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Abstract. Lifetime reassessments of offshore wind turbines are very time consuming due to the large number of required

simulations. As a result, the use of meta-models as surrogate models of the aeroelastic simulation model could offer a suitable

alternative to simulations in the time domain (e.g., Kriging, artificial neural networks, or polynomial chaos expansion). Meta-

models for the approximation of fatigue loads, i.e., damage equivalent loads, of wind turbines in normal operation have been

researched comprehensively in recent years. Especially for offshore wind turbines, however, the downtimes, i.e, the times when5

the wind turbine is idling, also have a significant impact on the lifetime. For this reason, the creation of meta-models, more

precisely Kriging meta-models, for an idling offshore wind turbine is investigated comprehensively in this paper. To ensure

that the fatigue loads for the training and test data are not influenced by the initial transients at the start of the simulation, the

run-in times are determined first. The subsequent investigation of meta-modelling shows that for the approximation of the rotor

blade root bending moments, two additional input parameters have to be considered in addition to the input parameters that are10

used for the creation of a meta-model for the same offshore wind turbine in normal operation. The comprehensive investigation

of the Kriging meta-models shows that the meta-models trained with 2000 data points represent the simulation model with an

acceptable approximation quality when choosing suitable Kriging settings.

1 Introduction

Lifetime reassessments for offshore wind turbines are very time consuming, as many load cases have to be calculated. Due15

to the high number of load cases, an exact lifetime reassessment, in which all actually occurred load cases are considered,

is not possible when using aeroelastic simulation codes. According to IEC 61400-3 (IEC, 2019), representative load cases

are therefore calculated, although the number of required simulations is still very high (approximately 1,000,000 simulations,

depending on the site). One way to significantly decrease the computing time for a lifetime reassessment is to lump load cases

into a few representative load cases (Ziegler and Muskulus, 2016; Bouty et al., 2017). The load cases are lumped here in20

such a way that the representative load cases generate the same damage as if all load cases resulting from the scatter diagram

had been simulated. The calculated damage is then extrapolated to the lifetime. One drawback of this method is that not all

combinations of environmental parameters that occur in reality can be considered. An alternative to a load case reduction for

lifetime calculations is the use of meta-models as surrogate models for the aeroelastic simulation code (e.g., Dimitrov et al.
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(2018); Schmidt et al. (2023)). For this purpose, the meta-models must first be created and it is important to ensure that the25

meta-models approximate the aeroelastic simulation model with sufficient accuracy.

In recent years, a lot of research has been done in the area of meta-modelling for the fatigue load prediction of operating wind

turbines (onshore and offshore). Investigations were carried out involving, among other approaches, artificial neural networks

(ANN, e.g., Müller et al. (2017); Haghi and Crawford (2024)), polynomial chaos expansion (PCE, e.g., Murcia (2018)), Kriging

or Gaussian Process regressions (e.g., Wilkie (2020); Avendaño-Valencia et al. (2021); Müller et al. (2022)), and mixture30

density networks (e.g., Singh et al. (2024)). Comparative studies have also been carried out, for example by Dimitrov et al.

(2018), who compared five different meta-models including Kriging and PCE for the approximation of fatigue loads, i.e.,

damage equivalent loads (DEL), of an onshore wind turbine. In addition, Schröder et al. (2018) compared the use of PCE and

ANN for the same onshore wind turbine and Slot et al. (2020) analysed PCE and Kriging for an onshore wind turbine. Müller

et al. (2021) compared ANN and Kriging for an offshore wind turbine and Singh et al. (2024) conducted a comparison of35

mixture density networks and Kriging for onshore and offshore wind turbines. It was found that for both onshore and offshore

wind turbines in normal operation, meta-models for approximating the fatigue loads can provide a suitable alternative to the

original aeroelastic simulation model.

However, according to IEC 61400-3 (IEC, 2019), idling must also be taken into account in addition to normal operation when

calculating the lifetime of an offshore wind turbine. Here, the rotor blades are pitched out and the rotor is usually not braked,40

so very slow rotation of the rotor is possible. Due to the low rotational speed, there is almost no aerodynamic damping. For

onshore wind turbines, idling has a positive effect on the lifetime of the wind turbine due to the lower occurring loads. In

contrast, the loads of offshore wind turbines can be the same or even higher for idling conditions than for normal operation.

This can be explained by the fact that the wave loads have a higher impact on the structural behaviour due to the lack of

aerodynamic damping. As a result, the structure is excited more strongly, which can lead to loads that are not negligibly low45

compared to the loads during normal operation. Especially for large wind turbines on monopiles, this is relevant as the impact

of the wave loads is larger compared to wind turbines on smaller monopiles.

The number of idling load cases is significantly smaller compared to the load cases in normal operation. However, extrapolated

over the lifetime, there are still a large number of idling load cases that need to be calculated. Approximately 5 % of of the

occurring load cases are idling load cases caused by wind speeds below the cut-in or above the cut-off wind speed (here based50

on the example of the wind speed distribution of FINO 3 (Hübler et al., 2017b) using the NREL 5 MW reference turbine).

