

1 **Emerging mobile lidar technology to study boundary-layer**
2 **winds influenced by operating turbines**

3
4 Yelena Pichugina^{1, 2}, Alan W. Brewer², Sunil Baidar^{1, 2}, Robert Banta^{1, 2}, Edward Strobach³,
5 Brandi McCarty^{1, 2}, Brian Carroll^{1, 2}, Nicola Bodini⁴, Stefano Letizia⁴, Richard Marchbanks^{1, 2},
6 Michael Zucker^{1, 2}, Maxwell Holloway^{1, 2}, and Patrick Moriarty⁴

7
8 ¹*CIRES, University of Colorado Boulder, Boulder, CO, USA*
9 ²*NOAA Chemical Sciences Laboratory, Boulder, CO, USA*

10 ³*AOSC University of Maryland, College Park, MD, USA*

11 ⁴*National Renewable Energy Laboratory, Golden, CO, USA*

13 *Correspondence to:* Yelena L. Pichugina (Yelena.Pichugina@colorado.edu)

14
15
16 **Abstract.** The development of a microjoule-class pulsed Doppler lidar and deployment of this
17 compact system on mobile platforms such as aircraft, ships, or trucks has opened a new opportunity
18 to characterize the dynamics of complex mesoscale wind flows. The PickUp-based Mobile
19 Atmospheric Sounder (PUMAS) truck-based lidar system was recently used during the American
20 Wake Experiment (AWAKEN) to assess the general structure of boundary-layer wind and
21 turbulence around wind turbines in central Oklahoma.

22 Wind speed profiles averaged over PUMAS transects influenced by the operating turbines
23 (waked flow) show a 1–2 m s⁻¹ reduction compared to mean undisturbed (free flow) wind speed
24 profiles. Spatial variability of wind speed was observed in time-height cross sections at different
25 distances from turbines. The wind speeds were about 9–12 m s⁻¹ at 6 km distance compared to 5–7
26 m s⁻¹ at the transects near the turbines.

27 The PUMAS dataset from AWAKEN demonstrated the capability of the mobile Doppler
28 lidar system to document spatial variability of wind flows at different distances from wind turbines
29 and obtain quantitative estimates of wind speed reduction in the waked flow. The high-frequency,
30 simultaneous measurements of the horizontal and vertical winds provide a new approach for
31 characterizing dynamic processes critical for wind farm wake analyses.

32

33 **1. Introduction**

34 Stationary scanning Doppler lidars are a powerful remote sensing instrument that provide
35 high-quality measurements of wind and turbulence profiles from the surface up to several hundred
36 meters in the boundary layer. The Atmospheric Remote Sensing (ARS) group at the Chemical
37 Sciences Laboratory (CSL) of the National Oceanic and Atmospheric Administration (NOAA) uses
38 both commercial Doppler lidars and lidars developed within the group (Brewer and Hardesty,
39 1995). Lidar development at CSL goes back decades (Post and Cupp 1990, Grund et al. 2002),
40 with continuous engineering updates and the design of new versions to meet research objectives.
41 Research studies on land using stationary scanning Doppler lidar have demonstrated the ability of
42 this instrument to reveal the structure and evolution of meteorological processes at a high vertical,
43 horizontal, and temporal resolution. Doppler lidar data are used to provide insight into boundary-
44 layer behavior during nocturnal stable and low-level jet (LLJ) conditions, among the most difficult
45 to characterize, understand, and model (Banta et al. 2003, 2006, Pichugina et al. 2010, 2023; Sun
46 et al. 2012). The lidar's three-dimensional (3D) scanning capability has been used to characterize
47 wind turbine wake properties and their downwind evolution, which is an important task for
48 optimizing wind farm layouts and power output. (Aitken et al. 2014; Banta et al. 2015, Bingöl et
49 al., 2010, Smalikho et al. 2013).

50 During the second Wind Forecast Improvement Project experiment, three scanning Doppler
51 lidars were deployed to the Columbia River Gorge to support the evaluation of the High Resolution
52 Rapid Refresh (HRRR) model, improve the prediction of winds in complex terrain (Olson et al.
53 2019; Banta et al. 2023, Pichugina et al. 2020, 2022), and to study wakes from the wind farm located
54 in the area (Wilczak et al. 2019). These studies used data from stationary Doppler lidars.

55 Motion-compensated lidar measurements from a mobile platform were obtained from a
56 NOAA research vessel in the Gulf of Maine. During these marine operations, the lidar was deployed
57 in a large seatainer with a GPS-based inertial navigation unit capable of determining platform
58 motion and orientation (Pichugina et al. 2012). A hemispheric scanner, mounted to the roof of the
59 seatainer, was controlled to compensate for pointing errors introduced by platform motion,
60 including those induced by ocean waves. The unique information obtained from this experiment
61 provided an opportunity for the first time to analyze the horizontal and vertical variability of marine
62 winds, offshore wind flow dynamics, and diurnal evolution of LLJ properties, and also to evaluate

63 model skill in an offshore setting, where high-quality wind measurements aloft are rare (Banta et
64 al. 2018; Djalalova et al. 2016; Pichugina et al. 2017a, 2017b).

65 Growing requirements for compact lidar configurations deployed on moving platform led
66 to the development of a new capability: a compact and robust microjoule-class pulsed Doppler lidar
67 system. Since 2018, the ARS/CSL group has focused on the development of such systems and
68 continuously updated design, measurement characteristics, and data acquisition techniques to
69 achieve the specific goals of each experiment.

70 The quantitative characteristics of wind and turbulence in the atmospheric layers occupied
71 by the wind turbine rotor blades (rotor layer) are crucial to wind energy, as is the information above
72 this layer to provide a meteorological context when considering profiles up to several hundreds of
73 meters above ground level (AGL). Furthermore, the region extending from the tops of the turbines
74 to the atmospheric boundary layer height plays a crucial role in the vertical entrainment of
75 momentum, which is an important driver of wind power capture (Meneveau, C. 2012;
76 Krishnamurthy et al. 2025).

77 Understanding the variability of winds across wind farms and under different conditions is
78 a critical factor in the planning and operation of wind projects. This goal can be achieved by
79 deploying a network of Doppler lidars over the wind farm or by taking measurements from a truck-
80 based mobile lidar. The accurate, motion-compensated measurements open an opportunity to
81 compare winds influenced by operational turbines (waked flow) with winds far from turbines (free
82 flow) along the driving path or to compare wind flows at different distances from turbine rows to
83 estimate the overall impact of the wind farm.

84 This paper aims to demonstrate the ability of truck-based Doppler lidar to provide high-
85 quality motion-compensated measurements in the boundary layer while driving around wind
86 turbines and present examples of analysis products obtained in August–September 2023 during the
87 multi-year American Wake Experiment (AWAKEN) campaign. Section 2 provides an overview of
88 ARS-developed mobile lidars, briefly describes technical parameters, motion-compensation, and
89 beam-stabilization systems, and discusses the lidar dataset. Section 3 presents the truck-based
90 mobile lidar, and discusses data obtained during an intensive operational period in Oklahoma.
91 Section 4 describes two case studies and provides analyses of the vertical, horizontal, and time-
92 evolving structures of wind flow in the presence of operating wind turbines for two selected days
93 characterized by differences in observed winds and boundary layer stability. Section 5 provides a

94 detailed analysis of the spatially and temporally varying structures of wind flow in the presence of
95 operating wind turbines for the two selected cases, showing wind speed and direction profiles at
96 various distances from turbines and comparing spatially distributed data from the mobile lidar with
97 data from nearby stationary Doppler lidars deployed in the research area. Section 6 contains
98 conclusions and recommendations.

99 **2. Development of the mobile micro-Doppler lidar system**

100 The compact micro-Doppler (MD) system deployment was achieved by a unique design of
101 a master oscillator power amplifier microjoule-class pulsed coherent Doppler lidar system in two
102 physically separated modules: the transceiver and the data acquisition system connected by an
103 umbilical cable (Schroeder et al. 2020). One module hosts the transceiver, which includes the
104 telescope, transmit/receive switch, and high-gain optical amplifier. The second module contains the
105 data acquisition system and several electro-optical components. This design, along with significant
106 decreases in the weight and the size of both modules, enables deployments of these systems on
107 small aircraft and pickup truck platforms that are otherwise inaccessible by commercial and
108 research instruments of similar capability. The continuous updates and improvements of MD lidars
109 during the last several years led from version 1 (MD1) to version 3 (MD3). A detailed description
110 of versions MD1 and MD2, along with a short history of the development of stationary Doppler
111 scanning lidars in the NOAA/CSL ARS group, can be found in Schroeder et al. (2020).

112 Operation from a mobile platform faces many challenges, such as a constantly accelerating
113 reference frame and vibration while in motion. A significant obstacle to obtaining accurate wind
114 profiles from the high-precision lidar measurements using these techniques is compensating for the
115 pointing error and along-beam platform velocity due to platform motions. To address these issues,
116 the lidar is deployed with a *motion compensation* system that corrects the lidar velocity
117 measurement by estimating and removing the platform motion projected into the line-of-sight
118 velocity measurement in real time, and a *pointing stabilization* system that determines the platform
119 orientation and then actively stabilizes the orientation of the lidar beam in the world frame.

120 The development of the MD lidars and deployment of these compact systems on airborne,
121 shipborne, and truck-borne platforms (Figure 1) provided a new opportunity to study dynamic
122 processes in the atmospheric boundary layer in varied regions, from urban areas to remote locations

123 in complex terrain, and offshore. The flexible combination of temporal, vertical, and spatial
124 coverage of the study area provides a significant advantage over stationary profiling observations.

125 The MD3 design was optimized for operation from pickup trucks and ships. The small
126 modular footprint and weight of all subsystems allow their positioning in various compact spaces
127 and enable easy stabilization. The MD3 lidar system features two laser transmitters and two
128 channels to provide both continuous vertical-stare profiles of the vertical velocity w and,
129 simultaneously, azimuth scans at 15° off zenith to give profiles of the horizontal wind speed and
130 direction using the velocity-azimuth display (VAD) technique (Browning and Wexler 1968; Banta
131 et al. 2002). The ability to do azimuthal scans at lower elevation angles, which can enhance
132 accuracy in the horizontal VAD wind estimate (see Banta et al. 2023), is currently under
133 development. The technical specifications of the MD3 lidar are given in Table 1.

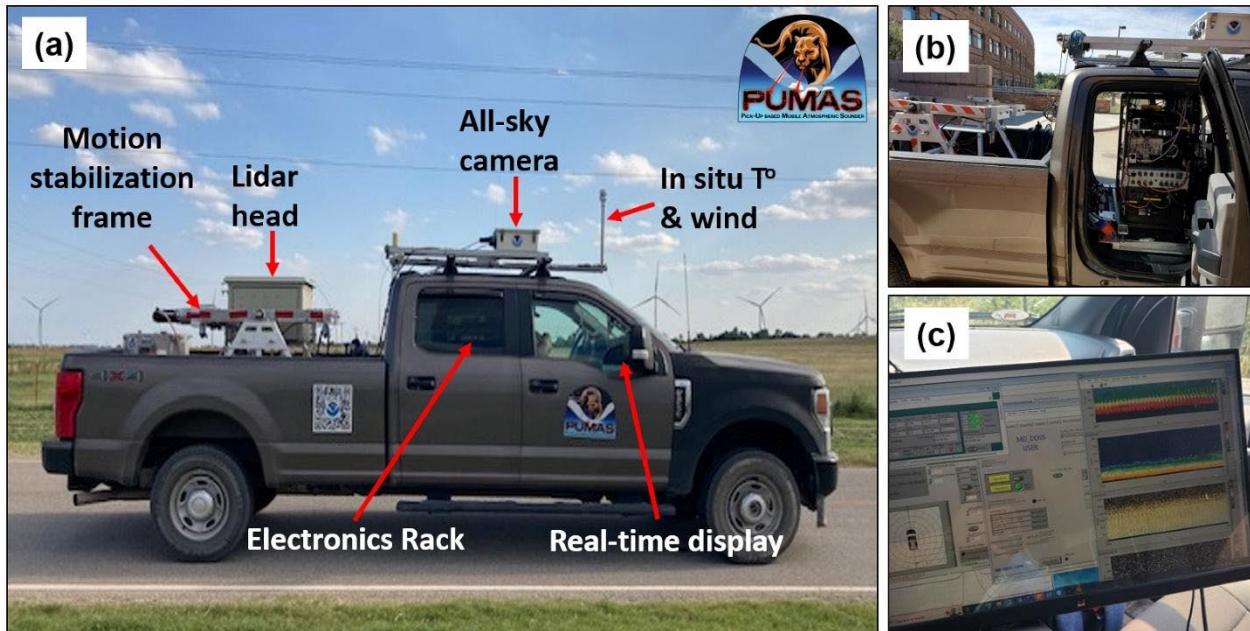
134 Table 1. Typical specifications of the MD3 lidar

Pulse Length	30, 60, 90 m
Pulse repetition frequency	20,000 Hz
Beam rate	2–10 Hz
Pulse energy	50 μ J
Beam diameter	7.62 cm
Orientation	vertical
Maximum range	7 km
Electrical power	120 V, 30 A
Wavelength	1.553 μ m (invisible and eye safe)

135 Many portable configurations of remote sensing instruments currently used for various
136 applications, including weather and atmospheric research, such as the Collaborative Lower
137 Atmospheric Mobile Profiling System (<https://www.nssl.noaa.gov/tools/clamps>), are considered
138 “mobile” systems. However, these systems must be delivered to the location of interest to provide
139 a stationary measurement or be used in a “go-and-stop-for-measurements” pattern. In contrast, the
140 mobile MD lidars developed at CSL/NOAA (Figure 1a–c) provide continuous measurements of w
141 and horizontal winds while the platform is moving, which is a significant advantage compared to

142 the constraint of stationary Doppler lidars to obtain vertical and horizontal wind profiles at one
143 location.

144 The truck-based measurements provide profiles of wind speed, wind direction, w , and aerosol
145 backscatter intensity, showing the wind flow variability in time, with height, and along the moving
146 path.


147
148 Figure 1. NOAA/CSL Mobile Doppler Lidar Systems: (a) Ship-based; (b) Aircraft-based; (c) Truck-based.

149 The mobile lidar measurements have been used for various environmental studies. The multi-
150 platform (aircraft and ground-based) setup was successfully used during recent wildfire and air-
151 quality experiments, providing a unique opportunity to characterize atmospheric processes,
152 including studies of fire plume transport dynamics, in better detail (Carroll et al. 2024; Strobach et
153 al. 2023, 2024). The combination of spatial and temporal coverage of the aircraft-based mobile lidar
154 measurements provides an advantage over traditional in situ or stationary profiling observations
155 offshore and inland, for example, to study the air quality of large urban areas
156 (<https://csl.noaa.gov/projects/aeromma/cupids/>). In the summer of 2024, the aircraft and truck-
157 based modifications were involved in multi-institutional projects to estimate emissions of methane,
158 greenhouse gases, and other significant air pollutants from oil and gas production facilities located
159 in urban and agricultural areas of Colorado (<https://csl.noaa.gov/projects/airmaps/>). Table A1 in
160 Appendix A shows a list of the CSL/NOAA field projects using mobile MD lidar on various
161 platforms. The results obtained from these experiments use the high precision and excellent
162 pointing accuracy of measurements from the ground-based, airborne, and shipborne deployments
163 and demonstrate success in developing a fully capable mobile Doppler lidar for environmental
164 studies.

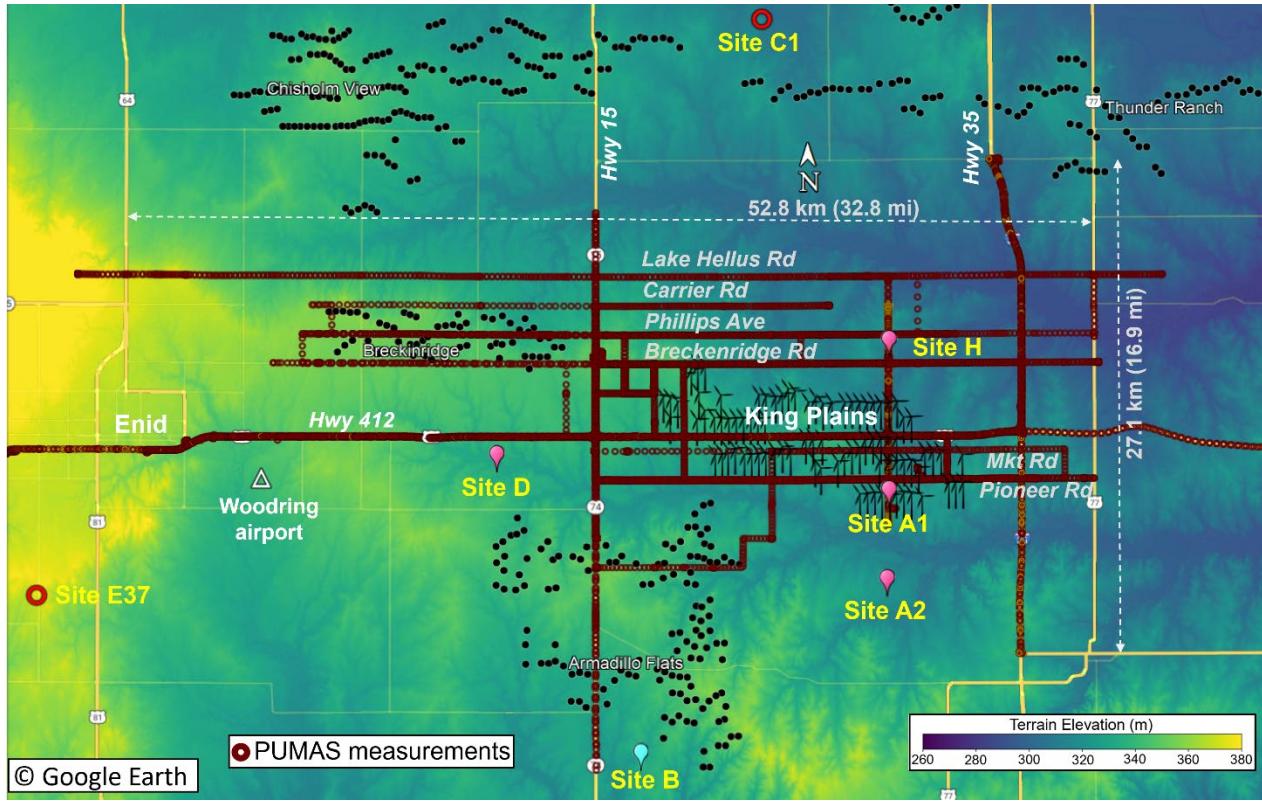
165

166 **2.1 Truck-based mobile lidar system**

167 The latest version of the truck-based lidar system (Figure 2), the PickUp-based Mobile
168 Atmospheric Sounder (PUMAS), was recently used to study the spatial structure of horizontal wind
169 and turbulence near wind farms in Colorado and north-central Oklahoma.

