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Abstract. In the context of the wind industry, there is an increasing need for a more comprehensive understanding of at-

mospheric wind conditions. A particular emphasis is required concerning wind structures, which have not been thoroughly

investigated in the prevailing standard guidelines. This necessity arises in light of the current trends toward larger, higher,

and more flexible wind turbine designs. Of particular importance are the correlations between the yet-to-be-characterized at-

mospheric turbulent structures and the specific responses of the turbines. These correlations may be crucial in assessing load5

events relevant to new designs that were negligible for the earlier, smaller, and stiffer turbines. The Center of Wind Pres-

sure (CoWP) [Schubert et al., 2025] was recently introduced as a feature of a wind field that characterizes large-scale wind

structures and, at the same time, correlates with the large-scale or low-frequency content of the bending moments at the main

shaft of the wind turbines. In this paper, we comprehensively compare the CoWP and the bending moments in terms of their

statistical properties and fatigue estimates, quantified by Damage Equivalent Loads (DEL). Furthermore, a stochastic method10

for the reconstruction of synthetic CoWP signals is proposed. The strong correlation with the bending moments enables the

proposed stochastic CoWP model to serve as a relatively simple surrogate and estimator of the large-scale dynamics of these

loads, which is based solely on the properties of the inflow wind field. A notable advantage of the stochastic approach is its

capability to reconstruct very long time series, required for evaluating loads over the operational lifetime of the turbine. For

such lifetime estimations on wind turbines, it is necessary to combine the proposed model for large-scale dynamics with a15

corresponding model for small-scale features, site-specific wind conditions, and turbine-specific characteristics. The proposed

stochastic model of the CoWP can be used not only for load assessment, but also for characterizing large-scale wind structures.

The model offers an advanced description of the wind phenomena, with the potential to be integrated as an extension of the

prevailing wind turbulence models.
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1 Introduction20

As part of the design and validation phase, numerical simulations are used to predict the loads on an operational wind turbine

(WT). The objective of these simulations is to reproduce the interaction between the WT and the atmospheric turbulent wind.

Given the inherently complex meso-to-micro scale nature of atmospheric phenomena, it is extremely difficult to attempt to

incorporate the governing physical models into a unified description of the wind flow. Consequently, stochastic wind models,

which involve numerous simplifications and assumptions of the atmosphere, are commonly employed for numerical simula-25

tions of WTs. Common examples are the Kaimal (Kaimal et al., 1972), von-Karman (Von Kármán, 1948), and Mann (Mann,

1998) wind models. The International Electrotechnical Commission (IEC) (IEC, 2019) has proposed these models as standard

atmospheric turbulence representations for numerical WTs simulations. It should be noted that these models are based on low-

order statistical features of the wind fields, such as power spectra and correlations. However, they do not yet explicitly resolve

the turbulent eddies, i.e., the spatial characteristics of the turbulent flow structures. For the spatial coherence of turbulence,30

an exponential decay with distance is assumed. The IEC standard also considers some extreme operating conditions (EOC),

encompassing peak wind speeds, gusts, and sudden changes in wind direction. These non-realistic extreme wind structures are

conceived as homogeneous in space (i.e., uniform over the entire rotor area), with a return period of 50 years.

Recent advancements in WT design show a persistent trend towards increasing dimensions, including higher heights and larger

rotor diameters. Accordingly, certain structural properties are significantly modified within the designs of the larger WTs.35

Specifically, a higher degree of flexibility is characteristic of the larger and slimmer rotor blades. This may raise concerns

about the validity of the assumptions or the omission of specific turbulent structures within the aforementioned standard wind

models currently used by the WT industry. The increased scale of WTs suggests that certain wind characteristics, which were

previously negligible or unimportant for smaller and more rigid WTs, may be significant considerations within the aerodynamic

interactions of state-of-the-art WT designs. Of particular interest are the spatial properties of the atmospheric wind structures.40

Rotor diameters that exceed 200m may exhibit sensitivity to the spatial characteristics of wind phenomena, such as wind gusts.

The necessity for an extended characterization of the atmospheric turbulent wind beyond the parameters currently outlined in

the IEC standard guidelines is supported by the repeated measurement of unexpected loads in operational WTs. According

to manufacturers and operators of WTs, numerical simulations of the specific WTs and the standard IEC wind modeling

assumptions do not adequately reflect certain load events that may be important for the structural integrity of the machines in45

operation. Consequently, it is imperative to establish a correlation between the extended features of the atmospheric wind and

the measured unexpected effects on the operating WTs. Examples of such extended characteristics of atmospheric turbulence

include the small-scale intermittency (Boettcher et al., 2003; Morales et al., 2012), low-level jets (Gutierrez et al., 2016),

particular coherent vortices (Abraham and Hong, 2022), fractal turbulent-non-turbulent interfaces (Neuhaus et al., 2024), wind

ramp events (Gallego-Castillo et al., 2015), and periods of constant wind speed (Moreno et al., 2025).50

A general requirement within the wind industry is to simplify the complexity of WT representations in turbulent wind envi-

ronments to allow practical implementation and minimize computational costs. As stipulated in the standard guidelines (IEC,
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2019), numerical simulations of a wide range of operational scenarios are required for the validation of WT designs. Conse-

quently, optimizing the computational time and power is imperative while ensuring satisfactory accuracy of the estimations of

the responses of the WT. Some approaches have been proposed to reduce the complexity of the interaction between the wind55

and the WT. Examples of methods based on a given wind field include a modified actuator sector model for WT simulations

(Mohammadi et al., 2024), and the calculation of extended equivalent wind speeds over the rotor area (Choukulkar et al., 2016).

Conversely, techniques are employed to extract characteristics of the incoming flow field from load measurements at the WT,

such as blade-load-based estimators (Coquelet et al., 2024). Furthermore, due to the limitations in computational power, the

loads on the WT are typically estimated over short intervals, e.g., 10 minutes. Consequently, numerical techniques have been60

proposed for extrapolating the loads estimated from such short time scales to lifetime scenarios containing fatigue damage and

extreme load events (Zhang and Dimitrov, 2023; Qingshan et al., 2022).

The virtual Center of Wind Pressure (CoWP) has recently been introduced as a feature of a given wind field that is either

measured or modeled (Schubert et al., 2025). The CoWP characterizes large-scale wind structures occurring over the plane

perpendicular to the main direction of the wind, i.e., the rotor plane, when considering a WT. Most interestingly, the CoWP65

is directly correlated to the low-frequency content of the bending moments at the main shaft of the WT. Consequently, the

CoWP not only facilitates the characterization of extended wind structures, i.e., beyond the IEC standard, but also proposes a

simplified and expeditious method for assessing particular characteristics of the WT loads.

In this article, we aim first to perform a comprehensive comparison between the CoWP, calculated from the wind fields,

and the bending moments at the shaft of the WT, calculated using blade element momentum (BEM) numerical simulations.70

The statistical characteristics of the signals and their damage equivalent loads (DEL) are investigated. Second, based on the

correlation between the large-scale structures of both the CoWP and the bending moments, we propose a stochastic method to

derive the dynamics of the former, which are subsequently the basis for generating surrogate signals of the latter. The statistics

of the surrogate data demonstrate a high degree of comparability to those of the original CoWP from the wind fields, as well

as to the low-frequency content of the BEM-simulated bending moments. A notable advantage of the stochastic reconstruction75

is its capacity to generate very long time series. The availability of such extensive data is essential for assessing lifetime load

events without the necessity of numerical extrapolation techniques.