In addition, around 4-10 % of the load cases are idling load cases due to downtimes caused by the general availability of the

wind turbine, which are assumed to be uncorrelated with the environmental conditions (Horn and Leira, 2019). Adding these

together, around 9-15 % of the total number of load cases of the lifetime are idling load cases. Extrapolated to a lifetime of

25 years, this means that more than 100,000 simulations (with a simulation time of 10 minutes each) must be carried out just55

to take idling load cases into account. Due to this high number of simulations, a calculation in the time domain, i.e., with

aeroelastic simulation codes, is hardly possible. In order to be able to take all these load cases into account in the lifetime

calculation, meta-models must also be created for the idling wind turbine. Nevertheless, to the authors’ knowledge, there has

been no research so far regarding meta-modelling for idling wind turbines, although idling can have a significant influence
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on the lifetime of offshore wind turbines as described above. Due to the lack of aerodynamic damping and the resulting60

increased impact of the wave loads, the idling wind turbine has a different structural behaviour compared to the turbine in

normal operation. For this reason, it cannot be assumed that the findings of previous investigations into meta-modelling of

offshore wind turbines in normal operation can be transferred to idling offshore wind turbines. For this reason, the creation of

meta-models, more precisely Kriging meta-models, of an idling offshore wind turbine is investigated comprehensively in this

paper. Kriging, also knwon as Gaussian process regression, was selected because, on the one hand, Kriging meta-models have65

shown promising results in previous work, in terms of approximation quality and the computational time required to create the

meta-models for wind turbines in operating conditions, e.g., Slot et al. (2020); Wilkie (2020). On the other hand, there already

exist Kriging meta-models for the same simulation model used in this work for normal operation with a good approximation

quality (Müller et al., 2021).

To create the meta-models, a database (i.e., training and test data) must be first generated. Due to the almost non-existent70

aerodynamic damping, it can be assumed that longer run-in times must be taken into account compared to an operating wind

turbine to exclude the effects of the initial transients due to the abrupt loading on the turbine at the start of the simulation

(Hübler et al., 2017b). For offshore wind turbines in normal operation, run-in times used in the literature vary substantially,

generally ranging from 20 seconds to several hundred seconds, e.g., Jonkman and Musial (2010); Vemula et al. (2010); Müller

et al. (2018); Dimitrov et al. (2018); Singh et al. (2024). This is, among other causes, due to the fact that the run-in times75

depend on the simulation model (wind turbine type and substructure) and the aeroelastic code used. There are only a few

detailed studies in which the required run-in times have been determined. A first detailed study on run-in times was carried out

by Zwick and Muskulus (2015) for an offshore wind turbine on a jacket. In this study, however, only normal operation was

considered, while idling load cases were not taken into account. Hübler et al. (2017b) also conducted a study of the run-in times

of offshore wind turbines for a monopile and a jacket foundation. Here, in addition to the load cases of normal operation, the80

run-in times were also analysed for idling conditions for wind speeds below cut-in and above cut-out wind speeds. However,

for the idling condition, the run-in times for wind speeds between the cut-in and cut-off wind speeds were not analysed. Due to

the very high maximum run-in time of 720 seconds in Hübler et al. (2017b), it is not reasonable to take this as a conservative

assumption for all wind speeds, as this dramatically increases the computational effort. For this reason, before starting meta-

modelling, the first step is to determine the run-in time for idling as a function of the wind speed.85

The paper is structured as follows. In the first part, the focus is on the time domain simulation of the idling operating state. Here,

the run-in times are determined with respect to the wind speed. Then, the next step is to create the training and test data sets for

meta-modelling. These are then used to investigate the creation of the meta-models for the idling wind turbine. The Kriging

meta-models are analysed with regard to the Kriging settings, i.e., the choice of the covariance and basis function. Subsequently,

a convergence study is carried out to determine the number of simulations required for creating the meta-models. Finally, the90

results of the meta-modelling of the idling offshore wind turbine are compared with the results of the meta-modelling of the

same offshore wind turbine in normal operation and a conclusion is drawn.
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2 Time-domain simulations of an idling offshore wind turbine

2.1 Simulation model and environmental conditions

The time-domain simulations for the investigations in this work are conducted using the aero-hydro-servo-elastic code FASTv895

from the National Renewable Energy Laboratory (Jonkman, 2013). A soil model by Häfele et al. (2016) and Hübler et al.

(2018) that enhances the FASTv8 code is considered. The NREL 5 MW reference turbine (Jonkman et al., 2009) with the OC3

monopile and soil (Jonkman and Musial, 2010) is used as the wind turbine model. For the soil model, the required soil matrices

are based on the lateral soil model of Kallehave (Kallehave, 2012) and on the axial soil model of FUGRO (API, 2007). These

choices follow the work of Hübler et al. (2017a, 2018). In accordance with Häfele et al. (2016), the soil matrices are calculated100

using initial conditions, i.e., no loads were applied.

The turbulent wind field is calculated using TurbSim (Jonkman and Kilcher, 2012). Here, the Kaimal turbulence model is

used, which is one of the turbulence models recommended in the IEC 61400-1 guideline (IEC, 2019) and which is frequently

used, for example by Yang et al. (2015), Slot et al. (2020), and Wilkie (2020). The irregular waves are calculated using the

JONSWAP spectrum. The JONSWAP spectrum is commonly used for offshore wind turbine simulations, e.g., by Velarde et105

al. (2019), Stieng and Muskulus (2020), and Wilkie (2020).

Five scattering parameters (mean wind speed vs, turbulence intensity TI , significant wave heightHs, wave peak period Tp, and

wind-wave-misalignment θmis) are considered in this work. For these five parameters, the statistical distributions by Hübler

et al. (2017b) are used, which were fitted to the measured environmental conditions at the FINO 3 research platform in the

German North Sea.110

The simulation length of each simulation is 10 minutes in addition to the run-in times to be determined in the next section.