170
171 Figure 2. (a) Picture of PUMAS with indicated subsystems: Motion-stabilization frame, lidar head, all-sky
172 camera, the sensor for in situ measurements of temperature (T°) and wind speed; (b) the electronics rack
173 located in the back of a cabin; (c) real-time display located in the front of the cabin.

174
175 The PUMAS system (Figure 2a) included a motion-stabilization frame, the MD3 lidar head,
176 an all-sky camera, and sensors for in situ temperature (T) and wind speed measurements. The
177 electronics rack is located in the back of the cabin (Figure 2b), and the real-time display is in the
178 front of the cabin (Figure 2c). PUMAS provided continuous motion-compensated measurements of
179 wind flow and turbulence profiles driving on highways and dirt roads within wind farms. The two
180 motion-stabilized lidar beams—vertically pointed and conically scanning with $\pm 15^\circ$ of zenith—
181 provided simultaneous profiles of horizontal wind vectors, aerosol backscatter intensity, and w
182 statistics from 60 m AGL to the top of the atmospheric boundary layer under normal atmospheric
183 conditions and absence of precipitation. Data were obtained with a temporal resolution of 1–4 Hz
184 and an along-beam resolution of 30 m. Wind speed profiles were obtained with an along-path
185 resolution of 300–600 m, and w profiles every 10–30 m. Along-path resolution depends on the


186 driving speed and the road conditions but can be modified by changing accumulation time or scan
187 settings in the real-time display software.

188 During several pilot studies, PUMAS was tested around wind farms in Colorado (Appendix
189 B, Figure B1) to obtain information on system performance, measurement errors, and driving
190 strategies. The analysis of data from these test drives helped to set the science goals and a
191 measurement strategy for the participation of PUMAS in the AWAKEN campaign.

192 **3. American Wake Experiment**

193 The AWAKEN campaign is a U.S. Department of Energy (DOE) project led by the National
194 Renewable Energy Laboratory (NREL). It is a multi-institutional, long-term (2021–2025) study in
195 the U.S. Great Plains aiming to understand the interaction between wind farms and their
196 surrounding environment and improve the performance of wake models. Wind farms in the north-
197 central Oklahoma study area are located over relatively flat terrain (Figure 3a). More information
198 on the AWAKEN goals can be found here: <https://openei.org/wiki/AWAKEN>. Participating
199 organizations deployed various in situ and remote-sensing instruments to the study area, including
200 14 stationary scanning Doppler lidars and seven wind-profiling lidars. The full description,
201 measurement objectives, and locations of the AWAKEN instrumentation can be found in the
202 overview paper (Moriarty et al. 2024). The first benchmark study within the International Energy
203 Agency Wind Task 57 framework focused on wind plant wakes (Bodini et al. 2024). Detailed
204 information on the coordinated measurements from in situ and remote-sensing instruments,
205 including turbine nacelle-mounted lidars, is provided in AWAKEN-related papers (Bodini et al.
206 2024; Debnath et al. 2022, 2023; Krishnamurthy et al. 2021, 2025; Letizia et al. 2023; Moriarty et
207 al. 2024). The long-term measurements from scanning lidars (Newsom, R.K. and Krishnamurthy
208 R, 2020) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) and
209 AWAKEN sites provide additional information on wind and turbulence in the surrounding area
210 (Moriarty et al. 2024).

211 To support the AWAKEN science objectives, the CSL/ARS team operated PUMAS to
212 provide motion-compensated measurements of 3D wind flow and turbulence profiles from 15 Aug
213 to 12 Sep 2023. The measurements were mainly taken within and around the King Plains wind farm
214 (Figure 3), which comprised 88 General Electric wind turbines with a rated capacity of 2.82 MW,
215 a hub height of 89 m, and a rotor diameter of 127 m.

218 Figure 3. Wind farms in north-central Oklahoma are shown on the Terrain Elevation map (Debnath et al.
219 2022) by black dots. Turbine symbols show King Plains wind farm to underline the research focus on this
220 area. Red circles indicate the ARM SGP highly-instrumented Central Facility C1 and the extended facility
221 E37 (<https://www.arm.gov/capabilities/observatories/sgp>). Pink and cyan pins indicate AWAKEN lidar and
222 ASSIST sites used in this paper. The roads (transects), covered by PUMAS during AWAKEN, are shown
223 by dark red circles where each circle represents a profile measurement from 64 m up to several kilometers
224 AGL. The white triangle indicates the Woodring Regional Airport in Oklahoma, located about 8 km
225 southeast of the central business district of Enid, Oklahoma.

226 By considering the predominant wind direction estimated from various model forecasts at
227 the Enid Woodring Regional Airport in Oklahoma, a driving plan for each day was designed to
228 sample waked and free flows at various distances from the wind turbines (Figure 3). Transects were
229 repeated several times during 5–6 hours of measurements each day. At the beginning and end of
230 each transect, 5-minute measurements were made in a stationary position, and these data were used
231 to evaluate the system performance, as shown in Sect. 3.3.

232 In addition to PUMAS measurements, data from stationary Doppler lidars deployed at
233 various AWAKEN sites (Figure 3) were used for this paper. Data from the PNLL flux station were
234 used to estimate near-surface stability. Temperature and water vapor mixing ratios were estimated

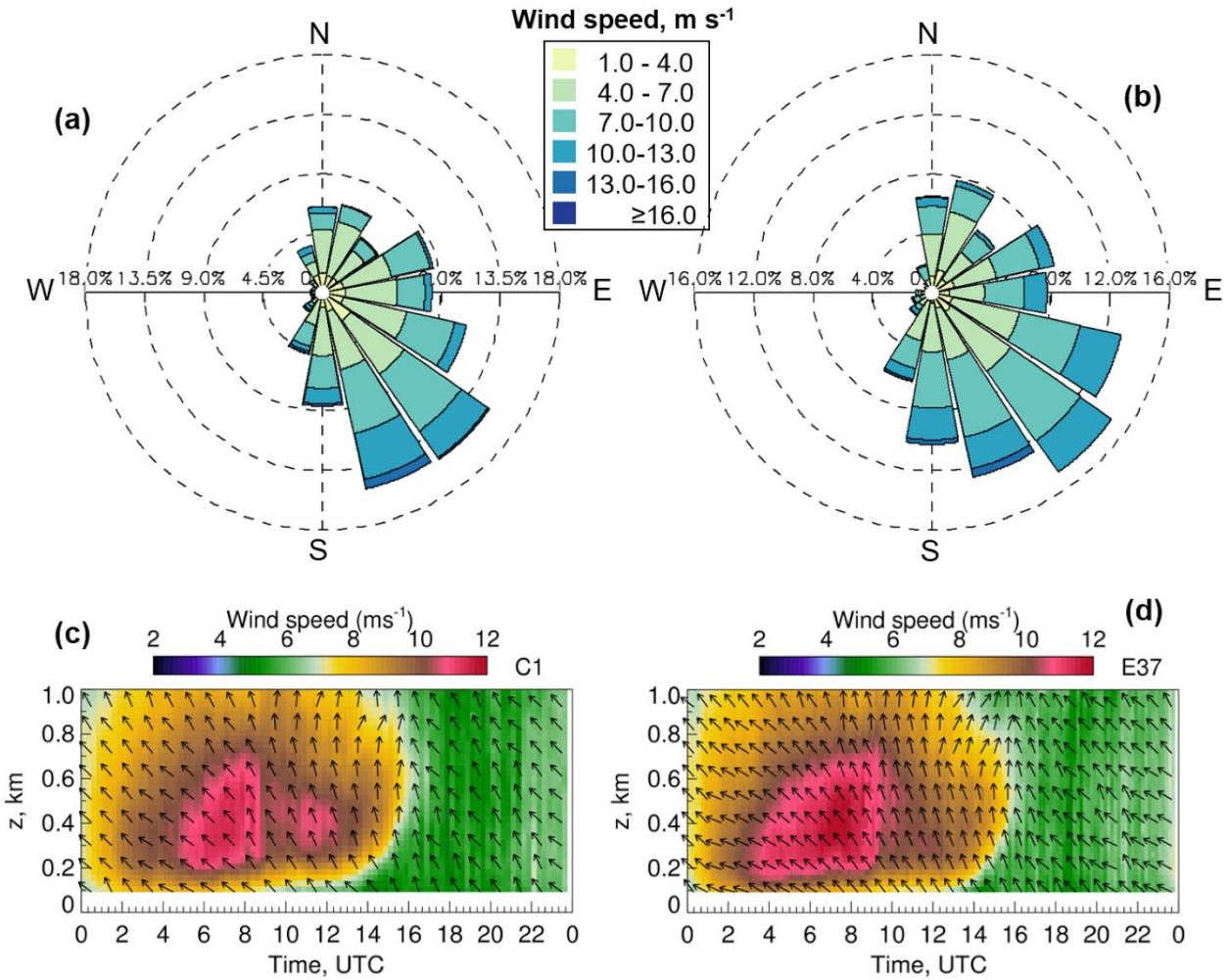
235 through the TROpoe retrieval (Turner and Blumberg, 2018; Turner and Loehnert, 2014) based on
236 observations from the NREL ASSIST-II spectroradiometer (Michaud-Belleau et al. 2025)
237 measurements at Site B (Figure 3). The list of instruments used in the paper is given in Table 2.

238 Table 2. Coordinates of sites and types of instruments used in the paper.

Site	Latitude	Longitude		Instrument
PUMAS	varied	varied		NOAA/CSL motion compensated system with HALO XR lidar
H	36.4370	-97.4077	sh.lidar.z02.c1	AWAKEN scanning Doppler lidar HALO XR
A1	36.3623	-97.4078	sa1.lidar.z03.c1	AWAKEN scanning Doppler lidar HALO XR
A2	36.3182	-97.4090	sa2.lidar.z01.c1	AWAKEN scanning Doppler lidar HALO XR
			sb.met.z01.b0	PNNL flux station
D	36.3799	-97.6465	sd.lidar.z01	Fraunhofer IWES's WindCube v2.0
C1	36.6050	-97.4850	sgpdlprofwind4newsC1.c1	ARM scanning Doppler lidar HALO XR
E37	36.3110	-97.9280	sgpdlprofwind4newsE37.c1	ARM scanning Doppler lidar HALO XR
B	36.2316	-97.5587	sb.assist.z01.c0	Assist II-11

239 **3.1 Meteorological conditions during PUMAS measurements in northern Oklahoma**

240 According to the Oklahoma Climatological Survey ([https://www.ou.edu/ocs/oklahoma-
241 climate](https://www.ou.edu/ocs/oklahoma-climate)), the AWAKEN study area is in the North Central climate division. This northern section
242 of the state is less influenced by the warm, moist air moving northward from the Gulf and
243 experiences less cloudiness and precipitation compared to the southern and eastern portions of the
244 state. Still, summers there are long and usually quite hot.


245 The surface wind statistics at the Enid Woodring Regional Airport, located 6.4 km southeast
246 of downtown Enid, show predominant south-southeast wind directions in August and September
247 2023 and 5 m s^{-1} mean winds with occasional gusts up to 10 m s^{-1} . The frequency of weak (1–4 m

248 s^{-1}) winds is high for both months (71% in August and 63% in September), whereas stronger winds
249 ($4\text{--}11 \text{ m s}^{-1}$) were less common (17% in August and 25% in September). The August–September
250 2023 average temperature in Enid was 86–93 °F (30–34 °C) for the daytime and 68–73 °F (20–23
251 °C) for nighttime, with 20–22 sunny days each month and two rainy days on 13–14 September
252 (www.windfinder.com/windstatistics/enid_woodringRegional_airport).

253 The ARM SGP atmospheric observatory with various in situ and remote-sensing instrument
254 clusters located in north-central Oklahoma and south Kansas near the AWAKEN study area (Figure
255 3). The scanning Doppler HALO Photonics lidars provide long-term wind and turbulence
256 measurements (Newsom R. K. and Krishnamurthy R. 2020) at the SGP central facility, C1, and
257 four extended sites (E32, E37, E39, E41) and are used in many studies and experiments such as the
258 Plains Elevated Convection at Night field campaign (Geerts et al. 2017) or the Land-Atmosphere
259 Feedback Experiment (Wulfmeyer et al. 2018; Pichugina et al. 2023, 2024).

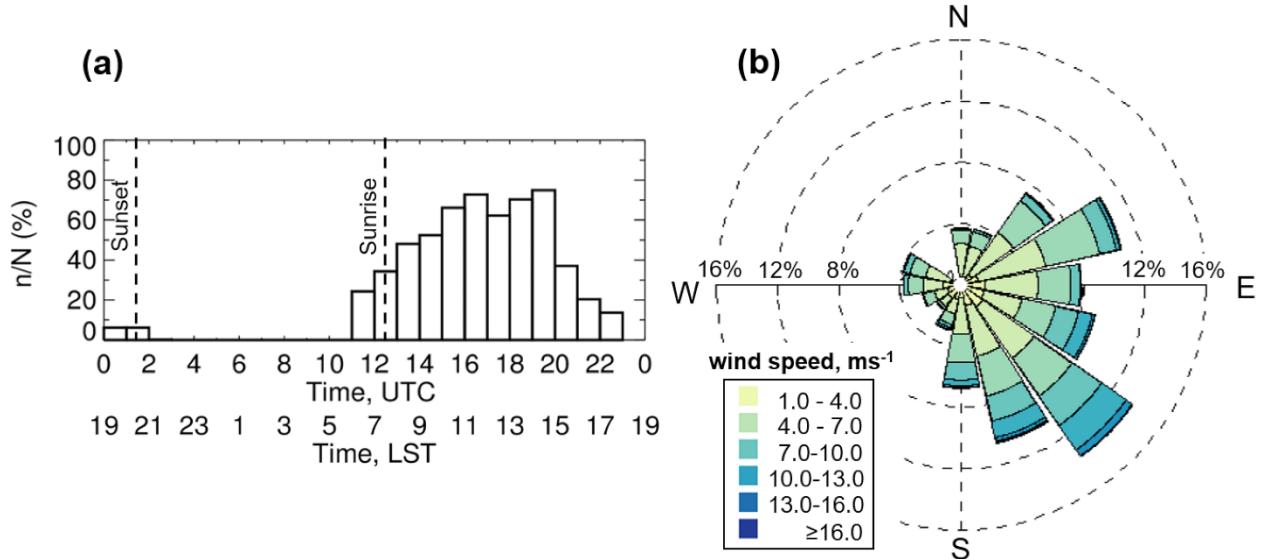
260 A 6-year analysis of (2013–2019) Doppler lidar data at C1 located north of the King Plains
261 wind farm (Figure 3) confirms predominant southeast and south-southeast wind directions at 91 m
262 AGL in August and September (Krishnamurthy et al. 2021). Another detailed study of winds from
263 Doppler lidars at the five SGP sites revealed that the interannual (2016–2022) variability of monthly
264 mean summer nighttime winds in the layer of 700 m AGL was more significant (4 m s^{-1}) compared
265 to the wind variability ($1\text{--}3 \text{ m s}^{-1}$) between sites, which are separated by 56–77 km, characterized
266 by different vegetation types, and have elevations that vary between 279 and 379 m above sea level
267 (ASL) (Pichugina et al. 2023). They also reported predominant south-southeast nighttime winds at
268 all sites and frequent wind maxima at $\sim 300 \text{ m}$.