Our model thus offers a twofold approach. On the one hand, it facilitates the characterization and modeling of large-scale wind

structures. The wind energy sector is in urgent need of a comprehensive description of these large-scale structures, as standard

wind models are likely to oversimplify them. Modern large wind turbines are particularly vulnerable to this oversimplification.80

On the other hand, our stochastic model allows the estimation and extrapolation of specific characteristics of the bending

moments at the main shaft while bridging such responses of the WT with structures of the inflow wind field. In its current state,

the method is limited to the modeling of the dynamics of the low-frequency components of the bending moments. However,

when combined with a description of the high-frequency components, a validated rescaling procedure, and the characterization

of the site-specific wind conditions, this approach enables a novel method for a fast assessment of the lifetime loads in WTs.85

In a preliminary investigation (Moreno et al., 2024), the stochastic method for reconstructing the time series of loads based on
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the dynamics of the CoWP from IEC standard modeled wind fields was introduced. The present paper extends the stochastic

approach to wind data from atmospheric measurements.

The paper is structured as follows: Sect. 2 presents the relevant definitions to be discussed in the paper. Sect. 3 describes the

wind data to be investigated. The analysis of the reconstructed data from IEC standard-modeled wind fields and atmospheric90

measured data is presented in Sect. 4. Finally, the conclusions and outlook of our investigation are stated in Sect. 5.

2 Definitions

2.1 Center of Wind Pressure

The virtual Center of Wind Pressure (CoWP) is defined by Schubert et al. (2025) as the two-dimensional position in the plane

of the rotor at which a point-wise thrust force FT acts and induces the bending moments T . This position is specified with95

respect to a reference point, e.g., the main shaft of a WT. The moments are estimated as, T = CoWP×FT . Fig. 1 illustrates the

concept of the CoWP, introduced as a characteristic of a given wind field u(y,z, t).

(a) (b)

Figure 1. Schematic illustration of (a) the wind field u(y,z, t) over the area of a rotor disk and (b) the resulting two-dimensional CoWP

calculated from the wind field.

In the following, a brief derivation of the concept of the CoWP is presented. Let us consider a wind field u(yi,zi, t) defined

over a discretized grid with N points on the rotor plane, i.e., the y-z plane, perpendicular to the main direction of the flow.
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Then, the normal thrust force FT acting over the rotor area A at the y-z plane is calculated as,100

FT (t) =
1

2

N∑
i=1

ρair CT u2(yi,zi, t) ∆Ai (1)

where u is the longitudinal component of the wind perpendicular to the y-z plane, ρair is the density of air, CT is the thrust

coefficient of the rotor, and ∆Ai are the discretized sections of the rotor area A. Now, the bending moments T due to the

normal thrust force can be calculated as,

T (t) = r̃(t) × FT (t) (2)105

where r̃ is the distance between the acting location of FT to the reference point. Considering the main shaft, i.e., the center of

the rotor disk (y0 , z0) as the reference point, the yaw Tyaw and tilt Ttilt moments at the main shaft are estimated as,

Tyaw(t) =
1

2

N∑
i=1

ỹi ρair CT u2(yi,zi, t) ∆Ai Ttilt(t) =
1

2

N∑
i=1

z̃i ρair CT u2(yi,zi, t) ∆Ai (3)

where ỹ and z̃ are the horizontal and vertical distances, respectively, of each location i to the reference point, so that ỹi = yi−y0

and z̃i = zi − z0. Assuming 1
2 ρair CT to be constant, the two CoWP components are defined as the fraction of the moments110

(yaw and tilt) and the normal thrust force, resulting in

CoWPy(t) =

∑N
i=1 ỹi u

2(yi,zi, t) ∆Ai∑n
i=1u

2(yi,zi, t) ∆Ai
CoWPz(t) =

∑N
i=1 z̃i u

2(yi,zi, t) ∆Ai∑N
i=1u

2(yi,zi, t) ∆Ai

. (4)

The CoWP is calculated solely by wind field data, comprehensively representing specific wind structures, whether modeled or

measured. Furthermore, the area A used to compute the CoWP can be adapted to investigate diverse sizes and domains within

fields, e.g., 1D dynamics when measuring atmospheric data with vertically aligned devices in a met-mast, or different WT rotor115

sizes from numerically modeled wind fields.

2.2 Damage Equivalent Load

The Damage Equivalent Load (DEL) is the recommended method by the standard IEC (2019) for performing fatigue as-

sessments and damage calculation analyses of the mechanical elements of the WT. In essence, the DEL represents a fixed

amplitude and fixed-frequency load, calculated from a load signal encompassing a range of frequencies and amplitudes. Based120

on the Miner’s rule (Miner, 1945), and the rainflow counting method (Matsuishi and Endo, 1968; Downing and Socie, 1982),

the DEL is calculated over a period T as,

DEL =

(∑n
i=1nis

m
i

Nf

)m−1

T
, (5)

where ni is the number of cycles with amplitude si, and Nf is a reference number of cycles. The Wöhler exponent m is

characteristic of the material, extracted from the so-called S-N curves (Basquin, 1910). Note that according to Eq. (5), the125
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contribution of the amplitudes si, to the DEL is determined by the exponent m. The larger the value of m, the stronger the

dominance of larger amplitudes si within the calculation of the DEL. More details about the estimation and assumptions of the

DEL can be found in (Sutherland, 1999). This study uses the DEL to evaluate the effect on the bending moments at the main

shaft induced by the wind structures characterized by the CoWP.

2.3 The Stochastic Langevin Model130

The CoWP calculated from a given wind field can be characterized in terms of its statistical properties and dynamical behavior.

Since the CoWP signals are noisy and irregular, we introduce the Langevin model as a stochastic approach to characterize

the dynamics. The range of applications of the Langevin method is extensive, encompassing domains as diverse as medical

signals, e.g., the human balance (Rinn et al., 2016b; Bosek et al., 2004) or brain activity (Costa et al., 2016), financial markets

(Friedrich et al., 2000), and cone penetration signals for stratigraphy (Lin et al., 2022).135

Assuming a 1D stochastic process X(t), the general differential Langevin equation

d

dt
X =D(1)(X,t)+

√
D(2)(X,t)Γ(t), (6)

describes the temporal derivative dX
dt as the sum of two contributions: A deterministic part driven by the drift coefficient

D(1), and a stochastic component driven by the diffusion coefficient D(2) and weighted by a stochastic force Γ(t) (Lemons

and Gythiel, 1997; Risken, 1996), where Γ(t) is Gaussian noise with zero mean and a δ-correlation, i.e., ⟨Γ(t)⟩= 0, and140

⟨Γ(t)Γ(t− t′)⟩= 2δ(t− t′). The angular brackets ⟨. . .⟩ denote the temporal average.

The Langevin method, introduced by Friedrich and Peinke (1997) and Siegert et al. (1998), proposes an approach to de-

rive the coefficients D(k) from time series X ′(t). This is achieved by calculating the derivative of the conditional moments

M (k)(X,t,τ) for the state X =X ′(t) of the system as,

D(k)(X,t) = lim
τ→0

1

τ
M (k)(X,t,τ) (7)145

for k = [1,2], where τ is a small enough time step. The conditional moment M (k)(X,t,τ) is calculated by averaging the kth

power of the increments, X ′(t+ τ)−X , as

M (k)(X,t,τ) =
1

k!
⟨ [X ′(t+ τ)−X ]

k ∣∣
X′(t)=X

⟩. (8)

Now, for a 2D process X(t) = {X1(t),X2(t)}, the Langevin equation has the form,

d

dt

X1

X2

=

D(1)
1 (X, t)

D
(1)
2 (X, t)

+

D(2)
11 (X, t) D

(2)
12 (X, t)

D
(2)
21 (X, t) D

(2)
22 (X, t)

Γ1(t)

Γ2(t)

 , (9)150

with the diffusion coefficients D(2)
12 and D

(2)
21 ,

D
(2)
12 (X, t) =D

(2)
21 (X, t) =

1

2
lim
τ→0

1

τ
⟨ [X ′

1(t+ τ)−X1 ] [X
′
2(t+ τ)−X2 ]

∣∣
X1=X′

1(t), X2=X′
2(t)

⟩ . (10)
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Once the coefficients D(1,2) are known, the method can be reversed. Then, time series X(t) can be generated via the stochastic

integration of Eq. (9). The application of the Langevin approach for the stochastic reconstruction of the time series of the

two-dimensional CoWP is discussed in the next section. Further developments and details on the Langevin model are found in155

Friedrich et al. (2011); Reinke et al. (2015); Rinn et al. (2016a); Tabar (2019).