2.2 Determination of the run-in times

Before creating the database for the training and testing of the meta-models, the first step is the determination of the the run-in

times for the NREL 5 MW reference turbine on the OC3 monopile in idling conditions using the FASTv8 software. Since

previous investigations have shown that the run-in times depend on the wind speed (Zwick and Muskulus, 2015; Hübler et al.,115

2017b), the run-in times are determined as a function of the wind speed.

The run-in times are determined by investigating the internal forces at two representative locations at the wind turbine, which

are visualised in Fig. 1. The internal forces of the monopile are investigated a mudline and the internal forces of the rotor blade

are investigated at its root. An overview of the considered internal forces can be found in Tab. 1. In the further course of this

paper, the meta-models are then created and analysed for these internal forces.120

To obtain the run-in times as a function of the wind speed, wind speeds of 1 ms−1 to 33 ms−1 with a step width of 2 ms−1

are considered. 10,000 simulations are carried out for each wind speed. In each of the 10,000 simulations, the random wind

and wave seeds and the initial azimuth angle ψ (initial position of the rotor blades) are varied. All other scattering parameters,

i.e. Hs, Tp, TI , etc., are kept constant, whereby the mean values of the corresponding probability distribution are used. This

means that the 10,000 simulations conducted for every wind speed are identical except for the values of the random wind and125
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Figure 1. Visualisation of the NREL 5 MW reference turbine on the OC3 monopile (not to scale) with markings indicating the locations at

which the internal forces are evaluated.

Table 1. Considered internal forces for the determination of run-in times and for the creation of meta-models

Internal forces Description

Fx shear force at mudline in wind direction

My overturning moment at mudline in wind

direction

Fy shear force at mudline perpendicular to wind

direction

Mx overturning moment at mudline perpendicular to

wind direction

Mx,Root edgewise moment at the blade root

My,Root flapwise moment at the blade root

wave seeds and the initial azimuth angle ψ.

A convergence study is conducted to determine the run-in times. Each of the 10,000 simulations per wind speed has a simulation

length of 60 minutes. This leads to a maximum of 50 minutes for the initial transients as the usable simulation length is 10

minutes. Based on the study of Hübler et al. (2017b) on initial transients of an offshore wind turbine, it is assumed that this
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duration is sufficient for an idling wind turbine.130

For the convergence study, the run-in time is increased step by step in 10-second intervals, starting with a minimum run-in

time of 10 seconds. Then, in each step, for each of the 10,000 simulations, the run-in time is cut off and a short-term DEL is

calculated for a simulation length of 10 minutes according to Eq. (1).

Seq =
(∑ niS

m
i

Nref

) 1
m

(1)

Here, ni is the corresponding number of cycles for each load range Si determined by a rainflow counting according to the stan-135

dard ASTM E1049-85 (ASTM, 2017). Nref = 600 is the number of equivalent cycles for a frequency of 1 Hz for a 10-minute

time series and m is the Wöhler exponent. The Wöhler exponent m = 3 is chosen for steel and m = 10 for the composite

material of the rotor blade. The load range Si is corrected according to Goodman (1899).

The resulting 10,000 short-term DELs Seq are then averaged for each step of the convergence study. The run-in time is con-

sidered sufficiently long if the deviation of the current mean short-term DEL from the mean short-term DEL of the maximum140

analysed run-in time of 50 minutes is less than 5 %.

As described above, the 10,000 simulations conducted for every wind speed are identical except for the values of the random

wind and wave seeds and ψ. ψ is varied in each simulation in addition to the random wind and wave seeds, as during the

investigations, it turned out that the run-in times, especially for the flapwise bending moment at the blade root My,Root, could

only be determined if ψ is varied in each simulation. This can be explained as follows. In the case of an idling wind turbine,145

the blades are pitched out. Due to this pitch angle and the very low rotational speed of the rotor, the flapwise (idling: in-plane)

bending moment is significantly affected by the weight of the rotor blade itself and therefore depends on the position of the

rotor blade. This dependency is shown in Fig. 2, where the time series of the azimuth angle and My,Root are shown for one

example simulation with a mean wind speed of vs = 17ms−1. It becomes clear that the value of My,Root is significantly in-

fluenced by the value of the azimuth angle. Furthermore, it is noticeable that the values of My,Root only change very slowly.150

This is due to the fact that the azimuth angle, i.e., the rotor position, only changes very slowly caused by the low rotor speed

(approximately one rotation per hour). If only the random wind and wave seeds are varied while ψ has the same value in all

10,000 simulations, the resulting time series of My,Root differ only due to different rotor speeds caused by different stochastic

wind fields. These differences are – especially for My,Root – not large enough to determine a convergence of the run-in times,

as the time series are too similar and the mean values of My,Root,DEL are therefore too strongly affected by the rotation of155

the rotor. This issue can be avoided by varying ψ in each simulation. Due to the different initial rotor positions, the time series

of My,Root are more different. Consequently, the influence of the rotation of the rotor in My,Root,DEL is averaged out when

calculating the mean value of My,Root,DEL. This enables the run-in times to be determined. For this reason, the azimuth angle

is varied randomly to determine the run-in times.