269 Wind roses of 91 m winds from stationary Doppler lidar measurements on Aug. 15–Sept.
270 12, 2023, at two ARM SGP sites (C1 and E37) closest to the King Plains wind farm show wind
271 directions from north to southwest with predominant southeasterly winds (Figure 4a, b). Time-
272 height cross sections of winds averaged over 15 Aug–12 Sep 2023 (Figure 4c, d) were moderate
273 ($8\text{--}12 \text{ m s}^{-1}$) at night and weaker ($4\text{--}6 \text{ m s}^{-1}$) during daytime. At both sites, wind directions below
274 300 m were primarily southeasterly, with some episodes of southerly winds at higher elevations.
275 At C1 (Figure 5c), LLJ development is evident within 200–700 m AGL around $\sim 0500\text{--}1200 \text{ UTC}$,
276 whereas at the western E37 site, located 51 km to the southwest of C1 (Figure 3), the LLJ developed
277 earlier in the 100–700 m layer.

278

279 Figure 4. Wind roses of 91 m winds from Doppler lidars at the ARM SGP sites (a) C1 and (b) E37 for all
 280 hours of measurements during 15 Aug-12 Sep 2023. (c, d) Time-height cross sections of period-mean wind
 281 speed (colors) and wind direction (arrows) from each Doppler lidar. Local Time=UTC-5.

282 **3.2 Statistics of PUMAS measurements.**


283 As mentioned, PUMAS participated in the AWAKEN experiment from 15 Aug to 12 Sep
 284 2023. Only 20 days of good measurements were available due to poor weather conditions (heavy
 285 rain) and technical issues such as flat tires or lidar-system-component issues. Four days were spent
 286 on a round trip between Boulder, Colorado, and Enid, Oklahoma. During each 982 km one-way
 287 commute, PUMAS provided continuous measurements of wind speed, wind direction, and w . The
 288 system performance was monitored and corrected as needed in real time, including motion-
 289 compensation parameters such as transceiver pitch, roll, and heading; platform velocity and
 290 coordinates; and estimates of the lidar beam azimuth and elevation in a world reference frame.

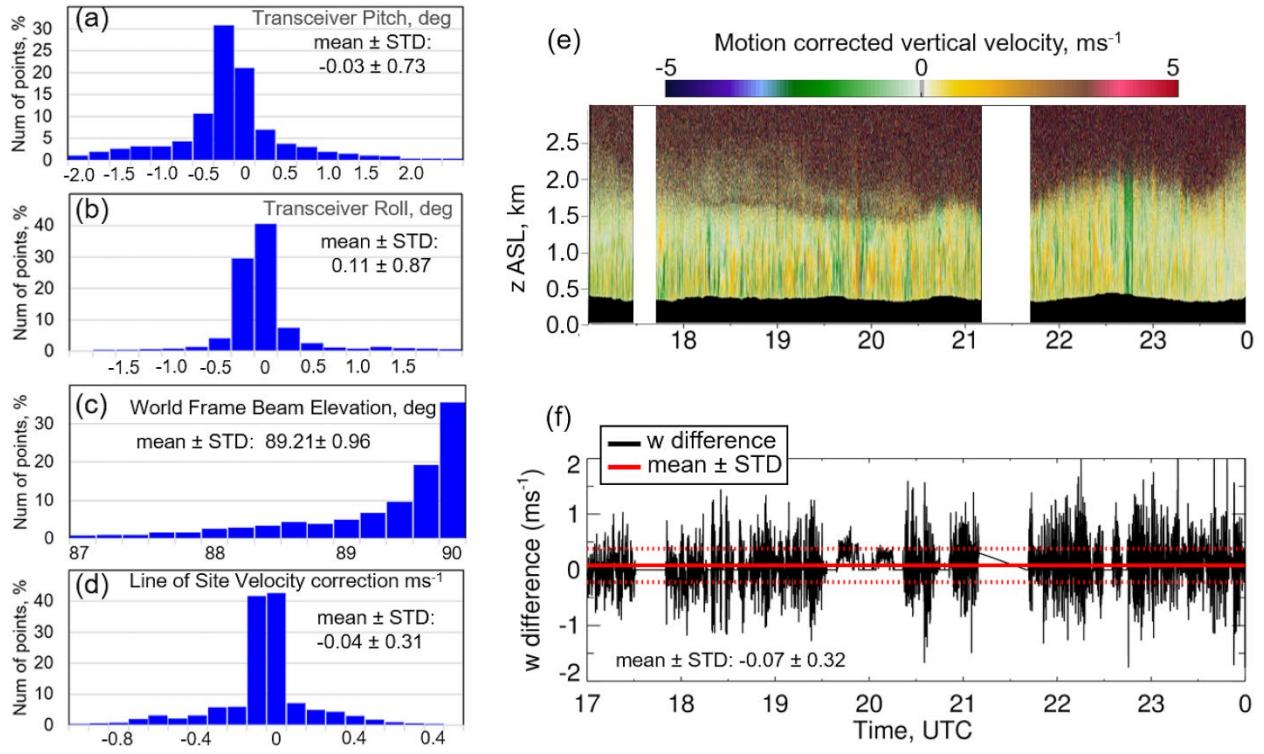
291 Overall, during the 20 driving days, PUMAS was on the road 81 hours, covering 3930 km
292 (2443 mi) and providing 16,955 profiles of horizontal winds and w excluding data obtained during
293 Denver–Oklahoma commutes.

294 The distribution of PUMAS operation hours (Figure 5a) shows that the most intense
295 measurement period was in the late morning to midday (1500–2000 UTC). Nighttime
296 measurements during stable conditions, when turbine wakes could be better observed due to the
297 more substantial wind speeds and lower turbulence, were limited by the country road conditions
298 and pure visibility of the upcoming crossroads traffic. It was expected that some events, such as the
299 nocturnal LLJ, a frequent Great Plains phenomenon (Banta et al. 2002), would not be captured in
300 the late mornings. However, the dissipation times of the LLJ often depend on synoptic conditions,
301 and in some cases, LLJ can be observed after sunrise hours (Carroll et al. 2019; Squitieri B. J. and
302 W. A. Gallus 2016; Pichugina et al. 2023).

303 The wind rose of the 64–160 m layer wind speeds (Figure 5b) shows the dominance of
304 southeasterly winds during PUMAS measurements. Strong ($>15 \text{ m s}^{-1}$) winds were observed in
305 13% of the southerly cases, followed by 10% in southeasterly and 7% in southwesterly directions.
306 Based on the $d\theta/dz$ data from the ASSIST at Site B, the majority of PUMAS measurements were
307 taken under unstable conditions (88.3%) as estimated from the ASSIST measurements at Site B.
308 Stable conditions were observed in 7.8% of cases, and near-neutral conditions were observed in
309 3.9% of cases.

310

311

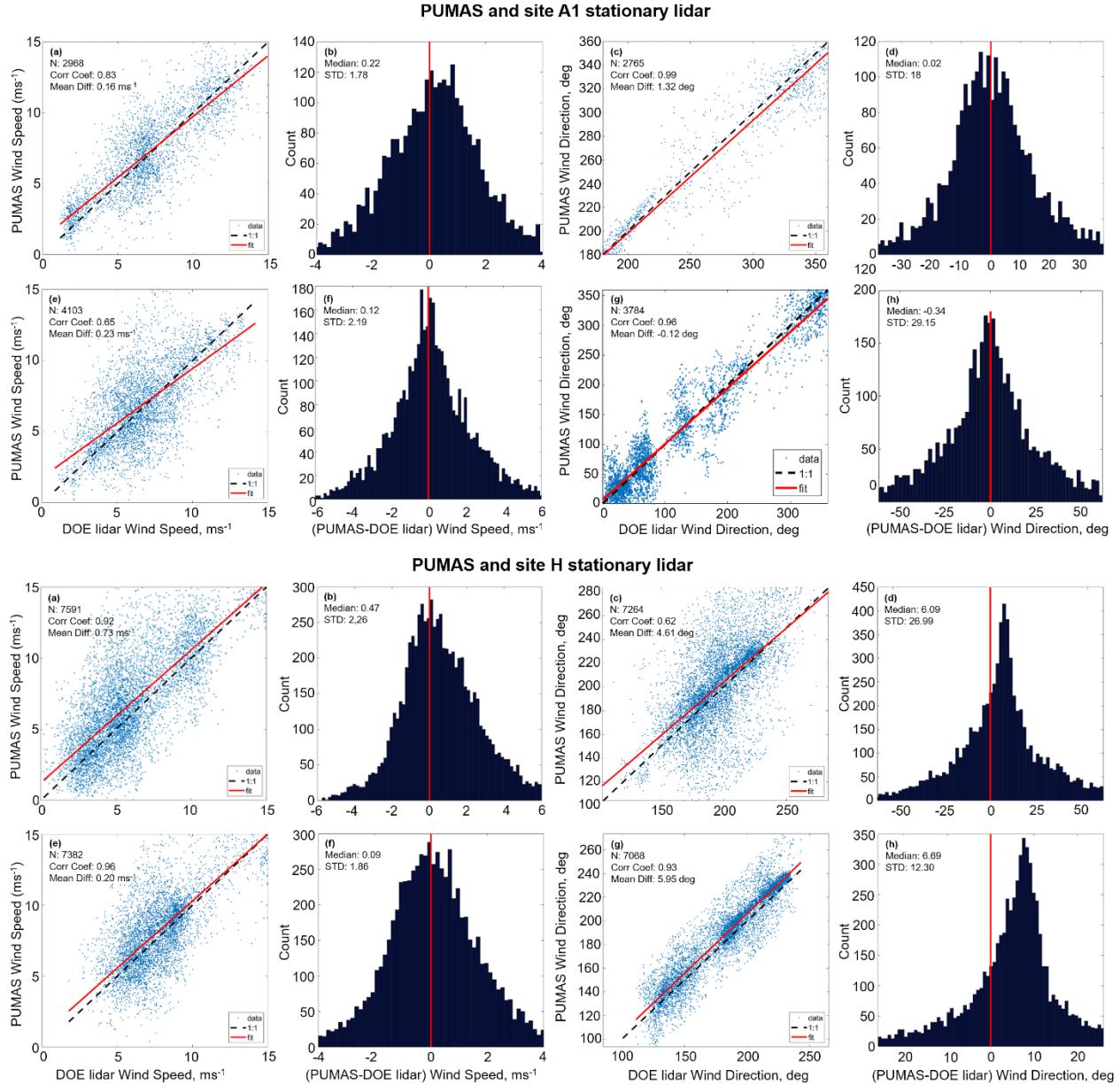

312 Figure 5. (a) Diurnal distribution of the PUMAS hours of operation during AWAKEN; (b) Wind rose of
 313 turbine level (64–160 m) winds from the PUMAS measurements.

314 **3.3 Platform stabilization and motion correction**

315 Active stabilization and pointing correction, implemented in the mobile lidar system,
 316 compensates for truck motions such as pitch and roll (Figure 6a, b) removing the effect of bumps
 317 on w while PUMAS is moving. In other words, the stabilization and motion-corrected system allow
 318 measurements of the w to be obtained without mixing in the projection of the horizontal wind speeds
 319 and their variation. Correction of the pitch and roll motions keeps the lidar beam elevation angle in
 320 a world frame at 89.21° on average with a standard deviation of ± 0.96 (Figure 6c) to obtain
 321 corrected line-of-sight velocity with an accuracy of $-0.04 \pm 0.31 \text{ m s}^{-1}$. An example of the motion-
 322 corrected vertical velocity from PUMAS measurements on 7 Sep (Figure 6e) shows significant
 323 turbulence in the first 1 km ASL and illustrates the 287–415 m variability of the terrain covered by
 324 PUMAS on this day. The mean difference between measured and motion-corrected w at 105 m
 325 (Figure 6f) is $0.08 \pm 0.32 \text{ m s}^{-1}$.

326

327



328

329 Figure 6. (a-d) Distributions (%) of the truck motion correction from PUMAS vertical velocity
 330 measurements on 15 Aug–12 Sep 2023, during AWAKEN. Mean \pm standard deviation (STD) is shown on
 331 the panel for each parameter. (e) A sample of motion-corrected vertical velocity measurements from 17:00
 332 to 24:07 UTC on 7 Sep 2023. Terrain elevation above sea level (ASL) covered by PUMAS on this day is
 333 shown in black. The white areas indicate missing data. (f) Time series of a (black) difference between
 334 measured and motion-corrected vertical velocity on 7 Sep 2023 at 105 m above ground level (AGL). Red
 335 solid line shows a period-mean difference. Dotted red lines show STD from the mean.

336 As mentioned, PUMAS provided 5–7 min of measurements in a stationary position at the
 337 beginning and the end of each transect. Measurements collected by PUMAS in a stationary position
 338 or while driving within a 2 km radius of a DOE stationary lidar at Site A1 or H are used to estimate
 339 the accuracy of PUMAS’s horizontal wind speed and direction by comparing the PUMAS and DOE
 340 lidar measurements as shown in Figure 7 and summarized in Table 3. The different number of wind
 341 speed and direction points (count) for each case is because the 3-sigma outlier rejection (see
 342 Pichugina et al. 2020) to the 1:1 fit was applied for speed and direction separately, leading to a
 343 different number of outlier points removed for speed and for direction. High correlation coefficients
 344 were obtained for wind speed (0.83–0.96) and wind direction (0.93–0.99) from PUMAS
 345 measurements in a stationary position and while moving except two cases when correlation
 346 coefficients were 0.65 between wind speed from the stationary PUMAS and Doppler lidar at Site
 347 A1, and 0.62 between wind direction from the moving PUMAS and Doppler lidar at Site H. The

348 larger offset in wind direction histograms was observed between PUMAS and Doppler lidar at Site
 349 H. Detailed analysis of these results is beyond the scope of this paper.

350
 351 Figure 7. Comparison of horizontal wind and direction between PUMAS and DOE stationary Doppler lidar
 352 at Sites A1 and H: (a-d) from PUMAS measurements in stationary position collected within 2 km radius
 353 from DOE stationary Doppler lidar; (e-h) from moving PUMAS measurements collected within 2 km radius
 354 from DOE stationary Doppler lidar.

355

356

357 Table 3. Statistics from the comparison of wind speed and direction measurements from PUMAS
 358 and stationary Doppler lidars.

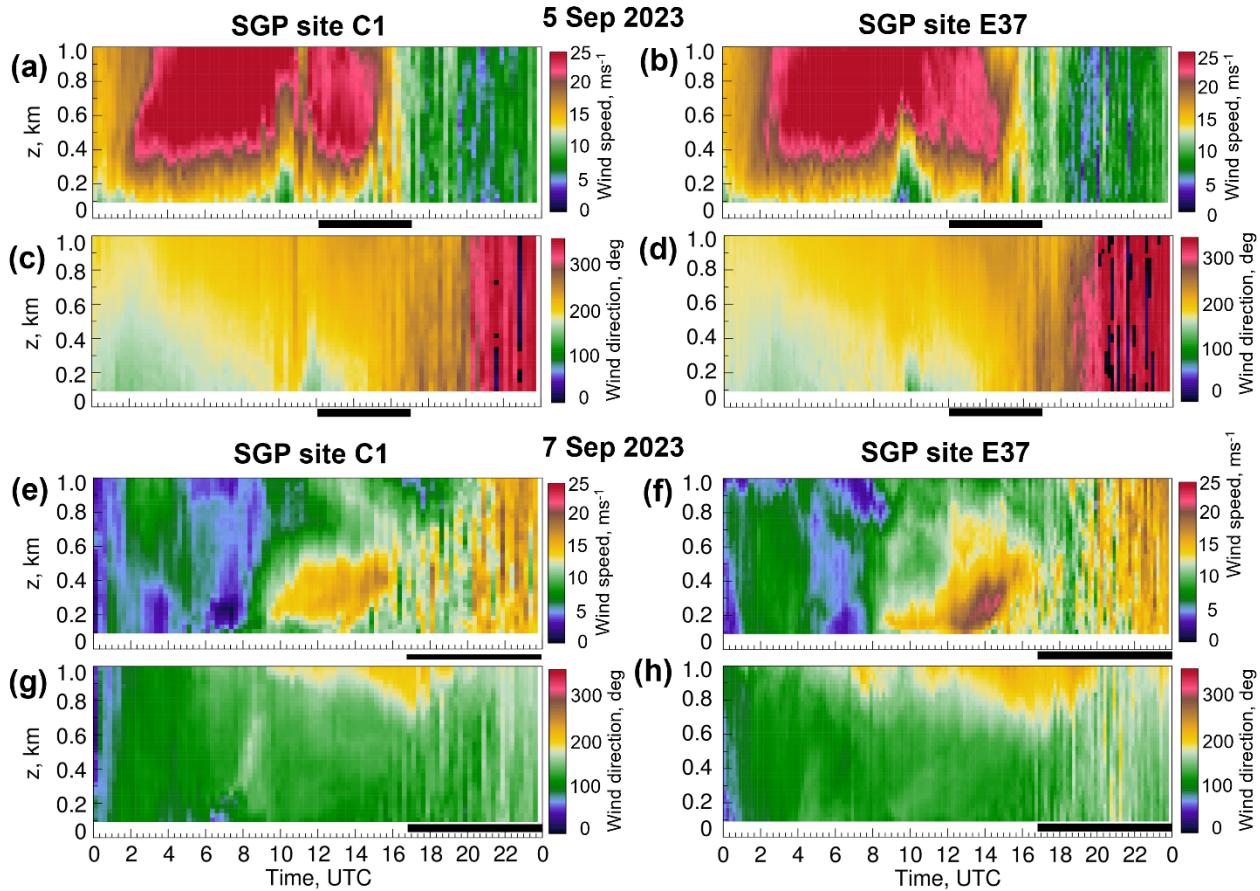
359

PUMAS vs. Stationary Doppler Lidar at Site A1						
PUMAS measurements	Data	Scatter plots statistics			Histogram statistics	
		Count	Cor Coef	STD	Medium	STD
Stationary	<i>Wind speed</i>	2968	0.83	0.16	0.22	1.78
	<i>Wind direction</i>	2765	0.99	1.32	0.02	18.0
While moving	<i>Wind speed</i>	4103	0.65	0.23	0.12	2.19
	<i>Wind direction</i>	3784	0.96	-0.12	-0.34	29.15