2.4 Stochastic Model for CoWP and WT Loads

In Fig. 2, we schematically show our proposed stochastic method in the context of load estimation of the low-frequency

contribution of the bending moments at the main shaft of a WT. Starting from either a modeled or measured wind field

u(y,z, t), the CoWP is calculated according to Eq. (4) (going in the upward direction in Fig. 2). Then, the stochastic Langevin160

approach is used to derive the coefficients D(1,2) from the CoWP signals. Based on the extracted coefficients D(1,2), the

stochastic reconstruction of signals of the low-frequency bending moments at the main shaft can be achieved. The strength

of this approach lies in its ability, based on the Langevin stochastic differential equation, to generate a time series of any

length while preserving the statistical properties of the original CoWP data from the wind field data. This feature is particularly

advantageous, as lifetime load assessments of a WT require large amounts of computationally expensive data or numerical165

extrapolation techniques. However, the implementation of the stochastic method for lifetime load assessment in engineering

applications (i.e., including both the high- and low-frequency components of the loads) is constrained in its application. To

ensure a comprehensive lifetime model, it is necessary to incorporate additional elements. A turbine-specific transfer function

for rescaling the magnitudes of the loads is required. A complementary model for the high-frequency components of the loads

must be integrated. Finally, the occurrence of the loads must be weighted by the distribution of the mean wind speed at the170

location of the WT (e.g., annual Weibull distribution).

The current standard procedure for load assessment in the wind industry is shown in the downward direction from the wind

field u(y,z, t) in Fig. 2. In brief, the response of a WT to a specific inflow wind field is investigated via a BEM simulation,

with a typical length of 10 minutes. The time series of the loads are obtained from several 10-minute random realizations that

account for different wind conditions. Thus, the assessment of all required wind situations is computationally very demanding.175

After the aggregation of 10-minute BEM simulations, extrapolation methods are applied to account for extreme load events

and damage calculation during the lifetime of the WT (Zhang and Dimitrov, 2023; Qingshan et al., 2022). Compared to the

standard approach, our proposed model is computationally very efficient and thus fast. The lowest path in Fig. 2, depicted by

dashed lines, shows the potential use of operational wind and load measurements for validation and optimization processes.

As a side comment, the description of the dynamics of the CoWP, e.g., via the derivation of D(1,2), provides a comprehensive180

characterization of the large-scale structures in the wind field, which can be further investigated. For instance, it can be used to

estimate the accuracy of modeled wind data compared to atmospheric measurements, or it can be included as a parametrization

into extensive descriptions of the turbulent wind, such as the IEC standard models or other surrogate models for wind field

reconstruction (Yassin et al., 2023; Friedrich et al., 2022; Rinker, 2018).
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Figure 2. Diagram of the stochastic surrogate method for the assessment of the low-frequency content of the bending moments at the main

shaft given a wind field u(x,y,z). The proposed method goes upwards from the wind field in the figure. For comparison, the path in the

downward direction shows the standard procedure for load estimations specified by the IEC standard guideline. The solid red box contains

the three data sets to be compared in the following sections. The dashed lines at the lowest part of the figure represent operational measured

data to be potentially included in an extended comparison.
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The solid-line red box in Fig. 2 shows schematically the three data sets to be compared and discussed in the following sections185

of this paper. From bottom to top:

a) the bending moments at the main shaft calculated by BEM simulations.

b) the CoWP calculated from the modeled or measured wind fields (see Sect. 3).

c) the time series generated via the stochastic reconstruction.

Again, the dashed line shows a potential use of operational load data to be included in the comparison.190

3 Wind Data: IEC Standard Fields and Atmospheric Measurements

We aim to characterize and model the CoWP from two wind data sets:

i) IEC standard Kaimal data: Synthetic wind fields are generated with the Kaimal model (Kaimal et al., 1972) proposed by

the IEC standard(IEC, 2019). The fields are defined in a 130mx130m spatial grid with a separation ∆y =∆z = 10m and

centered at y = 0 and z = 90m. The grid points are schematically shown by the small black dots in Fig. 3. The circular195

gray area depicts the scaled rotor of the 5MW NREL turbine (Jonkman et al., 2009) with hub height at 90m and a rotor

diameter of 126m. The mean wind speed ū= 7m s−1, and turbulence intensity TI = 7% of the non-shear wind fields

are defined at the location of the hub. The BEM simulations of the 5MW NREL turbine are performed in OpenFAST

(Jonkman et al.). 4.7x104 s of simulated time is investigated. The TurbSim Package (Jonkman, 2016) was used to generate

the Kaimal fields. The implementation in TurbSim of the Kaimal spectrum for the longitudinal component u of the wind200

follows,

Eu(f) =
4σ2

uLu/ūH

(1+6f Lu/ūH)5/3
(11)

where σu is the standard deviation of u, ūH is the mean at hub height, and f is the frequency. The integral scale Lu is

defined as Lu = 8.10Λu, with Λu being the turbulence scale. Λu is calculated as Λu = 0.7(min{30m,HH}), where HH is

the hub height. In conjunction with the Kaimal spectra, an exponential coherence model is assumed to describe the spatial205

correlation of the longitudinal component u. The coherence scale parameter Lc for the coherence model(IEC, 2019) is

assumed as Lc = Lu = 8.10Λu.
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Figure 3. Schematic representation of the Kaimal spatial grid and the 5MW NREL rotor. The black points depict the discrete locations of

the spatial grid with ∆y =∆z = 10m. The hub of the model WT is located at the center point of the grid at y = 0m and z = 90m.

ii) Atmospheric GROWIAN data: The measurement campaign was conducted in Germany between 1984 and 1987. The hor-

izontal wind speed was measured with a frequency of 2.5Hz by 16 propeller anemometers arranged in two met masts, cov-

ering an area of 76m x 100m. Details of the GROWIAN data are found in (Körber et al., 1988; Günther and Hennemuth,210

1998). The blue circles in Fig. 4 illustrate a schematic representation of the measurement arrangement. The GROWIAN

data have been conditioned by the mean wind speed 8.5≤ ū < 11.5m s−1, turbulence intensity 6≤ TI < 12%, and shear

exponent 0≤ q < 0.06. The characteristics ū, TI, and q are calculated over 10-min periods at the location with coordinates

y =−14, z = 100m. To guarantee an undisturbed flow, the wind direction over the 10-min periods remains within a 100°

range with respect to the location of the two met masts (i.e., main direction of the flow). After the conditioning, 18 blocks215

of 10-min intervals, or 1.08x104 s are considered for the analysis.