Figure 3 shows an example of the convergence behaviour for wind speeds from 1ms−1 to 9ms−1 forMy,DEL andMy,Root,DEL.160

For the remaining internal forces and wind speeds considered, the convergence behaviour is shown in Appendix A in Fig. A1

to A3. It is clear that My,DEL has a better convergence behaviour than My,Root,DEL and that longer run-in times are required

when looking at My,Root,DEL. For My,DEL it can be seen that the run-in time depends on the wind speed. The higher the
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Figure 2. Influence of the azimuth angle on the flapwise bending moment My,Root at the rotor blade root for a mean wind speed of

vs = 17ms−1

wind speed, the shorter the run-in time required. This dependence of the run-in time on the wind speed can be observed for all

analysed internal forces, although the run-in times of the bending moments at the rotor blade roots deviate from this in some165

cases. For My,Root,DEL, for example, it can be seen that the results for 3 ms−1 and 5 ms−1 deviate from this trend as shown

in Fig. 3. The reason for these deviations could not be determined in this study. As the simulation of My,Root,DEL additionally

requires the highest run-in times for most wind speeds, 800 seconds run-in time is assumed for wind speeds < 16ms−1 to be on

the conservative side. For very high wind speeds, the investigations show required run-in times of less than 10 seconds. Here,

to be on the safe side, a minimum run-in time of 60 seconds is specified. The run-in times defined in this work are shown in170

Tab. 2.

Comparing the results in Tab. 2 with the results of Hübler et al. (2017b) for the same wind turbine in operation, it is noticeable

that the trend that the required run-in time becomes shorter with increasing wind speed was observed previously. The results

also agree well for wind speeds of less than 3ms−1, where the turbine is idling. However, the results differ significantly in

one aspect. Compared to 60 seconds in this study, a very long run-in time of 360 seconds was determined for the idling wind175

turbine for wind speeds greater than 25ms−1. One possible reason for this could be that in this work only one load case per

wind speed is calculated 10,000 times with different random seeds and varying initial azimuth angles. Here, the mean values

of the probability distributions of the remaining scattering parameters are used. The determined run-in times therefore apply
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Figure 3. Initial transient behaviour of the idling wind turbine for mean wind speeds of 1 ms−1 to 9 ms−1

.

Table 2. Recommended run-in times that should be discarded to exclude the effects of initial transients

vs in ms−1 <2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18

run-in time in s 800 800 800 800 800 800 800 800 100

vs in ms−1 18-20 20-22 22-24 24-26 26-28 28-30 30-32 >32

run-in time in s 70 70 60 60 60 60 60 60

to average load cases. However, rarely occuring combinations of input parameters, which may lead to higher run-in times, are

not taken into account. In Hübler et al. (2017b), in contrast, 10,000 different load cases per wind speed bin were calculated180

to determine the run-in times. This means that the wind speed and other scattering parameters such as turbulence intensity,

significant wave height, wave peak period, etc., were varied in each of the 10,000 simulated load cases per wind speed bin.

As a result, less frequently occuring combinations of input parameters were also taken into account, which may lead to higher

run-in times. To summarise, it can therefore be concluded that the run-in times in this work apply to average load cases while

the run-in times from Hübler et al. (2017b) can be used to be on the conservative side.185
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3 Meta-modelling

3.1 Kriging meta-model

In this work, Kriging is used as a meta-model for the simulation model of the offshore wind turbine in idling conditions.

Kriging uses a combination of a regression equation to model the mean or general trend in the data and a Gaussian process

with a zero mean to model the deviations from the general trend (Santner et al., 2018). The equation of Kriging is given as190

follows by Rasmussen and Williams (2008):

g(x) = f(x) +h(x)Tβ. (2)

h(x)Tβ represents the general trend in the data with known regression or basis functions h(x) and unknown regression coef-

ficients β. f(x) is a Gaussian process with a zero mean and the covariance function or kernel function k(x,x′):

f(x)∼GP (0,k(x,x′)). (3)195

As mentioned before, using the Gaussian process (GP), the deviations from the general trend, also called residuals, are mod-

elled. Here, the covariance function k(x,x′) describes the similarity between different data points (x and x′). It is assumed that

data points whose input values are close to each other, i.e., are similar, also have similar output values. Covariance functions can

be isotropic or anisotropic. They differ in the correlation length used. The correlation length indicates how distant data points

may be from each other in order for them to still be correlated. For isotropic covariance functions, there is a joint correlation200

length for all input parameters. In contrast, for anisotropic covariance functions, there is a separate correlation length for each

input parameter. This can be beneficial when the different input parameters have different influences on the output parameters

(Rasmussen and Williams, 2008). In this work, the anisotropic covariance functions are named with the prefix ARD (automatic

relevance determination).

For more information on Kriging, the reader is referred to Santner et al. (2018) and Rasmussen and Williams (2008).205

The Kriging meta-model is used in this work to predict fatigue loads, i.e., short-term DELs Seq , based on the input parameters

vs, TI , Hs, Tp, and θmis. These environmental parameters were identified as significant in sensitivity analyses for operating

wind turbines by Hübler et al. (2017a), Murcia (2018), and Velarde et al. (2019). Due to their significant influence on the

fatigue loads of operating wind turbines, it is assumed in this work that these parameters also have a significant impact on the

fatigue loads in the case of an idling wind turbine.210

It should be mentioned that a separate meta-model is created for each of the six internal forces analysed (see Tab. 1). To train the

meta-models, the short-term DELs Seq determined with the aeroelastic simulation model f depending on the input parameters

are used.

Seq = f(vs,T I,Hs,Tp,θmis) (4)

A Kriging meta-model is a mathematical model which, in principle, can also make unphysical predictions, such as negative215

short-term DELs. To avoid the prediction of negative DELs, the logarithm of the short-term DELs is used to train the meta-
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models g.

ln(Seq) = f(vs,T I,Hs,Tp,θmis) (5)

As the meta-models g were trained with ln(Seq), the meta-models g also predict values for ln(Ŝeq), where Ŝeq is the approxi-

mated short-term DEL.220

ln(Ŝeq) = g(vs,T I,Hs,Tp,θmis) (6)

The values of Eq. 6 can then be used to calculate Ŝeq as follows.