PUMAS vs. Stationary Doppler Lidar at Site H						
Stationary	<i>Wind speed</i>	7591	0.92	0.73	0.47	2.26
	<i>Wind direction</i>	7264	0.62	4.61	6.09	26.99
While moving	<i>Wind speed</i>	7382	0.96	0.20	0.09	1.86
	<i>Wind direction</i>	7068	0.93	5.95	6.69	12.30

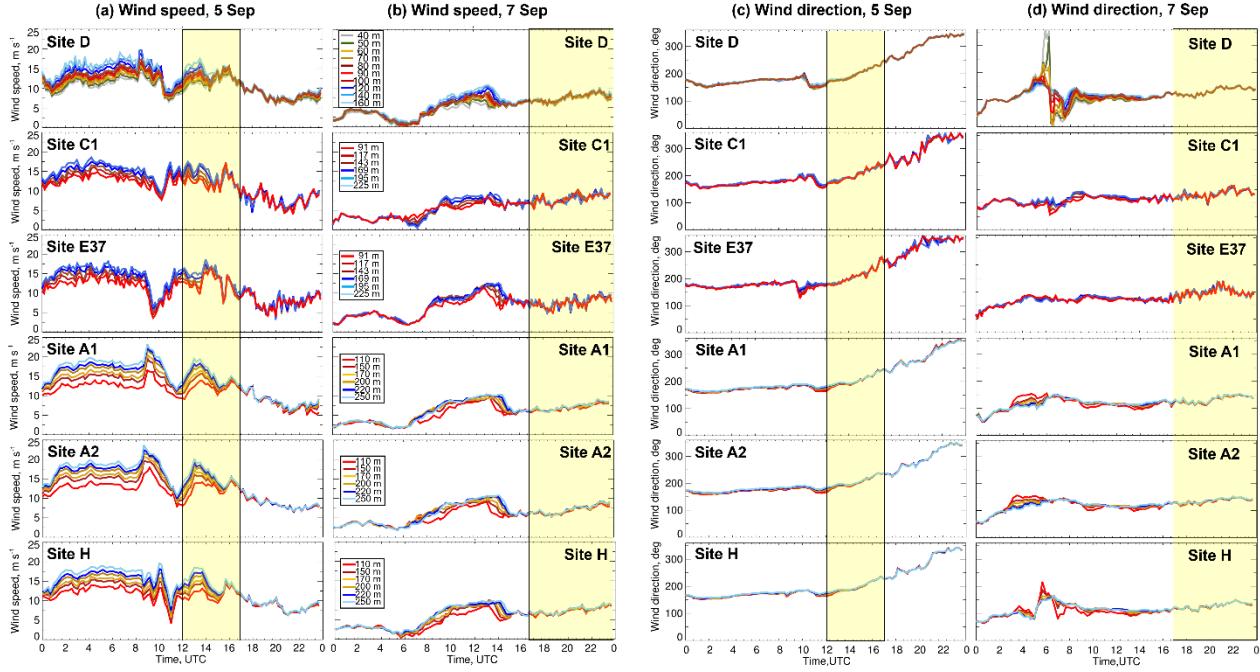
360

361 Overall, Figures 6 and 7 and Table 3 clearly illustrate success in developing a fully capable
 362 mobile Doppler lidar that compensated for the truck's motions to provide accurate wind
 363 measurements. The uncertainty of the horizontal wind speed and direction estimated by the VAD
 364 technique (Banta et al. 2013) from PUMAS line-of-sight velocity measurements during AWAKEN
 365 was found to be very small with mean and standard deviations of $0.014 \pm 0.008 \text{ m s}^{-1}$ for wind
 366 speed and $0.12^\circ \pm 0.18^\circ$ for wind direction. The accuracy of motion-compensated measurements
 367 from mobile lidars was tested against stationary Doppler lidar measurements during several field
 368 campaigns. Examples of active stabilization and the accuracy of diurnal measurements from ship-
 369 based lidar during the offshore VOCALS campaign (Table A1) are provided in the Supplemental
 370 Material (S1a, b). Examples (S2a, b) illustrate a high correlation for wind speed (0.89, 0.90) and
 371 direction (0.93, 0.99) obtained from two experiments while PUMAS was driving within a 2.5 km
 372 radius from the stationary lidar (S2c) and when PUMAS provided measurements in a stationary
 373 position for several months (S2d).


374 **4. 5 and 7 September case studies: Fixed-site context measurements.**

375 Two days, 5 and 7 Sep, were selected to illustrate the PUMAS measurements and analysis
376 techniques. The data on these days were obtained during morning transition (5 Sep) and day-
377 evening transition (7 Sep) periods, characterized by some difference in wind conditions and BL
378 stability. In this section we characterize the boundary layer evolution on these days based on fixed-
379 location sensor measurements. Figure 8 shows wind speed (Figure 8a, c) and direction (Figure 8b,
380 d) on these days from stationary Doppler lidars at SGP Site C1 (left) and SGP Site E37 (right).

381 **4.1 Wind speed and direction from stationary Doppler lidars**


382 On 5 Sep (Figure 8a, b), during a period of PUMAS operations in the early morning hours
383 (1143–1645 UTC, 0543–1045 LST), both SGP lidars show strong ($15\text{--}25\text{ m s}^{-1}$) wind speeds and
384 the development of the LLJ at 0200–1500 UTC (LST=UTC-5hours) with the LLJ maximum at 600
385 m. Wind directions (Figure 8c, d) in the first 200–300 m AGL changed from southeasterly at
386 nighttime, veering to southwesterly from late morning to afternoon and becoming northerly in the
387 evening hours (after 1800 UTC). The wind speed ramp-down event observed at ~0900–1100 UTC
388 below 400 m, is most likely another example of an atmospheric bore, as analyzed in this region by
389 Pichugina et al. (2024). It corresponds to a transient shift to a more southwesterly wind direction.
390 Such significant increases or decreases in wind speed lasting for a half-hour or more are difficult to
391 forecast but may significantly affect turbine operations.

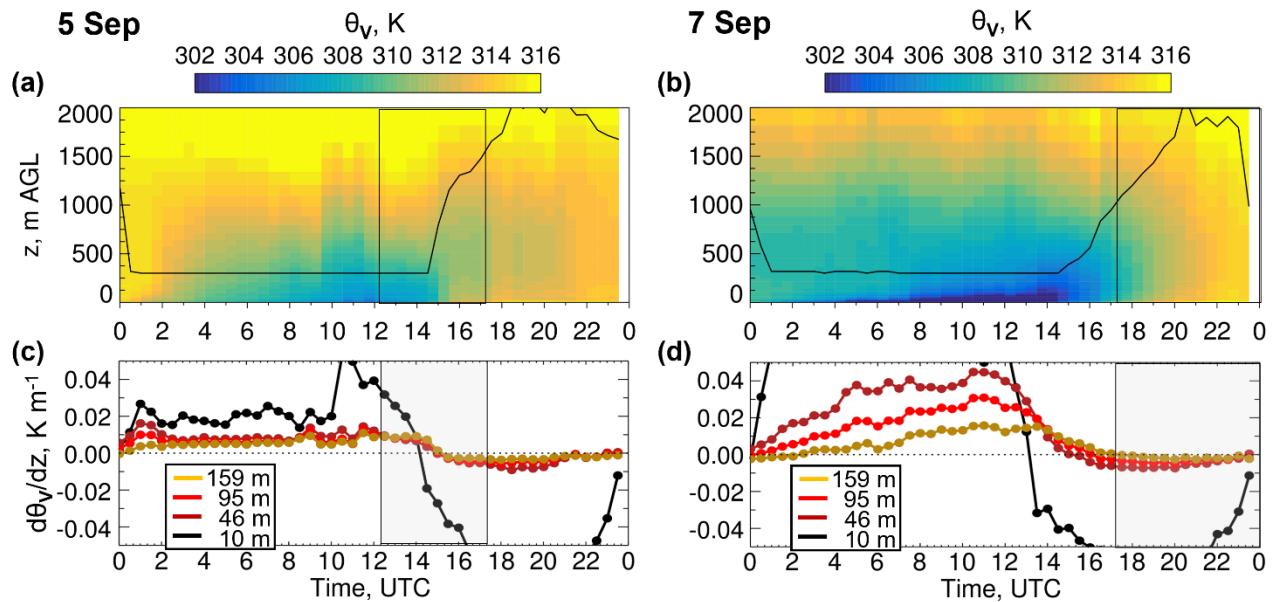
392 On 7 Sep (Figure 8e–h), both SGP lidars showed weak ($<4\text{ m s}^{-1}$) nighttime winds that
393 increased to $8\text{--}12\text{ m s}^{-1}$ by 0900–1000 UTC (Figure 8c). The LLJ of $\geq 15\text{ m s}^{-1}$ developed at Site C1
394 at 1400–1500 UTC below 400 m while stronger ($15\text{--}20\text{ m s}^{-1}$) LLJ developed at Site E37 around
395 1300–1500 UTC below 300 m. Wind directions (Figure 8g, h) were primarily east-southeasterly
396 ($100^\circ\text{--}150^\circ$) at both sites.

398
399 Figure 8. Time-height cross sections of wind speed and wind direction from stationary lidar measurements
400 at the SGP Sites C1 (left) and E37 (right) measurements on (a-d) 5 Sep and (e-h) 7 Sep 2023. Black lines
401 indicate periods of PUMAS measurements on these days. The temporal resolution of lidar data at C1 is 15
402 min and at E37 is 10 min. Lidar data at SGP sites can be found at the DOE ARM archive:
403 <http://dx.doi.org/10.5439/1178582>.

404 Time series of wind speed and direction (Figure 9) at the six lowest heights from all
405 stationary lidars depicted in Figure 4 also show similar trends in the evolution of wind flows, despite
406 a significant distance between these instruments and locations at different terrain over the
407 AWAKEN research area (Figure 4). In Figure 9, all lidars show highly variable wind speeds on 5
408 Sep, with an indication of a ramp event around 0900–1200 UTC and weaker, less variable winds
409 on 7 Sep.

411

412 Figure 9. Time series of (a, b) wind speed and (c, d) wind direction from six stationary Doppler lidars at
 413 lowest heights on 5 Sep and 7 Sep. The location of lidar sites (Site D, Site C1, Site E37, Site A1, Site A2,
 414 and Site H) are shown in Figure 4. The heights of measurements are indicated in the legend for each lidar.
 415 Periods of PUMAS operations in a field on 5 Sep and 7 Sep are highlighted by the yellow color.

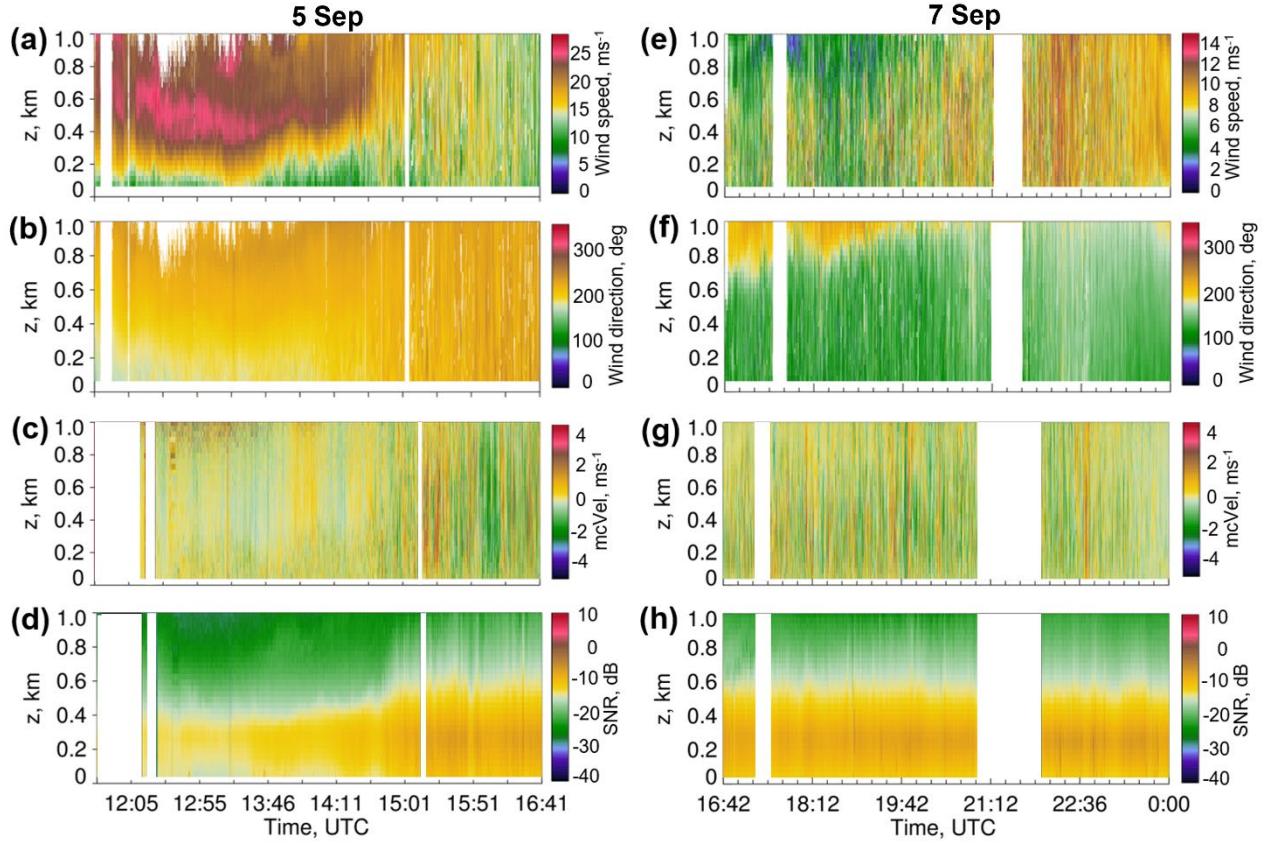

416 Interestingly, this pattern changed little between lidar measurements of inflow at Site A2
 417 and waked flow at Site H during the period of PUMAS measurements highlighted by the yellow
 418 color (Figure 9). On 5 Sep, the mean wind speed at Site A2 was 0.8 m s^{-1} larger, and on 7 Sep, mean
 419 winds were 0.46 m s^{-1} weaker compared to Site H. The difference in wind direction between sites
 420 was 6.39° on 5 Sep and 7.83° on 7 Sep.

421 4.2. Stability on 5 and 7 September 2023

422 The virtual potential temperature (θ_v) computed from the TROPoe retrievals (Turner et al.
 423 2014) of temperature and water vapor mixing ratio from thermodynamic profiler (ASSIST) data at
 424 Site B is shown (Figure 10a, b) for 5 Sep and 7 Sep. The time-height cross sections show cooler
 425 temperatures near the surface prior to 16 UTC and warmer daytime surface temperatures after 17
 426 UTC, and also the growth of the convective layer (black line) after 15 UTC, on both days. Stability
 427 estimates based on the virtual potential temperature gradient ($d\theta_v/dz$) show stable conditions at the
 428 beginning of PUMAS measurements on 5 Sep that changed to unstable by the end of the period

429 (Figure 10c), whereas on 7 Sep, the unstable conditions were observed during all hours of PUMAS
 430 operations (Figure 10d).

431


432

433 Figure 10. (a) Virtual potential temperature (θ_v) from ASSIST data at Site B on (a) 5 Sep and (b) 7 Sep.
 434 Black lines show planetary boundary layer height (m) derived from the retrieved fields. Virtual potential
 435 temperature gradient ($d\theta_v/dz$) on (c) 5 Sep and (d) 7 Sep at 10 m AGL and three heights within the limits
 436 of turbine blades. Gray shaded areas indicate periods of PUMAS measurement on each day.