In order to perform BEM simulations of a realistic WT, a rescaling of the GROWIAN data is needed. The rescaled

GROWIAN fields are defined on a stretched grid of 152mx150m. The stretching is performed by increasing the distance

between neighboring points of the original grid by a factor of 1.5 in the vertical direction, and a factor of 2 in the horizontal

direction. The green circles in Fig. 4 illustrate the rescaled GROWIAN spatial arrangement, centered at y = 0m and220

z = 125m. The wind speed measurements at the 16 original locations have not been modified. The four grid points at

the corners of the stretched grid are filled with the data from the next neighboring grid point at the same height. For

example, the wind speed at the corner point (-76m, 50m) is assumed identical to the point at (-76m, 25m). The gray

area in Fig. 4 depicts the WT model to be simulated. The hub of the WT is located at 125m, and the rotor diameter is

149m. The BEM simulations are performed with the alaska/Wind aero-elastic-servo simulator(ICM, 2023; Zierath et al.,225
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2016), developed at the Institute of Mechatronics in Chemnitz, Germany. The multi-body model alaska/Wind incorporates

several coupled sub-models: the foundation, the tower, the nacelle, the yaw drive, the pitch drive, the rotor, the drive

train, the generator, and the controller. A Beddoes-Leishman-type dynamic model and a flexible wake model, respectively,

consider the unsteady airfoil aerodynamics and the wake effects. Among the specified degrees of freedom are the radial

degree in the drive train for torsional effects of the gearbox; the nodding degree in the yaw drive; and the side-to-side,230

fore-aft, and torsional motions of the tower. These considerations on the modeling assumptions of the simulations follow

the simulations in Schubert et al. (2025).

Figure 4. Schematic representation of the GROWIAN spatial grid. The blue circles show the original GROWIAN arrangement. The green

circles show the locations of the stretched grid used for BEM simulations of a WT. The gray area depicts the WT model to be simulated with

hub height at 125m and rotor diameter of 149m.

It is important to note that the simplified wind field rescaling in this study results in some degree of distortion to the spatial

correlations of the original GROWIAN data. The introduced distortion, under the assumption of self-similarity of turbulence,

is of minor significance, as our primary utilization of the GROWIAN data is to develop realistic, large-scale structures of the235

turbulent atmospheric boundary layer. Large-scale wind structures (e.g., of the size of the rotor diameter) are not present in

other standard numerical wind fields. They will become important for the CoWP and the loads, as demonstrated subsequently.

4 Results and Discussion

This section presents the results of the two objectives of our investigation: The comparisons between the CoWP and the bending

moments at the main shaft of the WT, and the stochastic modeling of the CoWP. In Sect. 4.1, the results from the standard240
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modeled Kaimal data are shown. Respectively, in Sect. 4.2, the investigation of the atmospheric GROWIAN measurements is

presented. The analysis of the two data sets is performed as follows: The two components of the CoWP= {CoWPy,CoWPz}
are calculated from the wind fields according to Eq.(4), with the hub location, i.e., equivalent to the location of the main shaft,

as the reference point (y0, z0). The Langevin stochastic approach described in Sect. 2.3 is then applied for modeling random

signals of the CoWP. The characteristics of the original CoWP, the modeled CoWP, and the BEM simulated bending moments245

T = {Tyaw,Ttilt} at the main shaft of the WT are compared. For the comparison, the statistics over time, as well as the DEL,

are analyzed.

In Schubert et al. (2025) it has been shown that the CoWP can be used as a description of wind structures with temporal scales

larger than 10s. Accordingly, the correlation to the bending moments is limited to the low-frequency component. Therefore, to

discard the high-frequency content, the signals are low-pass filtered. This applies to both the bending moments and the CoWP.250

The filter is a finite impulse response (FIR) filter with the cutoff or pass-band frequency fcutoff . The value of fcutoff should

be lower than the rotational frequency P of the WT. In this way, the effect of gravitational loads from the rotating blades (i.e.,

P and 3P) is averaged out. Here, a 0.1Hz cutoff frequency is applied. For comparability, the signals have also been normalized

to have a zero mean and a standard deviation equal to 1. The comparisons presented in the following sections are made using

the signals of the CoWP and the bending moments after frequency filtering and normalization.255

4.1 The CoWP from standard Kaimal wind fields

The CoWP and the bending moments at the main shaft

We start by comparing the CoWP calculated from the Kaimal wind fields and the bending moments T from the BEM sim-

ulations. Fig. 5 shows 20-min excerpts of the time series of the CoWP and the bending moments. In (a) CoWPy and Tyaw,

and in (b) CoWPz and Ttilt are shown. The observed correlation between the time series of the CoWP and the bending mo-260

ments is quantified in Fig. 6. Each time step in the time series is represented by a point (CoWP(t), T (t)). In (a) Tyaw and

CoWPy , and (b) Ttilt and CoWPz . The observed linear behavior with a slope of approximately 0.93 quantifies the strong cor-

relation between the normalized CoWP, which characterizes particular structures within the wind field, and the normalized

bending moments experienced by the WT interacting with such a wind field. These correlations obtained from the standard

Kaimal wind field corroborate the findings presented in (Schubert et al., 2025), where the CoWP calculated from atmospheric265

measured data demonstrated correlation coefficients up to 0.9 with the corresponding BEM-simulated yaw and tilt bending

moments at the main shaft. A turbine-specific transfer function for rescaling the normalized values of the CoWP to magni-

tudes of the low-frequency component of operational bending moments would be necessary for the assessment of the loads in

engineering applications. Such a transfer function will therefore depend on the structural properties of the WT and particular

control mechanisms.270
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(a) (b)

Figure 5. 20-min excerpts of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWPy , and (b) Ttilt and CoWPz .

The signals are normalized and low-pass filtered.

(a) (b)

Figure 6. CoWP against the bending moments plotted as (CoWP (t), T (t)) for each time step t of the time series. In (a) Tyaw and CoWPy ,

and (b) Ttilt and CoWPz . The gray lines depict linear fittings T = a (CoWP ) + b. The values of the Root Mean Square Error (RMSE) are

shown in the legends. The signals are normalized and low-pass filtered.

As a further statistical comparison Fig. 7 shows the probability density functions (PDF) of the CoWP and of the bending

moments taking into account all the simulated data. It should be noted that the rare large events, depicted by the tails of the

PDFs are in good agreement.
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(a) (b)

Figure 7. PDF of the CoWP and the bending moments at the main shaft of a WT. (a) Tyaw and CoWPy , and (b) Ttilt and CoWPz . The signals

are normalized and low-pass filtered.

Now that we have proven the strong correlation between the dynamics of the low-frequency content of the CoWP and the

bending moments, we continue by introducing the DELCoWP. The DELCoWP follows from Eq. (5) as275

DELCoWP =

(∑n
i=1(ni,CoWP s

m
i,CoWP)

Nf

)m−1

T

, (12)

where the number of cycles ni,CoWP, and the amplitudes si,CoWP are derived from the CoWP signals.

In Schubert et al. (2025), it was demonstrated that high values of the DEL are driven by significantly large amplitude events in

the low-passed filtered time series of the loads. Additional proof for this correspondence is given in Appendix A. Accordingly,

large amplitude events in the signals of the CoWP will result in high values of a DELCoWP.280

A good agreement between the DEL and the DELCoWP implies that estimations of the low-frequency events of the bending

moments at the main shaft of a WT can be accomplished purely from the estimation of the CoWP from the incoming wind field.