Ŝeq = exp(ln(Ŝeq)) (7)

It should be noted that a Kriging meta-model generally predicts a mean and a corresponding standard deviation of the short-

term DEL. For the prediction of the short-term DELs in this work, only the predicted mean values are used, as the mean values225

are the central values of the predictive distributions and provide a clear and unambiguous estimate of the expected short-term

DELs.

3.2 Generation of training and test data

Using the previously defined initial transients, the training and test data sets for meta-modelling can be created. Here, the same

simulation model and environmental conditions are used as described in Sect. 2.1. The five environmental input parameters for230

the meta-models vs, TI , Hs, Tp, and θmis are considered as scattering parameters. In addition to these variables, ψ and the

random wind and wave seeds are also varied randomly in each simulation. For the other environmental variables, which are

also scattered in reality (e.g., wind shear exponent), the mean values of their probability distributions are used.

In the sampling process, correlations between the input parameters are taken into account as shown in Fig. 4. This means that

combinations of environmental variables that do not occur in reality, such as a high wind speed in combination with a very low235

wave height, are not considered in this work. The correlations were considered using the statistical distributions of Hübler et

al. (2017b), which contain the correlations between the different environmental variables.

10,000 samples are created using a Halton sequence. A Halton sequence is also known as a quasi-random sampling method.

Here, samples are generated in the interval of [0,1] with the help of an equation. The created samples are then transformed

using the inverse cumulative probability distribution. The Halton sequence is selected because it led to the best results in terms240

of the required number of samples compared to other methods in an earlier study (Müller et al., 2022) for an offshore wind

turbine in operation. In addition, the Halton sequence was also used by Dimitrov et al. (2018) and Slot et al. (2020).

The resulting time series for the different internal forces (see Tab. 1) are subsequently tranformed into short-term DELs using

Eq. 1. The data set is then split into a training data set and a test data set. Here, 85 % of the samples are used to train the Kriging

meta-model and 15 % of the samples are then used to test the meta-model.245
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Figure 4. Correlations of mean wind speed vs and significant wave height Hs

3.3 Load comparison of operating and idling wind turbines

As already described, the idling load cases can certainly have a significant impact on the lifetime, as the wave loads have a

more significant impact on the structural behaviour due to the almost non-existent aerodynamic damping. Thus, the wave loads

excite the structure more strongly. To understand the magnitude of the internal forces of the idling conditions compared to250

the internal forces of normal operation, the internal forces of the idling wind turbine and the internal forces of the operating

wind turbine are compared first. This comparison also helps to check whether it is appropriate to create a meta-model for all

the internal forces considered in this work, or whether some of the internal forces in idling conditions are so small that no

meta-model is required, as they have almost no influence on the lifetime.

For this investigation, the generated training and test data sets from the previous section are compared with the training and test255

data sets for meta-modelling for normal operation of the same offshore wind turbine (i.e., the same simulation model) from

Müller et al. (2022). For both data sets, the wind speed range from 3ms−1 (cut-in wind speed) to 25ms−1 (cut-off wind speed)

is divided into bins with a width of 2ms−1. Subsequently, the mean of the short-term DELs is calculated for each bin and for

both data sets. Example results are shown in Fig. 5 for Fx,DEL, Fy,DEL, and the out-of-plane (OoP) bending moment at the

blade root MOoP,Root,DEL. The comparison for the remaining internal forces is shown Appendix A in Fig. A4. It becomes260

clear that the internal forces at the monopile under idling conditions are in the same range compared to the internal forces

during normal operating conditions and can be even higher than in normal operating conditions. The bending moments at the

rotor blade roots are smaller but at least of a similar order of magnitude for low wind speeds. This study therefore leads to the

conclusion that meta-models should be created for all six internal forces considered.
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Figure 5. Comparison of the internal forces between idling and operating conditions for Fx,DEL, Fy,DEL and MOoP,Root,DEL

3.4 Input parameters for meta-modelling265

Based on the results in Sect. 2.2 showing significant impacts of ψ and the rotor speed on My,Root, this section briefly inves-

tigates whether ψ and the mean rotor speed ω need to be considered as additional input parameters for meta-modelling. For

this purpose, the meta-models are first trained with the five environmental input parameters described in Sect. 3.2 (vs, TI ,

Hs, Tp, and θmis) using all 8,500 training samples. Subsequently, meta-models are created with ψ and ω as additional input

parameters. To decide whether the additional input parameters need to be taken into account, the two meta-models created with270

different numbers of input parameters are compared for each considered internal force using the 1,500 test samples. Here, the

predicted short-term DELs of the two meta-models are compared with the short-term DELs determined with the aeroelastic

simulation code FASTv8.