437 5. PUMAS measurements on 5 and 7 September 2023

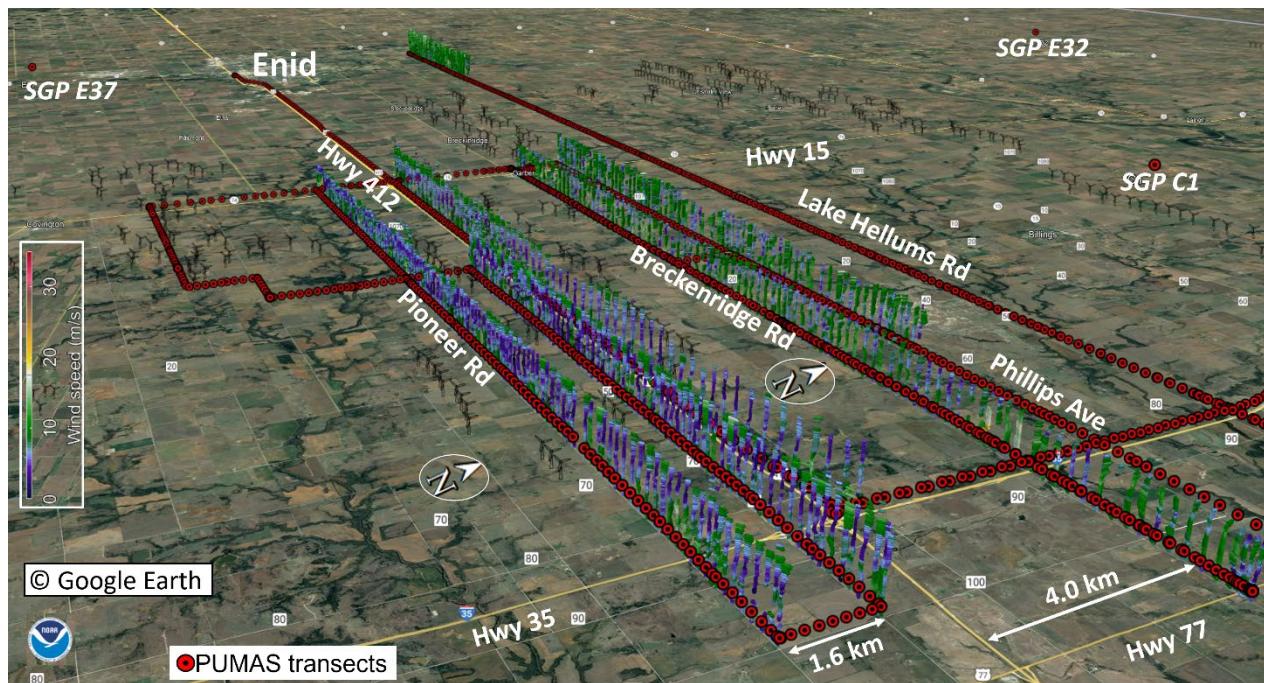
438 The PUMAS data, obtained with high temporal resolution and a significant spatial
 439 distribution over driving transects (see the following subsections), show a similar evolution of wind
 440 speed and direction to the stationary SGP lidars (Figure 8) for the period of PUMAS operations.

441

442

443 Figure 11. PUMAS-measured time-height cross sections of (a, e) wind speed, (b, f) direction, (c, g) motion-
 444 corrected vertical velocity, and (d, h) SNR (signal-to-noise ratio) intensity from simultaneous (Figure 11a,
 445 b, e, f) scanning and (Figure 11c, d, g, h) vertically-pointing data on 5 Sep (left column) and 7 Sep (right
 446 column). White areas indicate missing data.

447 On 5 Sep (Figure 11a–d), PUMAS measurements in the morning hours (1143–1645 UTC)
 448 show an LLJ mixing out after 1500 UTC. The data captured strong ($\geq 15 \text{ m s}^{-1}$) morning (~1200–
 449 1500 UTC) wind speeds at higher elevations and the LLJ of $\sim 25 \text{ m s}^{-1}$ at 500–600 m (Figure 11a).
 450 The wind directions were predominantly south-southwesterly (~200°) with short periods of
 451 southerly winds below 200 m (Figure 11b). Stronger convective mixing was observed after 1500
 452 UTC (Figure 11c) as BL depth increased from 400 m to 600 m AGL (Figure 11d) and stability
 453 within rotor heights changed from stable to unstable (Figure 10c).

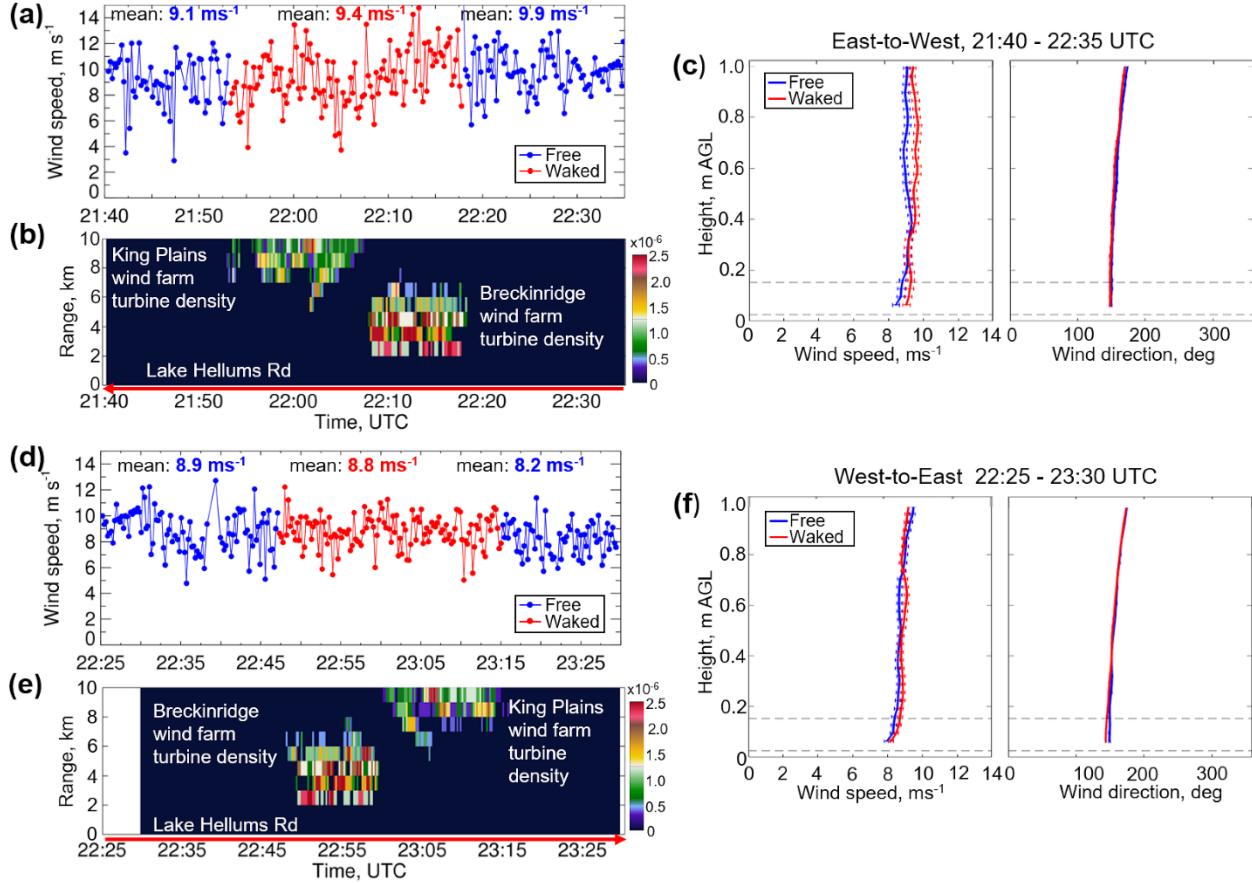

454 On 7 Sep (Figure 11e–h), PUMAS operated in the field for about 7 hours from late morning
 455 to the evening (1642–0007 UTC). Similar to 5 Sep, the agreement in trend (wind speeds increasing
 456 through the period) between data from stationary SGP lidars and PUMAS measurements was
 457 evident, although PUMAS sampled somewhat weaker winds. The daytime (1642–2100 UTC),
 458 southeasterly (120°–140°) winds of $5\text{--}8 \text{ m s}^{-1}$ increased by the evening to $10\text{--}12 \text{ m s}^{-1}$ (Figure

459 11e).and veered to south-southeasterly (160° – 170°) below 600 m (Figure 11f). The steady mixing
460 with the BL height to >600 m was observed during most of a period (Figure 11g, h) characterized
461 by the unstable BL conditions (Figure 10d).

462 The next sections will provide a closer look at PUMAS measurements during selected
463 days starting with 7 Sep, the longest period of measurements characterized by moderate (6–12 m
464 s^{-1}) wind speed and unstable BL conditions, which were common for most days during PUMAS
465 operations.

466 5.1 7 September case study, southeasterly winds

467 Throughout the previous sections, 5 Sep was discussed first, then 7 Sep. Here, we change
468 the order and start with the case study on 7 Sep, as it was the longest period of PUMAS
469 measurements, and these data were taken during the most frequent (Figure 5a) late-morning (1600–
470 2000 UTC) hours. Relatively calm wind speeds and southeasterly directions this day are more
471 common for many other days in contrast to the 5 Sep case of strong, southwesterly winds. On 7
472 Sep, PUMAS operated in the field for 7 hours and 25 min (1642–0007 UTC), covering more than
473 422 km. A 3D visualization of wind profiles (Figure 12) measured on 7 Sep along several transects,
474 out of 34 total for the day, illustrates stronger (≥ 10 m s^{-1}) winds in green colors compared to weaker
475 (≤ 5 m s^{-1}) winds shown by purple colors.


476

478 Figure 12. Samples of wind profiles along some transects on 5 Sep 2023, embedded on Google Earth, are
 479 rotated clockwise $\sim 45^\circ$ for a better view. Profiles are shown up to 1.5 km AGL, and wind speed is scaled
 480 from 0 to 30 m s $^{-1}$ according to the color scale on the left side of this figure. The horizontal distance between
 481 profiles is about 300 m. White arrows indicate distances between illustrated transects along the named roads.
 482 Gray circles indicate the ARM SGP sites (C1, E37, and E32).

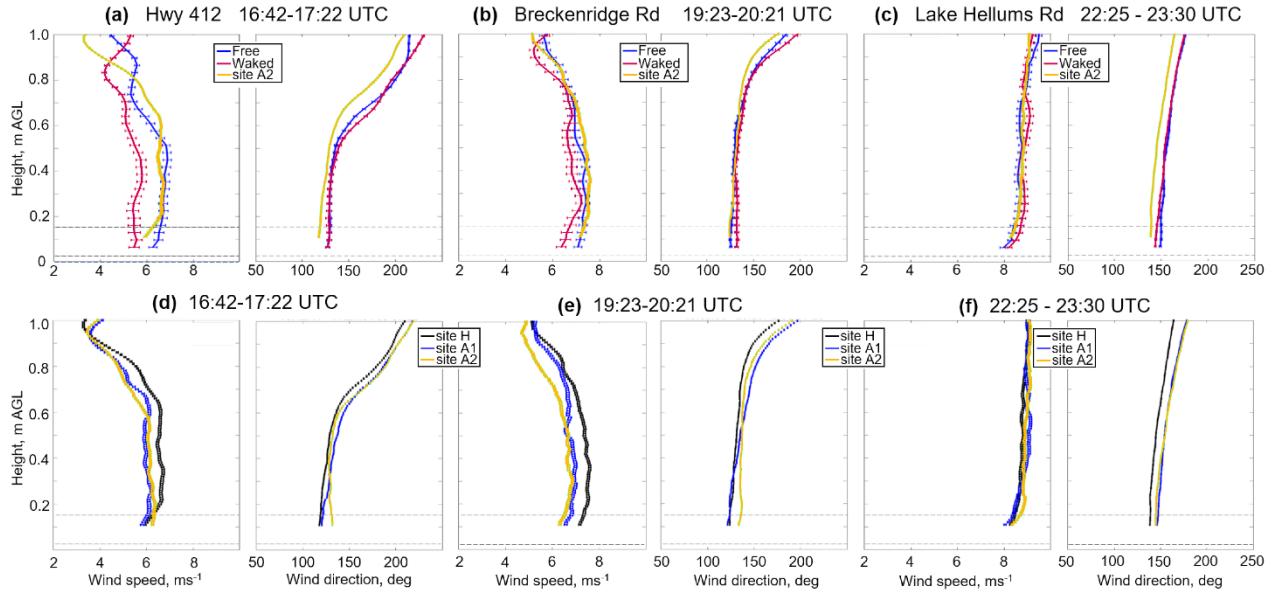
483 **5.2 Technique to estimate free and waked flows**

484 A technique to estimate wind speed for sections of a transect that are in the shadow of wind
 485 turbines (waked flow) or free from the turbine influence (free flow) is based on the density of
 486 upstream wind turbines that may impact wind measurements, computed within 10 km from the road
 487 (Figure 13b, e) including all Breckinridge wind farm turbines located within 2–4.7 km from this
 488 road (note a slight spelling difference in the road and wind-farm names). This example did not
 489 consider some of the King Plains and all Armadillo Flats turbines located more than 10 km from
 490 the road. The influence of turbines on wind-speed measurements (turbine shadow) was estimated
 491 within a 20° arc ($\pm 10^\circ$ turbine shadow) from each point of a PUMAS measurement of wind
 492 direction. Sections of a transect indicated by red in the wind time series (Figure 13a, d) are
 493 considered waked, whereas those considered as not influenced by wind turbines (free flow) are
 494 blue.

495 Figure 13 a, d shows time series of the rotor-layer (64–150 m) mean wind speed measured
 496 during the east-to-west (EW, 59.2 km) and west-to-east (WE, 55.4 km) transects on Lake Hellums
 497 Rd. (Figure 12). Mean rotor-layer winds in the free-flow sectors along the EW transect increased
 498 from 9.1 to 9.9 m s $^{-1}$, whereas on the return WE transect, the winds decreased from 8.9 to 8.2 m s $^{-1}$ ¹. The free-flow wind speeds were thus stronger for the western sector by 0.7–0.8 m s $^{-1}$, most likely
 500 due to terrain differences, and the winds slowed by ~ 1 m s $^{-1}$ in the time between the two sampling
 501 legs. Significant spatial variation of the wind speed within both the waked flow and the free flow
 502 sectors reflects the significant natural atmospheric variability characteristic of this midday
 503 convective period and appears larger than the mean speed differences between waked and free flow
 504 regions.

505

506 Figure 13. Time series of wind speed averaged over the rotor-layer (64–159 m) height from PUMAS
 507 measurements on Lake Hellums Rd. during (a) east-west (49.3 min) and (b) west-east (54 min) transects.
 508 Blue indicates free wind flow that is not influenced by wind turbines, and red indicates waked wind flow.
 509 The density of Breckinridge and King Plains wind turbines is computed within 10 km from the PUMAS
 510 transects. (c, f) Mean wind speed and direction profiles at each transect for parts of (blue) free and (red)
 511 waked flows.

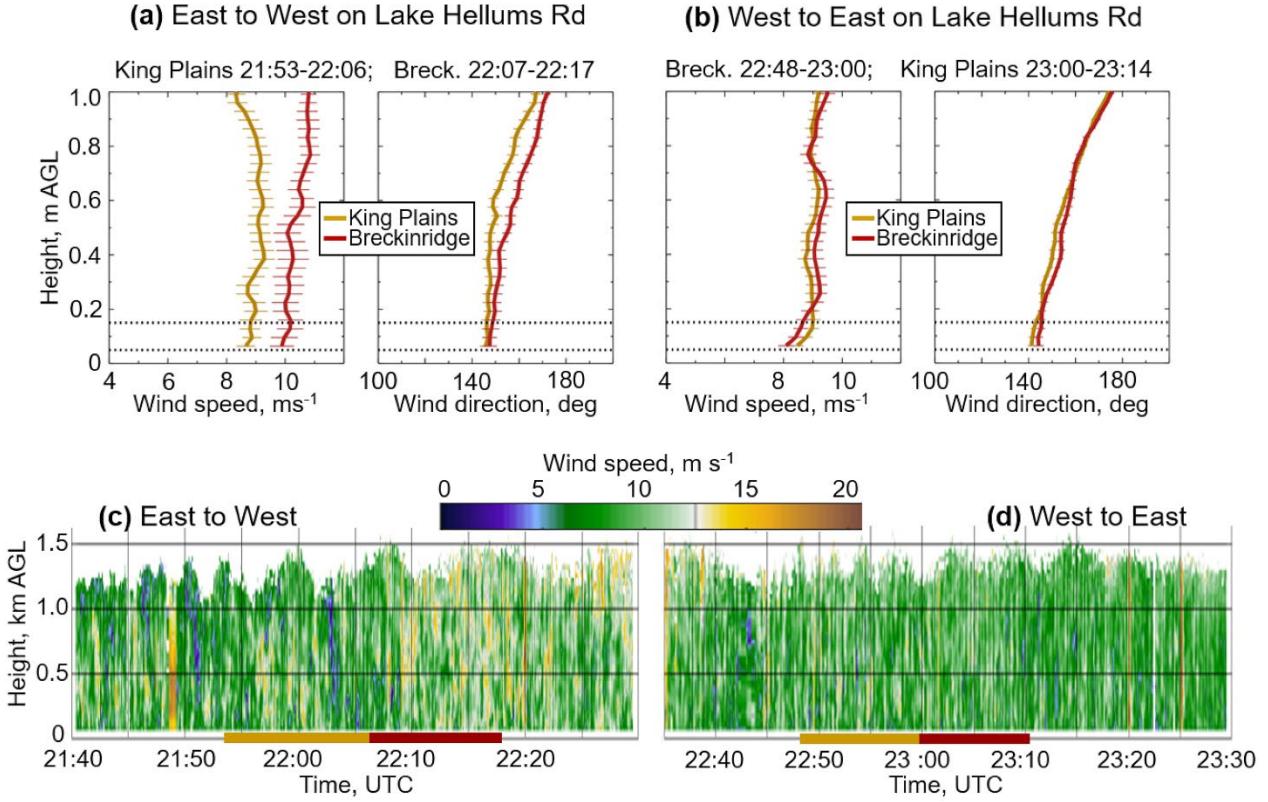

512 The mean profiles of free-flow and waked winds are shown in Figure 13c, f. Within the
 513 turbine layer mean waked speeds were slightly (<1 m s⁻¹) larger than the mean free-wind values for
 514 the EW transect (Figure 13c), contrary to expectation, but comprehensible in light of the variable
 515 nature of the convective boundary layer, as discussed in the previous paragraph. . Within 200-400
 516 m, these profiles are the same, deviating again at higher levels. During the WE transect (Figure 13f)
 517 both free and waked profiles were very similar. Mean profiles of wind direction for waked and free
 518 winds are close for both EW and WE transects, turning from 140° within the rotor layer to 175° at
 519 1 km AGL. The statistically insignificant difference between mean waked and free wind speed
 520 profiles in this example resulted from the temporal evolution of winds over 55 min drive one way.