Fig. 8 (a) and (b) show the correlation plots of the resulting time-resolved DEL and DELCoWP obtained through an averaging of

time T = 60s and a coefficient m= 10. Their statistics are summarized in the box plots in (c) and (d). The DEL and DELCoWP

are calculated in (a) and (c) from CoWPy and Tyaw, and in (b) from CoWPz and Ttilt. A lower correlation is obtained for285

the DEL and DELCoWP in the vertical direction in panel (b) compared to the horizontal component shown in (a). The lower

correlation is explained by the more scattered results within the correlation of the time series of the Ttilt and the CoWPz shown

in Fig. 6. There, a value of RSME = 0.40 indicates a higher degree of scattering for Ttilt, compared to a RSME = 0.34 for

Tyaw. Overall, the data in Fig. 8 reveal a very good agreement between the DEL and DELCoWP in a statistical sense. Although

a spread of the data is observed, the statistics and correlation are consistent. In an aggregate sense, these results indicate an290

equivalence between the CoWP and the bending moments. The validity of the method has been proven for the rated power

regime of the WT.

14



(a) (b)

(c) (d)

Figure 8. Comparison between the DEL and DELCoWP. Correlation plots and box plots for CoWPy and Tyaw in (a) and (c), and CoWPz and

Ttilt in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the RMSE are shown in the legends. In the box plots

in (c) and (d), the horizontal line inside each box shows the median, and the bottom and top edges indicate the 25th (P25) and 75th (P75)

percentiles. The whiskers indicate the most extreme data points. They are calculates as P25−(1.5×IQR) and P75+(1.5×IQR), where IQR

is the interquantile range IQR = P75 −P25. The markers show outliers. The DEL and DELCoWP are calculated with m= 10 over periods

T = 60s with 30s overlapping between two consecutive periods. The signals are normalized and low-pass filtered.

It is essential to acknowledge that the discussion on the DELs presented in our work is exclusively focused on the DELs from

the low-frequency component of the signals. This choice is based on a particular interest of our research partners. In order to

assess the complete DELs (e.g., from both the low- and high-frequency load events), it is necessary to establish an additional295

model for incorporating the contribution from the high-frequency signal. In this direction, a simple surrogate stochastic model

has shown satisfactory results. The characteristics of the original high-frequency load signal are well reproduced. The proposed

stochastic model for the high-frequency signals, and calculations on the differences between the DELs from the low- and high-

frequency load components, and total DELs are shown in Appendix B.

15



Stochastic reconstruction of the CoWP300

We now apply the stochastic Langevin approach introduced in Sect. 2.3 as a method for characterizing the low-frequency

dynamics of the CoWP from the Kaimal wind fields. The 2D stochastic differential equations (see Eq. (9)) are thus applied for

CoWP(t) = {CoWPy(t),CoWPz(t)}. Since the two components CoWPy(t) and CoWPy(t) proved to be uncorrelated, i.e.,

D
(2)
12 =D

(2)
21 = 0, the coefficients D(1,2) are independently estimated from the time series of CoWPy and CoWPz according to

Eqs. (7) and (8). The results on the calculation of the correlation function ⟨CoWPi(t) CoWPj(t+ τ)⟩ for i= 1,2 are shown305

in Appendix C).

The results of the coefficients D(1,2) are shown in Fig. 9. The linear dependence of the drift coefficients D(1) in (a) is clear for

the two components CoWPy and CoWPz . An almost constant diffusion term D(2) is observed in (b) for the two components.

(a) (b)

Figure 9. Langevin approach of the CoWP from Kaimal wind fields. (a) Drift coefficient D(1), and (b) Diffusion coefficient D(2). In black

for the vertical component CoWPy , and in red for the horizontal component CoWPz .

The estimated D(1) and D(2) are used for the reconstruction of synthetic time series (CoWPR) via the stochastic integration

of Eq. (9). A signal CoWPR with a length of 4.7x104 s is reconstructed.310

For a first visual comparison between the original and the reconstructed signal, the filtered but non-normalized trajectories

of the CoWP and CoWPR in the y-z plane are shown in Fig. 10. Symmetric paths, i.e., comparable magnitudes in the two

directions y and z, are observed for CoWP and CoWPR.
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(a) (b)

Figure 10. Trajectories on the y-z plane of (a) the original CoWP calculated from the Kaimal data, and (b) the stochastically reconstructed

signal CoWPR. Intentionally, the data of both CoWP and CoWPR for plotting the trajectories in (a) and (b) are not normalized.

Note that due to the stochastic reconstruction, temporal correlation is not expected between the two signals. However, a sta-

tistical similarity should be present. This is shown in Fig. 11, which compares the PDF of the signals. After filtering and315

normalization, the results of the BEM-simulated bending moments at the main shaft are also included. In (a), the components

in the horizontal y direction. In (b), the components in the vertical z direction.

(a) (b)

Figure 11. PDF of the CoWP, CoWPR and bending moments T . (a) CoWPR,y , CoWPy , and Tyaw. (b) CoWPR,z , CoWPz , and Ttilt. The

signals are normalized and low-pass filtered.

To characterize in more detail the similarity of the signals, we also investigate the statistics of their increments or their variations

for a given time scale τ . The increments are defined as ∆xτ (t) = x(t+τ)− x(t), for a given signal x(t) and include two-time

correlations like the autocorrelation or the power spectrum (Morales et al., 2012). Fig. 12 shows the excellent accordance of320
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the increments statistics of ∆CoWPτ , ∆CoWPR,τ and ∆Tτ for values of τ = [5,10,20,30]s. In the upper row, the components

in the horizontal y direction and in the lower row, the components in the vertical z direction are shown.

(a)

(b)

Figure 12. PDF of the increments with τ = [5,10,20,30]s. (a) upper row, horizontal component: ∆CoWPy,τ , ∆CoWPR,y,τ and ∆Tyaw,τ .

(b) lower row vertical component: ∆CoWPz,τ , ∆CoWPR,z,τ and ∆Ttilt,τ . The time series are normalized and low-pass filtered.

Finally, we show in Fig. 13 the accordance of the resulting DEL, DELCoWP and DELCoWPR
by box plots. A subindex R refers

to the reconstructed signal ((a) the components in the horizontal y direction; (b) the components in the vertical z direction). As

observed from the box plots, the distributions of the DELCoWPR
from the stochastically reconstructed signal CoWPR reproduce325

quite accurately the distributions of both the DELCoWP from the original CoWP and the DEL from the BEM simulated signals.

18



(a) (b)

Figure 13. Box plots of the DELCoWP, DEL, and DELCoWPR from normalized and filtered signals of (a) CoWPy , Tyaw, and CoWPR,y , and

(b) CoWPz and Ttilt, and CoWPR,z . The DELs are calculated over periods T = 60s with 30s of overlapping and with a coefficient m= 10.

The lines defining each box show the median, and the bottom and top edges indicate the 25th (P25) and 75th(P75) percentiles. The whiskers

indicate the most extreme data points. They are calculates as P25 − (1.5× IQR) and P75 +(1.5× IQR). The markers show outliers.

4.2 The CoWP from atmospheric GROWIAN measurements

Next, we use the atmospheric GROWIAN wind fields described in Sect. 3 to calculate the CoWP, to simulate the BEM bending

moments at the main shaft, and to apply the stochastic Langevin model for the reconstruction of random data. The results are

presented in the same sequence as done for the Kaimal data in the previous section.330

The CoWP and the bending moments at the main shaft

Fig. 14 shows the correlation plots between the CoWP and the bending moments T . In (a) Tyaw and CoWPy , and (b) Ttilt

and CoWPz . The coefficients of the linear fittings agree with the correlation coefficients of around 0.9 reported in Schubert

et al. (2025), where all the available GROWIAN wind fields are investigated. Differently, in this paper, we only investigate a

subset of the atmospheric data, conditioned by the mean wind speed, turbulence intensity, and shear exponent, as described in335

Sect. 3. The correlation between the CoWP and the bending moments is slightly decreased compared to the standard modeled

wind data shown in Fig. 6. In particular, loops are observed in Fig. 14 for the two components, (a) and (b). Such loops

correspond to intervals where more severe wind conditions affect the WT than we find in the Kaimal wind data. Over those

intervals, significant differences in the wind speed are observed in the spatial domain (i.e., over the rotor plane). As a result,

divergences in calculating the CoWP and the bending moments are obtained. Examples of such severe wind conditions within340

the atmospheric rescaled GROWIAN fields are shown in Appendix D.
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(a) (b)

Figure 14. CoWP against the bending moments T at the main shaft of a WT plotted as (CoWP(t), T (t)) for each time step t of the time

series. In (a) Tyaw and CoWPy , and (b) Ttilt and CoWPz . The gray lines depict linear fittings. The values of the RMSE are shown in the

legends. The time series are normalized and low-pass filtered.