Example results are shown in Fig. 6 for My,DEL and My,Root,DEL depending on vs. From Fig. 6(a) and (c), it is clear that

the use of the five input parameters for the approximation of My,DEL leads to good results as both the overall trend and the275

scatter are represented. The meta-model of My,Root,DEL, in contrast, cannot represent the scatter of the simulated values of

My,Root,DEL. Figures 6(b) and (d) show the approximations of the meta-models for My,DEL and My,Root,DEL with ψ and

ω as additional input parameters. It is clear that there is barely any change in the approximation of My,DEL compared to the

meta-model with five input parameters. For My,Root,DEL, in contrast, it becomes apparent that the approximation of the meta-

model is significantly better when the two additional input parameters are employed. From these results it can be concluded,280

on the one hand, that it is sufficient for the internal forces at the monopile to use the five environmental input parameters that

are also used for a wind turbine in normal operation. For the bending moments at the rotor blade roots, on the other hand, the

two additional input parameters ψ and ω are required for an acceptable approximation quality of the meta-models.
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Figure 6. Comparison of two Kriging meta-models for My,DEL and My,Root,DEL with different numbers of input parameters: (a) and (c)

use five input parameters (vs, TI , Hs, Tp, θmis), (b) and (d) use seven input parameters: input parameters from (a) plus ψ and ω.

While ψ is an input parameter that can be specified in the FASTv8 input files, ω is not an input parameter of the aeroelastic

simulations. ω depends on, among other factors, the wind field of the aeroelastic simulation and is therefore actually an output285

parameter of the simulation. In order to be able to use ω as an input parameter, the relationship between the input parameters

vs, TI ,Hs, Tp, θmis, and ψ and the output parameter ω is therefore modelled using an additional Kriging meta-model. To train

this meta-model for ω, the same simulation data are used as for training the meta-models for the prediction of the short-term

DELs. Since the rotor speed strongly depends on the random seeds (see also Sect. 2.2), it is not sufficient for the prediction of
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Figure 7. Approximation of ω by a Kriging model. (a) prediction using the mean value of the Kriging model, (b) prediction using a random

sampling of the normal distribution resulting from the mean values and the standard deviation predicted by the Kriging model.

ω to only use the mean value of the Kriging meta-model for ω (as done for the meta-models for the prediction of the short-290

term DELs). Using only the mean value for the prediction, the scattering of ω cannot be properly modelled (see Fig. 7(a)).

For this reason, the standard deviation is used in addition to the mean value to predict the short-term DELs. For this purpose,

each predicted short-term DEL is randomly sampled from the normal distribution resulting from the predicted mean value of

the corresponding short-term DEL and the standard deviation given by the Kriging meta-model of ω. Including the standard

deviation of the Kriging meta-model for ω allows a sufficiently accurate mapping of the relationship between ω and the input295

parameters (vs, TI , Hs, Tp, and θmis). This is shown in Fig. 7(b).

3.5 Investigation of Kriging settings and convergence study

Having defined the input parameters for meta-modelling, the next step is to analyse which meta-model settings lead to the best

approximation of the simulation model. Here, four different basis functions and five covariance functions are analysed for the

investigation of the meta-model settings for the Kriging meta-model. The analysed basis and covariance functions have already300

been used for Kriging meta-models in wind energy. For the five covariance functions, both the option with equal correlation

lengths (isotropic covariance functions) and the option with different correlation lengths (anisotropic covariance functions)

for each input parameter are evaluated. The investigated basis and covariance functions are listed in Tab. 3. More detailed

information on the covariance functions can be found in Rasmussen and Williams (2008).

For every possible combination of the investigated basis and covariance functions, a Kriging meta-model is created to select305

a meta-model setting for all further investigations in this paper. As measure of error, the normalised root mean square error
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Table 3. Investigated basis and covariance functions

basis functions none, constant, linear, and pure

quadratic

covariance functions exponential, squared exponential,

rational quadratic, matern 5/2,

matern 3/2, ARD exponential,

ARD squared exponential,

ARD rational quadratic

ARD matern 5/2, ARD matern 3/2,

(NRMSE) is used.

NRMSE =
1

E(Seq(x))

√∑Ntest

i=1 (Ŝeq(xi))2−Seq(xi))2

Ntest
(8)

Here, Seq(x) are the simulated short-term DELs and Ŝeq(xi) is the i-th short-term DEL predicted by the meta-model. Ntest is

the number of test samples and E(Seq(x)) is the expected value of the short-term DELs Seq(x). One advantage of this error310

metric is the possibility to compare the meta-models for the different fatigue loads directly with each other. Therefore, it is

quite simple to determine whether there are internal forces that can be better represented by a meta-model than others.

It turns out that the approximation quality mainly depends on whether an isotropic or anisotropic covariance function is chosen.

The anisotropic covariance function, i.e., different correlation lengths for the different input parameters, leads to a better

approximation of the simulation model than the isotropic covariance function. An example can be seen in Fig. 8 for My,DEL.315

This result was to be expected, as the five input parameters (fatigue loads at the monopile) or seven input parameters (fatigue

loads at the rotor blade root) each have a different impact on the investigated internal forces.

To be able to decide which settings lead to the best meta-model – also with regard to the required number of samples – a

convergence study is carried out. Here, the number of samples is increased step by step up to the maximum number of training

samples of 8,500. Due to the result that the approximation quality is better when using anisotropic covariance functions, only320

the anisotropic covariance functions are considered further for the convergence study. Fig. 9 shows the convergence of the

NRMSE for Mx,Root,DEL and My,Root,DEL for the five different anisotropic covariance functions in combination with all

analysed basis functions as a function of the number of samples used. The results of the remaining internal forces are shown in

Appendix A in Fig. A5. It becomes clear that the choice of the covariance function has an influence on the number of samples

required for meta-modelling, but that the choice of the basis function does not for most of the internal forces considered.325

Only for the bending moments at the rotor blade roots can the selected basis function be decisive for the required number of

samples as the choice of no basis function and a quadratic basis function partly leads to significantly worse results compared

to a constant or linear basis function.