521 Calculated from the data in Fig. 13a, the rotor-layer-mean waked flow from the
522 Breckinridge wind farm was 8.8 m s^{-1} compared to 10 m s^{-1} of waked flow downwind of the King
523 Plains wind farm (Figure 13b). The difference in waked flow between the Breckinridge (8.7 m s^{-1})
524 and King Plains (8.3 m s^{-1}) wind farms is much smaller on the way back (Figure 13d). As stated
525 previously, these differences are primarily due to the temporal variability of wind speed and the
526 slope of the terrain along Lake Hellums Rd., which descends from 400 m on the west to 280 m on
527 the east.

528 The developed technique allows waked and free flows from measurements at different
529 distances from turbines to be estimated as illustrated in Figure 14 for the following transects:
530 (Figure 14a) within King Plains wind farm on Hwy 412; (Figure 14b) on the Breckenridge Rd.
531 located 0.9 km of the wind farm; and (Figure 14c) on Lake Hellums Rd. located 5 km north of the
532 turbines (Figure 4). Profiles show free-stream winds at locations within the wind farm $1\text{--}1.5 \text{ m s}^{-1}$
533 stronger than waked winds there, as expected, and the difference decreases with distance from the
534 farm, until at 5 km (Figure 14c), the waked and free flow profiles are equal within the standard-
535 deviation error, indicating that the wake has mixed out. . Wind directions of waked and free flows
536 at each transect (Figure 14a–c) remain southeast below 500 m AGL and turn to southwest at higher
537 elevations.

538 Fixed sites A2, A1, and H form a south-north line through the King's Plains wind farm. The
539 lower panels of Figure 14 show wind profiles at these three sites averaged for three time periods
540 from late morning to late afternoon. For the first two time periods, the mean wind speeds at
541 downwind Site H were larger compared to other sites (Figure 14d, e), again contrary to expectation.
542 Radünz et al. (2025) also noticed this effect and attributed the differences to terrain influences that
543 can lead to increased wind speeds downwind.

544


545

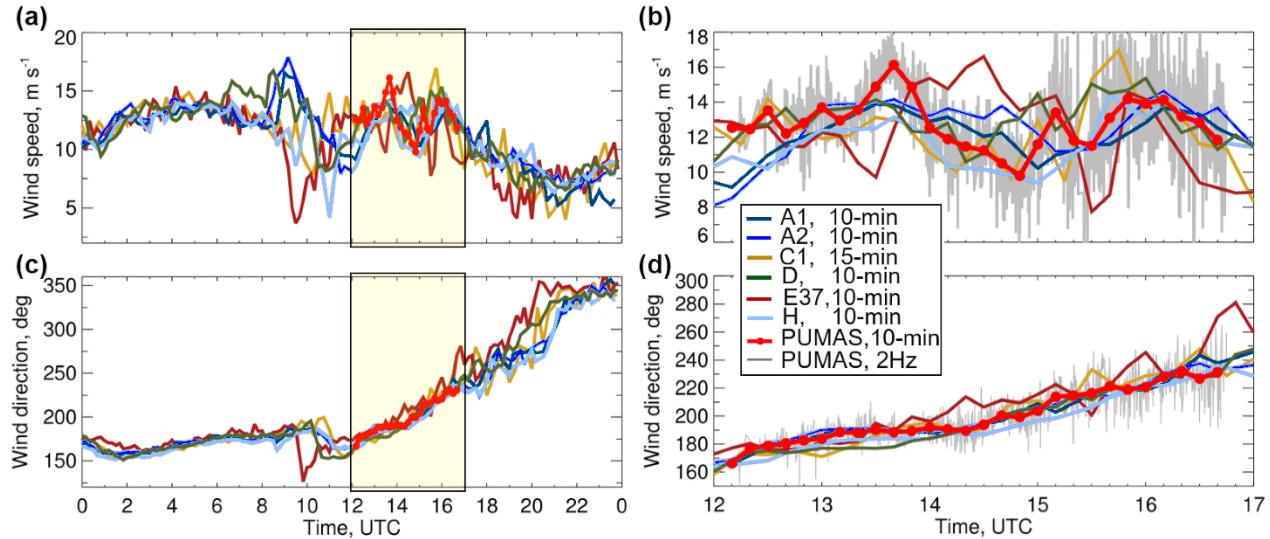
546 Figure 14. (Top row) Mean profiles of (blue) free and (red) waked wind speed and direction from PUMAS
 547 measurements on (a) Hwy 412, (b) Breckenridge Rd., and (c) Phillips Ave. Yellow color indicates inflow
 548 wind profiles from stationary Doppler lidar at Site A2 averaged for the corresponding time interval. (Bottom
 549 row) Mean wind speed and direction profiles (d-f) from stationary Doppler lidar measurements at sites
 550 (black) H, (blue) A1, and (yellow) A2.

551 Figure 14a-c shows comparisons of PUMAS-measured wind profiles with those for
 552 stationary lidar Site A2. The PUMAS wind speeds are mostly within 1 m s⁻¹ of the A2 profiles,
 553 and the directions are very close (the A2 profile in 14a needs to be adjusted downward due to terrain
 554 elevation differences), indicating good agreement. The spread between the mobile and fixed
 555 profiles is similar to the spread among the fixed sites shown in Figs. 14d-f.

556 The technique allows us to estimate the overall impact of individual wind farms as
 557 illustrated in Figure 15. During the ~55 km transect on Lake Hellums Rd., PUMAS passed
 558 Breckinridge and King Plains wind farms twice, going east to west and back (Figure 13b, d). The
 559 difference in turbine-layer wind flow downstream of both wind farms was about 1.3 m s⁻¹ during
 560 the EW transect due to a slight increase of wind speeds at 22:07–22:17 UTC (Figure 15c). During
 561 the WE transect, winds downstream of both wind farms were almost equal with the mean difference
 562 of 0.36 m s⁻¹ (Figure 15d). Wind directions in the rotor layer were close for both transects, with
 563 differences of 2°.

564

565


566 Figure 15. Wind speed and direction profiles from PUMAS measurement within the 10 km radius of
 567 influence by turbines from (gold) King Plains and (dark red) Breckenridge wind farms during (a) east to west
 568 and (b) west to east transects along Lake Hellums Rd. (Figure 13). (c, d) Time-height cross sections of wind
 569 speed at these transects. Color bars at the bottom of both panels indicate parts of each transect downstream
 570 of (gold) King Plaines and (dark red) Breckenridge wind farms.

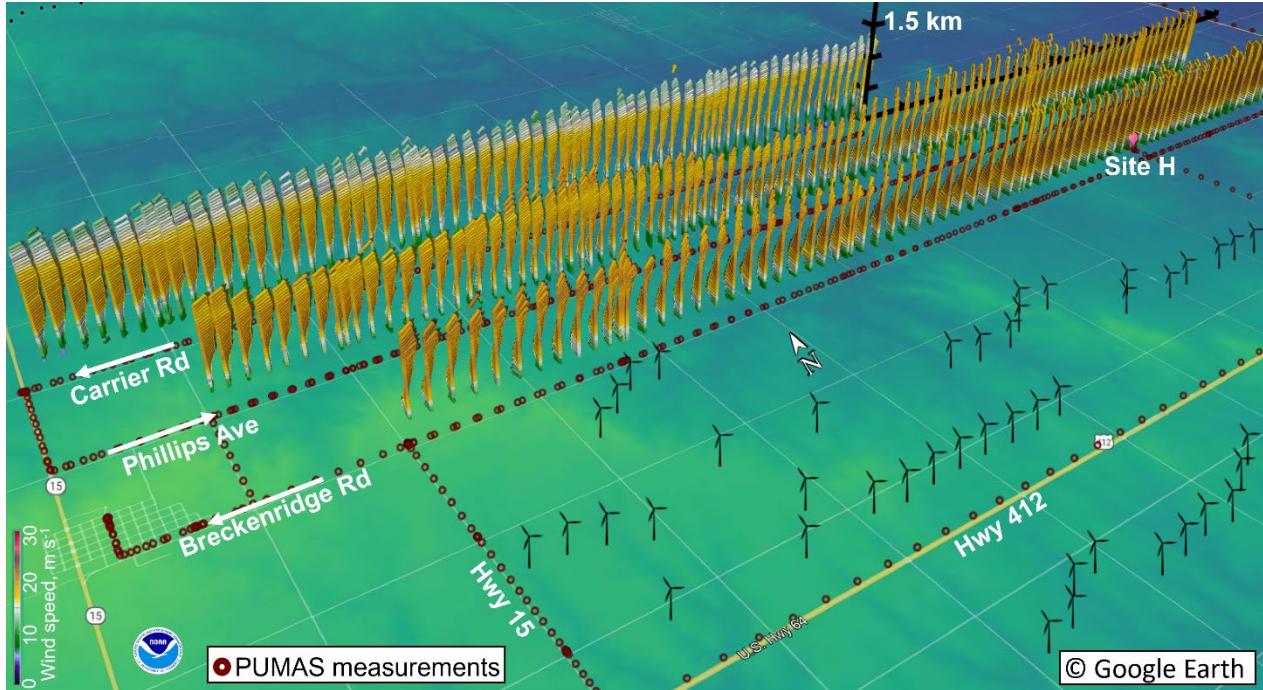
571 The results in Figures 13–15 illustrate the ability to determine free and waked flows on long
 572 (>55 km) transects at various distances (0.9–5 km) from the wind farm and to compare the waked
 573 flow downwind of the Breckenridge and King Plains wind farms. These results are obtained for
 574 moderate ($6\text{--}12\text{ m s}^{-1}$) southeasterly winds and unstable BL conditions of large atmospheric
 575 variability and strong vertical mixing, leading to rapid mixing out of the wakes. Spatial variations
 576 of the free-stream wind speed, often related to small differences in terrain, and temporal changes
 577 were $\sim 1\text{ m s}^{-1}$, which were similar to the differences between waked and free-stream speeds, when
 578 observed. Thus, under these daytime conditions, it was often difficult to distinguish the wakes from
 579 the ambient flow. The following section will show some examples from PUMAS measurements on
 580 5 Sep characterized by stronger ($10\text{--}20\text{ m s}^{-1}$) wind speeds.

581 **5.3 5 September case study, nocturnal LLJ, southwesterly winds**

582 Time series of wind speed from PUMAS and six stationary Doppler lidars (Figure 3) taken
 583 at the heights closest to the turbine hub height of 90 m are shown in Figure 16 for the diurnal period
 584 (Figure 16a) and the period of PUMAS operations (Figure 16b). Wind speed and direction from all
 585 lidars show small differences and similar trends from sunset to midnight (0100–0600 UTC). Later
 586 in the morning and daytime during PUMAS operations, winds at all sites fluctuate around 10–14 m
 587 s^{-1} , later decreasing to 5–8 m s^{-1} by the evening hours. Wind directions from all lidars show steady
 588 turning from southeasterly ($\sim 150^\circ$) to northerly ($\sim 360^\circ$). Wind speed and direction for the period
 589 of PUMAS measurements at 1200–1700 UTC (yellow box in Figure 16a, b) show similar variations
 590 of data from all lidars and close period-mean data (Table 4). Slightly lower ($11.6 m s^{-1}$) mean wind
 591 speed is observed at Site H, located in the wake of turbines for south-southwesterly directions
 592 compared to Site D ($12.9 m s^{-1}$) and Site A2 ($12.4 m s^{-1}$) of inflow lidar measurements (Table 4).
 593 The period-mean wind speed of 2 Hz (Figure 16b, gray) and 10-min averaged (Figure 16b, red)
 594 PUMAS measurements are similar (Table 4) but the standard deviation of 2 HZ data is larger (2.3
 595 $m s^{-1}$) compared to the $0.4 m s^{-1}$ standard deviation of 10-min averaged data.

596

597
 598 Figure 16. Wind speed and wind direction at 90–110 m from several AWAKEN stationary Doppler lidars
 599 and PUMAS on 5 Se, 2023: (a) Time series of 10 min (15 min at C1) data from stationary lidars at several
 600 sites are shown for 24 hours by colors according to the color scale. Data is taken close to the hub height; 90
 601 m at sites C1, E37, D, Pumas, and 110 m at sites A1, A2, H. Yellow boxes indicate the time of PUMAS
 602 measurements on this day. (b) Same as (a) but for the period of PUMAS measurements at 1200–1700 UTC.
 603 The gray color indicates 2 Hz PUMAS, and the red line with dots shows 10 min averages.


604

605 Table 4. Mean and standard deviation of wind speed and direction from PUMAS and stationary
 606 lidars over period of PUMAS operations on 5 Sep at 1200–1700 UTC.

Site	Height	Time resolution	Speed, m s ⁻¹		Direction, deg	
			mean	STD	mean	STD
PUMAS	90	2Hz	12.8	2.3	201.7	19.7
PUMAS	90	10 min	12.8	1.4	200.2	18.7
C1	90	15 min	12.2	2.0	201.7	26.4
E37	90	10 min	12.3	2.4	209.6	29.3
A1	110	10 min	12.0	1.3	201.3	23.6
A2	110	10 min	12.4	1.8	201.7	21.5
H	110	10 min	11.6	1.4	195.3	22.1
D	90	10 min	12.9	1.2	198.8	24.5

607 An example of wind speed and direction profiles from PUMAS measurements within the
 608 King Plains wind farm is shown in Figure 17 for three (out of 22 total) transects on 5 Sep. Transects
 609 are shown for alternate WE and EW driving directions on Breckenridge Rd., Phillips Ave., and
 610 Carrier Rd. (Figure 17, white arrows). The south-north distance between these roads is 1.6 km. The
 611 length of these transects depends on road conditions and varies from 19.9 km on Breckenridge Rd.
 612 to 12.5 km on Carrier Rd., which ends due to the terrain after crossing County Road 20.

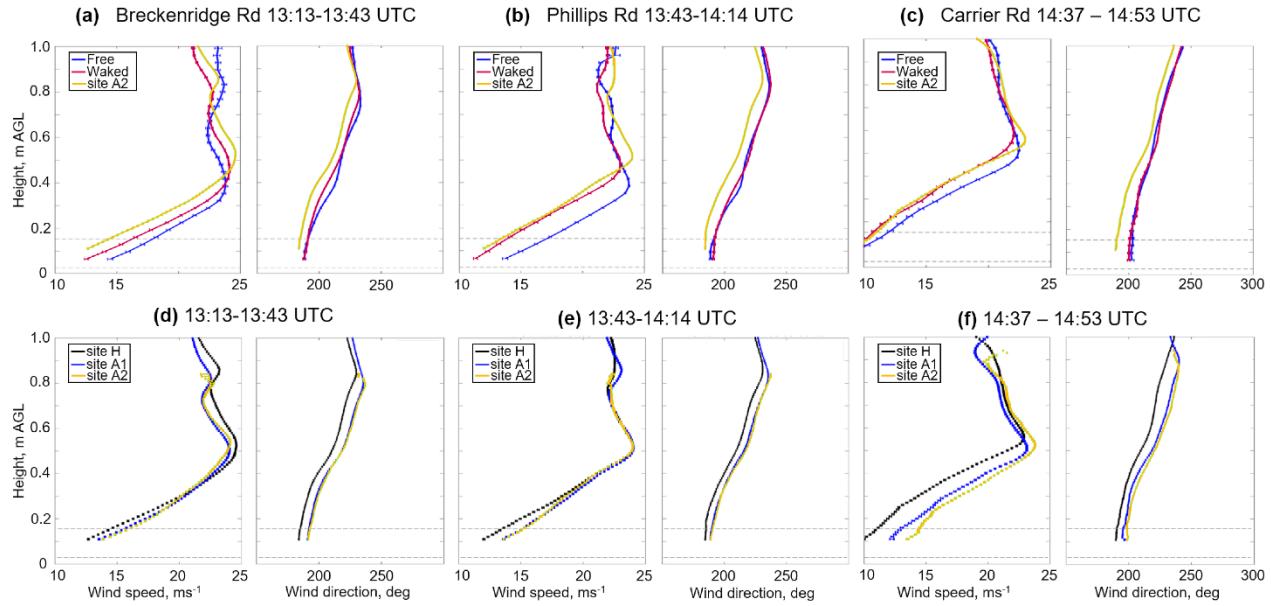
613

614

615 Figure 17. Wind speed (colors) and direction (arrows) profiles on 5 Sep are shown along individual transects
 616 on Breckenridge Rd. (1314–1334 UTC), Phillips Ave. (1352–1414 UTC), and Carrier Rd. (1437–1451 UTC)
 617 selected for the analysis. The dark red circles indicate points of PUMAS measurements on 5 Sep. Profiles
 618 are embedded on a Google Earth terrain elevation map (Debnath et al, 2022) and rotated clockwise ~60° for
 619 a better view. Wind speed is scaled from 0 to 30 m s⁻¹ according to the color scale on the left side of this
 620 figure. The horizontal distance between profiles is about 300 m. White arrows on the left corner indicate the
 621 PUMAS driving direction for each transect in this example.