Reconstructing the CoWP from atmospheric wind data

The results of the coefficients D(1,2) from the stochastic Langevin method applied to the CoWP from the GROWIAN mea-

surements are shown in Fig. 15. Interestingly, the diffusion coefficients D(2) in (b) are clearly not constant. This behavior is

called multiplicative noise and is significantly stronger for the vertical component CoWPz . In contrast, pure additive noise345

was obtained for the modeled Kaimal fields in Fig. 9. Moreover, the diffusion coefficient D(2) of the CoWPz from Kaimal data

with shear, showed pure additive noise (see Appendix E). This effect in D(2) is a consequence of the different wind fields and

shows that the Kaimal data lead to simpler noise. In contrast, atmospheric wind data have more complicated deterministic and

noise contributions.
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(a) (b)

Figure 15. Langevin approach of the CoWP from GROWIAN wind fields. (a) Drift coefficient D(1), and (b) Diffusion coefficient D(2). In

green for the vertical component CoWPy , and red for the horizontal component CoWPz .

Fig. 16 shows the trajectories of the CoWP and the CoWPR in the y-z plane. For this representation, the time series are not350

normalized. Due to the shear, the movement of the CoWP in the vertical direction z is larger than in the horizontal direction

y. This differs from Fig. 10, where symmetric trajectories in the two directions y-z are obtained for non-shear Kaimal wind

fields.

(a) (b)

Figure 16. Trajectories on the y-z plane of (a) the CoWP from the original GROWIAN measurements, and (b) the stochastically reconstructed

signal CoWPR. The data are not normalized.

Fig. 17 shows the PDF of the signals. The time series of the BEM simulated bending moments Tyaw and Ttilt are also included.

In (a) for the horizontal y component, and in (b) for the vertical z component. We see that the stochastic model reproduces the355

statistics of the CoWP and bending moment very well. The PDFs of Fig. 17 show additional structures like skewness and small
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bumps. These structures are the consequence of the nonlinearities of D(1,2) in Fig. 9, (see also the stationary solution of the

Fokker-Planck equation which corresponds to the Langevin equation (Risken, 1996)).

(a) (b)

Figure 17. PDF of the the CoWP, CoWPR and bending moments T . In (a) CoWPy , Tyaw, and CoWPR,y . In (b) CoWPz and Ttilt, and

CoWPR,z . The signals are normalized and low-pass filtered.

As higher order statistical feature in Fig. 18 the PDFs of the increments ∆CoWPτ , ∆CoWPR,τ and ∆Tτ for values of τ =

[5,10,20,30]s are shown ((a) the components in the horizontal y direction; (b) the components in the vertical z direction).360
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(a)

(b)

Figure 18. PDF of the increments with τ = [5,10,20,30]s. (a) Horizontal component: ∆CoWPy,τ , ∆CoWPR,y,τ and ∆Tyaw,τ . (b) Vertical

component: ∆CoWPz,τ , ∆CoWPR,z,τ and ∆Ttilt,τ . The time series are normalized and low-pass filtered.

Finally, Fig. 19 (a) and (b) show the correlation plots of the DEL and DELCoWP. In (c) and (d) the box plots describing their

statistics are shown. The box plots of the DELCoWPR
in the two components are also included. The DEL and DELCoWP are

calculated in (a) and (c) from CoWPy and Tyaw, and in (b) from CoWPz and Ttilt. All time series are normalized and filtered.
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(a) (b)

(c) (d)

Figure 19. Comparison between the DELCoWP, DEL, and DELCoWPR . Correlation plots and box plots for CoWPy and Tyaw in (a) and (c), and

CoWPz and Ttilt in (b) and (d). The gray lines in (a) and (b) depict linear fittings. The values of the RMSE are shown in the legends. In the

box plots in (c) and (d), the horizontal line inside each box shows the median, and the bottom and top edges indicate the 25th (P25) and 75th

(P75) percentiles. The whiskers indicate the most extreme data points. They are calculates as P25− (1.5× IQR) and P75+(1.5× IQR). The

markers show outliers. The DELs are calculated with m= 10 over periods T = 60s with 30s overlapping between two consecutive periods.

The signals are normalized and low-pass filtered.

The correlations between the low-passed and normalized signals of the CoWP and the bending moments shown in Fig. 14,

and between the DELCoWP and DEL shown in Fig. 19 for the atmospheric GROWIAN data are slightly lower compared to365

the modeled Kaimal data in Figs. 6 and 8. The higher complexity of real wind fields included wind events characterized by

stronger differences of the wind speed over the y-z plane within the stretched wind fields, which are likely to explain such

particular discrepancies. However, Figs. 17, 18 and 19 show a good agreement between the statistical properties and the DEL

estimations between the original and the reconstructed signals of the CoWP, and the simulated bending moments from the

atmospheric measured GROWIAN data. These findings are in agreement with the results shown in Sect. 4.1 for the modeled370
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standard Kaimal data. Therefore, it was demonstrated that the description of the dynamics provided by the coefficients D(1,2)

from the CoWP can be used as parameters for modeling the low-frequency signals of the tilt and yaw bending moments at the

main shaft of a WT.

5 Conclusions and Outlook

The comparison between the low-frequency content of the center of wind pressure (CoWP) as a feature of a turbulent wind field375

and the low-frequency content of the BEM-simulated bending moments at the main shaft of a wind turbine, e.g., yaw and tilt,

is performed. A strong correlation between these large-scale structures of the CoWP and bending moments has been quantified

in terms of statistical properties, correlation factors, and damage equivalent load (DEL). This correlation is consistent with

the results reported in the studies by Schubert et al. (2025) and Moreno et al. (2024), and it has been shown to be valid for

wind fields from both atmospheric measurements and standard models. As a consequence of this correlation, a comprehensive380

description of the CoWP from a particular wind field (e.g., site-specific) might serve as a surrogate estimator of the low-

frequency load events of the tilt and yaw bending moments at the main shaft of an operating wind turbine.

A step further is the utilization of a comprehensive understanding of the dynamics of the CoWP from wind data, with the

objective of modeling loads. The stochastic Langevin approach has been proposed as a method for characterizing the dynamics

of the CoWP. More interestingly, the method has been reverse-applied for the stochastic reconstruction of synthetic signals.385

The resulting statistics from the reconstructed signals and their estimated DEL have been shown to be comparable to those of

the original CoWP and, more significantly, to those from the BEM-simulated bending moments. Consequently, the stochastic

Langevin approach applied to the CoWP has been proven as a surrogate method for estimating the low-frequency content of

the moments at the main shaft. In particular, the Langevin approach significantly reduces the computational cost by solving

only a one- or two-dimensional stochastic equation instead of calculating a wind field at many different spatial points and its390

interaction with the turbine model. This has the potential for the reconstruction of very long modeled load data. This feature

is essential for the assessment of the tilt and yaw bending moments when particularly large amounts of simulated data are

required, e.g., for 25-year lifetime predictions under multiple wind conditions, and the computational costs associated with

costly BEM simulations would thus be significantly reduced.