Since the ARD matern 3/2 covariance function leads to the best results overall for all fatigue loads considered, this covariance
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Figure 8. NRMSE for different settings of Kriging using My,DEL as an example and using the entire training data of 8,500 samples

function is used from this point onwards in this paper. For the basis function, the use of a constant or linear basis function is330

recommended, as these lead to a good approximation for all internal forces analysed. Therefore, in the following, a linear basis

function is used.

Furthermore, it is clear from Fig. 9 and Fig. A5 that the value of theNRMSE has not yet converged for all internal forces (e.g.

Mx,Root,DEL and Mx,DEL), even when all 8,500 training samples are used. In order to achieve convergence, further samples

would be necessary. However, as this is only useful if a convergence of the NRMSE is required for a sufficiently accurate335

meta-model, the next section first analyses how suitable the meta-models created in this work, using all 8,500 samples, are in

comparison to the simulation model.

3.6 Evaluation of the approximation quality of the Kriging meta-model

In this section, the previously raised question of how good the meta-models created are in terms of their approximation quality

and whether they should or could be more accurate will be addressed. Here, it should be noted that the aeroelastic simulations340

themselves also contain uncertainties, e.g., due to the random seeds used for the generation of the wind and wave fields. This

seed-to-seed uncertainty and the uncertainty of the meta-models compared to the aeroelastic simulation model will be analysed

in the following. The aim is to be able to rate the approximation quality of the meta-model in comparison to the seed-to-

seed uncertainty of the simulation model. For this purpose, the test data set (see Sect. 3.2) is simulated nine additional times

with varied wind and wave seeds using the aeroelastic simulation code FASTv8. For the resulting 10 test data sets, which are345

identical except for the wind and wave seeds, the NRMSE is calculated for all possible combinations of the 10 test data

sets (NRMSEsim, 45 combinations in total). The mean value NRMSEsim,mean is then calculated from the 45 values of

NRMSEsim. At the same time, the predictions of the meta-models are compared with the 10 test data sets. For this, the
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Figure 9. NRMSE depending on the number of simulations for different settings of the Kriging meta-model for the bending moments at the

rotor blade root

NRMSE is first calculated for all possible combinations of the predictions of the meta-models with the 10 test data sets

(NRMSEmeta, 10 combinations in total). Here again, the mean value NRMSEmeta,mean is determined from the 10 values350

of NRMSEmeta. The resulting two mean values of the NRMSE are then compared for all considered internal forces (see

Tab. 4). Additionally, a visual comparison, in which the first test data set is plotted against the second test data set and against

the predictions of the meta-model is conducted. An example is shown in Fig. 10 for Fx,DEL and My,Root,DEL.

The results in Tab. 4 show that the NRMSEmeta is smaller than the NRMSEsim for all considered internal forces although

the difference forMy,Root,DEL is very small. It can therefore be concluded that the meta-models are sufficiently accurate as the355

meta-models do not have to be more accurate, since the uncertainty of the simulation model due to the seed-to-seed uncertainty

is already larger than the error of the meta-models. This is also clear from Fig. 10.

Based on these results, the findings of the previous section regarding the required samples and the choice of the meta-model
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Figure 10. Comparison of the seed-to-seed uncertainty of the two test data sets (blue data points) with the predictions of the meta-models

(red data points) for Fx,DEL and My,Root,DEL.

settings must be re-evaluated. Assuming that the values of NRMSEmeta do not have to be smaller than the values for

NRMSEsim, from Tab. 4, Fig. 9 and Fig. A5 show that significantly fewer than the 8,500 simulations carried out in this360

work are enough to create sufficiently good meta-models. When using a linear basis function and an ARD matern 3/2 covari-

ance function as recommended in the previous section, as few as 2,000 samples are sufficient to create the meta-models for

every considered internal force, although theNRMSE has not yet converged. It can therefore be summarised that significantly
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Table 4. Comparison of the mean values of NRMSEsim for simulation against simulation resulting from all possible combinations of

10 random seeds (45 combinations) with the mean values of the of NRMSEmeta for meta-model against simulation resulting from the

possible combinations of the same 10 random seeds (10 combinations) for all considered internal forces using the maximum number of

training samples

Internal force NRMSEsim,mean NRMSEmeta,mean

(45 combinations) (10 combinations)

Fx,DEL 0.198 0.146

My,DEL 0.439 0.318

Fy,DEL 0.149 0.114

Mx,DEL 0.355 0.263

Mx,Root,DEL 0.475 0.369

My,Root,DEL 0.681 0.680

fewer samples are required to create a sufficiently accurate meta-model compared to the results of the convergence study.

Fig. 10 also clearly shows that the seed-to-seed uncertainty has a different impact on the considered internal forces. Especially365

for My,Root,DEL, the influence of the seed-to-seed uncertainty is significant and it becomes clear that a change of the random

seeds alone (while keeping all other input parameters unchanged) results in a large scattering of the short-term DELs. This

large scattering can be explained by the fact that the different random seeds result in different wind fields, which cause the

rotor to rotate at different speeds during the simulation (see also Sect. 2.2).