622 Time-height cross sections (Figure 18) of simultaneously measured wind speed, wind
 623 direction, and motion-corrected vertical velocity along the waked part of the transects from Figure
 624 17 illustrate temporal evolution of wind flows on each transect, as the convective BL mixed upward
 625 into the remaining nighttime LLJ. Wind speeds of 8–12 m s⁻¹ below 400 m increased to >25 m s⁻¹
 626 above this height at all transects, with a strong (>28 m s⁻¹) LLJ within 400–600 m captured during
 627 the 20 min transect at Breckenridge Rd. The LLJ of ~25 m s⁻¹, observed during the 20-min transect
 628 on Phillips Ave, decreased to 20 m s⁻¹ at the 15 min transect on Carrier Rd. Wind directions during
 629 all transects are mostly south-southwesterly (~200°) with some episodes of southerly winds below
 630 200 m (Figure 18b). The motion-corrected vertical velocity is weaker at Breckenridge Rd. with
 631 more downward motions (Figure 18c), but during all transects more variability is observed in the
 632 growing convective layer at low levels.

633



635
636 Figure. 18. Time-height cross sections of simultaneously measured (a) wind speed, (b) wind direction,
637 (c) motion-corrected vertical velocity, and (d) range-corrected backscatter intensity from transects shown in
638 Figure 17 along (left column) Breckenridge Rd., (middle) Phillips Ave., and (right) Carrier Rd. Panels c, d
639 are shown up to 1 km AGL to illustrate BL growth.

640 The temporal increase of BL depth can be seen in plots of vertical velocity (Figure 18c) and
641 the range-corrected intensity (Figure 18d). Measurements from stationary lidars have been used
642 extensively to estimate planetary boundary layer mixing height (Bonin et al. 2017), but a similar
643 technique using mobile lidar measurements is currently under development.

644 The difference between waked and free flows in the rotor layer during all transects is less
645 than 2 m s^{-1} (Figure 19a–c), and a similar difference for the same time intervals (Figure 19d–f) is
646 found between wind speed measured by stationary lidars at Site A2 (inflow) and Site H (waked).
647 Although the mean wind direction within the rotor layer is south-southwesterly from PUMAS and
648 stationary lidars during all transects, the BL stability changed from stable during the transect on
649 Breckenridge Rd. to unstable during the transect on Carrier Rd. Wind speeds from PUMAS and

650 three stationary lidars decreased with time but for all periods show high shear below LLJ maxima
 651 at 400–500 m. We note that the PUMAS profiles agree well with the fixed-site measurements when
 652 adjusted for terrain elevation differences, as we also found in Fig. 14.

653
 654 Figure 19. Similar to Figure 14, but for the mean profiles during transects on 5 Sep shown in Figure 17. The
 655 embedded plots indicate the BL stability.

656 6. Conclusions

657 Quantitative characteristics of wind and turbulence in the atmospheric layers occupied by
 658 the wind turbine rotor blades are crucial to wind energy, as is wind information above this layer to
 659 provide a meteorological context up to several hundreds of meters AGL. Understanding the
 660 variability of winds across wind farms and under different conditions is a key factor in the planning
 661 and operations of wind projects.

662 The high-frequency, motion-compensated PUMAS measurements of the horizontal wind
 663 speed, wind direction, range-corrected intensity, and simultaneous vertical-velocity statistics,
 664 including variance, skewness, and kurtosis, from a moving platform, provide a new approach to
 665 characterizing dynamic processes critical for wind farm wake analysis. The unique PUMAS
 666 measurements offer insight into the temporal and vertical variability of wind flows similar to
 667 stationary scanning lidars and also reveal spatial variability of characteristics of the horizontal and
 668 vertical structure of wind flows modified by operating wind turbines.

669 In the daytime convective cases studied here, spatial variations of the unwaked, free-stream
670 wind speeds were often $\sim 1 \text{ m s}^{-1}$, and temporal changes along transects repeated over periods of an
671 hour were of similar magnitude. Differences in waked vs. free-stream speeds, when discernable,
672 were also $\sim 1 \text{ m s}^{-1}$, so it was often difficult to distinguish turbine or wind-farm wake effects from
673 the natural atmospheric variability under these conditions.

674 Data from the mobile lidar can also complement the AWAKEN instrumentation to
675 understand the effect of a large wind farm on wind flows under different background wind
676 conditions and stratification. The PUMAS measurements can be used to evaluate wind simulation
677 by models and improve wake model prediction accuracy. The truck-based mobile Doppler lidar
678 data analyses show that advances in measuring, understanding, and modeling the atmospheric
679 boundary layer within wind farms will be required to provide improved meteorological support for
680 wind energy.

681 The developed technique allowed the sampling and automated analysis of wind speeds
682 influenced by wind turbine clusters located at different distances from PUMAS transects and the
683 flexibility to adjust the sampling drive patterns to account for any wind directions.

684 **Author contribution:** YP and AB planned the PUMAS measurement campaign, processed and
685 analyzed the data; BMC, MH, and RM operated the mobile lidar and performed the
686 measurements; MZ provided remote software support, YP wrote the manuscript draft; RB, ES,
687 SB, and BC reviewed and edited the manuscript, SL and NB provided data from stationary lidars
688 and edited the manuscript; PM planned the overall Awaken campaign.

689 **Acknowledgment.** The authors thank the AWAKEN experiment participants who aided in the
690 deployment and the collection of remote sensing data and our colleagues who monitored, quality
691 controlled, and provided data to the Data Archive. Funding was provided by the U.S. Department
692 of Energy Office of Energy Efficiency & Renewable Energy Wind Energy Technologies Office.,
693 The mobile Doppler lidar measurements in Oklahoma, as part of the AWAKEN field was
694 supported by the National Oceanic and Atmospheric Administration (NOAA) Atmospheric
695 Science for Renewable Energy (ASRE) program and by. This research was conducted under the
696 NOAA cooperative agreement NA22OAR4320151, for the Cooperative Institute for Earth System
697 Research and Data Science (CIESRDS). This work was authored in part by the National Renewable
698 Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-

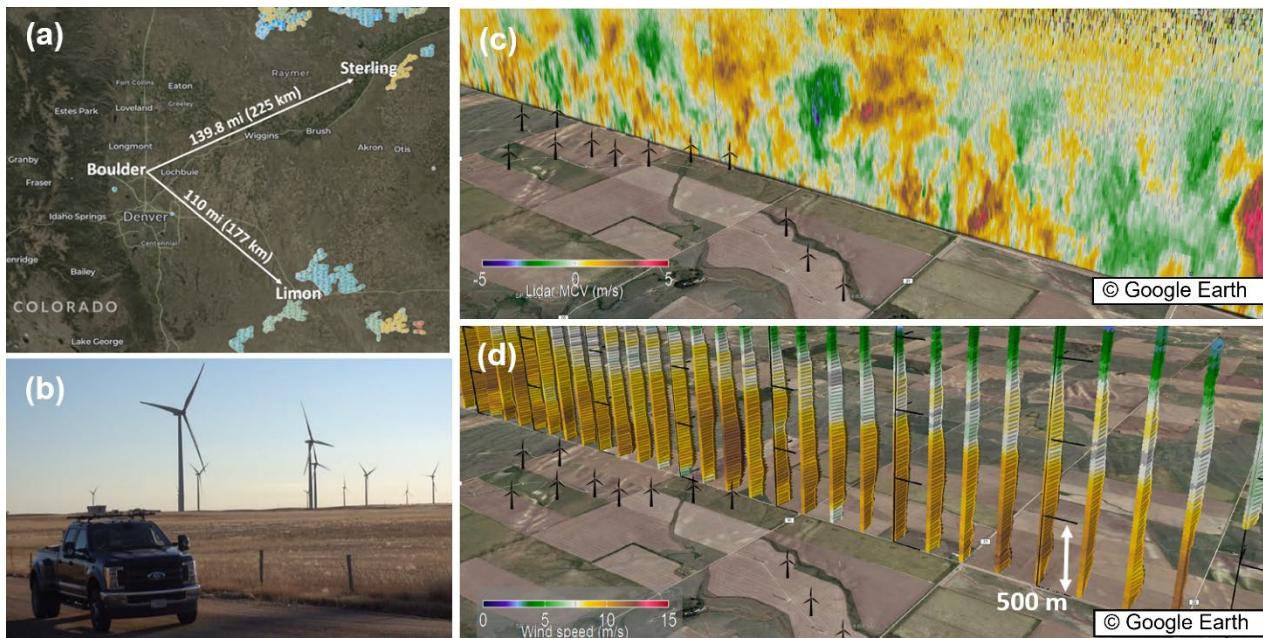
699 08GO28308. Funding was provided by the US Department of Energy Office of Energy Efficiency
700 and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do
701 not necessarily represent the views of the CIESRDS, NOAA, DOE or the U.S. Government. The
702 U.S. Government retains and the publisher, by accepting the article for publication, acknowledges
703 that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
704 or reproduce the published form of this work, or allow others to do so, for U.S. Government
705 purposes. We thank Amy Brice from NREL for editing the paper according to the journal
706 requirements.

707 **Data availability statement.** All the data are publicly available. Datasets from scanning Doppler
708 lidars at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) sites C1
709 and E37 are available from the ARM SGP Archive at
710 <https://www.arm.gov/capabilities/observatories/sgp>. Data from scanning Doppler lidars operated
711 during AWAKEN experiment are available from the Atmosphere to Electrons Wind Data Hub
712 (<https://www.a2e.energy.gov>, U.S. Department of Energy, 2024). The lidar data DOI at site A1 is
713 <https://doi.org/10.21947/2375440>, at site A2 is <https://doi.org/10.5439/1890922>, at site H is
714 <https://doi.org/10.21947/2283040>, and at site D is <https://doi.org/10.21947/2375440>.
715 The sonic anemometer data DOI at site A2 is <https://doi.org/10.21947/2375440>. And the NREL
716 ASSIST thermodynamic profiler at site B is <https://doi.org/10.21947/2375440>.
717

718 **Appendix A.** CSL/NOAA Field Projects in 2018–2024 using mobile lidar systems.

719 Table A1. Mobile Doppler lidar measurements from various platforms.

Platform	Project	Date	Location
Aircraft & Truck	Utah Summer Ozone Study (USOS)	July-Aug 2024	Salt Lake City, Utah
Aircraft	Airborne Methane Mass Balance Emissions in Colorado (AMMBEC)	July 2024	Front Range, Colorado
Aircraft	Airborne and Remote sensing Methane and Air Pollutant Surveys (AiRMAPS)	2024	U.S. East Coast
Truck	Oil and Gas Air Quality Study (DJ-CDPHE II)	Oct-Nov 2023	NW Colorado
Truck	American Wake Experiment (AWAKEN)	Aug-Sep 2023	Central Oklahoma


Aircraft	Coastal Urban Plume Dynamics Study (CUPiDS)	June-Aug 2023	New York City Region
Truck	Pilot Studies in Colorado Front Range (PUMAS)	Feb-Mar 2023	Metro Denver, Colorado
Aircraft & Truck	California Fire Dynamics Experiment (CalFiDE)	Aug-Sep 2022	California & Oregon
Aircraft	System Integration and Test Experiment (SITE)	Jun-Aug 2021	Florida
Aircraft & Truck	Southwest Urban NOx and VOC Experiment (SUNVEx)	Aug 2021	Las Vegas, Nevada, Louisiana, & California
Truck	Oil and Gas Air Quality Study (DJ-CDPHE I)	Sep 2021	Metro Denver, Colorado
Truck	Pilot Studies in Colorado Front Range (PUMAS)	Oct-Nov 2021	Metro Denver, Colorado
Truck	Pilot Studies in Colorado Front Range (PUMAS)	Jun-Oct 2020	Metro Denver, Colorado
Ship	Atlantic Tradewind Ocean-Atm. Interaction Campaign (ATOMIC)	Jan-Feb 2020	Tropical North Atlantic
Aircraft	Fire Influence on Regional to Global Env.& Air Quality (FIREX-AQ)	Jul-Aug 2019	Pacific Northwest
Aircraft	Fire Winds (FIREWinds)	Jun 2018	Florida
Ship	Propagation of Intra-seasonal Tropic Oscillations (PISTON)	Aug-Oct 2018	Philippine Sea

720

721 **Appendix B. Test-drives around wind farms in Colorado**

722 Several test-drives of PUMAS were performed around wind farms in Sterling and Limon
723 located in the northern and southern parts of Colorado (Figure B1 a, b) to obtain information on
724 system performance, measurement errors, and driving strategies. The data were used to establish
725 measurement capability to study dynamic processes upwind and downwind of turbines. Figure B1
726 c shows motion-stabilized vertical velocity obtained from a lidar beam pointing zenith (90°
727 elevation angle).

728

729 730 Figure B1. (a) A USGS map of wind farms located ~200 km to the northeast (near Sterling) or to the
731 southeast (near Limon) from Boulder, selected for PUMAS test drives in 2020, 2021, and 2023 (Table A1,
732 Appendix A); (b) a picture of PUMAS driving in the vicinity of wind turbines; (c) Profiles of vertical velocity
733 along a (~22 km) path are shown on Google Earth; (d) Profiles of wind speed (colors) and wind direction
734 (arrows) along the same path. Black horizontal lines indicate height increments of 500 m.

735 The high temporal (~20 s) and vertical (30 m) resolution of these profiles yields unique
736 information about the extent and strengths of the vertical motions, including thermal updrafts and
737 turbulence at the cloud base. Measurements from conical scanning at 15° from the zenith (Figure
738 B1 d) reveal southerly wind speeds of ~12 m s⁻¹ up to 1.5 km.

739

740 **References:**

741 Atmosphere to Electrons (A2e)_1. 2024. awaken/sa2.lidar.z01.c0. Maintained by A2e Data Archive
742 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
743 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

744 Atmosphere to Electrons (A2e)_2. 2024. awaken/sa1.lidar.z03.c0. Maintained by A2e Data Archive
745 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
746 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

747 Atmosphere to Electrons (A2e)_3. 2024. awaken/sh.lidar.z05.c0. Maintained by A2e Data Archive
748 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
749 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

750 Atmosphere to Electrons (A2e)_4. 2024. awaken/sd.lidar.z01.00. Maintained by A2e Data Archive
751 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
752 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

753 Atmosphere to Electrons (A2e)_5. 2024. awaken/sa2.sonic.z01.c0. Maintained by A2e Data Archive
754 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
755 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

756 Atmosphere to Electrons (A2e)_6. 2024. awaken/sb.assist.z01.c0. Maintained by A2e Data Archive
757 and Portal for U.S. Department of Energy, Office of Energy Efficiency and Renewable
758 Energy. DOI: 10.21947/2375440. Accessed: 29 09 2024.

759 Aitken, M. L., J. K. Lundquist, R. M. Banta, and Y. L. Pichugina, 2014: Quantifying wind turbine
760 wake characteristics from scanning remote sensor data. *J. Atmos. Oceanic Technol.*, 31,
761 765–787, doi:[10.1175/JTECH-D-13-00104.1](https://doi.org/10.1175/JTECH-D-13-00104.1).

762 Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt,
763 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. *Bound.-*
764 *Layer Meteor.*, **105**, 221–252, <https://doi.org/10.1023/A:1019992330866>

765 Banta, R.M., Y.L. Pichugina, N. D. Kelley, W. A. Brewer, and R. M. Hardesty, 2013: Wind-energy
766 meteorology: Insight into wind properties in the turbine rotor layer of the atmosphere from
767 high-resolution Doppler lidar. *Bull. Amer. Meteor. Soc.*, 94, 883–902, doi:[10.1175/BAMS-D-11-00057.1](https://doi.org/10.1175/BAMS-D-11-00057.1).

769 Banta, R.M., and coauthors, 2013b: Observational techniques: Sampling the mountain atmosphere.
770 Ch. 8 in ***Mountain Weather Research and Forecasting***, Eds., *F.K. Chow, S. De Wekker, and B. Snyder*, Springer, Dordrecht, the Netherlands, 409-530.

772

773 Banta, R.M., Y.L. Pichugina, W.A. Brewer, J.K. Lundquist, N.D. Kelley, S.P. Sandberg, R.J.
774 Alvarez, R.M. Hardesty, and A.M. Weickmann, 2015: 3-D volumetric analysis of wind-
775 turbine wake properties in the atmosphere using high-resolution Doppler lidar. *J. Atmos.*
776 *and Oceanic Tech.*, **32**, 904-914, [Available online at <http://dx.doi.org/10.1175/JTECH-D-14-00078.1>]

777

778 Banta, R. M., Pichugina, Y. L., Brewer, W. A., and Coauthors, 2018: Evaluating and Improving
779 NWP Forecast Models for the Future: How the Needs of Offshore Wind Energy Can Point
780 the Way. *Bull. Amer. Meteor. Soc.*, **99**, 1155–1176, <https://doi.org/10.1175/BAMS-D-16-0310.1>.