However, the development of lifetime predictions in engineering applications necessitates the incorporation of additional ele-395

ments in conjunction with the proposed stochastic method for modeling the low-frequency component of the loads. Initially,

a turbine-specific transfer function for rescaling the CoWP to the magnitudes of the low-frequency component of the bend-

ing moments should be derived. Secondly, a numerical model of the high-frequency component of the loads is required. A

stochastic Gaussian model has been demonstrated to be a viable approach. Thirdly, site-specific wind characteristics should

be considered. These characteristics should include the long-term standard wind conditions, such as the annual Weibull dis-400

tribution of the wind speed. Additionally, spatial descriptions (i.e., perpendicular to the main flow) of the wind structures are

necessary to describe the dynamics of the CoWP at the given location. These spatial descriptions may be derived either from
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measured data over a two-dimensional area (e.g., using LiDAR techniques), or from accurately modeled wind data, which in-

cludes realistic information about the wind structures in the spatial domain. Once the three complementary elements have been

resolved, the complete prediction of the yaw and tilt bending moments at the main shaft of a turbine can be applied as follows:405

site-specific wind data over relatively short intervals (e.g., 10 minutes), which are used for the calculation of the CoWP. Subse-

quently, the dynamics of the large-scale wind structures described by the CoWP are derived by using the Langevin stochastic

approach. The parameters of the Langevin model for the specific wind conditions (i.e., drift and diffusion coefficients) are then

estimated. Next, stochastic realizations of the low-frequency component of the loads are generated by combining the dynamics

of the CoWP and the previously determined turbine-specific transfer function. Afterwards, the high-frequency component is410

modeled. Subsequently, the high- and low-frequency load signals, which have been modeled independently, are combined.

Finally, the long-term distribution of the mean wind speed p(ū) at the specific location is used to assess the entire lifetime

damage of the bending moments (i.e., by applying the standard IEC procedure for load assessment based on mean wind speed

binning and design load cases).

In the context of improved descriptions of the atmospheric turbulent wind, including the statistical and dynamical properties415

of the CoWP from atmospheric measured data into the standard wind models, could prove to be of significant value. Since

the wind industry currently uses standard wind models for design and certification processes, the incorporation of atmospheric

information would enhance the understanding of the aerodynamic interactions and more accurate load assessment of the tur-

bines. For instance, wind structures such as gusts are assumed by the standard wind models to be homogeneous in space.

The CoWP has the capacity to grasp localized wind structures over the rotor plane. A parametrization of the dynamics of the420

CoWP from atmospheric wind would thus describe the realistic, likely non-homogeneous, spatial characteristics of the gusts.

A comparison of the drift and diffusion coefficients derived from standard wind model data and measured data reveals that

different characteristics of the wind fields are mapped into the Langevin equations. Consequently, the availability of local wind

data enables the estimation of site-specific wind characteristics and the subsequent development of the stochastic load model.

This paper shows that the CoWP and its stochastic modeling represent a promising new tool for estimating the large-scale425

dynamics of specific loads at the wind turbine. The validity of this load estimation has been demonstrated in the context of the

DELs. The dynamic response of modern wind turbines with increased size gives additional relevance to wind structures over

the rotor plane. Larger areas covered by the increased rotors likely include inhomogeneities (e.g., severe differences in wind

speed) over the rotor. In this direction, the CoWP and the stochastic approach delineated in our paper have the potential to serve

as a tool for describing and modeling IEC extreme scenarios (i.e., with 50-year or 1-year return period). Up to now, calibrating430

the magnitude of the CoWP to the loads requires BEM simulations, at least on a finite time window. The validity of the CoWP

approach to other loads at different turbine components remains to be investigated. For a single blade, a rotational frame of

reference could be helpful for the calculation of the CoWP. Based on the results presented in this paper, it is recommended that

a comparable procedure be considered for any other load in the turbine. The initial step involves normalizing the signals and

validating the correlation. Following this, a stochastic model is to be configured to analyze and reconstruct the dynamic load435

response.
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Code availability.

Data availability. The GROWIAN measurements, as well as the generated Kaimal wind fields can be obtained upon request.

Appendix A: Correlation between DEL and DELCoWP

The DELCoWP introduced in Eq. (12) is based on the conclusion stated by Schubert et al. (2025) that large amplitude load440

events, lasting longer than 10s, e.g., bumps structures, drive large values of the DEL when using the Wöhler exponent m= 10.

Now we present a different proof of this finding.

The aim is to compare the DEL between time series, with and without, particularly large amplitude load events. Fig. A1(a)

shows an excerpt of 15x103 s containing the results of the DEL from the time series of the yaw moment Tyaw. The horizontal

red bars depict the period T = 10min over which the DEL is calculated. The largest DEL are identified and visually separated445

above the horizontal gray line. The respective time series Tyaw from which the DEL are calculated are shown in (b). The darker

highlighted load events at 3300, 3700, 3850, and 9800s correspond to the largest DEL (over the gray line) in (a). The zoom

plot in the lower part of (b) illustrates the load event at t≈ 9800s.

(a) (b)

Figure A1. Damage Equivalent Loads (DEL ) of the yaw moment signal Tyaw from BEM simulations. (a) DELs of the Tyaw. The horizontal

gray line at DEL = 1.1 visually separates the few largest DELs. The DELs are calculated with m=10 over periods T = 10min. An overlap-

ping period of 5min is considered between two consecutive intervals. The length of the horizontal red bars depicts the periods T. (b) Time

series Tyaw with highlighted large events, which are inducing the largest DEL in (a). The length of such identified load events within the time

series Tyaw is considered as 20s over which the peak amplitude is included. The event at t≈ 9800s is detailed in the zoomed plot. The time

series Tyaw are calculated by BEM simulations of the 5MW NREL turbine (see Sect. 3). The time series Tyaw are low-pass filtered with cutoff

f = 0.1 and normalized to zero mean and standard deviation equal to 1.
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Fig. A2(a) shows a modified time series ‘Tyaw-Mod’ from which the large load events highlighted in Fig. A1(b) have been

removed. The resulting DEL from Tyaw-Mod are shown in (b). The comparison between the DELs in Fig. A2(b) and Fig. A1(a),450

i.e., from the two versions of the time series Tyaw, confirms that large amplitude events in the signal induce large values of the

DEL. Therefore, an accurate fatigue assessment of the moments T based on the DEL , as the standard procedure within the

wind industry, requires an accurate description of such large amplitude loading events. The DELCoWP is proposed in Sect. 4.1

as an approach for predicting those events on the loads from the wind field.

(a) (b)

Figure A2. Damage Equivalent Loads (DEL ) of a modified signal of the yaw moment ‘Tyaw-Mod’ from BEM simulations. (a) Time series

‘Tyaw-Mod’ from which the highlighted intervals in Fig. A1(b) have been removed (b) DELs of the Tyaw-Mod. The horizontal blue line at

DEL = 1.1 is kept as a reference. The DELs are calculated with m=10 over T = 10min. An overlapping period of 5min is considered

between two consecutive intervals. The length of the horizontal red bars depicts the length of T.

Appendix B: DELs from low- and high-frequency components of the loads455

The contribution of the low- and high-frequency components of the load signal to the DELs of the total load is investigated.

