoWP and a reconstructed

signal CoWPp from the Kaimal wind fields with shear. In comparison to the trajectories from the atmospheric GROWIAN

data in Fig. 16, the trajectories of the CoWP from the shear Kaimal wind fields are symmetric in the y-z directions. Again,
515 only a vertical shift is observed within the CoWP, including shear effects, compared to Fig. 10.
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Figure E2. Trajectories on the y-z plane of (a) the CoWP from the original shear Kaimal wind fields, and (b) the corresponding stochastically

reconstructed signal CoWPg. The data are not normalized.
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