781

782 Banta, R.M., Y.L. Pichugina, W.A. Brewer, and Coauthors, 2023, [Measurements and model](#)
783 [improvement: Insight into NWP model error using Doppler lidar and other WFIP2](#)
784 [measurement systems](#), *Monthly Weather Review*, 152, pp. 3063-3087 doi:10.1175/MWR-D-23-0069.1, 2023.

785

786 Banta, R. M., Y. L. **Pichugina**, and R. K. Newsom, 2003: Relationship between low-level jet
787 properties and turbulence kinetic energy in the nocturnal stable boundary layer. *J. Atmos.*
788 *Sci.*, **60**, 2549–2555, [https://doi.org/10.1175/1520-0469\(2003\)060%3C2549:RBLJPA%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(2003)060%3C2549:RBLJPA%3E2.0.CO;2)

789

790 Bingöl, F., J. Mann, and G. Larsen, 2010: Light detection and ranging measurements of wake
791 dynamics. Part I: One-dimensional scanning. *Wind Energy*, **13**, 51–61.

792 Blackadar, A. K. (1957). Boundary layer wind maxima and their significance for the growth of
793 nocturnal inversions. *Bulletin of the American Meteorological Society*, 38(5), 283-290

794 Bodini N., A. Abraham, P. Doubrawa, S. Letizia, R. Thedin, N. Agarwal, B. Carmo, L. Cheung,
795 W. Correa Radunz, A. Gupta, L. Goldberger, N. Hamilton, T. Herges, B. Hirth, G. V. Iungo,
796 A. Jordan, C. Kaul, P. Klein, R. Krishnamurthy, J. K. Lundquist, E. Maric, P. Moriarty, C.
797 Moss, R. Newsom, Y. Pichugina, M. Puccioni, E. Quon, S. Roy, D. Rosencrans, M. Sanchez
798 Gomez, R. Scott, M. Shams Solari, T. J. Taylor, S. Wharton, (2024). An International
799 Benchmark for Wind Plant Wakes from the American WAKE ExperimeNt (AWAKEN):

800 Article No. 092034. *Journal of Physics: Conference Series*, 2767(9).
801 <https://doi.org/10.1088/1742-6596/2767/9/092034>

802 Bonin, T. A., B. J. Carroll, R. M. Hardesty, W. A. Brewer, K. Hajny, O. E. Salmon, and P. B.
803 Shepson, 2018: Doppler Lidar Observations of the Mixing Height in Indianapolis Using an
804 Automated Composite Fuzzy Logic Approach. *J. Atmos. Oceanic Technol.*, **35**, 473–490,
805 <https://doi.org/10.1175/JTECH-D-17-0159.1>.

806 Brewer, W. A., and R. M. Hardesty, 1995: Development of a dual wavelength CO₂ mini-MOPA
807 Doppler lidar. Proc. Coherent Laser Radar Conf., Massachusetts, MA, Optical Society of
808 America, 293–296.

809 Browning, K. A. and Wexler. R.: 1968, ‘The Determination of Kinematic Properties of a Wind
810 Field Using Doppler Radar’, *J. Appl. Meteorol.* **7**, 105–113.

811 Debnath, M., Moriarty, P., Krishnamurthy, R., Bodini, N., Newsom, R., Quon, E., Lundquist, J.,
812 Letizia, S., Iungo, G., and Klein, P. (2023). Characterization of wind speed and directional
813 shear at the AWAKEN field campaign site. *Journal of Renewable and Sustainable Energy*.
814 15. 10.1063/5.0139737

815 Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and
816 corresponding mixed layer depths during PECAN. *J. Geophys. Res.*, **124**, 9141–9160,
817 <https://doi.org/10.1029/2019JD030658>.

818 Carroll BJ; Brewer WA; Strobach E; Lareau N; Brown SS; Valero MM; Kochanski A; Clements
819 CB; Kahn R; Junghenn Noyes KT. (2024). Measuring Coupled Fire–Atmosphere
820 Dynamics: The California Fire Dynamics Experiment (CalFiDE). *Bulletin of the American
821 Meteorological Society* **105**(3). [10.1175/bams-d-23-0012.1](https://doi.org/10.1175/bams-d-23-0012.1).

822 Debnath, M., Scholbrock, A., Zalkind, D., Moriarty, P., Simley, E., Hamilton, N., Ivanov, C.,
823 Arthur, R., Barthelmie, R., Bodini, N., Brewer, A., Goldberger, L., Herges, T., Hirth, B.,
824 Iungo, G., Jager, D., Kaul, C., Klein, P., Krishnamurthy, R., ... Wharton, S. (2022). Design
825 of the American Wake Experiment (AWAKEN) Field Campaign. *Journal of Physics: Conference
826 Series*, **2265**(2), Article No. 022058. <https://doi.org/10.1088/1742-6596/2265/2/022058>, <https://doi.org/10.1088/1742-6596/2265/2/022058>

827 Djalalova, I. V., J. Olson, J. R. Carley, L. Bianco, J. M. Wilczak, Y. Pichugina, R. Banta, M.
829 Marquis, J. Cline, 2016: The POWER experiment: Impact of assimilation of a network of
830 coastal wind profiling radars on simulating offshore winds in and above the wind turbine

831 layer . Weather and Forecasting, 31, 1071-1091, doi: <http://dx.doi.org/10.1175/WAF-D-15-0104.1>

832

833 Geerts, B., Parsons, D., Ziegler, C. L., Weckwerth, T. M., Bigggerstaff, M. I., Clark, R. D., et
834 al. (2017). The 2015 plains elevated convection at night field project. *Bulletin of the*
835 *American Meteorological Society*, 98(4), 767–786. <https://doi.org/10.1175/BAMS-D-15-00257.1>

836

837 Grund, C. J., Banta, R.M., George, J. L., Howell, J. N., Post, M. J., Richter, R. A., and
838 Weickmann, A.M., 2001: High-Resolution Doppler Lidar for Boundary-Layer and Cloud
839 Research, *J. Atmos. Ocean. Tech.* **18**, 376–393.

840 Krishnamurthy R., R.K. Newsom, D. Chand, and W.J. Shaw. 2021. *Boundary Layer Climatology*
841 *at ARM Southern Great Plains*. PNNL-30832. Richland, WA: Pacific Northwest National
842 Laboratory. (2021), 10.2172/1778833.

843 Krishnamurthy, R., Newsom, R., Kaul, C., Letizia, S., Pekhour, M., Hamilton, N., Chand, D.,
844 Flynn, D., Bodini, N., & Moriarty, P. (2025). Observations of Wind Farm Wake Recovery
845 at an Operating Wind Farm. *Wind Energy Science*, 10(2), 361-380.
846 <https://doi.org/10.5194/wes-10-361-2025>

847 Letizia, Stefano, Nicola Bodini, Peter Brugger, Andrew Scholbrock, Nicholas Hamilton,
848 Fernando Porté-Agel, Paula Doubrawa, and Patrick Moriarty, 2023: Holistic scan
849 optimization of nacelle-mounted lidars for inflow and wake characterization at the RAAW
850 and AWAKEN field campaigns. *Journal of Physics: Conference Series*, vol. 2505, no. 1,
851 p. 012048. IOP Publishing, 2023

852 Meneveau, C. (2012). The top-down model of wind farm boundary layers and its applications.
853 *Journal of Turbulence*, 13. <https://doi.org/10.1080/14685248.2012.663092>

854 Michaud-Belleau, V., Gaudreau, M., Lacoursière, J., Boisvert, É., Ravelomanantsoa, L., Turner,
855 D. D., and Rochette, L., 2025: The Atmospheric Sounder Spectrometer by Infrared
856 Spectral Technology (ASSIST): Instrument design and signal processing, EGUsphere
857 [preprint], <https://doi.org/10.5194/egusphere-2024-3617>, 2025. Moriarty, P., Bodini, N.,
858 Letizia, S., Abraham, A., Ashley, T., Barfuss, K., Barthelmie, R., Brewer, A., Brugger, P.,
859 Feuerle, T., Frere, A., Goldberger, L., Gottschall, J., Hamilton, N., Herges, T., Hirth, B.,
860 Hung, L.-Y., Iungo, G. V., Ivanov, H. & Kaul, C. & 18 others. (2024). Overview of

861 Preparation for the American WAKE ExperimeNt (AWAKEN). *Journal of Renewable*
862 and Sustainable Energy, 16(5). <https://doi.org/10.1063/5.0141683>

863 Newsom, R.K. and Krishnamurthy R, 2020: Doppler Lidar (DL) Instrument Handbook, DOE/SC-
864 ARM-TR-101

865 Olson, J. B., and Coauthors, 2019: Improving Wind Energy Forecasting through Numerical
866 Weather Prediction Model Development. *Bull. Amer. Meteor. Soc.*, **100**, 2201–2220,
867 <https://doi.org/10.1175/BAMS-D-18-0040.1>.

868 Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary-layer depth from high-resolution
869 measurements of the mean wind profile. *J. Appl. Meteor. Climatol.*, **49**, 20–35, doi:
870 <https://doi.org/10.1175/2009JAMC2168.1> Pichugina, Y. L., Banta, R. M., Brewer, W. A.,
871 Kenyon, J., Olson, J. B., Turner, D. D., Wilczak, J., Baidar, S., Lundquist, J. K., Shaw, W.
872 J., & Wharton, S. (2022). Model Evaluation by Measurements from Collocated Remote
873 Sensors in Complex Terrain, *Weather and Forecasting*, 37(10), 1829-1853.
874 <https://doi.org/10.1175/WAF-D-21-0214.1>

875 Pichugina, Y. L., R. M. Banta W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler
876 lidar-based wind-profile measurement system for offshore wind-energy and other marine
877 boundary layer applications. *J. Appl. Meteor. Climatol.*, **51**, 327–349, doi:[10.1175/JAMC-D-11-040.1](https://doi.org/10.1175/JAMC-D-11-040.1)

878

879 Pichugina, Y. L., R. M. Banta, W. A. Brewer, D. D. Turner, V. O. Wulfmeyer, E. J. Strobach, S.
880 Baidar, and B. J. Carroll, 2023: Doppler Lidar Measurements of Wind Variability and LLJ
881 Properties in Central Oklahoma during the August 2017 Land–Atmosphere Feedback
882 Experiment. *J. Appl. Meteor. Climatol.*, **62**, 947–969, <https://doi.org/10.1175/JAMC-D-22-0128.1>.

883

884 Pichugina, Y. L., Banta, R. M., Olson J. B., A., Carley J. R., Marquis, M. C., Brewer, W. A., and
885 Coauthors, 2017a: Assessment of NWP Forecast Models in Simulating Offshore Winds
886 through the Lower Boundary Layer by Measurements from a Ship-Based Scanning Doppler
887 Lidar. *Mon. Wea. Rev.*, **145**, 4277–4301, <https://doi.org/10.1175/MWR-D-16-0442.1>.

888

889 Pichugina, Y.L., R.M. Banta, E.J. Strobach, B.J. Carroll, W.A. Brewer, D.D. Turner, V.
890 Wulfmeyer, E. James, T.R. Lee, S. Baidar, J.B. Olson, R.K. Newsom, H.-S. Bauer, and R.
891 Rai, 2024: Case study of a bore wind-ramp event from lidar measurements and HRRR

891 simulations over ARM Southern Great Plains, *Journal of Renewable and Sustainable*
892 *Energy*, <https://doi.org/10.1063/5.0161905>.

893 Pichugina, Y. L., W.A. Brewer, R.M. Banta, L. Bianco, C. Draxl, J. Kenyon, J. K. Lundquist, J.B.
894 Olson, D.D. Turner, S. Wharton J. Wilczak, S. Baidar, L.K. Berg, H.J.S. Fernando, B.J.
895 McCarty, R. Rai, B. Roberts, J. Sharp, W.J. Shaw, M.T. Stoelinga, and R. Worsnop, 2020.
896 Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar
897 measurements in the complex terrain of the Columbia River Basin, *J. Renewable and*
898 *Sustainable Energy (JRSE)*, **12**(4):27 pp. (2020). <https://doi.org/10.1063/5.0009138>

899 Pichugina, Y. L., Brewer, W. A., Banta, R. M., Choukulkar, A., Clack, C. T. M., Marquis, M. C.,
900 McCarty, B. J., Weickmann, A. M., Sandberg, S. P., Marchbanks, R. D., and Hardesty, R.
901 M. (2017b) Properties of the offshore low-level jet and rotor layer wind shear as measured
902 by scanning Doppler lidar. *Wind Energy*, 20:987–1002, doi:
903 <https://doi.org/10.1002/we.2075>.

904 Post MJ, Cupp RE. Optimizing a pulsed Doppler lidar. *Appl Opt.* 1990;29(28):4145-58.
905 <https://doi.org/10.1364/AO.29.004145>. PMID: 20577357.

906 Radünz, W., Carmo, B., Lundquist, J. K., Letizia, S., Abraham, A., Wise, A. S., Sanchez Gomez,
907 M., Hamilton, N., Rai, R. K., and Peixoto, P. S.: Influence of simple terrain on the spatial
908 variability of a low-level jet and wind farm performance in the AWAKEN field campaign,
909 *Wind Energ. Sci. Discuss.* [preprint], <https://doi.org/10.5194/wes-2024-166>, in review,
910 2025.

911 Schroeder, P., W.A. Brewer, A. Choukulkar, A. Weickmann, M. Zucker, M. Holloway, and S.
912 Sandberg, A compact, flexible, and robust micro pulsed Doppler Lidar, *Journal of*
913 *Atmospheric and Oceanic Technology*, doi:10.1175/JTECH-D-19-0142.1, 2020.

914 Smalikho, I.N., V.A. Banakh, Y.L. Pichugina, W.A. Brewer, R.M. Banta, J.K. Lundquist, and N.D.
915 Kelley, 2013: Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake. *J. Atmos.*
916 *Oceanic Technol.*, **30**, 2554–2570, <https://doi.org/10.1175/JTECH-D-12-00108.1>

917 Strobach EJ; Carroll BJ; Baidar S; Brown SS; Ahmadov R; Brewer WA; Pichugina Y; Makowiecki
918 A; Peischl J; Zuraski K. (May 28, 2024). A Case Study Featuring the Time Evolution of a
919 Fire-Induced Plume Jet Over the Rum Creek Fire: Mechanisms, Processes, and Dynamical
920 Interplay. *Journal of Geophysical Research: Atmospheres* (May 14 2024)129(10).
921 [10.1029/2023jd040483](https://doi.org/10.1029/2023jd040483).

922 Strobach, E. J., Brewer, W.A., Senff, C. J., Baidar, S., and McCarty, B., 2023: Isolating and
923 Investigating Updrafts Induced by Wildland Fires Using an Airborne Doppler Lidar
924 During FIREX-AQ. *Journal of Geophysical Research: Atmospheres*, **128**(14),
925 e2023JD038809. <https://doi.org/10.1029/2023JD038809>

926 Squitieri, B. J., and W. A. Gallus , 2016: WRF Forecasts of Great Plains Nocturnal Low-Level Jet-
927 Driven MCSs. Part II: Differences between Strongly and Weakly Forced Low-Level Jet
928 Environments. *Wea. Forecasting*, **31**, 1491–1510, <https://doi.org/10.1175/WAF-D-15-0150.1>

930 Sun J, L. Mahrt, R. M. Banta and Y. L. Pichugina, 2012;Turbulence Regimes and Turbulence
931 Intermittency in the Stable Boundary Layer during CASES-99, *Journal of the Atmospheric*
932 *Sciences*, Jan. 2012, Vol. **69**, No. 1, pp 338-351

933 Turner, D.D., and W.G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile
934 retrieval algorithm. *IEEE J. Selected Topics Appl. Earth Obs. Remote Sens.*, **12**, 1339-1354,
935 doi:10.1109/JSTARS.2018.2874968.

936 Turner, D.D., and U. Loehnert, 2014: Information content and uncertainties in thermodynamic
937 profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted
938 Radiance Interferometer (AERI). *J. Appl. Meteor. Clim.*, **53**, 752-771, doi:10.1175/JAMC-
939 D-13-0126.1

940 Wilczak, J., and Coauthors, 2019b: The Second Wind Forecast Improvement Project (WFIP2):
941 Observational field campaign. *Bull. Amer. Meteor. Soc.*, **100**, 1701–1723,
942 <https://doi.org/10.1175/BAMS-D-18-0035.1>.

943 Wulfmeyer, V., D.D. Turner, B. Baker, R. Banta, A. Behrendt, T. Bonin, W.A. Brewer, M. Buban,
944 A. Choukulkar, E Dumas, RM Hardesty, T Heus, J Ingwersen, D Lange, TR Lee, S
945 Metzendorf, SK Muppa, T. Meyers, R Newsom, M Osman, S Raasch, J Santanello, C Senff,
946 F Späth, T Wagner, T Weckwerth, 2018: “A new research approach for observing and
947 characterizing land-atmosphere feedback.” *Bull. Amer. Meteor. Soc.*, **99**(8), 1639-1667,
948 <http://dx.doi.org/10.1175/BAMS-D-17-0009.1>.