4 Comparison to meta-modelling of an operating wind turbine370

The findings concerning the meta-modelling of the idling offshore wind turbine are compared with the findings concerning

the meta-modelling of the same offshore wind turbine in normal operation. For this purpose, the results from a previous study

are used, in which the meta-modelling of the same simulation model, i.e., the NREL 5 MW reference turbine on the OC3

monopile, was investigated (Müller et al., 2021). In this study, the same five input parameters were used for meta-modelling

and the use of the ARD matern 3/2 covariance function in combination with a quadratic basis function was recommended.375

It is noticeable that the results of the investigations into meta-modelling of the short-term DELs are very similar for idling

and for normal operation. The findings that an anisotropic rather than isotropic covariance function leads to a better meta-

model and the influence of the basis function is rather low are valid for both normal operating and idling conditions. Only

the recommendation of a linear instead of pure quadratic basis function differs. However, the results in Müller et al. (2021)

show that it is also possible to use a linear basis function for normal operation. It would therefore be possible to use the same380

covariance and basis functions for both operating states.

The five input parameters that were used for normal operation are also sufficient for meta-modelling of the idling condition
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for the prediction of the internal forces at the monopile. With regard to the approximation of the bending moments at the

rotor blade roots, two additional parameters (ψ and ω) must be added for idling compared to normal operation. However, this

does not affect the choice of the Kriging settings, so that the same settings could be used for the Kriging meta-models for the385

prediction of the short-term DELs both at the monopile and at the rotor blade root.

With regard to the evaluation of the approximation quality, no conclusion can currently be made on the basis of the work in

Müller et al. (2021) as the influence of the seed-to-seed uncertainty was not investigated in this study. Since the same simulation

model was used, it can be assumed that similar effects occur in normal operation as when idling. Nevertheless, this would have

to be confirmed in a further study.390

5 Conclusions

In this work, meta-modelling for the estimation of damage equivalent loads for an idling offshore wind turbine was investigated.

The simulation model analysed was the NREL 5 MW reference turbine on the OC3 monopile. Here, the approximation of the

fatigue loads at the monopile at mudline in the wind direction and perpendicular to the wind direction as well as the blade root

moments were investigated. Moreover, before the meta-models were created, the run-in times for the idling wind turbine were395

determined.

In this context, the following new findings have been achieved:

1. The investigation of the run-in times showed that the required run-in times decrease with increasing wind speed. It turned

out that the recommended run-in times are between 60 and 800 seconds depending on the wind speed.

2. The findings concerning meta-modelling of the idling wind turbine are generally similar to the findings concerning400

meta-modelling of the same wind turbine in normal operation.

3. However, it was found that ψ and ω have a significant impact on the flapwise bending moment at the rotor blade root

My,Root. Therefore, these parameters should be included in meta-models for the internal forces at the blade root. Never-

theless, there is no need to include them in meta-models for the internal forces at the monopile.

4. Regarding the meta-model settings, the use of the ARD matern 3/2 covariance function in combination with a linear405

basis function is recommended for the creation of the meta-models.

5. Due to a large seed-to-seed uncertainty in aeroelastic simulations, significantly fewer samples compared to the entire

training data set of 8,500 samples are required to create the meta-models (i.e., approximately 2,000).

Nevertheless, there are some limitations to the generalisation of this work. Regarding the run-in times, it is important to keep

in mind that the run-in times only apply to the simulation model of the NREL 5 MW reference turbine on the OC3 monopile410

analysed in this work using the aeroelastic simulation code FASTv8. If a different wind turbine, substructure or aeroelastic

simulation code is used, the run-in times may differ from those in this paper. Nevertheless, the run-in times given can, of

course, provide an indication for the choice of the run-in times. Furthermore, it should be noted that the meta-modelling was
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investigated only for six different internal forces at two locations of the offshore wind turbine and for one specific wind turbine

model. To be able to assess whether these results can be transferred to other locations of the wind turbine or to other wind415

turbine models and substructures, further investigations must be carried out. It should also be noted that the meta-models

were not created or tested for extreme environmental conditions. The meta-models were created for the load cases covered

by the 8,500 simulations of the training data and tested for the load cases of the 1,500 test samples. In addition to the points

discussed, it should be mentioned that the use of short-term DELs for the fatigue calculation, especially for the rotor blades, is

a simplification.420

In future work, the new meta-models created in this work can be used for the lifetime reassessment of wind turbines to

enable the consideration of idling in the lifetime reassessment in addition to modelling normal operation using meta-models.

This would lead to a significant reduction of the computational effort of the lifetime reassessment. However, even though the

meta-models in this study show a good approximation quality, their use for the lifetime reassessment should be investigated in a

further study. Furthermore, the findings from this work can be used to create meta-models for other simulation models of idling425

wind turbines. In addition, other meta-models could also be investigated, for example, the use of a heteroscedastic Gaussian

process regression. In contrast to the homoscedastic Gaussian process regression used in this work, heteroscedastic Gaussian

Process regression can take a varying uncertainty (standard deviation) over the range of input parameters into account.

Data availability. Datasets related to this article are available upon request. It is planned to make the datasets publicly accessible.

Appendix A: Additional figures430
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Figure A1. Initial transient behaviour of the idling wind turbine for mean wind speeds of 1 ms−1 to 9 ms−1 for all considered internal

forces
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Figure A2. Initial transient behaviour of the idling wind turbine for mean wind speeds of 11 ms−1 to 19 ms−1 for all considered internal

forces
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Figure A3. Initial transient behaviour of the idling wind turbine for mean wind speeds of 21 ms−1 to 33 ms−1 for all considered internal

forces
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Figure A4. Comparison of the internal forces between idling and operating conditions for My,DEL, Mx,DEL and the in-plane bending

moment at the blade root MIP,Root,DEL
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Figure A5. NRMSE depending on the number of simulations for different settings of the Kriging meta-model for the internal forces at the

monopile
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