Therefore, different components of the load signal are independently investigated. The low-frequency component (‘Low freq.’)

corresponds to the low-pass filtered load described in Sec. 4, with a cutoff frequency of fcutoff = 0.1Hz. The high-frequency

component (‘High freq.’) corresponds to the load fluctuations with frequency over fcutoff . The total load (‘Total’) is the

estimated load from BEM simulations, which aggregates both the high- and the low-frequency components.460

Figure B1(a) shows the DELs of the components of the load over an excerpt of 1200s. Each of the horizontal bars represents the

period T = 60s over which the DEL is calculated. A fourth signal, ‘Sum L+H’, is included in the comparison. It corresponds

to the combination of the DELs (i.e., not the time series) from the low- and high-frequency signals as,

(DELSum L+H) = α(DELLow) + β (DELHigh), (B1)

calculated for each period T. The parameters α and β are fitting parameters to achieve DELSum L+H ≈ DELTotal. These param-465

eters depends on the Wöhler coefficient m and the length T for the calculation of DELLow and DELHigh. In Fig. B1(a), the
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parameters are α= 1.2, and β = 0.5. The values of the coefficients α and β from the load signals can be taken as weighting

factors, indicating a dominating contribution of the DELLow with respect to DELHigh. For the case shown, the proportion is

approximately 2 : 1.

Fig. B1(b) shows the correlation between the DELs of the Total, and the Sum L+H signals. The correlation is calculated for470

the DELs along the entire data set (4.7x104 s). Based on the strong correlation between the DELs in (b), the DELs of the total

load might be interpreted as a weighted sum of the individual DELs from the low- and high-frequency components.

(a) (b)

Figure B1. (a) 20-min excerpt of the DELs for the Ttitlt signals at the main shaft. The length of the individual horizontal bars depicts the

periods T. (b) Correlation plot between the total load and the sum of the DELs from the low- and high-frequency signals. The DELs are

calculated with m= 10 over periods of T = 60s with an overlap of 30s between periods. The load signals are those calculated from BEM

simulations of the 5MW NREL WT with Kaimal fields, with ū= 7m/s (see Sec. 3).

The results in Figs. B1 show that despite the dominance of the low-frequency contribution, both the low- and high-frequency

components have important contributions to the DEL of the total load signal. Therefore, for a complete calculation of the DELs

on the WT, a second model for the high-frequency contribution is required. The use of Gaussian distributed noise is proposed as475

a first approach. Three random Gaussian realizations, ‘R1’, ‘R2’, and ‘R3’, with the statistics from the original high-frequency

load signal, are generated. The considered statistics include not only the mean and standard deviation, but also the correlation

and dominant frequency. Next, the three Gaussian realizations of high-frequency fluctuations are added to the low-frequency

component of the load. Then, the DELs are calculated.

Fig. B2(a) shows a 20-min excerpt of the DELs. For comparison, the original Total load, which is the sum of the original480

high-frequency and low-frequency components, is also compared. Fig. B2(b) shows a box-plot of the DELs over the entire

time series (4.7x104 s).
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(a)

(b)

Figure B2. DELs of the total signals (low-frequency and high-frequency signals). (a) 20-min excerpt with individual DELs. (b) Box-plots

of the DELs along the entire time series. The four high-frequency signals (‘High freq.’, ‘R1’, ‘R2’, and ‘R3’) have been added to the same

low-frequency signal. The DELs are calculated with m= 10 over periods of T = 60s with an overlap of 30s between periods.

The comparability between the boxplots in Fig. B2 shows that Gaussian noise, with parametrized dominant frequency and

correlation, can be used as a model for the high-frequency component of the load signals. Then, this Gaussian model for high-

frequency fluctuations might be used in combination with our proposed model, based on the CoWP, which reproduced the485

low-frequency component of the load signal. Then, an entire description of the load signals could be achieved. The joint use

of these two models must be further validated by comparing them to the total simulated loads. For that, a transfer function is

required for scaling the magnitudes of the loads. The validation is out of the scope of this paper.
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Appendix C: Correlation and structure function of the CoWP

Fig. C1 shows the correlation function for the two components of the CoWP ⟨CoWPi(t) CoWPj(t+ τ)⟩ for i= y,z. From490

top to bottom, the three rows show the correlation for i ̸= j, i= j = y, and i= j = z, respectively. The panels on the left

[(a),(c),(d)] correspond to the modeled Kaimal data. The panels on the right [(b),(d),(e)] show the atmospheric measured

GROWIAN data. The correlation is calculated for time lags τ = [−200 200].
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(a) (b)

(c) (d)

(e) (f)

Figure C1. correlation function for the two components of the CoWP ⟨CoWPi(t) CoWPj(t+ τ)⟩ for i= y,z and τ = [−200 200]. In

(a),(c),(e) for the modeled Kaimal data and in (b),(d),(f) for the atmospheric GROWIAN data.

32



Appendix D: ‘Special events’ of the CoWP from GROWIAN data

In Fig. 14, particular loops are observed when correlating the CoWP and the tilt and yaw bending moments from atmospheric495

GROWIAN wind fields. Fig. D1 shows three exemplary temporal sequences corresponding to some of the observed loops in

the correlation plots. Short intervals of 4s are shown. Panels (a) and (b) show sequences observed in the correlation between

CoWPy and Tyaw in Fig. 14(a). Panel (c) shows a sequence observed in the correlation between CoWPz and Ttilt in Fig. 14(b).

As observed in the three sequences, very strong differences of the wind speed over the rotor plane. The green dot shows

the CoWP. The red dot shows a scaled version of the CoWP, which allows for better visualization. The scaling is done by500

subtracting a mean wind speed from all the points of the wind field. This subtraction is analogous to removing the mass of the

beam when calculating the center of mass induced by external masses. In that way, larger distances of the CoWP with respect

to the reference point are obtained.
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(a)

(b)

(c)

Figure D1. Temporal evolution of the GROWIAN wind field and the CoWP on the y-z plane. The wind speed u(y,z, t) is color-coded. The

green dot depicts the location of CoWP. For better visualization, the red dot depicts the location of a scaled version of the CoWP. The lines

show the center lines of the grid, i.e., the reference location for calculating CoWP.

The relatively large deviations of the CoWP depicted by the loops in Fig. 14 from the GROWIAN data suggest that the CoWP

might be very sensitive to such extreme differences of the wind field over the y-z plane at a given time step.505
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Appendix E: Characteristics of the CoWP from standard Kaimal wind fields with shear

The results of the drift and diffusion coefficients D(1,2) from the stochastic Langevin method applied to the CoWP from

the GROWIAN measurements are shown in Fig. 15. To investigate and compare the effect of the shear in the dynamics of the

CoWP from standard modeled wind fields, we calculated the coefficients D(1,2) from Kaimal wind fields with a shear exponent

of 0.2. The results are shown in Fig. E1. Interestingly, the superimposition of shear to the Kaimal wind fields results in additive510

noise only shifted towards higher heights.

(a) (b)

Figure E1. Langevin approach of the CoWP from Kaimal wind fields with shear exponent of 0.2. (a) Drift coefficient D(1), and (b) Diffusion

coefficient D(2). In black for the vertical component CoWPy , and in red for the horizontal component CoWPz .

Additionally, the trajectories of the CoWP on the y-z plane are shown in Fig. E2 for the original CoWP and a reconstructed

signal CoWPR from the Kaimal wind fields with shear. In comparison to the trajectories from the atmospheric GROWIAN

data in Fig. 16, the trajectories of the CoWP from the shear Kaimal wind fields are symmetric in the y-z directions. Again,

only a vertical shift is observed within the CoWP, including shear effects, compared to Fig. 10.515
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(a) (b)

Figure E2. Trajectories on the y-z plane of (a) the CoWP from the original shear Kaimal wind fields, and (b) the corresponding stochastically

reconstructed signal CoWPR. The data are not normalized.
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